
Analysis and Design of Active IC Metering

Schemes

Roel Maes∗, Dries Schellekens∗, Pim Tuyls∗† and Ingrid Verbauwhede∗

∗ Katholieke Universiteit Leuven, ESAT-SCD/COSIC and IBBT

Kasteelpark Arenberg 10, 3001 Heverlee, Belgium

tel.: +3216321050, fax: +3216321969

Email: firstname.lastname@esat.kuleuven.be
† Intrinsic-ID

High Tech Campus 9, 5656 AE Eindhoven, The Netherlands

Email: pim.tuyls@intrinsic-id.com

Abstract—Outsourcing the fabrication of semiconductor

devices to merchant foundries raises some issues con-

cerning the IP protection of the design. Active hardware

metering schemes try to counter piracy of integrated

circuits by enforcing the fabrication plant to run an

activation protocol with the IP owner for every chip that

is produced. In this work, we analyze the protocols of

two active hardware metering schemes that were recently

proposed by Roy et al. in [1], [2]. We study how these

schemes achieve security and based on this, we suggest

more efficient and secure versions for both. Finally, we

present a simplified and secure activation protocol based

on physically unclonable functions.

Index Terms—Intellectual property protection, active

metering, activation protocol, physically unclonable func-

tion.

I. INTRODUCTION

For almost halve a century now, digital computing

power has risen exponentially over time and it continues

to do so. This trend was empirically observed and

formulated by Gordon Moore in 1965 and is hence best

known under the name Moore’s law. In recent years,

advances in photolitography techniques for producing

integrated circuits have scaled down the feature sizes on

chips from 90nm in 2003-2004 downto 65nm in 2006-

2007 and 45nm in 2007-2008, and 32nm manufacturing

processes are currently being tested. However, the cutting

edge technology needed to implement these processes

has pushed the cost of a new semiconductor fabrication

plant or fab towards several billions of dollars. This

enormous investment gave rise to the so-called foundry

model, where fabless semiconductor companies only de-

sign devices and the manufacturing is done by merchant

foundries that only perform the actual production.

Outsourcing the manufacturing of advanced semicon-

ductor devices raises issues concerning the IP protection

of the innovations contained in the design files. Once a

design house hands over its plans to a fab, it has no real

control over further actions. Some legal restrictions, e.g.

about the allowed production volume, are contained in a

contract, but a technical enforcement of these restrictions

is non-existing. Piracy of integrated circuits becomes a

main industry problem and three major acts of piracy

can be discerned:

1) The agreed production volume can be exceeded

and the excess production is sold on the grey/black

market at high profits, since the fab does not

suffer from high non-recurring engineering or NRE

costs. This is known as overbuilding, and can be

done by a dubious manufacturer, but also by an

underground sister company of a renowned fab.

2) A fab that does not possess any designs can re-

verse engineer them from a manufactured device.

In that case, he can add changes or reuse intel-

lectual property in its own products which he can

sell at high profit, again without baring substantial

NRE costs.

3) A malicious manufacturer might try to obtain the

design files in an illegal manner, e.g. through theft,

espionage or reverse engineering and clone the

chip in order to sell it.

Another evolution in the development of digital sys-

tems that was induced by the high cost of ASIC pro-

duction as well as the increasing NRE costs for a new

design, is the use of programmable hardware devices,

most notably field programmable gate arrays or FPGAs.

Instead of having a hardware description manufactured

74978-1-4244-4804-3/09/$25.00 c© 2009 IEEE

as a hardwired circuit at a foundry, it can be compiled

into a soft configuration file that can be loaded on a

standard FPGA in the field. Since most commercial

FPGAs are volatile, they have to be accompanied by

a non-volatile memory, e.g. Flash, to store this configu-

ration file when the FPGA powers down. This makes

FPGA designs also very vulnerable to cloning, since

the configuration file can easily be obtained from the

memory, e.g. by eavesdropping on the configuration bus.

Once an adversary possesses this file, he can clone

the entire design without effort, just by loading it onto

another FPGA of the same type.

