
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 5, MAY 2009 1839

A Biologically Inspired Compound-Eye Detector
Array—Part I: Modeling and Fundamental Limits

Zhi Liu, Student Member, IEEE, Arye Nehorai, Fellow, IEEE, and Eytan Paldi, Member, IEEE

Abstract—This is the first part of a two-part paper. In this
paper, we propose a detector array for detecting and localizing
sources that emit particles including photons, neutrons, or charged
particles. The array consists of multiple “eyelets.” Each eyelet
has a conical module with a lens on its top and an inner subarray
containing multiple particle detectors. The array configuration
is inspired by and generalizes the biological compound eye: it is
spherically shaped and has a larger number of detectors in each
individual eyelet. Potential applications of this biomimetic array
include artificial vision in medicine (e.g., artificial eyes for the
blind) or robotics (e.g., for industry or space missions), astronomy
and astrophysics, security (e.g., for radioactive materials), and
particle communications. In this part, we assume Poisson distribu-
tion for each detector’s measurement within the observation time
window. Then we construct a general parametric model for the de-
tection rate of the Poisson-distributed measurements illustrated by
a circular Gaussian lens-shaping function (LSF) approximation,
which is commonly used in optical and biological disciplines. To
illustrate how this “prototype” model fits practical cases, we apply
it to an example of localizing a candle from 20 miles away and
estimating the parameters under this circumstance. In addition,
we also discuss the hardware setup and performance measure of
the proposed array, as well as its fundamental constraints. Part I
forms the theoretical basis for Part II, in which we analyze the
performance of the array, both analytically and numerically.

Index Terms—Artificial compound eye, biologically inspired,
biomimetics, eyelet, fundamental limits, lens, mean-square an-
gular error, modeling, particle communication, particle detector
array, particle source localization, weighted direction estimator.

I. INTRODUCTION

I N Part I of our paper, we propose a novel detector array
for detecting and localizing particle-emitting sources. The

array consists of multiple “eyelets,” each having a conical
module with a lens on its top and an inner subarray containing
a large number of small particle detectors (for different types
of particle detectors, see e.g., [1]–[4]). The eyelets can be used
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to detect uncharged particles such as photons and neutrons. For
the case of visible-light sources, this array configuration is a
generalization of the biological compound eye, being spheri-
cally shaped and having a larger number of detectors in each
individual eyelet. Compared with most existing optical sensor
arrays (e.g., planar CCD or CMOS sensor arrays in digital
cameras), the proposed sensor array has a larger field of view
(because of its spherical shape) and higher sensitivity to the
source direction (because of multiple eyelets). In other words,
the proposed array combines the advantages of the biological
compound eye (large field of view) and of human eyes (high
spatial resolution). Moreover, the size of the spherical array is
compact, compared with other distributed sensor arrays (e.g.,
distributed antenna arrays for localizing EM sources).

This work extends our previous work on directional detector
arrays, in which we introduced several detector arrays, com-
puted their performance bounds for source localization [5], and
proposed a detection algorithm to determine the presence of a
far-field particle source [6]. The current extensions include the
introduction of multiple eyelets, lenses, and subarrays. Com-
pared with the arrays with projection response to the source
direction in [5] and [6], the proposed array with lenses on top
of subarrays possesses a sharper response function and one
that is adjustable, and hence the angular resolution is increased
markedly. In this two-part paper, we extend our earlier results
in [7], where we briefly introduced the configuration of the
proposed array, and in [8], where we analyzed the performance
of the array numerically. We expand our work in [7] and [8], by
generalizing the mathematical model and adding new analytical
and numerical results.

A. Motivation and Applications

This work is motivated by the need for sensitive particle sen-
sors in applications such as artificial vision, which can be impor-
tant in robotics (see, e.g., [9]) or medicine (e.g., artificial eyes
for the blind); security, where the detection of radioactive mate-
rials is needed (e.g., in verifying compliance with nuclear non-
proliferation treaties); and astronomy assisted (e.g., estimation
of orientation and angular velocity with respect to the stars for
satellites and space vehicles). Potential applications also include
“particle communication.” Different types of particles in poten-
tial applications are listed in Table I. Notably, an artificial com-
pound eye that mimics a biological compound eye anatomically
as well as functionally was recently built [10]. This achievement
indicates that the array configuration proposed in this paper is
not merely a “thought experiment” but is a potentially practical
one that may have wide impact in the above areas.

1053-587X/$25.00 © 2009 IEEE
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TABLE I
PARTICLES IN DIFFERENT APPLICATIONS

The choice of particles and detectors depends on the specific application.

Charged particles are subject to scattering.

Fig. 1. (a) Dragonfly’s compound eye; (b) anatomical cross section of a compound eye and an ommatidium; (c) optics of an apposition compound eye; and
(d) optics of a superposition compound eye.

Remark 1.1: Although we used visible photons in the anal-
ysis of this paper, the proposed array and the mathematical/
practical model apply to all the types of particles listed in
Table I.

B. Outline of This Part

This part focuses mainly on modeling the array’s behavior
in localizing particle sources, both statistically and physically.
First, we assume a Poisson distribution for each detector’s
measurement within the observation time window. Then, we
construct a general parametric model for the detection rate of
the Poisson-distributed measurements illustrated by a circular
Gaussian lens-shaping function (LSF) approximation, which is
widely used in optical and biological disciplines. To illustrate
how this “prototype” model fits in practical cases, we apply it
to an example of localizing a candle from 20 miles away and
estimate the parameters under this circumstance. In addition,
we also discuss the hardware setup of the proposed array and
the fundamental constraints on the array variables. Finally, we
introduce a performance measure of the array and analyze its
fundamental limitations.

Part I forms the analytical basis for Part II, in which we will
analytically and numerically analyze the performance of the
array. Part I is organized as follows: in Section II, we briefly de-
scribe the optical properties of different types of compound eyes
and compare them with the proposed array; in Section III and
Section IV, we introduce the general mathematical measure-
ment model and the statistical measurement model for the array,
respectively; in Section V, we present an example to show how
the model can be used in practice; in Section VI, we discuss the
hardware setup and fundamental limits of the array variables; in
Section VII, we introduce the array’s performance measure and
analyze its fundamental bounds; in Section VIII, we summarize
this work.

II. BIOLOGICAL COMPOUND EYES AND THE PROPOSED ARRAY

We briefly describe the optical properties of biological com-
pound eyes and introduce the configuration of the proposed
array.

A. Biological Compound Eyes

A compound eye is a visual organ found in certain arthropods
(some insects and crustaceans), as shown in Fig. 1(a). It usually
contains multiple “ommatidia,” each consisting of a lens and a
rhabdom; see Fig. 1(b). In contrast to the single-aperture eyes of
vertebrates, compound eyes have no central lens or retina. From
an optical viewpoint, compound eyes can be classified into two
fundamental categories [11]: apposition and superposition.

As the commonest type and possibly the ancestor of the
others, an apposition eye has its rhabdoms receiving light only
from their “own” corneal facets [12]. This eye consists of an
array of up to 30 000 individual ommatidia, each containing
a lens on the top with a cluster of (usually seven or eight)
photoreceptor cells inside, which form a single photosensitive
light-guiding rod, or rhabdom [13]. In other words, the omma-
tidia work as optically isolated units in these eyes, as shown in
Fig. 1(c). In these eyes, each ommatidium collects light rays
coming from a small part of the object and forms a small image
of that part on its distal tip. Combination of all these small
images creates a complete image of the whole object.

In contrast, superposition eyes have the characteristic that the
ommatidia are not optically isolated. The term “superposition”
refers to the fact that contributions from many optical elements
are superimposed in the image plane [11]. In these eyes, each
rhabdom senses light from a large number of corneal lenses,
and each facet forms an image that extends over many rhab-
doms [see Fig. 1(d)]. The superposition mechanism combines
the small images of each rhabdom into a single image of the
object.
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Fig. 2. (a) Cross section of a segment of the proposed array and (b) schematic description of each eyelet, with a lens on top of a conical module and an inside
subarray of detectors.

