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Abstract—Implementations of cryptographic primitives are
vulnerable to physical attacks. While the adversary only
needs to succeed in one out of many attack methods, the
designers have to consider all the known attacks, whenever
applicable to their system, simultaneously. Thus, keeping an
organized, complete and up-to-date table of physical attacks
and countermeasures is of paramount importance to system
designers.

This paper summarizes known physical attacks and counter-
measures on Elliptic Curve Cryptosystems. Instead of repeating
the details of different attacks, we focus on a systematic way of
organizing and understanding known attacks and countermea-
sures. Three principles of selecting countermeasures to thwart
multiple attacks are given. This paper can be used as a road
map for countermeasure selection in a first design iteration.

Keywords-Side-channel attacks; Elliptic curve Cryptosys-
tems;

I. INTRODUCTION

Traditional cryptanalysis assumes that an adversary only

has access to input and output pairs, but has no knowledge

about internal states of the device. However, the advent of

side channel analysis showed that a cryptographic device can

leak critical information. By monitoring the timing, power

consumption, electromagnetic (EM) emission of the device

or by inserting faults, adversaries can gain information about

internal data or operations and extract the key out of the

cryptographic device without mathematically breaking the

primitives.

With new tampering methods and new attacks being

continuously proposed and accumulated, designing a secure
cryptosystem becomes increasingly difficult. While the ad-

versary only needs to succeed in one out of many attack

methods, the designers have to prevent all the applicable

attacks simultaneously. Moreover, countermeasures of one

attack may surprisingly benefit another attack. As a result,

keeping abreast of the most recent developments in the

field of implementation attacks and with the corresponding

countermeasures is a never ending task.

In this paper we provide a systematic overview of

implementation attacks and countermeasures of one spe-

cific cryptographic primitive: Elliptic Curve Cryptography

(ECC). However, this paper has no intention to propose

new attacks or new countermeasures. Instead, we describe

several general principles for countermeasure selection. The

survey in this paper can be used as a tool for selecting

countermeasures in a first design iteration.

This survey has been influenced by Avanzi’s report [1]

and the books by Blake et al. [2] and Avanzi et al. [3]. All

of them give an excellent overview of side-channel attacks

on ECC and HECC up to their point of publication. This

paper, however, differs from previous work in at least three

aspects. Firstly, it includes recently reported attacks such as

carry-based attack [4]. Secondly, we focus on the interaction

of known attacks and countermeasures in a systematic way.

Thirdly, this survey proposes some guidelines for selecting

countermeasures. We would like to stress that, just as what

was stressed in previous reports [1]–[3], perfect (fully secure

and low-cost) countermeasures do not exist up to now.

The rest of this paper is organized as follows. Section II

gives a short introduction on the background of ECC and

implementation attacks. Section III and IV gives details

on known passive and active attacks on the Elliptic Curve

Scalar Multiplication (ECSM), respectively. In Section V,

we discuss a systematic way to select countermeasures.

Section VI gives some research directions on this topic. We

conclude the paper in Section VII.

II. BACKGROUND

We give a brief introduction to Elliptic Curve Cryp-

tography and implementation attacks in this section. A

comprehensive introduction to ECC can be found in [2], [3].

For a thorough summary of power analysis attacks, by far

the most popular class of implementation attacks, we refer

the reader to [5].

Throughout this paper we assume the notations below are

defined as follows:

• K: a finite field;

• char(K): the characteristic of K;

• E(a1, a2, a3, a4, a6) : an elliptic curve with coefficients

a1, a2, a3, a4, a6;

• P (x, y): a point with coordinates (x, y);

• O: point at infinity;
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• E(K) : a group formed by the points on an elliptic

curve E defined over the finite field K;

• #E: the number of points on the curve E, i.e. the order

of the curve E;

• weak curve: a curve whose order does not have big

prime divisors;

• the order of point P : the smallest integer r such that

rP = O;

• coordinate system: a system to represent a point in an

n-dimensional space;

• affine coordinates: a point is represented with a two-

tuple of numbers (x, y);

• projective coordinates: a point (x, y) is represented as

(X, Y, Z), where x = X/Z, y = Y/Z;

• Jacobian projective coordinates: a point (x, y) is repre-

sented as (X, Y, Z), where x = X/Z2, y = Y/Z3.

A. Elliptic Curve Cryptosystems

An elliptic curve E over a field K can be defined by a

Weierstrass equation.

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (1)

where a1, a2, a3, a4, a6 ∈ K and Δ �= 0. Here Δ is the

discriminant of E. A Weierstrass equation can be simplified

by applying change of coordinates. If char(K) is not equal

to 2 or 3, then E can be transformed to

y2 = x3 + ax + b (2)

where a, b ∈ K. If char(K) = 2, then E can be transformed

to

y2 + xy = x3 + ax2 + b (3)

if E is non-supersingular.