It is clear that technical restrictions to overcome piracy

of integrated circuits have to be implemented. Moreover,

since larger designs of systems-on-chip even involve

intellectual property from multiple parties, a more fine-

grained structure of intellectual rights management will

be necessary, allowing each party to control the use of

its IP blocks. More advanced systems could even restrict

the number of times or the duration of an activation of

individual IP blocks on a chip.

A. Previous work

To actively prevent the acts of overbuilding and

cloning, a number of techniques collectively known as

active hardware metering have been proposed. Active

metering schemes for FPGAs rely on cryptographic

transformations of the configuration file, as proposed by

Simpson and Schaumont [3] and improved by Guajardo

et al. [4], [5], [6]. To implement active metering on an

ASIC, some sort of locking mechanism needs to be in

place, which makes sure the chip is in a locked state upon

production. By running a cryptographic protocol with the

IP owner, the fab can enable the chips. In this way, the

IP owner has full control over the production volume.

Locking techniques based on FSM obfuscation have

been introduced in [7], [8], [9], based on combinational

locking in [1] and on scrambling of system busses in [2].

Many of the proposed schemes rely on a physically

unclonable function (PUF) [10], [11], [4], [12] to derive

a unique chip identifier.

B. Contributions

In this work, we analyze the activation protocols

of two previous proposals by Roy et al., based on

combinational locking [1] and bus scrambling [2]. It is

shown that the protocol from [1] is not secure against a

malicious fab, even without the need to modify the chip

design. Moreover, both protocols can be simplified and

implemented in a more efficient way. Finally, we propose

a simple and secure activation protocol based on PUFs. It

is important to note that we did not investigate, nor make

any judgement about the IC locking mechanisms of the

proposals in [1], [2]. In fact, we show that the security

of the whole scheme is independent of the difficulty of

reverse engineering the used locking mechanism. In [1],

the unlocking key cannot be kept secret and the security

only depends on the verification of a digital signature.

In [2], the security depends on the secrecy of a one-way

function embedded in the chip design.

II. SETTING

A. Protocol Parties

In hardware metering protocols, we discern three

major parties, i.e.:

• The holder of the IP rights on the IC design to

be manufactured, further called the IP Owner. We

assume that the IP Owner possesses the design

plans of the IC and has mask sets produced from

these plans.

• The merchant foundry, further called the Manufac-

turer, that will manufacture the ICs using the mask

sets it obtained from the IP Owner.

• The manufactured integrated circuit, further called

the Chip, of which we want to meter the production

volume.

The basic idea behind all hardware metering protocols

is that, at some point, the Chip and the IP Owner will

communicate, giving the latter the possibility to passively

monitor or even actively control the production volume.

B. Adversary Model

As is explained in the introduction, the most powerful

adversaries are merchant foundries with direct access

to the original mask sets and the incentive to perform

overbuilding. As an adversary, we will model such a

malicious Manufacturer.

1) In active hardware metering, the Chip needs to

be activated right after manufacturing, while still

in the possession of the Manufacturer. Therefore,

we assume that the adversary can effortless and

unnoticeably eavesdrop on all communications be-

tween the IP Owner and the Chip. Moreover, the

adversary can easily change transmitted messages,

trying to actively attack the protocol.

2) The Manufacturer necessarily has access to the full

mask set needed to manufacture the Chip. This

mask set contains a full geometrical description of

the Chip’s design. It is assumed that reverse engi-

neering a small part, e.g. a hard wired key, of the

752009 IEEE International Workshop on Hardware-Oriented Security and Trust (HOST)

geometrical mask set to a higher level description

(RTL-level or even higher) is not easy, however

not impossible. If needed, the Manufacturer will

spend some effort/time/money doing it. A large or

full reverse engineering of the entire mask set is

assumed to be too expensive.

3) It is assumed that the Manufacturer will not alter

the mask set. Although not impossible in practice,

the Manufacturer is unwilling to bare the high cost

of having a new mask set produced. Equivalently,

we assume that it is infeasible for the adversary to

alter the circuit on every Chip post-manufacturing,

e.g. using a focussed ion beam. These assumptions

are also made in [1], [2] and are crucial in any

method of hardware metering, since an attacker

with full knowledge of the circuit design and

the possibility to change the mask or circuit at

will, can easily remove or bypass the metering

mechanism.