TABLE II
TERMINOLOGY USED FOR THE BIOLOGICAL COMPOUND EYE AND THE PROPOSED ARRAY

Compared with single-aperture eyes, compound eyes have
a much wider field-of-view (FOV), better capability to detect
moving objects, and higher sensitivity to light intensity. More-
over, a compound eye may perform the function of multiple ar-
rays simultaneously, each having different spectral responses,
polarization sensitivity, integration times, or adaption organisms
[12]. However, because of the tiny aperture size of each corneal
lens and small number of detectors in each ommatidium, the
diffraction effect of light limits the spatial resolution to about 1,
yielding an image roughly 100 times coarser than that of human
eyes.

B. The Proposed Array

The proposed array is spherical and contains multiple opti-
cally isolated eyelets [see Fig. 2(a)] inspired by an apposition
compound eye. The reasons for choosing the apposition com-
pound eye as the “template” include its simplicity of structure
and popularity in nature. As shown in Fig. 2(b), each eyelet has
a conical module with a lens on top and a subarray inside con-
taining a large number of small particle detectors. Between the
detectors and the edge of the conical module, there is a “de-
tector-free margin” whose purpose is to make negligible the dis-
tortion of the lens-shaping function due to scattering of particles
near the cone’s edge. Under the focusing effect of the lens, the
incident particles form an intensity distribution on the subarray,
inducing a random measurement at each detector. These mea-
surements contain information about the source direction, which
can be extracted using statistical methods.

We configure the proposed array with two major modifica-
tions on the apposition compound eye: i) providing the proposed
array with a rad FOV by a complete spherical shape (in prac-
tice the FOV may be less if mounting is considered), and ii) al-
lowing a larger number of detectors in each subarray. Both mod-
ifications, as shown in the analysis below, remarkably improve

the array performance. To further understand the similarities be-
tween the biological compound eye and the proposed array, we
compare the terminology used for both structures in Table II.

III. GENERAL MATHEMATICAL MEASUREMENT MODEL

We consider several remote point sources whose intensities
in the array vicinity are assumed to be homogeneous. The mea-
surements of the array are particle counts of all detectors within
an observation time window containing information about the
source direction of interest. In order to analyze the array perfor-
mance, we construct a model for these measurements.

A. Concepts, Notations, Assumptions, and Transfer Function
Derivation

In Appendix D, we introduce several definitions, notations,
and assumptions that are needed for the derivation of the transfer
function for the general model. Based on those definitions, we
derive the general model of the proposed array below.

B. Orthonormal Basis Expansion for the Array Transfer
Function

Since the transfer function for each detector is
(from a physical consideration) arbitrarily closely approximated
through its truncation by a threshold energy, we may assume
that it vanishes outside some finite energy band . Let

, be any given complete system of orthonormal
basis functions on , the transfer function can be ex-
panded according to this basis with corresponding coefficients

and converge in to the transfer function.
In this sense, the dependencies of the transfer function on
and are separated. The coefficients play the phys-
ical role of the detector cross section for the function .
Since this expansion holds for any given complete orthonormal
system of basis functions, it is of importance to find an optimal
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orthonormal basis functions for the transfer function. We find
this optimal basis functions using a (continuous) version of sin-
gular value decomposition (SVD) for integral kernels.

C. Optimization of the Orthonormal Basis Functions and LPG
Functions Approximation

The optimal basis functions problem is to find an orthonormal
basis function such that the truncation of the transfer function
expansion after any given number of terms should give the best

approximation to the transfer function over the energy-direc-
tion space (EDS). The construction of the optimal basis and its
proof are very similar to the discrete kernel (i.e., matrix) case.
So we give below only the construction.

Define the integral kernel

where US denotes the unit sphere. It is easy to verify that the
kernel is well defined over the square , nonnegative,
symmetric and sufficiently smooth.

This kernel induces a compact integral operator from
to itself which is self-adjoint and has a complete

orthonormal eigensystem of sufficiently smooth eigenfunc-
tions. The corresponding eigenfunctions arranged
according to decreasing eigenvalues are the desired optimal
basis functions. It is known1 (from classical theory of Fredholm
integral equations) that each eigenvalue has a finite dimensional
eigenspace (spanned by finitely many eigenfunctions) and each
simple eigenvalue uniquely determine its eigenfunction (i.e., its
one-dimensional eigenspace). Moreover, it follows that for the
optimal basis functions, the corresponding coefficients
of the transfer function are orthogonal as well (over the US).

If the transfer function is strictly positive (in fact, if
is strictly positive), a continuous analog of the Perron–Frobe-
nius theorem2 (for nonnegative matrices) holds for the kernel

as well—implying that the first eigenfunction (the
most important one) is uniquely defined and its corresponding
coefficient is positive over the US. Since the coefficients

are orthogonal over the US, it follows that for all
the coefficients must change signs over the US. Thus, the
first coefficient is the only one that is positive over the
US! This implies the importance of this coefficient which gives
the best rank-1 approximation of by . This
rank-1 approximation may serve to define the associate direc-
tion for each detector (independently of ). If from some
physical reason, the dependence of the transfer function on
is almost uninfluenced by the direction , then the approxima-
tion of the transfer function by a rank-1 kernel is justified.

For a rank-1 kernel approximation, it follows that the fre-
quency dependence indicates the detector detection ef-
ficiency with respect to energy (hence imply the effective band-
width ) whereas gives the “lens shaping function”
for a point source (as clearly seen by applying the transfer func-
tion to the “spherical delta function” representing the directional
dependence for point-like source intensity).

1See, e.g., [14].
2See, e.g., [15].

Finally, as explained in Appendix E, we approximate locally
each peak of by a Gaussian function (whose associated
covariance is determined by the inverse of the Hessian of

) and multiply it by a spherical polynomial to form
a polynomial-Gaussian (PG function) approximant. By taking
a linear combination of such PG functions (LPG functions), we
can approximate any transfer function arbitrarily closely.

Based on Remark D.8, the general modeling for point-like
particle sources and rank- approximation for the transfer func-
tion, takes the form

where denotes the detection rate for the th detector.
is the solid angle of the cone of associated directions for the

th detector, are the above cross section coefficients
(of the transfer function with respect to the basis function

) for the th detector determined for the direction of
the th particle source, is the th coefficient (with respect to
the basis function ) for the particle intensity for the
th particle source, and are the resulting total noisy detection

rate for the th detector. Note that the coefficients
are approximated as LPG functions of the direction of the th
particle source.

This general modeling has the following specifica-
tions: a) rank- approximation of the transfer function by

; b) rank-1 approximation by ;
c) LPG approximation of —especially for multifocal
transfer function; d) PG approximation of ; and e) circular
Gaussian approximation of and uniform approximation
for —this is the simplest or “prototype model” for
circular Gaussian transfer function.

IV. STATISTICAL MEASUREMENT MODEL

We consider a single remote point-like source whose intensity
in the array vicinity is assumed to be homogeneous and time in-
variant.3 The measurements of the array are particle counts of all
detectors within the observation time window, containing infor-
mation for the source direction of interest. In order to analyze
the array’s performance, first we construct a model for these
measurements.

Let be the number of eyelets in the array and be the
number of detectors in each eyelet on the subarray’s detection
surface (DS), which is defined as a smooth surface tightly en-
veloping the detector subarray’s physical surface.4 To obtain
isotropic performance (i.e., the array has identical performance
in localizing sources over all directions), all eyelets (including
lenses, subarrays, and detectors therein) are assumed to have
identical physical and geometrical properties. In addition, the
locations of the eyelets are assumed to be approximately uni-
formly distributed over the spherical surface.

3The time invariance of the intensity is not really needed and assumed here
only for simplicity.

4For simplicity, we assume the DS to be planar. Note that the analysis pre-
sented below applies also to nonplanar DS cases, for example, the roughly spher-
ical retina in human eyes.
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Fig. 3. (a) Reference frames� and � and (b) right-handed rotation by � w.r.t.
the � axis.

A. Reference Frames

We construct reference frames for the modeling:
the array’s frame “ ” and the th eyelet’s frame “ ”

, as shown in Fig. 3(a). For an arbitrary
vector in frame , let be its representation in frame .

In frame , we choose the origin at the center of
the array. Denote the coordinate system as . Let

be the unit vector along
the source direction, where and are the azimuth and eleva-
tion angles, respectively. Denote by as the unit vector along
the symmetry axis of the th eyelet (or the conical module)
pointing outward, with and being its azimuth and ele-
vation angles. From the isotropic assignment of the (so-called
“balanced design”) eyelets, we have .