For cryptographic use, we are only interested in elliptic

curves over a finite field. Elliptic curves defined over both

prime fields and binary extension fields are used in reality.

Given two points, P (x1, y1) and Q(x2, y2), the sum of P
and Q is again a point on the same curve under the addition

rule. The set of points (x, y) on E together with the point at

infinity form an abelian group. The security of ECC is based

on the hardness of the Elliptic Curve Discrete Logarithm

Problem (ECDLP), namely, finding out k for two given

points P and Q such that Q = kP . The variable k is called

the scalar. In most cases the secrecy of k is protected.

B. Scalar Multiplication

A cryptographic device for ECC is supposed to perform

scalar multiplication efficiently and securely.

Given the a point P ∈ E(K) and a scalar k, the

computation kP is called point multiplication or scalar

multiplication. Algorithm 1 shows the Left-To-Right binary

method for scalar multiplication.

Algorithm 1 Left-To-Right (downwards) binary method for

point multiplication

Input: P ∈ E(F) and integer k =
∑l−1

i=0 ki2i.

Output: kP .

1: R ← O.

2: for i = l − 1 downto 0 do
3: R ← 2R.

4: If ki = 1 then R ← R + P .

5: end for
Return R.

Given two points P1(x1, y1) and P2(x2, y2) on an elliptic

curve E defined over binary extension fields, one can

compute P3(x3, y3) = P1 + P2 as follows:

x3 = λ2 + a1λ − a2 − x1 − x2

y3 = −y1 − (x3 − x1)λ − a1x3 − a3

where

λ =

{
3x2

1+2a2x1+a4−a1y1
2y1+a1x1+a3

(x1, y1) = (x2, y2),
y1−y2
x1−x2

otherwise.

These formulas use coordinates in affine form, and they

require the division operation. Because the coordinates are

represented as finite-field elements, this division operation

needs to be implemented as an finite-field inversion, a costly

and complex operation. For example, in GF (2163), one

inversion corresponds to 8-10 finite field multiplications

even when using an efficient algorithm such as Itoh-Tsujii

[6].

C. Implementations and Physical attacks

Cryptographic transformations can be implemented in

both software and hardware. While software implementa-

tions, running on general purpose microprocessors, are flex-

ible and can be easily updated, hardware implementations,

either on FPGAs or ASICs, can achieve higher performance.

Figure 1 shows the architecture of an ECC processor. Note

that each component here may refer to different types of

realizations. For example, the Arithmetic Logic Unit (ALU)

can be a standard ALU of a general purpose processor or

a dedicated field multiplier. The temporary storage can be

a RAM or a register file. A non-volatile memory, e.g. flash

ROM, is normally used to store curve parameters.

An ECSM process starts with loading certain configura-

tions (the definition of the curve, the underlying field, the

coordinate system, the base point P ) and the scalar k. While

the base point P can be read either from the ROM or from

outside, the scalar k is normally stored or generated inside

the chip and should be protected. The output point, Q = kP ,

is not completely visible from outside. For example, El-

Gamal decryption algorithm only returns the x-coordinate

of Q.
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Figure 1: Elliptic curve processor architecture and related physical attacks. (SE = Single Execution, ME = Multiple

Executions, CI = Chosen Input)
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In practice, execution of ECSM leaks information of k in

many ways. Figure 1 also shows various side-channel attacks

on ECSM. We group the diversity of attacks into two main

categories: passive and active attacks. Passive attacks do not

require meddling with the device’s input/outputs or working

environment. Active attacks on the other hand try to induce

and exploit abnormal behavior in the device.

An important criterion to judge the cost of a specific side-

channel attack is how many executions are required to reveal

the complete key stream. In Fig. 1, each attack is tagged with

either SE (Single Execution) or ME (Multiple Executions).

Another important criterion is that some attacks, such as

doubling attack and refined power analysis, require the

freedom of choosing the base point while some do not.

The base point can be fixed or stored internally in some

implementations, which makes attacks with this requirement

significantly harder to mount.

In order to counteract passive side-channel attacks at least

one of the following links has to be removed:

1) The relation between the data or operations inside the

device and the physical leakages (e.g. power traces, EM

radiation traces, timing, etc.).

2) The relation between the hypothetical data and the

actual data calculated in the device.

With respect to power analysis, there are two methods

to achieve this: rendering the power consumption constant

(e.g., using a special logic style [7]) or randomizing the

intermediate data during the scalar multiplication.

In order to counteract fault attacks, two types of meth-

ods are used: error-detection and error-tolerance. The first

method detects faults inserted in the elliptic curve parame-

ters or the point multiplications. If faults are detected, the

execution is aborted. The second method chooses an elliptic

curve such that even if faults are inducted in the scalar

multiplication, the adversary can not derive scalar from the

faulty results. For example, twist-strong curves are error-

tolerant under twist-curve attack.