It is clear that in this practical security setting, we cannot

solely rely on mathematical complexity assumptions, e.g.

the hardness of factoring, as in theoretical cryptography.

Instead, we also have to make some assumptions about

the cost of certain production and analysis techniques,

e.g. the price of producing a new mask set, with respect

to the incentive of the adversary, i.e. making profit out

of overbuilding a design.

III. EPIC: IC METERING THROUGH

COMBINATIONAL LOCKING

A. Protocol Description

In the EPIC scheme [1], the active metering of ICs

is based on a combinational locking mechanism, which

means that the original combinational logic is altered

in such a way that it will only operate properly when

the appropriate common key CK is applied. The IP

Owner generates a master keypair (MKpub, MKpri) and

enriches the Chip’s design with support for public key

cryptography and combinational locking, a true random

number generator (TRNG) and MKpub. He generates a

random key CK and locks the enriched design with it

to obtain a locked design. He sends a mask set of the

locked design to the Manufacturer for production. After

production, every Chip can be unlocked according to the

protocol described in Fig. 1.

In this protocol:

• {G, E. [.] ,D. [.] ,S. [.] ,V. [.]} is a standard set of

public key algorithms such that G generates a

random public-private keypair: (Kpub, Kpri) ← G.

The algorithm EKpub
[m] encrypts a message m with

the public key and DKpri

[
EKpub

[m]
]

= m is the

decryption with the corresponding private key. The

algorithm SKpri
[m] signs a message m with the pri-

vate key and VKpub

[
SKpri

[m]
]

= m is the verification

of the signature with the corresponding public key1.

• R is an RTL-level description of a chip design,

R+ is the enriched design and R# is the locked

(enriched) design. Mask{R#} is a mask set imple-

menting the description R#.

• One-Time-Programmable or OTP memory is used

to store data in a non-volatile way.

• {LCK [R+] ,UCK

[
R#

]
} is the combinational IC-

locking mechanism as described in [1]. LCK [R+]
locks the enriched RTL-description R+ with a

common key CK and generates a locked design R#.

By applying the correct key CK to the unlocking

mechanism of a locked Chip (i.e. UCK

[
R#

]
) the

behavior of the protected R# will be unlocked and

hence identical to that of the original description

R+.

• the communication between IP Owner and Man-

ufacturer is secured and authenticated (not shown

in Fig. 1). This is however not important, since

it is assumed that the Manufacturer is the main

adversary in this scheme.

B. Security Analysis

It is clear that in the EPIC protocol, the common

key CK cannot be kept secret from the Manufacturer.

Instead of transferring the Chip’s public key RCKpub,

a malicious Manufacturer with the objective to perform

overbuilding can transmit the public key from his own

asymmetric key pair (Manpub, Manpri) to the IP Owner

because the IP Owner has no way of checking the au-

thenticity of this communication. Using his own private

key Manpri and the public master key MKpub, which is

assumed to be known, the Manufacturer can decrypt IK

to obtain CK. This works, independently of the order of

the encrypting and signing of CK, which is not entirely

clear from the protocol description in [1]. In the light

of this observation, it is clear that the alleged security

from the EPIC scheme rests on the impossibility for the

Manufacturer to forge a valid signature on CK, since he

does not know the private master key. This gives rise to

some issues.

The Chip uses MKpub to verify the signature, and

hence the security is based on the integrity of the public

1This notation assumes signature verification with message recov-

ery.