Reference frame , with its coordinate system denoted as
, results from two consecutive right-handed rotations

[see Fig. 3(b)] from frame : first rotate frame with respect
to the axis by angle ; then rotate the resulting frame with
respect to its axis by angle . It is clear that the axis in
frame coincides with ; i.e., . Following the
rotation rules of coordinate systems in (see, e.g., [16]), it is
easy to show that for any vector , or ,
where is the rotation matrix from frame to frame whose
expression is given as , where

and

B. Poisson Measurement Model

From the nature of the particle-counting process, we assume
the following Poisson probability mass function (PMF) model
for each detector’s particle count:

(1)

where is the stochastic measurement of the th detector
in the th eyelet (or the th detector; ,

) within time window , and is the particle
counting rate of that detector. Obviously, the determination of

is the foremost issue in the practical modeling, since it sta-
tistically characterizes the detector’s measurement.

From a signal processing viewpoint, the detection rate of
the th detector can be naturally expressed as

s (2)

where s and are, respectively, the expected particle
counting rate of the th detector coming from the source(s)
and the noise. We consider two categories of noise: the count of
particles coming from noise sources outside the array and the
erroneous particle counts due to inner measurement (e.g., elec-
tronic or thermal) errors. From the remote and time-invariant
point-source assumptions, we assume the source-particle inten-
sity coming from different directions is homogeneous over the
array’s surface and time invariant; similarly, the noise intensity
is also assumed5 to be isotropic, homogenous, and time invariant
throughout the array.

As a specific model based on Section III and (2), we consider
the simplest rank-1 PG basis function model of

(3)

where is the solid angle of the cone of associated directions
of the th detector, is the th eyelet’s detection cross sec-
tion area with respect to , is the exciting source particles in-
tensity at the array surface (in s m ) ignoring the sensor’s
presence, is the angular density of the noise particles intensity
at the array surface6 (in s m rad ), and de-
notes the circular Gaussian LSF:

(4)

In (4), is the associated source direction of the th de-
tector and is the angular standard deviation of the Gaussian
LSF (in radians), which depends on the lens surface shape and
optical properties. Comparing (2) and (3), we have s

and , indicating
a good match between the mathematical and practical inter-
pretations of . The vector of unknown parameters is then

.
In Sections V and VI, we will discuss how to calculate the

parameters and variables defined above on a practical basis, how
they are associated with physical configurations of the array, and
what their fundamental limitations are.

Remark 4.1: Gaussian-shaped point-spread functions (PSFs)
for lens systems are widely used in the optical discipline. Exam-
ples include optical lenses [17], scanning laser ophthalmoscopes
[18], stellar photometry [19], and plasma lenses [20]. Moreover,
Gaussian functions are commonly used to describe the angular
sensitivity function (ASF) of a retina cell in the compound-eye
literature (see, e.g., [21]).

5This assumption is made only for simplicity.
6We assume � � � � � , where � and � correspond to the noise

coming from outside the array (e.g., noisy particle-emitting sources) and those
inside the array (e.g., thermal or electronic noises), respectively.
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Fig. 4. Candle and the detector array.

TABLE III
LIST OF VARIABLES USED IN NUMERICAL EXAMPLES

Remark 4.2: Model (3) has the property that all its parameters
can be experimentally calibrated (i.e., externally observable).
Hence, we may consider it as a “minimal model.”

Remark 4.3: The th detector’s associated source direction
is defined as the unit vector direction of the point-like source

that maximizes the detector’s particle counting rate. In other
words, source particles coming from should focus on the
detection surface of the th detector. The method used to de-
termine is given in Section V.

Remark 4.4: Note that .
In other words, while the Gaussian LSF describes a distribu-
tion of detection rate with respect to centered at , equiva-
lently, it also defines a “focusing distribution” of centered
at : detectors with associated directions closer to source direc-
tion have higher detection rates; and describes the width of
the Gaussian LSF. In addition, the circular Gaussian LSF (4) is
simple, in the sense that it is linear in in the exponent and in-
variant to the chosen reference frame.

V. A PROTOTYPE MODEL AND ITS PARAMETERS AND

As discussed, model (3) is particularly applicable for the pro-
posed compound-eye array. Its parameters, such as and , are
determined according to practical applications. As a practical
example (which will be used as the numerical example in the
second part of the paper), we consider the problem of local-
izing a candle from 20 miles away on a clear night, assuming no
moonlight but regular starlight, as shown in Fig. 4. This is the
weakest light source that a normal naked human eye can detect
[22]. We treat both the signal source (the candle) and the noise

sources (the stars) according to the theory of black-body radia-
tion [23]. In Appendix A, we estimate the attenuated values of
parameters and in this environment as

s m

and

s m rad

VI. HARDWARE SETUP AND FUNDAMENTAL

LIMITATIONS OF THE ARRAY

In this section, we discuss the hardware setup of the array
by defining its essential configurational variables. We also con-
sider the fundamental limitations of these variables, which will
constrain the configuration of any real-world implementation of
such an array.

A. Hardware Setup

In Table III, we list the configuration variables of the hard-
ware setup of the array, which are also shown schematically in
Fig. 5. In the following, we associate the directions in model
(4), with the array’s physical variables.

We determine the associated source direction of the th de-
tector in the th eyelet’s reference frame , with all involved
variables shown in Fig. 5. Define the radial direction of the

th detector as a unit vector along the line joining the
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Fig. 5. Determination of ��� in the �th eyelet’s reference frame.

spherical array center and the center of the th detector
and pointing outward from the spherical array; and as a unit
vector in the (outward) direction of the symmetry axis of the th
eyelet. Let points s and be the center of the subarray DS
and the center of mass of the lens, respectively. Define as
the angle between and , and define as the angle be-
tween and .

Because of the focusing effect of the lens, the associated di-
rection generally differs from the radial direction of
the th detector (if s). By Snell’s law (see, e.g.,
[24]), we have i) 7; ii) and lie on both
side of ; and iii) , , and are on the same plane. We
then define the angular expansion factor of the th detector as

. Note that in general may be different
for different and , but when the conical module of each eyelet
is narrow (i.e., ) we assume it to be a constant for all
and , denoted by . Similar to , completely depends on
the lens properties: shape of inner and outer surfaces, refractive
factors, etc.

By the definition of and the above observations ii) and
iii), we can determine in frame by

(5)

where
. Then .

B. Limitations of Array Variables

We discuss in Theorem 6.1 the fundamental limitations on
several of the array variables as defined above.

Theorem 6.1: The following fundamental limitations with
minimal particle wavelength apply to array variables ,

, and :

(6a)

(6b)

7This is valid since the lens refractive index is always larger than that of the
array’s environment.

(6c)

where is the first positive zero of the Bessel function .
Proof: See Appendix B.

VII. PERFORMANCE MEASURE AND ITS

FUNDAMENTAL BOUNDS

For analyzing the array’s performance in localizing particle
sources, a natural candidate for the performance measure could
be the Cramér–Rao bound (CRB) matrix of the unknown param-
eter vector . However, a meaningful scalar quantity is more ap-
propriate than a matrix measure since scalar quantities are easier
to compare. In [25], we defined the mean-square angular error
(MSAE) of any source direction estimator as

, where is the angular error between and its estimate
. Clearly, depends on the array configuration,

the estimation algorithm, the value of unknown parameters ,
and the length of observation time window . Another (DOA
independent) performance measure is the (uniform)
average of over the US.

Moreover, we defined in [25] (see also [26]) another quantity:

(7)

where and are the (scalar) Cramér–Rao
bounds for the azimuth and elevation angles, respectively.
We showed that for any regular model and estimator,

, where
is the number of snapshots, which is proportional to and
in this case. Thus, serves as an asymptotic

lower bound on .
It follows that is i) independent of the estima-

tion algorithm, ii) an asymptotically tight bound attainable by
some second-order efficient regular estimators (usually the max-
imum-likelihood estimator (MLE); see, e.g., [27]), and iii) in-
variant to the choice of reference coordinate frame, since the
information content in the data is invariant under rotation. Con-
sidering the above desirable properties, we use as
a performance measure showing the best asymptotic accuracy
for each specific array in source-direction estimation. We will
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derive the for the proposed array in the second part
of this paper [28].

