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Abstract— Fully polarimetric radar systems are capable of
simultaneously transmitting and receiving in two orthogonal
polarizations. Instantaneous radar polarimetry exploits both
polarization modes of a dually-polarized radar transmitter and
receiver on a pulse by pulse basis, and can improve the radar
detection performance and suppress range sidelobes . In this
paper, we extend the use of instantaneous radar polarimetry
for radar systems with multiple dually-polarized transmit and
receive antennas. Alamouti signal processing is used to coordinate
transmission of Golay pairs of phase codes waveforms across
polarizations and multiple antennas. The integration of multi-
antenna signal processing with instantaneous radar polarimetry
can further improve the detection performance, at a computa-
tional cost comparable to single channel matched filtering.

I. I NTRODUCTION

There are many proposals for distributed aperture radar,
emanating from the conventional single aperture radar sys-
tem where transmitter and receiver are colocated. Colocation
makes it easy for transmitter and receiver to share a common
stable clock (local oscillator), which is required for both range
and Doppler measurements. Signal processing for distributed
aperture radars (see [1] and the references therein) with widely
dispersed antenna elements is currently a very active research
area, in part because of significant advances in hardware
capabilities. Distributed aperture radar enables multiple views
of the scene, and a (wide angle) tomographic approach to
the recovery of the scene from the data, and hence results
in substantial improvement in target detection. When system
elements are widely dispersed, the coherent implementation of
distributed aperture radar is rendered difficult by the problem
of clock synchronization. Another challenge is the degree of
computation necessary to recover the scene, or detect a target,
by integrating multiple views.

Target scattering profiles depend significantly both on aspect
angle and illumination and receive polarizations (see [2],
Section 2.7). In [3], Howardet al. proposed a new approach
to multi-channel radar that uses polarization to provide es-
sentially independent channels for viewing the target. The
introduction of multiple polarizations increases the degrees
of freedom in the waveform design space, and complements
the effort on waveform design that is specific to distributed
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aperture radar [4]–[9]. Polarization diversity enables detection
of smaller radar cross section (RCS) targets, and avoids the
physical, mathematical, and engineering challenges of time-
of-arrival coherent combining. The advantage of polarization
diversity over spatial diversity is that diversity gains are
possible with colocated antennas.

Howard et al. [3] employ Golay pairs of phase-coded
waveforms [10],[11] to provide synchronization and enable
use of the Alamouti space-time code [12] to coordinate trans-
mission of Golay pairs across polarizations. The use of Golay
pairs and Alamouti signal processing enables radar ambiguity
polarimetry on apulse by pulse basisand allows for estimating
the full polarimetric properties of the target, at computational
cost comparable to single channel matched filtering. Unlike
conventional radar polarimetry, where polarized waveforms
are transmitted sequentially and processed independently (non-
coherently), the approach in [3] allows forinstantaneous
radar polarimetry, where polarization modes are combined
coherently on a pulse by pulse basis. Compared to a radar
system with a singly-polarized transmitter and a singly polar-
ized receiver the instantaneous radar polarimetry approach in
[3] can achieve the same detection performance (same false
alarm and detection probabilities) with a substantially smaller
transmit energy, or alternatively it can detect at substantially
greater ranges for a given transmit energy.

In this paper, we extend the result of [3] to enable the
use of instantaneous radar polarimetry for multiple dually-
polarized transmit and receive antennas. We use Alamouti
block coding to coordinate the transmission of Golay pairs
across polarizations and antennas during four time slots. As we
show, the integration of multi-antenna signal processing and
instantaneous radar polarimetry further improves the detection
performance, while the signal processing complexity at the
receiver remains comparable to that for single channel matched
filtering. In addition, simultaneous processing of multiple
Golay pairs (4 pairs in this paper) results in significant
suppression of range sidelobes, making the radar ambiguity
function closer to a spike. Finally, we note that although in this
paper we assume that the transmitters (receivers) are colocated,
the mathematical machinery we develop is also applicable to
the case where the transmitters (receivers) are distributed.
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II. FULLY POLARIMETRIC RADAR SYSTEMS

Fully polarimetric radar systems are able to simultaneously
transmit and receive on two orthogonal polarizations. The
combined signal then has an electric field vector that is
modulated both in direction and amplitude by the waveforms
on the two polarization channels, and the receiver measures
both components of the reflected waveform.