76 2009 IEEE International Workshop on Hardware-Oriented Security and Trust (HOST)

IP Owner

1. (MKpub, MKpri)← G
2. R+ = {R, public key crypto,

TRNG, MKpub,

combinational lock support} Manufacturer

3. Generate random key CK

4. R# = LCK [R+]
5.Mask{R#}

−−−−−−−−−→ 6.Produce chip Chip

from Mask{R#}
On initial power-up:

7. (RCKpub, RCKpri)← G
10.RCKpub

←−−−−−−−−−
9.RCKpub

←−−−−−−−−− 8. Store (RCKpub, RCKpri)
11.IK = ERCKpub

[
SMKpri

[CK]
]

in OTP memory
12.IK

−−−−−−−−−→
13.IK

−−−−−−−−−→ 14.CK = DRCKpri

[
VMKpub

[IK]
]

15.R+ = UCK

[
R#

]

Fig. 1. The EPIC protocol.

master key contained in the chip design. Altering MKpub

requires producing a new mask set or tampering with

every Chip post-manufacturing, which we considered to

be too expensive to be profitable for the Manufacturer.

Equivalently, the scheme can also be broken if the

Manufacturer can hard-wire the known CK in the Chip,

which causes every Chip to be automatically unlocked

upon production. This is considered infeasible for the

Manufacturer for the same reasons.

The EPIC scheme, as shown in Fig. 1, can however

be broken without the need to modify the design. The

Manufacturer cannot forge SMKpri
[CK] in step 11, but

using his own keypair as described above, he can obtain

this signature, which is the same for every Chip. He then

can generate the input keys IK himself by encrypting the

obtained signature with the public key RCKpub outputted

by the Chip. This way, he can keep on activating addi-

tional chips without further involvement of the IP Owner.

This attack only assumes an active participation of the

Manufacturer in the metering protocol, which is much

easier than modifying the design and feasible according

to our adversary model! In more recent work [13], the

authors of the EPIC protocol mention the possibility of

replay and man-in-the-middle attacks, however, they fail

to address this weakness in their protocol.

C. Suggested Improvements

The protocol in Fig. 1 is derived from the informal

description given by Roy et al. [1]. As observed above,

this protocol is insecure, because the signature generated

by the IP Owner is fixed and can be replayed by the

Manufacturer once he obtains it. An obvious solution

for this would be to introduce some freshness in the

signature to avoid replay. A possible way of doing this

is switching the encryption and signing of CK in step

11 of the protocol, and the corresponding decryption and

verification in step 14. As noted above, the order of these

executions is not completely clear from the informal

protocol description in [1], but a reader is more likely

to understand it as in our interpretation given in Fig. 1.

Switching encryption and signing of CK secures the

EPIC scheme against the protocol level attack. However,

a more simple and efficient protocol providing the same

security notion is possible in that case. We suggest an

improvement based on two observations:

1) The IP Owner fails to transfer CK to the Chip

whilst maintaining confidentiality towards the

Manufacturer2. Therefore, it is superfluous to en-

crypt CK and it can as well be submitted in clear.

2) The security of the scheme is only based on the

impossibility of the Manufacturer to forge a valid

signature, and to obtain a valid signature that he

can reuse. There is no need for the Chip to generate

its own asymmetric keypair.

Two simplified but secure variants of the EPIC protocol

are shown in Fig. 2. In the protocol in Fig. 2(a), the IP

Owner uses his private master key to place a signature

on a randomly generated nonce and in the protocol

in Fig. 2(b) he uses MKpri to decrypt a nonce that the

Chip encrypted with MKpub. In both cases, involvement

of the IP Owner in the activation of every Chip is

insurmountable, as long as the freshness of the nonce

and the integrity of MKpub are guaranteed. Also note

that CK is not encrypted anymore, but just concatenated

2The ability of the adversary to easily learn CK is also acknowl-

edged by the authors of the EPIC protocol in more recent work [13].

On the other hand, they still put much effort in showing that CK
withstands brute-force attacks, which seems redundant in that case.

772009 IEEE International Workshop on Hardware-Oriented Security and Trust (HOST)

IP Owner Chip

. . .

On initial power-up:

7. Generate random nonce r
10/9.r

←−−−−−−−−− 8. Store r in OTP memory

11.IK = SMKpri
[r] ||CK

12/13.IK

−−−−−−−−−→ 14.if VMKpub
[IKL] == r then

CK = IKR

else

CK =⊥
end if

15.R+ = UCK

[
R#

]

(a) The IP Owner signs a nonce with its private master key.