III. PASSIVE ATTACKS AND COUNTERMEASURES

An adversary has a wide range of choice in attack

strategies.

A. Timing Attacks and Simple Side-Channel Analysis

Timing attacks exploit the timing variance with different

inputs [8]. Careless implementations contain a vast number

of sources of timing leakage. For example, timing variations

can be caused by RAM cache or conditional branches.

Although no papers have been published about a practical

timing attack on ECC, many papers do mention the threat

and provide the reader with suitable countermeasures.

Cryptographic implementations are vulnerable to simple

power analysis attacks if the power traces show distinctive

key-dependent patterns [9]. Alg. 1 shows the ”double-and-

add” algorithm for a point multiplication. The value of a key

Algorithm 2 Add-and-double-always point multiplica-

tion [10]

Input: P ∈ E(F) and integer k =
∑l−1

i=0 ki2i.

Output: kP .

1: R[0] ← O.

2: for i = l − 1 downto 0 do
3: R[0] ← 2R[0], R[1] ← R[0] + P .

4: R[0] ← R[ki].
5: end for

Return R[0].

bit can be revealed if the adversary can tell the difference

between point doubling and point addition from a power

trace.

The double-and-add-always algorithm, introduced in [10],

ensures that the sequence of operations to compute a scalar

multiplication is independent of the value of the secret

scalar through insertion of a dummy point additions. Another

way to prevent simple SCA is making point addition and

doubling indistinguishable. For example, dummy operations

can be added at the field arithmetic level. This has the

advantage of less overhead. On the other hand, the Hamming

weight of the secret scalar might still leak.

Instead of making the group operations indistinguishable,

one can rewrite them as sequences of side-channel atomic

blocks that are indistinguishable for simple SCAs [11].

Implementations based on the Montgomery ladder [12]–

[14], shown as Alg. 3, are protected against timing attacks

and simple SCA since the execution time of the scalar

multiplication is inherently unrelated to the Hamming weight

of the secret scalar.

The last type of countermeasures is the usage of unified

formulae for point doubling and addition [15]. Unified point

addition formulae use a single formula to calculate both the

doubling and the addition, resulting in an single sequence

of operations for both.

B. Template Attacks

A template attack [16] requires access to a fully con-

trollable device, and proceeds on two phases. In the first

phase, the profiling phase, the attacker constructs a precise

Algorithm 3 Montgomery powering ladder [12]

Input: P ∈ E(F) and integer k =
∑l−1

i=0 ki2i.

Output: kP .

1: R[0] ← P , R[1] ← 2P .

2: for i = l − 2 downto 0 do
3: R[¬ki] ← R[0] + R[1], R[ki] ← 2R[ki].
4: end for

Return R[0].
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model of the wanted signal source, including a charac-

terization of the noise. The second phase comprises the

actual attack. Because of their reliance on data dependencies,

template attacks exploit the so-called differential SCA type

of leakage. The attack assumes that most of the side-channel

information resides in the variance. So far not much research

has been done on template attacks for public key algorithms.

Medwed and Oswald [17] showed the feasibility of this type

of attacks on an implementation of the ECSDA algorithm.

In [18] a template attack on a masked Montgomery ladder

implementation is presented. Template attacks, if feasible,

are a major threat. Neither the double-and-add-always algo-

rithm, nor blinding the scalar or base point resist template

attacks. In fact, only randomizing the coordinates provides

protection.

C. Differential Side-Channel Analysis

Differential side-channel attacks (DPA for differential

power analysis and DEMA for differential electromagnetic

analysis) use statistical techniques to pry the secret infor-

mation out of the measurements [9]. A differential attack

adheres to a fixed working principle: a cryptographic device,

supplied with the fixed secret key k, is sequentially fed with

N input points Pi, i ∈ {1, 2, .., N}. During the encryption

of input Pi under key k, a measurement over time of the

side-channel mi(t) is recorded and stored. The attacker

then chooses an intermediate value of the algorithm which

depends both on the input point Pi and a small part of

the secret key k. For each key candidate k′ for the partial

key and for each input point Pi, the attacker calculates

the intermediate value and transforms it to a hypothetical

leakage value Lk′,i with the aid of a hypothetical leakage

model. For the correct key guess k′ = k there will be a

correlation between the measurements mi(t) and the hypo-

thetical leakages Lk,i at some time instance t. This relation

is uncovered by using statistical distinguishers such as a

difference of means test, Pearson correlation or Spearman’s

rank correlation.

A straightforward countermeasure against differential

SCA is randomizing the intermediate data, thereby rendering

the calculation of the hypothetical leakage values rather

impossible. Coron [10] suggested three countermeasures to

protect against differential SCA attacks:

1) Blinding the private scalar by adding a multiple of #E.