The radar cross section of an extended target such as an
aircraft or a ship is highly sensitive to the angle of incidence
and angle of view of the sensor (see [2], Sections 2.78). In
general the reflection properties that apply to each polarization
component are also different; indeed reflection can change
the direction of polarization. Polarimetric radars are able to
measure the scattering tensor of a target, i.e.,

Σ =
(

σV V σV H

σHV σHH

)
, (1)

whereσV H denotes the target scattering coefficient into the
vertical channel due to a horizontally polarized incident field.
In fact what is measured is the combination of three matrices

H =
(

hV V hV H

hHV hHH

)
= CRx

ΣCTx
(2)

where CRx and CTx characterize the polarization coupling
properties of the transmit and receive antennas, whereasΣ
characterizes the target. In most radar systems the transmit
and receive antennas are common andCRx = CH

Tx. The
cross-coupling terms in the antenna polarization matrices are
frequency and antenna geometry dependent but for the linearly
polarized case this value is typically no greater than about
−20dB.

III. I NSTANTANEOUSRADAR POLARIMETRY FOR RADAR

DETECTION

In this section, we describe the instantaneous radar po-
larimetry technique proposed in [3]. Much of the language
and terminology is hence drawn from [3].

In instantaneous radar polarimetry, we employ both po-
larization modes of a dually polarized radar transmitter and
receiver, as shown in Fig. 1. We use Alamouti code to
coordinate the transmission of four waveformsw1

H , w1
V , w2

H ,
and w2

V over the V and H channels. Here the superscripts1

Fig. 1. Scattering model for a fully polarimetric radar, with a dually-polarized
transmit antenna and a dually-polarized receive antenna.

and 2 denote two consecutive time slots for a pair of pulses
separated by one Pulse Repetition Interval (PRI). We have

w2
H = w̃1

V (3)

w2
V = −w̃1

H , (4)

where ·̃ denotes complex conjugate time reversal; namely,

w̃(D) = DNw(D−1), (5)

with N = deg w the degree of the polynomialw(D) in the
delay operatorD, and complex conjugation. This operation
plays the same role for these polynomials as complex conju-
gation does in coding.

Let

R =
(

r1
V (D) r2

V (D)
r1
H(D) r2

V (D)

)
, (6)

where rj
V (D) (rj

H(D)), j = 1, 2 is the signal measured at
time slot j on the vertical (horizontal) polarization channel
at the receiver. The returnsrj

V (D) and rj
H(D) are viewed

as polynomials in the delay operatorD. Then, the radar
measurement equation is given by

R = HW + Z, (7)

where

W =
(

w1
V (D) −w̃1

H(D)
w1

H(D) w̃1
V (D)

)
, (8)

and

H =
(

hV V hV H

hHV hHH

)
. (9)

The phase coded waveformsw1
V (D) and w1

H(D) are also
viewed as polynomials in the delay operatorD and their
coefficients are fourth roots of unity since these are QPSK
waveforms. The waveform matrixW has the form of an Alam-
outi space-time code matrix used in MIMO communications
[12]. The entries ofH are taken to be constant since they
corresponds to a fixed time (range). The elements ofZ are four
independent realizations of a zero-mean complex Gaussian
random process with varianceN0 per complex dimension.

The simplicity of Alamouti signal processing follows from
the unitary character of the matrixW, specifically

w1
V (D)w̃1

V (D) + w1
H(D)w̃1

H(D) = 2(N + 1)w1
V DN . (10)

Polynomials with coefficients that are fourth roots of unity and
that satisfy (10) are complex Golay complementary pairs [11].
These include the classical Golay pairs whose coefficients are
±1. It might appear that the correlation side-lobes vanish only
at delays that are multiples of the chip length, but in fact 10
is a property of Golay pairs that holds for all possible non-
zero delays. It is this property that enables detection based
on energy thresholds that is independent of polarization cross-
coupling of the antenna. Correlation properties of Golay pairs
have been widely studied in the radar and communications
literature. In particular, Golay pairs have been constructed with
degreesN = 2n − 1 for all positive integersn [13].

We analyze the detection performance of our fully polari-
metric scheme using a slowly fluctuating point target model.
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That is, we take the matrixH (considered as a four component
vectorh) as zero-mean Gaussian distributed with covariance
matrix E[hhH ] = Λ. For simplicity, we also make the
assumption that the components ofH are independent and
identically distributed, so thatΛ = 2σ2I. We also assume that
the noise on each receive channel is additive zero-mean white
Gaussian noise with powerNo per complex dimension.