IP Owner Chip

. . .

On initial power-up:

7. Generate random nonce r
10/9.c=EMKpub

[r]

←−−−−−−−−− 8. Store r in OTP memory

11.IK = DMKpri
[c] ||CK

12/13.IK

−−−−−−−−−→ 14.if IKL == r then

CK = IKR

else

CK =⊥
end if

15.R+ = UCK

[
R#

]

(b) The IP Owner decrypts a nonce with its private master key.

Fig. 2. Suggested improvements on the EPIC IC activation protocol.

Steps 1 to 6 are identical to the original EPIC protocol shown in

Fig. 1. The role of the Manufacturer is not shown.

(||) to the signature/decryption to form the input key

IK. The parts IKL and IKR respectively signify the left

and right part of this concatenation. If the check of the

signature/decryption on the Chip fails, the Chip will not

use the received CK and it fails to unlock (CK =⊥).
An interesting remark is that, since CK is the same for

every produced Chip and cannot be kept confidential,

it can as well be directly embedded in the enriched

design R+ and loaded by the Chip when the signa-

ture/decryption verification is valid. This saves some

communication bandwidth. There is no need for the IP

Owner to send the same CK in plain to every Chip.

IV. IC METERING THROUGH BUS SCRAMBLING

A. Protocol Description

In system-on-chip designs multiple IP modules typi-

cally communicate through a common on-chip bus. Roy

et al. propose an alternative metering scheme based

on scrambling of the system bus with a symmetric

key [2]. The core idea of their bus based protection

scheme is that an IC is rendered unusable as long as

the IP modules do not share the same bus scrambling

key. Before manufacturing the IP Owner introduces a

bus scrambling algorithm, which will act as locking

mechanism, in the design. Hardware support for a cryp-

tographic activation protocol, using Diffie-Hellman key

agreement, a TRNG, and a secret one-way function f , is

added as well. A mask set of this enriched design is sent

to the Manufacturer for production. On initial power-up

the Chip interacts with the IP Owner to generate a Chip

specific bus scrambling key BK, which is used by one of

the IP modules to scramble its communication with the

other modules. The IP Owner can now unlock the Chip

by providing the same key BK to the other IP modules.

The message flow of the metering scheme is described

in Fig. 3.

In this protocol:

• G represent the generation of appropriate parameters

for the Diffie-Hellman key agreement, namely a

prime p and generator g of Z
∗
p. During the key

agreement protocol the IP Owner chooses a random

secret a and the Chip picks a random secret b and

after exchanging ga mod p and gb mod p, they can

compute a shared key: (ga)b mod p = (gb)a mod p.

• f is a secret one-way function that is hidden in

the mask set description by the IP Owner before

manufacturing. Consequently, this function is only

known by the IP Owner and the manufactured Chip.

The bus scrambling key is derived from the shared

Diffie-Hellman key using f : BK = f [(ga)b mod p].
• R andR+ are RTL-level descriptions of the original

and the enriched design respectively.

• {LBK [R+] ,UBK [R+]} is the bus scrambling based

IC-locking mechanism as described in [2]. Contrar-

ily to the EPIC scheme, LBK [R+] does not create

a new RTL description. The lock mechanism tells a

certain IP module to scramble its bus interface with

the key BK, whereas the corresponding UBK [R+]
operation gives the unscrambling key to the other

IP modules.

B. Security Analysis

The security of activation protocol heavily relies on

the secrecy of the one-way function f . If the Diffie-

Hellman shared key would be used directly as bus

scrambling key (without applying the secret f), the Man-

ufacturer can activate a Chip without contacting the IP

Owner. Assuming that (p, g) is known, the Manufacturer

can generate its own random a, send ga mod p (after step

7 in Fig. 3) and compute the key BK = (gb)a mod p.

The usage of f prevents this attack.