For any random number r and k′ = k+r#E, we have

k′P = kP since (r#E)P = O.

2) Blinding the point P , such that kP becomes k(P +R).
The known value S = kR is subtracted at the end of

the computation.

3) Randomizing the homogeneous projective coordinates

(X, Y, Z) with a random λ �= 0 to (λX, λY, λZ). The

random variable λ can be updated in every execution

or after each doubling or addition.

Very similar, Joye and Tymen [19] suggested to make use

of an elliptic curve isomorphism of the fixed curve or of an

isomorphic representation of the field. Ciet and Joye [20]

also suggested several similar randomization methods.

1) Random key splitting: k = k1 + k2 or k = �k/r�r +
(k mod r) for a random r.

2) Randomized EC isomorphism.

3) Randomized field isomorphism. We refer to the corre-

sponding paper for a detailed explanation [19].

Coron’s first two defense strategies were scrutinized

in [21] and judged weak if implemented as presented. The

latter three countermeasures are broken by an RPA attack

in [22]. (See subsection III-E).

D. Comparative Side-Channel Attacks
Comparative SCA resides between a simple SCA and

a differential SCA. Two portions of the same or different

leakage trace are compared to discover the reuse of values.

The umbrella term was introduced in [23], but the first

reported attack belonging to this category is the doubling

attack. The doubling attack [24] on ECC is an attack

with chosen inputs and has been shown powerful to attack

some classic SPA-protected algorithms such as left-to-right

(downward) double-and-add-always algorithm. The attacker

does not need to tell whether a computation being performed

is a point doubling or addition. More precisely, for two point

doublings (2×t1)P and (2×t2)P , even if the attacker cannot

tell the exact values of t1 or t2, the attacker can still detect

if t1 = t2.
To thwart this attack, blinding techniques can be effective.

Care has to be taken however that neither blinding the base

point or the scalar is applied solely. This has been proven

insecure [24]. Combined use strengthens the security.

E. Refined Power Analysis
A refined side-channel analysis attack (RPA is short for

Refined Power Analysis) directs its attention to the existence

of a point P0 on the elliptic curve E(K) such that one of the

coordinates is 0 in K and P0 �= O. Randomized projective

coordinates, randomized EC isomorphisms and randomized

field isomorphisms preserve this specific property of the

point P0. Feeding to a device a point P that leads to a special

point R(0, y) (or R(x, 0)) at step i under the assumption of

some specific key bits will generate exploitable side-channel

leakage [22], [25].
The attack can be thwarted by using either a cofactor

variant of a protocol for points of ”small order” or by using

isogenous curves for points of ”large order”. The zero-value

point attack (ZPA) generalizes this attack [26]: zero value

points in intermediate results are also considered.

F. Carry-based Attack
The carry-based attack [4], reported by Fouque et al., does

not attack the scalar multiplication itself but its countermea-

sures.
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It relies on the carry propagation occurring when long-

integer additions are performed as repeated sub-word ad-

ditions. For instance, on an 8-bit processor, Coron’s first

countermeasure, k′ = k + r′ where r′ = r#E, is normally

performed with repeated 8-bit additions. Let ki and r′i
denote the ith sub-word of k and r′, respectively. Note that

ki is fixed and r′i is random in different executions. The

crucial observation here is that, when adding ki with r′i, the

probability of the carry out c = 1 depends solely on the value

of ki (the carry-in has negligible impact [4]). The adversary

can then monitor the outgoing carry bit of the adder to

estimate the probability of c = 1. With this probability, the

value of ki can be guessed with high confidence.

So far, no countermeasures have been proposed to thwart

this attack.

G. EM Attacks

Most simple/differential analysis attacks and countermea-

sures summed up so far are based on power consumption

leakage. Most often, electromagnetic radiation is considered

as an extension of the power consumption leakage and the

attacks/countermeasures are applied without change [27].

While this approach makes sense in most cases, electromag-

netic radiation measurements can be made locally [4] and as

such circumvent some countermeasures. Specifically crafted

attacks or countermeasures for electromagnetic analysis have

not been published.

IV. FAULT ATTACKS AND COUNTERMEASURES

Besides passive side-channel analysis, adversaries can

actively disturb the cryptographic devices and use the er-

roneous output (or not even the output, but the reaction of

the disturbed device) to derive the secret. In order to do so,

the adversary needs to induce faults on the victim device.

Various methods can be used, such as changing one memory

bit with laser or violating setup time with glitches in clock.

The difficulty in inducing a fault depends on its precision,

both in time as well as in location. Random faults change an

operation or a variable at some point during the execution of

a cryptographic algorithm. Precise faults change a specific

bit of a specific variable at a specific instance during the

execution. Clearly, random faults are easier to introduce, and

they are less costly, than precise faults.