A. Universal Bound 1:

Now that we know that indicates the optimal
performance of a specific array configuration, we can now ask
the following question: What is the “best” performance of an
arbitrary array in principle? We try to answer this question
by proposing a universal lower bound on MSAE, denoted by

, for an arbitrary array inside a sphere with radius
, regardless of the array’s hardware or software configura-

tion; i.e., , array configurations. For this
universal lower bound, we assume that neither outside noise
(from noise particle sources) nor inside electronic/thermal noise
is present. We need also the following (reasonable) assumption.

Assumption 7.1: “Practical” assumption: It is impossible to
estimate by any combination of hardware and software the DOA
of incoming particles during a certain time window better then
the inherent MSAE of the (stochastic) direction of their total
momentum. (Note that their total momentum is stochastic be-
cause of the quantum-mechanical uncertainty principle.)

The following theorem follows from derivations based on the
uncertainty principle of quantum mechanics (see, e.g., [29] and
[30]).

Theorem 7.1: Under Assumption 7.1, a universal lower
bound on the MSAE (respectively, ) of any direc-
tion-of-arrival (DOA) estimator based on measurements from
any sensing hardware contained inside a sphere with radius is

whenever

(8)

(respectively, whenever ),
where is the first positive zero of the Bessel func-
tion of order 0, is the minimal wavelength of the incident
particles, is without detected source par-
ticles, and is the without detected
source particles—which is uniformly attained by the MSAE of
a random estimator with uniform distribution over the US.

Proof: See Appendix C.
Remark 7.1: The derivation of may be improved

for wideband energy/wavelength particles. (The partition of the
wavelength bandwidth into several narrow bands should lead to
the replacement of in (8) by the inverse of the rms value
of .)

B. Universal Bound 2:

Another important universal bound for any DOA estimator
for the source direction can be found using an interesting
method similar to the derivation. This bound is
obtained via the usual CRB expression; but instead of being
dependent on the measurement model of any specific sensor,
it depends on the wave function for the energy-mo-
mentum density distribution. Note that this is not the usual

for space–time density distribution, which can be
seen by exploiting the fact that is proportional to the Fourier
transform (or characteristic function) of the usual . Then, min-
imization of the CRB over possible functions (i.e., possible
sensors hardware) is equivalent to a maximization problem
with respect to . This gives a truly universal lower bound for
the of any possible hardware. This bound, which
may be denoted as universal CRB or , is both looser
and simpler than .

The need for the UCR stems from the fact that the
is in fact a lower bound for the MSAE of the stochastic direction
of the total momentum of the source particles with respect to ;
i.e., if the direction of the total momentum may be regarded as
“DOA estimator”—even though it cannot be observed directly,
its MSAE with respect to can still be used as a lower bound
for any estimator of it. The problem with is that we
try to find a universal lower bound not for the MSAE of estima-
tors for the total momentum direction, but instead for MSAE of
estimators of the source direction . Thus, another approach for
such a universal bound is needed.

Theorem 7.2: A universal lower bound on the for
any DOA estimator based on measurements from any sensing
hardware contained inside a sphere with radius is

where

(9)

Proof: See Appendix C.
Remark 7.2: Note that Remark 7.1 applies also to (9), and

VIII. CONCLUSION

In this part, we proposed a novel particle-detector array in-
spired by the biological compound eye and statistically mod-
eled its behavior. This array combines the advantages of bio-
logical compound eyes (e.g., large field of view) and human
eyes (e.g., high spatial resolution). It can be used to localize op-
tical, radioactive, or cosmic sources from the far field. To ana-
lyze the array’s performance, we presented a mathematical min-
imal model for the array’s measurements and gave an example
to illustrate how the parameters in the model can be determined
in practice. We then defined the array’s physical variables and
associated them with the proposed mathematical model. In ad-
dition, we discussed the performance measure of the array and
derived its fundamental bounds. Part I forms the analytical basis
for the second part of this paper, in which we will use the pro-
posed measurement model to analyze the performance of the
array, both analytically and numerically.

We believe that the proposed array potentially has a wide
impact on optics, security, and astronomy assisted applications.
The fact that an artificial compound eye with similar structure
and function to its biological counterpart was recently built
makes this closer into reality.
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A. Future Work

In future work, the current model can be extended by con-
sidering the correlation effects among incident particles (e.g.,
multipath scattering and polarization effects) by introducing a
complex transfer function, time-variant particle intensity (which
is essential for particle communication), particles with wide en-
ergy spectrum (to extract more source parameters, e.g., temper-
ature), adaptive optics, multifocal lenses and polarization filters.
Other extensions may include eyelet and lens-shape optimiza-
tion, adaptive estimation of the directions of multiple sources,
and investigation of the channel capacity for particle communi-
cation using the array.

APPENDIX A
ESTIMATION OF AND IN SECTION V

A. Estimation of

Assume that the array detects only visible photons, i.e., the
electromagnetic radiation within wavelength range ,
where m and m.
We recall Planck’s law of black-body radiation [23]:

, where is the power of
radiation per source surface area per wavelength (in Jm ), is
Planck’s constant Js , is the speed of light in
a vacuum ms ), is the wavelength of a photon (in
m), is the Boltzmann constant , and
is the temperature on the source surface (in K). Also note that
the energy of a single photon is ; thus the number
per second of photons emitted per source surface area m per
wavelength (m) is computed as . The unit of
is Js m and that of is s m .

For simplicity, we also assume a candle flame to be roughly
spherical with radius 1 cm and the intensity of its
radiation to be isotropic. The surface temperature of the
flame is roughly 1800 K [31]. Neglecting (temporarily)
the atmospheric photon absorption and assuming isotropic
medium, it follows that the source photon intensity per
unit wavelength at a distance from the source, is given
by . Hence,

.
Using the notation , the substitution

gives , where
and . The last integral can be evaluated

as , using the function
, ,

where the expansion for follows by termwise integration
of the integrand expansion (into powers of ). It can be shown
that for the truncated expansion, the error term is bounded by the
first neglected term times .

Using the above values, we get m, ,
and . The computation gives (using only the first
term of the expansion) , hence
(for 20 miles)

s m

This is the unattenuated value of .

Remark A.1: In order to evaluate the attenuated value of
due to atmospheric absorption, we assume the attenuation factor
(due e.g., to fog condition) to be 1.1 db/mile—resulting (for

20 miles) by a total 22 db (or 12.589) for the attenuation
factor, hence the attenuated (practical) value for is

s m (A.1)

B. Estimation of

We can write , where represents the
contribution from the air surrounding the sensor, represents
the contribution from our galaxy (milky way), and represents
the contribution from all the other galaxies in the universe.

Computation of : In this case, denote the source (sur-
rounding air) temperature by . Then is given by the
photon intensity (due to surrounding air molecules) into the
sensor surface divided by rad , since these photons are
arriving to each point on the sensor surface from only one
hemisphere of directions corresponding to this point. Hence,
per unit wavelength is given by

. Therefore, . Using
the notation , and the substitutions ,

, . We get .
Assuming 280 deg K, we have m,

, , .
Hence, s m rad .

Computation of : In this case, we have to estimate the
contribution of our galaxy’s stars (except the sun!) to . Since
our solar system is located inside a spiral arm of our galaxy
(milky way) whose local width in the neighborhood of our solar
system is estimated by 200 pc (parsec) which is about 650 ly
(light year), we approximate our galaxy contribution to by
a spherical cluster of stars with radius 300 ly (about half
the local width of the spiral arm), centered at our solar system.
In this case we can treat the stars in this cluster as stationary
(hence ignoring relativistic effects due to Hubble cosmological
expansion low).

The photon intensity per unit wavelength arriving to the
sensor from a star at distance with radius and surface tem-
perature is given by

, where . Integration over gives the photon
intensity at the sensor due to a star at distance as

. The substitutions , ,
gives .

The photon flux arriving from the star to the sensor is given
by where denotes the sensor radius. Thus, the
photon flux due to stars inside a spherical shell with radius

and width is ,
where denotes the number of stars inside
a spherical shell of radius and average density of stars
per unit volume. Consequently, the photon flux arriving to the
sensor from the spherical cluster (with radius ) of stars
should be .