Under these assumptions a sufficient statistic for detecting
a stationary point target (zero Doppler) at delaytd is given by
||q(td)||2, where

q =




[RW̃]11
[RW̃]12
[RW̃]21
[RW̃]22


 (11)

and [RW̃]ij is the ijth element ofRW̃.
Given that the pulseswV andwH have unit energy and that

the total transmit energy across the two polarization channels
is Et, the detection problem may be posed as

q =

{
n ∼ CN [0, 2NoI] : H0

2
√

Et/4h + n ∼ CN [0, (2Etσ
2 + 2No)I] : H1

(12)
where H1 denotes the hypothesis that the target is present.
The properties of the waveformswV and wH imply that
E(nnH) = 2NoI. Since E(hhH) = Λ = 2σ2I. The
likelihood ratio detector for (12) is simply an energy detector
and is equivalent to the test

‖q‖2 > γ, (13)

for some thresholdγ > 0. The probability of false alarm for
this detector is

PF = Pr(||q||2 > γ |H0)

=
1

48N4
o

∫ ∞

√
γ

z7 exp(− z2

2No
) dz = Φ

(
γ

2No

)
,

(14)

where
Φ(x) = (1 + x +

1
2
x2 +

1
6
x3)e−x. (15)

Similarly, the probability of detection is

PD = Pr(||q||2 > γ |H1) = Φ
(

γ

2σ2Et + 2No

)
. (16)

IV. I NSTANTANEOUSRADAR POLARIMETRY WITH

MULTIPLE ANTENNAS

We now extend the use of instantaneous radar polarimetry
for a radar system with multiple dually-polarized transmit and
receive antennas. We consider two colocated dually-polarized
transmit and two colocated dually-polarized receive antennas,
as shown in Fig. 2. We use Alamouti signal processing to
coordinate the transmission of Golay pairswV andwH across
two polarizations and two antennas over four PRIs. The
waveform matrix we transmit is

W4×4 =

(
W −W̃
W W̃

)
, (17)

whereW is the 2 by 2 Alamouti waveform matrix in (8).

Fig. 2. Scattering model for a fully polarimetric radar with two dually-
polarized transmit antennas and two dually-polarized receive antennas.

The radar measurement equation is given by

R4×4 = H4×4W4×4 + Z4×4, (18)

where

H4×4 =
(
H11 = H H12 = H
H21 = H H22 = H

)
(19)

and Hij denotes the polarization scattering matrix between
transmitterj and receiveri. Since we have assumed that in the
radar system in Fig. 2 the transmitters (receivers) are colocated
it is natural to assume that allHij are equal to the polarization
scattering matrixH in (9).

The signal processing complexity required for range de-
tection will remain comparable to that for a single channel
matched filtering if the Golay pairswV andwH are chosen to
makeW4×4 unitary, i.e.,

W4×4W̃4×4 = I4×4. (20)

This unitary condition is equivalent to

w2
V + w̃2

V = w2
H + w̃2

H . (21)

One possible choice is to selectwH = w̃V . In this case, given
that the total transmit energy across polarizations, antennas,
and time slots isEt, a sufficient statistic for detecting a
stationary point target (zero Doppler) at delaytd is given by
||q′(td)||2, where

q′ =




[RW̃]11 + [RW̃]13 + [RW̃]31 + [RW̃]33
[RW̃]12 + [RW̃]14 + [RW̃]32 + [RW̃]34
[RW̃]21 + [RW̃]23 + [RW̃]41 + [RW̃]43
[RW̃]22 + [RW̃]24 + [RW̃]42 + [RW̃]44


 , (22)

where the subscript4× 4 in R4×4 andW̃4×4 is dropped for
notational convenience.

The detection problem may be posed as

q′ =

{
n ∼ CN [0, 8NoI] : H0

4
√

Et/16h + n ∼ CN [0, (32Etσ
2 + 8No)I] : H1

(23)
where H1 denotes the hypothesis that the target is present.
The energy detector is equivalent to the test

‖q′‖2 > γ, (24)
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Fig. 3. Scattering model for the baseline system with a singly-polarized
transmitter and a singly-polarized receiver.

for some thresholdγ > 0, and the probabilities of false alarm
and detection are given by

PF = Pr(||q||2 > γ |H0) = Φ
(

γ
8No

)

PD = Pr(||q||2 > γ |H1) = Φ
(

γ
32Etσ2+8No

) (25)

V. PERFORMANCEIMPROVEMENT DUE TO

INSTANTANEOUSRADAR POLARIMETRY

We now compare the performance of the fully polarimetric
schemes (shown in Figs. 1 and 2) with the baseline radar
system shown in Fig. 3, which employs a single polarization
with one transmit and one receive antenna. The baseline
system has the same total transmit energyEt as the fully
polarimetric systems.