In this section, we focus on fault attacks and countermea-

sures on ECSM. General tampering techniques and tamper-

resistance methods will be briefly mentioned. Readers who

are interested in these methods are referred to [28].

We divide fault attacks into three categories, namely,

safe-error based analysis, weak-curve based analysis and

differential fault analysis. Safe-error attacks are based on

the observation that some errors will not change the results.

Weak curve attacks try to move a scalar multiplication

from a strong curve to a weak curve. The differential fault

attacks analyzes the difference between the correct output

and erroneous output to retrieve the scalar bit-by-bit.

A. Safe-error analysis (M-type and C-type)

The concept of safe-error was introduced by Yen and

Joye in [13], [29]. Two types of safe-error are reported: C

safe-error and M safe-error. What makes safe-error analysis

special is that the adversary is not interested in the erroneous

results, but simply the fact that the output is affected or not.

1) C safe-error: The C safe-error makes use of dummy

operations that are introduced to achieve SPA resistance.

Taking the add-and-double-always algorithms (Alg. 2) as an

example, the dummy addition in step 3 makes safe-error

possible. The adversary can induce temporary faults in the

ALU or memory during the dummy point addition. If the

key bit, ki, is 1, then final results will be faulty. Otherwise,

the final results are not affected. The adversary can thus

discover one key bit in one execution.

In order to thwart C safe-error analysis, dummy operations

should be avoided. For example, instead of double-and-add-

always algorithm, Montgomery’s powering ladder should be

used. If for certain reasons dummy operations can not be

avoided, the key stream should be represented randomly in

each point multiplication.

2) M safe-error: While the C safe-error attack explores

the weakness of an algorithm, the M safe-error attack

explores the possible safe-error in an implementation. The

attack was first proposed by Yen and Joye [29] to attack

RSA. However, it also applies to ECSM.

The basic observation of an M safe-error is that faults in

some memory blocks will be cleared. Consider Alg. 3 as an

example. We assume that a fault is inducted to y of R[1]
right after the calculation of λ during the point doubling

in step 3. If ki = 1, then the faults on y will be cleared.

Otherwise, it propagates to the end of the ECSM. By simply

checking whether the result is affected or not, the adversary

can reveal ki.

Joye and Yen [13] proposed a method to prevent this

attack. The idea is to eliminate the possibility of inserting

safe-errors. Using the modified Montgomery powering lad-

der [13], any fault in R[0] or R[1] will be detected regardless

of the value of ki.

B. Weak curve based analysis

In 2000, Biehl et al. [30] described a new type of fault

attack on elliptic curve scalar multiplication. They observed

that a6 was not used in a point multiplication. An imple-

mentation of this algorithm for curve E generates correct

results for any curve E′ that differs from E only in a6:

E′ : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a′

6. (4)

Thus, the adversary can cheat an ECC processor with a point

P ′ ∈ E′(F) where E′ is a cryptographically weak curve.
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If an ECC processor does not check whether the base

point, P , is a valid point on the specified curve E or

not, the adversary can then choose a point P ′ ∈ E′(K)
and get the result of the scalar multiplication, Q′ = kP ′.
The adversary can then solve DLP in a subgroup of order

rP ′ (the order of P ′) to retrieve kr = k mod rP ′ . This

process can be repeated to generate kr for different r. At

the end, the Chinese Remainder Theorem can be used to

retrieve k. This attack also shows us that not all the fault-

based attacks require expensive equipments or sophisticated

tampering techniques, and that a naive implementation can

be broken with almost negligible cost.

The method of moving a scalar multiplication from a

strong curve E to a weak curve E′ was then extended.

With the help of faults, the adversary makes use of invalid

points [30], invalid curves [31] and twist curves [32] to hit

a weak curve. These methods are described below.

1) Invalid point attacks : The idea of the invalid point

attack is to let the scalar multiplication start with a point P ′

of a weak curve.

If the ECSM is performed without checking the validity of

the base point, then no faults need to be inducted. If the ECC

processor checks the validity of the base point, the adversary

will try to change the point P right after the point validity

check. Note this attack requires fault induction at a specific

timing, thus is much more difficult than the one described

above.

For some applications such as EC El-Gamal or ECDSA,

y2 is not present on the output. In this case, the adver-

sary needs to derive {E′, P ′(x′
1, y1),Q′(x′

2, y2)} from {E,

P (x1, y1), x′
2}. Though it looks difficult, the adversary still

has a non-negligible probability to succeed. Readers who are

interested can find the complete method in [30].

A possible countermeasure, as suggested in [30], [31], is

Point Validation (PV) before and after scalar multiplication.