The resulting photon intensity at the sensor due to the
star cluster is

. Since for each point on the sensor,
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incoming photons are arriving from only one hemisphere
of directions, it follows that the resulting is found
from by dividing it by rad ; hence .
Using the above expressions for and , we get

. To estimate , we
estimate the average number of stars per unit volume inside
a sphere of radius 50 ly centered at our sun. It is known
[32] that the number of such stars is about 1000; therefore,

50 ly m .
Since our sun can be considered as an “average star,” we

estimate the star radius and its surface temperature by
these parameters of our sun; i.e., we choose m,

6000 deg K, and get m, ,
, . Hence,

s m rad .
Computation of : In this case, we have to estimate

the contribution of the other galaxies to . As we shall see,
relativistic Doppler effect (due to relativistic cosmological
expansion) should be taken into account. Denote by the
number of stars in the other galaxies (which is almost their
number in the universe!) and by the universe radius.
For simplicity, we use the simplest cosmological expansion
model (Hubble law) according to which the average receding
velocity of a star at distance from an observer is given by

. Therefore, sufficiently far galaxies should have
relativistic velocities which should be taken into account. We
denote by s the wavelength of a photon emitted from a star
in the star frame, and by the wavelength of this photon as
observed in the detector frame. It follows from (relativistic)
Doppler effect that s . Hence,
by Hubble law s . Let

be the photon time period in the star frame, and
denote the photon time period in the detector

frame. Standard (even nonrelativistic) physical consideration
shows that the number of incoming photons with bandwidth

to the detector during period in the star
frame is identical to the corresponding number of incoming
photons with bandwidth to the detector during pe-
riod in the detector frame. This equality can be written
as , where

is the photon intensity per wavelength at distance
in the star frame, while is the corresponding

photon intensity as observed in the detector frame. Therefore,
. Since

, we
get

. In the star system

, where . Since
, we have

.
Hence,

. This is the desired relativistic intensity expression in the de-
tector frame.

Denote by the average number of stars per unit volume in
the universe. Clearly, where denotes
the number of stars in the universe and denotes the universe

radius. Since there are about galaxies in the universe and
the number of stars in an average galaxy is estimated by ,
we estimate , while the current estimate for is

ly, which gives m .
The photon intensity at the sensor due to a star at distance is

given by . The photon flux arriving
from the star to the sensor is therefore where de-
notes the sensor radius. The photon flux due to a spherical shell
(containing stars) with radius and width is ,
where is the number of stars inside a
spherical cluster of radius .

The photon intensity at the sensor due to all the
other galaxies (except our galaxy) is therefore given by

. Using the above
results, it follows that

where

The substitution leads to
.

Combining this expression and the above results, we get
, where

. The substitution
gives .

where , . The integral for
is therefore expressible in term of the function as

. Hence, the
final expression for is

, where , .
As we already found (for computation) ,

. The integral in the last expression for can be computed
numerically approximating the function in the integrand by
its truncated expansion. The approximate numerical value of
the integral is 0.01448. Therefore,

s m rad , which gives
s m rad . This is the unattenuated

value of .
Remark A.2: In order to evaluate the attenuated value of ,

we add to the attenuation of 22 dB due to fog condition an as-
sumed additional attenuation factor of 3 due to clouds, i.e., a
total attenuation factor of 37.767. Hence, the attenuated (prac-
tical) value for is

s m rad (A.2)
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Fig. 6. (a) Top view of three associated cones of source directions of three contiguous eyelets; (b) planar approximation to the top view under large� assumption;
and (c) side view of the radial cone and associated cones of the �th eyelet.

APPENDIX B
PROOF OF THEOREM 6.1

Proof:
a) The lower bound on : We derive the lower limit of the

angular expansion factor , assuming the number of eyelets
is sufficiently large (such that each eyelet’s associated cone of
source directions is narrow). The lens center points on the sur-
face of the spherical array are determined by the tables in [33].

We consider the associated direction cones of three con-
tiguous identical lenses, namely, the th, th, and th.
Fig. 6(a) shows the top view of these cones on the array surface.
Under the large assumption, the edge of the cones (which
is a section of the spherical surface) can be approximated by
planar circles, as shown in Fig. 6(b), on which each point cor-
responds to a source direction. Each solid circle represents the
radial cone (of source direction) of the corresponding eyelet;
the source can be seen from this eyelet without the lens if the
direction lies in this cone. Each dashed circle represents the
associated cone (of source direction) of the eyelet; the source
can be detected by this eyelet with the presence of the lens if
the direction lies in this cone. The centers of the circles are
labeled as , , and , respectively. The shaded area
represents the source direction set which is invisible to the
array, since it does not belong to any radial cones.

Obviously, to remove the “blind region” (shaded area), the
center of the region (labeled by ) should be enclosed by at
least one associated cone under the lens effect. In other words,
the “minimal” associated cone should be the dashed circles in
Fig. 6(b), which intersect at . Clearly, under the
large assumption (i.e., ), or . On

the other hand, as shown in Fig. 6(c), generally (i.e., without
the large assumption) and

, where and are defined in the figure; i.e.,
. It then follows that

(B.1)

Note that the value of in (B.1) is the minimal one that is
necessary to remove all the nonvisible regions on the unit sphere

surface. Hence, under the large assumption, ,
which gives the bound in (6a).

b) The lower bound on : Let be the position of
a detected particle on a subarray DS, and
be the momentum vector of that particle. From the uncertainty
principle in quantum mechanics (see, e.g., [29] and [30]), we
have

(B.2)

where is the standard deviation of the component distri-
bution of the detected particles positions on the subarray DS,
and is the standard deviation of the statistical distribution
of the component of their momenta . Under the azimuthal
symmetry assumption, the distributions of positions and
momenta are azimuth invariant; i.e., and, sim-
ilarly, . We further assume that is approximately
constant over the DS (this is especially true for a “narrow” eyelet
cone of associated directions); thus, the lower bound on
should be achieved at the center of the DS.8

It follows from (B.2) that , where equality is
attained (from the derivation of the uncertainty principle using
the Cauchy–Schwarz inequality) if and only if the wave function
is Gaussian (i.e., is Gaussian distributed), which indicates that
the above lower bound on may be tight.

Now the problem becomes one of finding an upper bound
on . Let denote the norm of the mo-
mentum and by its maximal value. We assume that the
particle intensity is uniformly distributed over the inner lens sur-
face, so that we may exactly compute the expectation

under this assumption as follows. Let the particle (mar-
ginal) probability density at the lens inner surface, on a circle
with radius around the lens symmetry axis be

, where the random variable takes value in the interval
. Note that , which validates the proba-

bility density distribution defined above. Hence,

8Even if � fails to be approximately constant over the DS, we still can try
to find a lower bound for it in the center of the DS. Then under the assumption
that the lens is designed such that � is the smallest at the DS center, this lower
bound for � at the DS center still applies to any other point on the DS.
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. By
changing the integration variable to , we get

Since by azimuthal symmetry, we see that
the lower bound on is given by

(B.3)

using the relationship . Note that when
, is asymptotically equal to .

c) The lower bound on : According to the relationship
, when is sufficiently small, we have the first

lower bound on :

(B.4)

where is given in (B.3). In the following we derive the
second lower bound on corresponding to .

We assume the particles are arriving independently at the
array according to a common LSF, which is responsible for their
common angular distribution, assumed to be invariant with re-
spect to the azimuth. Thus, from each detected particle (whose
detection may be considered as a single experiment), one may
infer the estimated angular distribution of the source direction
(i.e., the probability distribution of the possible associated di-
rections that lead to the detection at a specific point) using the
LSF. However, from the definition of the LSF, this angular dis-
tribution estimate of the source direction (estimated by the lens-
shaping function knowledge) should have the same angular dis-
tribution as the LSF itself! It follows that the MSAE for the
direction of the total momentum of the detected particles is
asymptotic to as ESC tends to .

On the other hand, this MSAE has a universal bound where
the lens is serving as a “particle sensor” whose cross section
has radius instead of . Hence, according to (8),

.
It then follows from the above discussion that

(B.5)

Combining (B.4) and (B.5), we obtain the theoretical lower
bound on as follows:

(B.6)

This completes the proof.

APPENDIX C
PROOFS OF THEOREMS 7.1 AND 7.2

A. Proof of Theorem 7.1

Proof: In order to prove the theorem, we introduce a defi-
nition of a particle detection event as follows.

Definition C.1: A particle is said to be detected inside
the sensor detection domain (which is a certain space–time
domain), if the presence of a particle inside this domain is
observed (i.e., determined) and recorded by the hardware and
software of the sensor system.