The probabilities of false alarm and detection, and the
receiver operating characteristic (ROC) curve for the single
channel radar are given by [14, Chap. 9]

PF = exp(− γ
2No

)

PD = exp(− γ
2σ2Et+2No

)

PF = P
(S+1)
D

(26)

whereS = 2σ2Et

2N0
is the signal-to-noise ratio at the receiver

(or target SNR) in the baseline system.
Figure 4 compares the ROC plots for the two fully po-

larimetric schemes and the baseline scheme, with equal total
transmit energy at target SNRS = −3dB andS = 3dB. We
notice that that for a given target SNR thesingle antennafully
polarimetric scheme (Fig. 1) offers substantially better detec-
tion performance compared to the baseline system, and that
using instantaneous radar polarimetry with multiple antennas
leads to even greater improvement in detection performance.
We also notice that the ROC curve for the single antenna
fully polarimetric scheme at3dB target SNR is the same
as the ROC curve for themulti-antennafully polarimetric
scheme at−3dB target SNR. This is due to the fact that in
the multi-antenna scheme we receive4 identical copies of the
polarization scattering vectorh, resulting in6dB SNR gain
compared to the fully polarimetric system in Fig. 1.

We also consider the extra SNRS1 that the baseline system
needs to ensure the samePD andPF as the fully polarimetric
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Fig. 4. ROC plots for the fully polarimetric systems and the baseline system
at different target SNRs.

schemes. Using (26) withPF andPD given by (14) and (16),
we have

S1

S
=

log
[
Φ

(
γ

2No

)/
Φ

(
γ

2No(S+1

)]

S log Φ
(

γ
2No(S+1)

) . (27)

This is the extra SNR required by the baseline system to
match the probabilities of detection and false alarm of the
dually polarized scheme in Fig. 1, for a given target SNR
S = 2σ2Et/2No.

Similarly, the extra SNR required by the baseline system
to match the probabilities of detection and false alarm of the
multi-antenna fully polarimetric scheme in Fig. 2 is given by

S2

S
=

log
[
Φ

(
γ

8No

)/
Φ

(
γ

8No(4S+1

)]

S log Φ
(

γ
8No(4S+1)

) . (28)

Figure 5 shows the extra SNRsS1/S and S2/S in dB
versus probability of detection for target SNRsS = −3dB
andS = 3dB. As can be seen for any probability of detection
greater than0.5 the fully polarimetric schemes give equivalent
performance to the baseline system for substantially smaller
transmit energy, or alternatively they allow for detection at
substantially greater ranges for a given transmit energy. For
instance the single-antenna fully polarimetric scheme requires
5dB less transmit energy than the baseline system to achieve
PD = 0.7, when the baseline system operates atS = −3dB
target SNR, while the multi-antenna scheme requires12.2dB
less transmit energy to do the same. We notice that here the
difference between the extra SNRs required by the baseline
system to produce the samePD and PF as the two fully
polarimetric schemes is7.2dB, which is1.2dB higher than the
extra SNR required by the single-antenna fully polarimetric
scheme to produce the samePD andPF as the multi-antenna
scheme. This additional SNR gain is due to the difference
in distribution of the test statistics for the fully polarimetric
systems and the baseline system. For both fully polarimetric
systems the distribution of the test statistic isχ2

4, and the
only difference between the two distribution is due to SNR.



5

0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Probability of Detection

E
xt

ra
 S

N
R

 [d
B

]

Multi−antenna Pol: −3dB SNR
Single−antenna Pol: −3dB SNR
Multi−antenna Pol: 3dB SNR
Single−antenna Pol: 3dB SNR
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However, for the baseline system the distribution of the test
statistics isχ2.

Finally, we note that the radar cross-sections for theHV
andV H channels may be substantially smaller in magnitude
than theV V and HH channels. However, the gains for the
fully polarimetric systems persists due to the presence of off-
diagonal elements in the polarization scattering matrixH,
although these gains are diminished.

VI. CONCLUSIONS

In this paper, we extended the result of [3] to enable the
use of instantaneous radar polarimetry for multiple dually-
polarized transmit and receive antennas. Alamouti signal pro-
cessing was used to coordinate transmission of Golay pairs
of phase codes waveforms across polarizations and multiple
antennas. The interplay between Alamouti signal processing,
Golay pairs, and polarization diversity allows for estimating
the full polarimetric properties of the target on a pulse by
pulse basis, at computational cost comparable to single channel
matched filtering. We compared our multi-antenna fully polari-
metric scheme to a conventional radar system with a singly-
polarized transmitter ad a singly-polarized receiver, and with
the fully polarimetric system in [3]. Simulation results show
that instantaneous radar polarimetry can significantly improve
the detection performance compared to the baseline system,
specially when it used with multiple transmit and receive
antennas.
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