PV checks if a point lies on an elliptic curve or not. If the

base point or result does not belong to the original curve,

no output should be given.

2) Invalid curve attacks: Ciet and Joye [31] refined

the attack in [30] by loosening the requirements on fault

injection. They show that any unknown faults, including

permanent faults in non-volatile memory or transient faults

caused on the bus, in any curve parameters, including

field representation and curve parameters a1, a2, a3, a4, may

cause information leakage on the scalar k.

Ciet and Joye suggested using error checking codes to

ensure the integrity of curve parameters before scalar mul-

tiplication.

3) Twist curve based FA: In 2008, Fouque et al. [32]

discovered a new way to hit a possibly weak curve, the

quadratic twist curve. They observed that a point multi-

plication routine for some curve E, without using the y-

coordinate, gives correct results for ECSM on its twist

curve Ẽ. They also noticed that the twist curves of many

cryptographically strong curves are cryptographically weak

(see [32] for details). Eq.5 defines the twist curve of E,

where ε is a quadratic non-residue in Fp.

Ẽ : (ε)y2 = x3 + ax + b (5)

For elliptic curves defined over Fp, a random x ∈ Fp cor-

responds to a point on either E or its twist. Since the order

of E and Ẽ are close, the probability is approximatively one

half that a random abscissa corresponds to a point on E or

Ẽ. As a result, the adversary has a probability of one half

to hit a point on Ẽ with a random fault on x-coordinate of

P on E.

There are three possible methods to thwart this attack.

The first one is to repeat point validity check during the

scalar multiplication. The second one is to use y-coordinate

all the time. Both methods have some overhead in terms of

computation time and storage. The third one is to choose

twist-secure curves, namely, curves whose twist curve are

also cryptographically strong.

C. Differential FA

The Differential Fault Attack (DFA) uses the difference

between the correct results and the faulty results to deduce

certain bits of the scalar.

1) Biehl-Meyer-Müller DFA: Biehl et al. [30] reported the

first DFA on an ECSM. We use an right-to-left multiplication

algorithm to describe this attack. Let Qi and Ri denote the

value of Q and R at the end of the ith iteration, respectively.

Let k(i) = k div 2i. Let Q′
i be the value of Q if faults have

been induced. The attack reveals k from the Most Significant

Bits (MSB) to the Least Significant Bits (LSB).

1) Run ECSM once and collect the correct result (Qn).

2) Run the ECSM again and induce an one-bit flip on Qi,

where l − m ≤ i < l. We assume that m is small.
3) Note that Qn=Qi+(k(i)2i)P and Q′

n=Q′
i+(k(i)2i)P .

The adversary then tries all possible k(i) ∈
{0, 1, .., 2m − 1} to generate Qi and Q′

i. The correct

value of k(i) will result in a {Qi,Q
′
i} that have only

one-bit difference.

The attack works for left-to-right multiplication algorithm

as well. It also applies if k is encoded with any other

Algorithm 4 Right-To-Left (upwards) binary method for

point multiplication

Input: P ∈ E(F) and integer k =
∑l−1

i=0 ki2i.

Output: kP .

1: R ← P , Q ← O.

2: for i = 0 to l − 1 do
3: If ki = 1 then Q ← Q + R.

4: R ← 2R.

5: end for
Return R.
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deterministic codes such as Non-Adjacent-Form (NAF) and

w-NAF. It is also claimed that a fault induced at random

moments during an ECSM is sufficient [30].

To thwart this attack, the validity of the intermediate

results (Qi and Ri in Algorithm 4) should be regularly

checked. Another possible countermeasure is to randomize

the scalar k such that the adversary can does not gain more

bits of k in repeated executions.

2) Sign change FA: In 2006, Blömer et al. [33] proposed

the sign change fault (SCF) attack. It attacks implementa-

tions where scalar is encoded in Non-Adjacent Form (NAF).

When using curves defined over the prime field, the sign

change of a point implies only a sign change of its y-
coordinate. The SCF attack does not force the elliptic curve

operations to leave the original group E(Fp), thus P is

always a valid point.

A straightforward countermeasure against an SCF attack

is to use Montgomery ladder algorithm that does not use

the y-coordinate for computing ECSM (e.g. Montgomery

Scalar Multiplication with López-Dahab coordinates [14]).

Another countermeasure presented by Blömer et al. [33] uses

a second elliptic curve whose order is a small prime number

to verify the final results.

V. SELECTION OF COUNTERMEASURES

One can not simply integrate all the countermeasures

discussed above to thwart all attacks. The reasons for this

are manifold. The complexity and extra overhead added

by countermeasures can significantly increase the design

and manufacturing cost. Another important reason is that a

countermeasure against one attack may benefit another one.

Thus, countermeasures should be carefully selected such that

they do not add extra vulnerabilities. In this section, we

discuss the cross relationship between known attacks and

countermeasures.