Definition C.2: A particle-detection event is defined as the
first point in space–time where a detected particle
started (for the first time) its interaction with the sensor hard-
ware (which leads eventually to its detection.)

Note that prior to its detection, a detected particle behaves
as a “free particle” described by a quantum-mechanical wave
function, which is a plane wave with expected (free
particle) momentum: ,
where is the gradient operator.
Similarly, the free particle has an expected energy:

. To ensure that the sensor software is able to
estimate the source direction, of the above “free particles”
(i.e., prior to their detection event) must be estimated, since

is proportional to (the source direction)
as they carry the same source direction information. Here, we
denote

(C.1)

Assume that in addition to detecting particles, the sensor is
equipped with some software to estimate the momentum of the
particle exactly at its detection event, which leads to a “partial
collapse” of the wave function because of the observation act.
This is a well known “observation principle” in quantum me-
chanics in which the modified wave function may be regarded
as a result of the former conditioned with respect to the de-
tection and momentum observation.

Note that for the modified is the same
as that of a free particle (since the detection event is just prior
to the interaction of the detected particle with the sensor hard-
ware). Hence, due to the conservation of the momentum and en-
ergy at the detection event (just before the sensor hardware be-
gins) with respect to that of the free particles, we claim that
based on the modified (i.e., the wave function describing the
particle at the random detection event conditioned on its obser-
vation inside the sensor detection domain) is the same for
the former . Thus, for the modified , we have the following
three constraints , where the right-hand-side
(RHS) is the same as defined in (C.1) using the former .

Without loss of generality, we may redefine (by rotation) the
sensor coordinate frame so that the source direction coincides
with the direction, and we get for the modified :

. Also, according to our assumptions, the particle detection
event occurs only inside a sensor domain during a detection
time interval . We denote by the corresponding “de-
tection space-time domain,” and denote the quantum wave func-
tion of the detected particles inside by , which
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is a (complex-valued) function in with unit norm; i.e.,
.

From a physical viewpoint, is continuous over and van-
ishes outside (particularly on boundary).
Moreover, is in with its derivatives with respect to

, , , in (such that the covariance matrix of its mo-
mentum may be well defined).

The momentum components , , of each detected par-
ticle are associated (as observables) with the following Her-
mitian operators on : is associated with the operator

, and similarly for and with respect to and
, respectively. Thus, the expectations of and are given

by
, and its variance is

, which follows from the constraint . Similar
expressions apply for the , components.

For , denote by the MSAE for the direc-
tion of the total momentum of detected source particles if ex-
actly particles where detected within the time window. Clearly

is undefined for . For a particle with wave-
length , the corresponding momentum is , thus if
is the minimal wavelength, then the total momentum of parti-
cles is upper bounded by . Therefore

(C.2)

which follows again from the constraints . Note
that indicates the direction of source particles before entering
the sensor domain (i.e., the expectation of their momentum
component along the direction from the source to the sensor),
and ESC is the expected number of source particles entering the
sensor domain during the detection time interval (i.e.,
entering the “detection space-time domain” ), as defined
previously. Clearly , where is the source par-
ticle intensity around the sensor domain (it is assumed to be
uniform there), and is the sensor cross section with respect
to the source direction.

Remark C.1: If we denote by the projection of the three-
dimensional domain on the , plane, then is a planar
domain whose area is .

Since both the sensor hardware and the detection wave func-
tion (especially inside ) are unknown in practice, we have
to find the minimum for the in (C.2), which depends
(for given and ESC) only on the wave function , with re-
spect to (subject to the restrictions on ).

Thus, we have the constraints , and

where the last equality follows from integration by parts. Hence,
, where

in which the infimum is taken over all possible wave functions
in that satisfy the following restrictions: a) ;

b) is continuous over and vanishes outside ; c) has
first-order derivatives almost everywhere in ; d) the first-
order derivatives of are in ; and e)

, which corresponds to .
Denote by the MSAE of the direction of the

total momentum of the detected source particles during
the time window provided that at least one particle is de-
tected (i.e., ). Thus, is the expectation of

over all positive values. From the above we
get . The last
conditional expectation of over the positive values of

can be estimated from below9 (after normalization of the
Poisson distribution for only positive values of ) with the
result . In addition, it
is easy to show that as defined in Theorem 7.1 is
uniformly attained by the MSAE of a random DOA estimator
uniformly distributed over the unit sphere, which gives10

for any estimator whenever
. Thus, by Assumption 7.1 and the above discussion

we have for any DOA estimator

To solve the infimum problem for , let be a space-
time domain larger than (i.e., containing ). Clearly,
any satisfying the above restrictions a)–e) in should also
satisfy those in . Thus, the above infimum monotonically
decreases with increasing ; i.e., ,
which gives a lower bound for .

We then choose as the cylindrical domain ,
where are restricted to the planar domain and

are unrestricted. In order to compute , we
use a classical expansion of any function in
into a Fourier–Bessel orthogonal expansion (see, e.g., [34,
Sec. 3.7]) as ,

, are the Bessel functions
with order , and is the polar representation of the point

. The parameters are given by
where is the th positive zero of . Note that the se-
lection of ensures that whenever ;
i.e., .

It follows that are orthogonal in and vanish
on its boundary.11 Another well known fact is that the orthog-
onal sequence in is complete,12 which justifies
the observation that the above expansion of any function
in should converge in to itself. Most im-
portant, functions result from the separation of variables
method for the 3-D Laplace equation in cylindrical coordinates,
which is needed for the following derivation.

It can be easily seen (from, e.g., [34]) that after the coor-
dinate is separated out, the remaining , dependence satisfies

9Using Jensen’s inequality ��� �� � �� � ������ � ��� .
10Using the invariance of MSAE under rotations, and Fubini’s Theorem.
11E.g., from the orthogonality relations (3.95) in [34].
12E.g., w from the theory of Bessel functions.
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the following , whose so-
lutions are . Therefore, considering the above re-
striction (b) that the solutions should vanish on the boundary

, we have , which leads to the quantization
condition . Thus, for we have

(C.3)

Now, letting be any continuous function in
which vanishes whenever , then for

any fixed , in , we may consider as an
continuous function of , in the disk that
vanishes outside this disk. Thus, we have by the Fourier–Bessel
expansion

(C.4)

where is the appropriate coefficient for this expan-
sion.

Therefore, if is constrained to have unit norm in ,
i.e., , we get

(C.5)

For “sufficiently regular” , applying the operator
to the expansion (C.4), we obtain from (C.3)

It then follows from integration by parts that

Now, since and (see e.g., (9.5.2)
in [35] for interlacing properties for the zeros of Bessel func-
tions ), using (C.5) we get the following:

(C.6)

where is the first positive zero of , and its numerical
value is approximately 2.40482. The inequality (C.6) is true for
sufficiently smooth and for any that satisfies the above five
constraints a)–e), with the equality attained if and only if the ,

dependence of is proportional to .

Thus, we conclude13 that . Since
, we have

(C.7)

which implies the result. (The corresponding result for
is similarly proved.)

B. Proof of Theorem 7.2

Proof: The idea of is to find the wave func-
tion describing the momentum-energy probability den-
sity of a source particle (instead of the traditional wave func-
tion describing the space-time probability density); and
then to express the resulting CRB and as a function
of , which depends only on the hardware. Therefore, we just
need to minimize with respect to any possible

. Furthermore, since the function depends very simply on
the usual , we need only to minimize with respect
to , which will be seen to be trivial.

The connection between and can be de-
scribed as the following. First, note that the space-time
and the momentum-energy are dual spaces in the sense
that scaling down the space variables leads to (via the uncer-
tainty principle) scaling up the momentum variables ; and vice
versa. In other words, the vectors and are dual to each other.
Similarly, and are also dual. A simple guess is that the
wave function is proportional to the Fourier transform
of , where the proportionality constant is determined so
that the normalization constraint is satisfied; i.e.,
the probability to find the momentum and energy , of the
particle somewhere in the momentum-energy space is 1.

Simple evaluation of the normalization constant shows that
the suggested expression for is given by

(C.8)

where is Planck’s constant, ST denotes the space-time do-
main, denotes and is the standard measure
over ST (i.e., over )

Note that i) is proportional to (and may be regarded
as) the Fourier transform of ; and ii) since rep-
resents the space-time pdf of a particle, it is integrable over ST
(i.e., is in , or is in ).