A. Countermeasures versus Attacks

Table I summarizes the most important attacks and their

countermeasures. The different attacks, grouped into passive

attacks and active attacks are listed column-wise, while each

row represents one specific countermeasure. Let Aj and Ci

denote the attack in the jth column and countermeasure in

the ith row, respectively. The grid (i, j), the cross of the ith

row and the jth column, shows the relation between Aj and

Ci.

•
√

: Ci is an effective countermeasure against Aj .

• ×: Ci is attacked by Aj .

• H: Ci helps Aj .

• ?: Ci might be an effective countermeasure against

Aj , but the relation between Ci and Aj is unclear or

unpublished.

• –: Ci and Aj are irrelevant (Ci is not effective against

Aj).

It is important to make a difference between × and –. Here

× means Ci is attacked by Aj , where – means that the use

of Ci does not affect the effort or result of Aj at all. For

example, scalar randomization using 20-bit random number

is attacked by doubling attack, so we put a × at their cross.

The Montgomery powering ladder is designed to thwart

SPA, and it does not make a DPA attack harder or easier,

so we put a – there.

Below we discuss each countermeasure and its relation

with the listed attacks.

Indistinguishable Point Addition Formulae Indistin-

guishable group operations render a simple SCA impossible,

but only if the underlying field arithmetic is implemented

securely. This is discussed in [36], [37]. This method does

not counteract differential SCA and RPA/ZPA [38].

Double-and-add-always The double-and-add-always al-

gorithm is the main representative of the countermeasures

that use dummy instructions or operations to withstand

simple side-channel attacks.

The algorithm fails against doubling attacks. It does not

remove vulnerabilities to differential SCA attacks. It also

makes C safe-error fault attack possible.

Montgomery Powering Ladder The Montgomery pow-

ering ladder is an algorithm level countermeasure running

in a fixed time without redundant operations, hence it is

SCA resistant. It avoids the usage of dummy instructions

and also resists the normal doubling attack. However, it is

attacked by the relative doubling attack proposed by Yen

et al. [34]. This attack can reveal the relation between two

adjacent secret scalar bits, thereby seriously decreases the

number of key candidates.

With Montgomery powering ladder, y-coordinate is not

necessary during the scalar multiplication, which prevents

sign-change attacks. However, for curves that have weak

twist curves, using Montgomery powering ladder without

y-coordinate is vulnerable to twist curve attacks.

Random scalar split. This countermeasure can resist

DPA/DEMA attacks since it has a random scalar for each

execution. In [24], the authors have already analyzed the

effectiveness of Coron’s first countermeasure against the

doubling attack. If we assume that the scalar k is randomly

split into two full length scalars, the search space is extended

to 281 for a 163-bit k (the birthday paradox applies here).

This is enough to resist the doubling attack. It can also help

to thwart RPA/ZPA if it is used together with base point

randomization [22], [26], [39].

However, this countermeasure is vulnerable to a carry-

based attack if the key is split as follows: choosing a random

number r < #E, and k1 = r, k2 = k − r.

Scalar randomization. With respect to the resistance

against passive SCA, the above analysis of the random scalar

split countermeasure against DPA/DEMA and RPA/ZPA also

applies here. However, as mentioned in [24] the 20-bit

random value for blinding the scalar k is not enough to
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resist the doubling attack.

Like random scalar split, it renders the safe-error and sign-

change attacks more difficult. On the other hand, it is shown

in [4] that the key randomization process, namely, k′ =
k + r#E, leaks the scalar under the carry-based attack.

Base point blinding. For an ECSM, the scalar random-

ization and base point blinding are based on the same idea

of randomizing one component of the point multiplication.

Therefore, their effectiveness against various passive attacks

is similar. It can resist DPA/DEMA as explained in [10].

In [24], the authors conclude that this countermeasure is

still vulnerable to the doubling attack since the point which

blinds P is also doubled at each execution. This counter-

measure makes RPA/ZPA more difficult since it can break

the assumption that the attacker can freely choose the base

point (the base point is blinded).

This countermeasure might make the weak-curve based

attacks more difficult since the attacker does not know the

masking point R. In an attack based on an invalid point,

the adversary needs to find out the faulty points P ′ and

Q′ = kP ′. With the point blinding, it seams to be more

difficult to reveal either P ′ or Q′. However, in the case of

an invalid curve attack, base point blinding does not make

a difference.

Random projective coordinates. This countermeasure

is effective against differential SCA. It fails to resist the RPA

as zero is not effectively randomized. Combination with a

simple SCA countermeasure is essential.

Point validity check. This countermeasure checks if a

certain point is on the authentic curve or not. It is an

effective countermeasure against invalid point attacks. If the

y-coordinate is used, it is also effective against a twist-curve

attack. However, it is not effective against invalid curve

attacks, sign-change attacks and C safe-error attacks.

Curve integrity check. The curve integrity check is to

detect fault injections on curve parameters. Before starting

an ECSM the curve parameters will be read from the

non-volatile memory (possibly on the data bus), which are

vulnerable to permanent or transient faults. So, the integrity

of the curve parameters (including the base point) needs to

be verified using a CRC (cyclic redundancy check) code

before an ECSM execution.

Coherence check. A coherence check verifies the inter-

mediate or final results with respect to a valid pattern. If an

ECSM uses the Montgomery powering ladder, we can use

the fact that the difference between R[0] and R[1] is always

P . This can be used to detect faults during an ECSM [35].

B. Selecting countermeasure.

After analyzing the existing attacks and countermeasures,

a natural question is whether there exists a set of coun-

termeasures that resists all the existing passive and active

attacks. While unified countermeasures to tackle both the

passive and active attacks are attractive, they are very

likely weaker than what is expected. Baek and Vasyltsov

extended Shamir’s trick, which was proposed for RSA-CRT,

to secure ECC from DPA and FA [40]. However, Joye

showed in [41] that a non-negligible portion of faults was

undetected using the unified countermeasure and settings

in [40]. In this section, we describe several principles to

choose countermeasures.

Complete: A complete picture of attacks and countermea-

sures is the perfect base to select countermeasures. As we

pointed out above, an adversary needs to succeed in only

one out of many possible attack methods to win. Keeping

a summary of up-to-date attacks and countermeasures is

important for cryptosystem designers.

Specific: Whenever selecting countermeasures for a cryp-

tosystem, a detailed description of the cryptosystem should

be explicitly defined. A set of countermeasures that can

thwart all known attacks is neither easy to find nor efficient

in terms of area and performance. Within restricted bound-

aries, countermeasure selection is much easier and more

efficient. For example, RPA and comparative SCA assume

that the attacker can choose the base point freely. If an ECC

processor is targeting an application where the base point is

fixed, then an RPA and doubling attack can not apply.

Additive: The selected countermeasures should be addi-

tive. Suppose that we choose countermeasures from Table I,

we could proceed in two steps.

The first step is a column-wise selection. We inspect

each column and select a countermeasure that suffices to

thwart the attack in this column. If we have chosen two

countermeasures, Ca and Cb, and their relation with Aj is

as follows: (a, j) =
√

, (b, j) = ×. In this case, we need to

study whether Ca covers Cb or not. H in the table should

be avoided whenever possible. If eventually we can not get

rid of all the H, extra countermeasures should be added to

cover it.

The second step is to check if the selected countermea-

sures are additive. Using multiple countermeasures simul-

taneously might introduce new vulnerabilities. Thus, we

need to evaluate the selected countermeasures as a new

countermeasure.

VI. OUTLOOK

Though physical security of cryptographic hardware or

software has been intensively studied in the last ten years,

known methods to protect physical attacks are far from

satisfactory. For future research, we believe the following

topics are important to improve our understanding in phys-

ical security of cryptosystems.

• Mathematical model to evaluate the effectiveness of

attacks and countermeasures. For example, an attack

requires certain amount of information leakage to reveal

the scalar, which sets up an upper bound of information

leakage for an effective countermeasure. Models that
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allow a quantitative evaluation of physical information

leakage are still missing.

• A framework to evaluate the effectiveness of a set of

countermeasures. As shown above, multiple counter-

measures are always used together to thwart multiple

attacks. However, the current method for choosing

countermeasures is rather ad-hoc.

• Grids containing ? in Table I. Table I shows that we

only understand a small part of the complete picture,

and many interesting attack-countermeasure pairs have

not been studied yet.

• A higher level approach to secure elliptic curve scalar

multiplication. For example, many attacks are effective

only when the same scalar is used for hundreds of times

with different base points. A slight modification on high

level protocols might prevent those attacks.

• System integration of multiple countermeasures. In

[42], the researchers suggested a combined counter-

measure and discussed the system integration cost. A

perfect countermeasure is probably useless if it is too

complex to implement.

VII. CONCLUSION

In this paper we give a systematic overview of the existing

implementation attacks and countermeasures on ECC. While

we have no intentions to provide new countermeasures,

we do give a complete overview of the wide range of

attacks and the common classes of countermeasures. We

strongly believe that keeping track of the ever evolving

field of implementation attacks is of crucial importance to

a cryptosystem designer. This paper provides a digest of

existing attacks and countermeasures.

Table I can be used for countermeasures selection. We also

plan to keep this work updating in a more open environment

(e.g. an ePrint version of this paper updated once new attacks

and countermeasures are found) and extend it also for other

similar cases, such as cryptographic parings.
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