Since is the Fourier transform of , it follows
(by Plancherel’s theorem) that is in and by the
inversion formula

(C.9)

where MES denotes the momentum-energy space, and
is the standard measure over MES (i.e., over ).

13This result is a special case of the classical “Poincaré inequality.”
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Thus, and are in 1 to 1 correspondence,
which is in fact an isometry of onto itself—preserving
its inner product and norm as an Hilbert space. In particular

if and only if (C.10)

i.e., the normalization is preserved as desired.
Now, in order to justify our previous “guess” that the above

representation of is the correct one, we observe that by
applying the operator to (represented by (C.9)) we can
get that the operator in space-time has its dual presentation
in momentum-energy as , or

the operator in MES is represented by in ST (C.11)

Similarly, by applying the time derivative operator to
as represented by (C.9), we get its representation as
in MES, or

the operator in MES is represented by in ST

(C.12)

Repeating applications of these operators, we get that the
above representations hold also for all their moments, which
is in agreement with the basic quantum-mechanical principles.
Since any PDF is uniquely determined by its moments, it fol-
lows that the momentum-energy PDF is uniquely de-
termined by the above guess of given by (C.8). This
justifies our guess for the PDF of the momentum-energy over
MES, and is all we need to derive the corresponding CRB—the
phase of is not needed.

Choosing the direction of the reference frame to
be in the source direction , we evaluate the “partial
FIM” corresponding to and components of any
particle momentum as what follows. Its components
are (using the PDF )

,
which can be derived by using the expression for . Similar
expression holds for , hence

(C.13)

(C.14)

Seeing that the corresponding CRB matrix can be found by
inverting the FIM, we obtain a lower bound for the
by using .
Thus, lower bound is given in terms of (which
depends of course on the specific hardware used), it is simpler
to minimize the with respect to the usual instead
of the dual by observing that

the operator in MES is

represented by in ST (C.15)

the operator in MES is

represented by in ST (C.16)

Remark C.2: (C.15) and (C.16) can be proved similar to the
proofs of (C.11) and (C.12).

We get from (C.13)–(C.16) [using the normalization (C.10)]
, . Thus, from

the lower bound expression

(C.17)

and , we are led to the minimization
problem , such that because
the detection event is inside a sphere of radius .

It is easy to verify that the minimizer satisfies
. Inserting this into (C.17), we get

. Since this is true for each particle, and since
the particles are independent, we finally get (using the expecta-
tion of as in the proof of Theorem 7.1)

hardware (C.18)

which is the result.

APPENDIX D
CONCEPTS, NOTATIONS, ASSUMPTIONS, AND TRANSFER

FUNCTION EXISTENCE FOR THE GENERAL MODEL

We assume that the polarization state of the particles is known
(e.g., circular polarization of incoming electromagnetic radia-
tion) in order to simplify the modeling; otherwise, the mod-
eling should be generalized in terms of complex combinations
of quantum wave functions corresponding to independent po-
larization states.

Definition D.1:
a) US—denotes the two-dimensional unit sphere on

which each point may be regarded as a unit vector
representing a direction, and is equipped with its standard
(area) measure denoted as .

b) EDS—denotes the energy-direction space defined as the
(Cartesian) product of (representing parti-
cles energies) with US (representing particles directions).
The EDS is equipped with the product measure of the
standard measures for and US, denoted as .
Note that the EDS can also be identified with without
its origin.

Definition D.2:
a) —is defined as the expected number of

(virtual) particles, having their energies and directions in
a measurable subset of the EDS and crossing (both in-
ward and outward) the sphere with center and radius
during the time window .

b) —is defined as the following limit
whenever it exists.

c) —is called the particle intensity for a set of en-
ergies and directions at spatial point and time
, and is defined as the rate with respect to (whenever it

exists) of .
Note that the above definition of is independent of
. This motivates the following assumption.
Assumption D.1: exists for every measurable

contained in EDS and every space-time event . Hence,
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can be regarded as a distribution (i.e., a positive mea-
sure) over the EDS for each given space-time event .

Note that is influenced by the sensor. In order to
avoid that effect we introduce the concept of exciting intensity
by:

Definition D.3: —is called the exciting intensity
and defined as the intensity without the presence of
the sensor.

Note that is independent of the sensor presence
and not influenced (as ) by its scattering effects.

For simplicity, we assume that the exciting intensity is i)
time-invariant so that in the EI notation can be ignored,14 and
ii) is uniform in the vicinity of the array due to the far-field
source assumption. Accordingly, we denote the time-invariant
and uniform EI around the array as . Here, we assume that
iii) , interpreted as an exciting intensity distribution over
the EDS, is absolutely continuous with respect to the standard
(product) measure over the EDS. Note that the assumption iii)
is physically reasonable since by quantum mechanical princi-
ples, the energies and moments of the particles have some joint
probability distribution whose density is determined by some
wave function.

Definition D.4: —denotes the EI density with respect
to the standard measure over the EDS, and is defined as the
exciting particle intensity density at energy and direction
over the EDS. In practice, we model the contribution of each
point-like source to by a “spherical function.”

Definition D.5: DS—denotes the detection surface, which is
defined as any smooth surface tightly enveloping the detectors
physical surfaces endowed with its standard area measure.

Let denote (for any given subset of DS,
subset of EDS, and EI) the expected particle counts within
time window due to particles hitting and resulting from
the given EI distribution with energies and directions confined
to . Accordingly:

Definition D.6: —denotes the (time-variant)
detection rate for given subset of DS, subset of EDS, and
EI, and is defined as the rate with respect to (whenever it ex-
ists) of at time .15 In what follows we as-
sume it to be time-invariant, and denote this detection rate by

.
We then make the following assumptions that are needed for

the model derivation.
Assumption D.3: (Additivity Assumption of EI and DR With

Respect to the EDS): We assume that if and are dis-
joint measurable sets in the EDS with being their union, then
we have ; and for any measurable
subset on the detection surface,

.
Note that this assumption is reasonable for deterministic

exciting particles, but for virtual particles this is not true in
general (due to interference effects.) Therefore, we need the
following assumption which is a sufficient condition for As-
sumption D.3.

14Time-variant exciting intensities are useful in the modeling of particle com-
munications.

15This definition of the detection rate is independent of � .

Assumption D.4: Interference effects among exciting parti-
cles are negligible.

Remark D.1: As examples for Assumption D.4 we may con-
sider a) the no scatterers case: in this case the exciting particles
are emitted independently of each other; and b) negligible cor-
relations among sources and scatterers: in this case (appearing
e.g., in applications with DOA including multipath effects) the
correlations among the sources and scatterers (e.g., for EM
waves are described by constant phase differences among the
vector phasors describing the EM waves from distinct sources
and scatterers) are negligible.

Assumption D.5: For any fixed EI and measurable subset
of the DS, the detection rate —regarded as a pos-
itive measure over measurable subsets of the EDS—is ab-
solutely continuous with respect to the positive measure
over the EDS. Note that this assumption is physically resonable
(since it means that if then as
well).

We further define the following.
Definition D.7: —denotes the detection

transfer function for EI and any given measurable subset
of the DS at point on the EDS, which is defined as the
density of the measure with respect to .
Considering the EI distribution as the sensor “input” and the
detection rate distribution as its “output,” we can see that

describes the sensor operation by giving its
input–output relationship. Note that the existence of the density

is equivalent to assumption D.5.
Now we make more reasonable assumptions (with justifi-

cations) in order to simplify the modeling and present para-
metric structure suitable for analysis. The first step is to make

dependent only on the density (assuming its ex-
istence) , with value only at and not the entire
distribution over the EDS.

Assumption D.6: (Continuity Assumption of
With Respect to , ): We assume that for any given distri-
bution EI and measurable subset of the DS, the function

as a function of is continuous over the
EDS.

Remark D.2: Assumption D.6 is physically reasonable since
, as a function of , is a result of physical

processes described by certain partial differential equations, and
as such should be even smooth (and not merely continuous).

Assumption D.7: (Existence and Continuity Assumption of
): We assume that each EI distribution over the EDS

has a continuous density with respect to the EDS stan-
dard measure.

Remark D.3: The physical validity of Assumption D.7 lies in
the fact that since (by the uncertainty principle) the momentum
of each particle is distributed, as a result both its energy and
direction are distributed as well. Note also that even in clas-
sical physics, particle sources are distributed in space (with the
only “singular” object—a “black hole”—that cannot emit parti-
cles, according to classical physics) and are not truly point-like.
However, in this paper we may still use spherical distribu-
tion for point-like particle sources, but it is only a mathemat-
ical idealization of a truly distributed source. The continuity of

may be physically justified according to Remark D.2. There
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is also a mathematical justification to Assumption D.7 in the
sense that each EI distribution (as a positive absolutely con-
tinuous Borel measure over EDS) can be approximated arbi-
trarily closely by another distribution with a continuous density

. (Moreover, even by infinitely differentiable
with compact support in the EDS—i.e., with finite energy band-
width—which follows from a well known approximation prop-
erty of infinitely differentiable functions with compact support
in .)

Thus, under Assumptions D.6 and D.7 we have that
(for given and EI) the detection rate
(as a distribution over the EDS) has a density given by

. Moreover, by
Assumption D.6 and D.7 this density should be continuous
with respect to and . Since depends (by its
definition) only on the local properties of the EI around the
point , it may depend on EI only through (its
value at the specific point in the EDS). Hence, we may
write it as to emphasize this dependence
on (which might be nonlinear in general).

Assumption D.8: We assume that for any fixed , , and
, the density is a continuous functional of

over .
The last step to achieve a “truly transfer function”

is to remove the above dependency by assuming:
Assumption D.9: (Weak Intensity Assumption): We assume

that the total exciting intensity (TEI) is sufficiently small, such
that (according to assumption D.8) we may put
in —making independent of .
Thus, we may write as —a truly transfer function.

Remark D.4: This assumption merely states that the sensor
is working in its “linear zone.” For visible light, it is determined
mostly by the detectors, instead of the lens and possible optical
filters whose operation is approximately linear for higher TEI.
More precisely, . Note
that the above approximation holds (independently of the EI dis-
tribution) whenever the total intensity is suf-
ficiently small.

In the following we assume that Assumptions D.3 to D.9 hold
so that the transfer function is well defined. More-
over, we assume that is sufficiently smooth (e.g.,
infinitely differentiable)—which is reasonable according to the
remark to Assumption D.7.

Definition D.8: —denotes the associated energies
and directions for each set (of positive area) on the detec-
tion surface, which is defined as the pair that maximizes

, assuming existence and uniqueness of the global
maximizer. Note that the existence follows from the continuity
of and the reasonable assumption that the transfer function
decays to zero as the energy tends to infinity, while the unique-
ness is a standard assumption.

Remark D.5: As stated above, the pair may be cal-
ibrated (at least in principle) only in the case where is a union
of detectors.

Remark D.6: The transfer function is of funda-
mental importance for the sensor modeling since it contains all
the information needed to describe and model the sensor oper-
ation. The sensor may be described as an input–output system,

whose input is the EI distribution and output is the detection rate
distribution over measurable subsets of the detection

surface. Note that the only subsets for which can be
really observed are these which are union of some whole sur-
face of detectors—however, we still have a definition for Borel
measurable subsets .

In order to see that the transfer function describes com-
pletely the behavior of the sensor as an input–output system,
we show in the following how to use it to model the sensor
operation: let be any measurable subset of the EDS, we have

, where
is an element of the exciting particle intensity distribution
over the EDS with respect to the coordinates. Clearly

, where is the ele-
ment of the usual measure over the EDS.

Remark D.7: If is a detector with and as its asso-
ciated energy and associated direction, then and are ob-
servable and as a result can be calibrated. In conclusion, the
associated energy and associated direction are defined for any
measurable on the detection surface with positive area; while
for sets with zero area, is defined only when is a
single point (it is not defined e.g., for a one dimensional set like
a curve).

Let denotes the detection surface for the th eyelet; and
assume that to each point on there is a corresponding di-
rection , where is a -diffeomorphism from
into US, such that the center of mass (with respect to the stan-
dard measure) for each detector on is mapped by
to the associated direction of . This assumption (about the
existence of such ) is reasonable since , in addition to being
smooth, is required to satisfy only a finite set of interpolation
restrictions. Such will be called an interpolating diffeomor-
phism. The image is called “the cone of associated
directions for the detector d,” and is called “the
cone of associated directions for the th eyelet” with its interpo-
lating parametrization induced by .

Remark D.8: For each given pair of the EDS, the
transfer function is a positive measure over the
Borel measurable subsets of the DS, which is absolutely
continuous with respect to the solid angle measure of the
image of under the interpolating diffeomorphism
(as described by remark D.7). Therefore, under the assumption
that the density of (as a measure over subsets )
with respect to the solid angle measure of is continuous
over , we get that is slowly varying over
neighboring detectors. Thus, the transfer function
for each detector in an eyelet is nearly proportional to the
detector’s solid angle . And by redefining the “detector
specific transfer function” to be the ratio and
denoting it again by , we get that is
almost independent of the detector (irrespective of its solid
angle ); then from remark D.6, we have

For the detection rate for each detector due to the density
of the exciting particle intensity distribution EI over the
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EDS. Similar assumption exists for the noisy count rate for each
detector, which should be nearly proportional to the detector’s
solid angle of its cone of associated directions.

Definition D.9: To each point on the DS, there correspond
its “radial direction” defined as the unit vector in the direc-
tion of the radius vector from the spherical array center to . For
each measurable subset of the DS, denote by its “cone of
radial directions” which consists the radial directions for all
points in . Clearly, this induces a “radial diffeomorphism”

from DS into US by for each point on the
DS, whose restriction to is a diffeomorphism from onto

. By Remark D.7, there is another diffeomorphism
from the DS into the US sending each point on the DS to its

associate direction . The Jacobian of the transformation from
the radial directions to the associated directions

(for any point on the DS) is called “solid angle
expansion factor” with its square root called “angular expansion
factor” and denoted by . Note that though is defined locally
and may vary over the DS, for eyelets with sufficiently small an-
gular aperture, we may assume to be (nearly) constant over
the eyelet’s associated cone of directions. The physical expla-
nation for the angular expansion factor is mainly due to the lens
focusing effect.

APPENDIX E
SPHERICAL GAUSSIAN FUNCTIONS, PG FUNCTIONS, AND

LPG FUNCTIONS

A spherical Gaussian function (of a unit vector ) over the
US is defined to be proportional to where is a
fixed unit vector, and is positive-semi-definite (PSD)
quadratic form in the components of . More specifically,
we denote (up to a normalization factor) by the
function , where is a unit vector
(the mean) and is a positive definite 3 3 matrix (the co-
variance). Given any 2-dimensional local parametrization of
in a neighborhood of (i.e., parametrization of the 2-dimen-
sional component of that is orthogonal to ),
has a local 2 2 covariance matrix at with respect to any
given such parametrization, defined as the inverse of the Hes-
sian at (with respect to the given local parametrization) of

. Note that any sufficiently smooth function
over the US with a local maximum at , can be approx-

imated locally near (up to second order Taylor expansion
terms) by a suitable spherical Gaussian function whose 2 2
local covariance at agrees with the local covariance of
at (i.e., the inverse of the Hessian at of ).

Note that for we get a circular Gaussian func-
tion on the US, which is invariant with respect to the choice
of reference frame. The normalization constant in this case is

. However, it is customary to define it
as because its relative error is negligible for practical
values of .

A spherical polynomial over the US is a polynomial in
the components of the unit vector . It is well known (e.g., from
the properties of the spherical harmonics) that each continuous
function on the US is uniformly approximable arbitrarily closely
by spherical polynomials.

A PG function over the US is defined as a spherical poly-
nomial multiplied by a spherical Gaussian function. Obviously,
any continuous function on the US is uniformly approximable
arbitrarily closely by PG functions.

LPG functions are linear combinations of PG functions and
are very suitable for approximating sufficiently smooth func-
tions with several maxima over the US. The method is to select
certain “important” peaks of the given function and to approx-
imate it in a neighborhood of the peak by a Gaussian function
whose mean and local covariance at the peak is adapted to that
of the given function, then the approximating LPG function
is found as a linear combination of each Gaussian function
multiplied by a suitable spherical polynomial of bounded order
so as to minimize this approximating error in sense.
This gives a standard LS optimization for the LPG function
coefficients.
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