78 2009 IEEE International Workshop on Hardware-Oriented Security and Trust (HOST)

IP Owner

1. (p, g)← G
2. Select secret f

3. R+ = {R, dh crypto,

TRNG, p, g, f , Manufacturer

bus scramble support}
4.Mask{R+}

−−−−−−−−−→ 5.Produce Chip Chip

from Mask{R+}
On initial power-up:

6. Generate random b

9. Generate random a
8.gb mod p

←−−−−−−−−−
7.gb mod p

←−−−−−−−−−

10.BK = f [(gb)a mod p]
11.ga mod p

−−−−−−−−−→
12.ga mod p

−−−−−−−−−→ 13.BK = f [(ga)b mod p]
14.LBK [R+]

15.BK

−−−−−−−−−→
16.BK

−−−−−−−−−→
17.UBK [R+]

Fig. 3. Bus scrambling based IC activation protocol.

Roy et al. do not specify how f should be chosen

nor if and how to “hide” it on the Chip. According

to our adversary model, partial reverse engineering of

Mask{R+} might be feasible to the adversary, hence

f should be hidden well enough on the mask to be

hard to find. It is not entirely clear if this is possible,

but for the remainder of this Section, we will assume

that it is infeasible for an adversary to reverse engineer

Mask{R+} upto the full recovery of the functionality

of f .

An interesting observation is that the Chip might be

in an unlocked state at the beginning of the activation

protocol. The scrambling key will typically be stored

in volatile (e.g., flip flops) or non-volatile memory (e.g.,

one-time-programmable fuses). It is likely that this mem-

ory is initialized to the same value (e.g. BK = 0). This

implies that the Chip is fully functional until the key BK

is programmed. The Manufacturer can potentially exploit

this behavior by aborting the protocol before the Chip

gets locked in step 14.

C. Suggested Improvements

Although the scheme does not suffer from inherent

security problems like the EPIC protocol, this activation

protocol can also be simplified and improved.

As observed above, the scheme assumes that the IP

Owner is able to hide a secret one-way function in

Mask{R+}. However, given this assumption there is

no need to use a Diffie-Hellman key agreement since

there already is a shared secret between the IP Owner

and a manufactured Chip. Therefore the protocol can

be simplified to the version described in Fig. 4(a). The

Chip generates a random number r and sends it to the IP

Owner in the clear. Next it evaluates the secret function

f with r as input and uses the output BK = f [r]
as bus scrambling key. Finally, the IP Owner performs

the same function evaluation and provides BK to the

other IP modules on the bus. During the activation of

the Chip, the Manufacturer learns one evaluation of the

secret function f . However, this knowledge is insufficient

to active other chips, as they will generate a different

unpredictable value r.

Fig. 4(b) describes an alternative simplification of

the protocol without the need for a confidential one-

way function. The suggested improvement uses ElGa-

mal key agreement, a one-pass Diffie-Hellman variant

which provides unilateral key authentication [14]. The

IP Owner uses a fixed exponent a and embeds the

corresponding exponential ga mod p in the (enriched)

design. The contribution of the IP Owner in the key

agreement will be the same for all manufactured ICs,

but the resulting key BK is still unique for every Chip,

as it depends on the random exponent b. The security

of this scheme relies on the integrity of the IP Owner’s

public exponential that is embedded in the design. As

explained earlier, changing this value is infeasible to

the adversary. In both variants the key BK does not

depend on input from the IP Owner and consequently

the Manufacturer cannot block the locking operation by

aborting the protocol early.

V. PUF BASED ACTIVATION PROTOCOL

In the previous sections we described the activation

protocol of two active metering schemes and proposed

improvements to increase their security and reduce

their complexity. In this section we will illustrate how

792009 IEEE International Workshop on Hardware-Oriented Security and Trust (HOST)

IP Owner

1. Select secret f

2. R+ = {R, TRNG, f , Chip

bus scramble support} . . .

On initial power-up:

5. Generate random r

6. Store r in OTP memory

7. BK = f [r]
10/9.r

←−−−−−−−−− 8. LBK [R+]
11.BK = f [r]

12/13.BK

−−−−−−−−−→
14.UBK [R+]

(a) Using secret one-way function f .

IP Owner

1. (p, g)← G
2. Generate random a

3. R+ = {R, dh crypto,

TRNG, p, g, ga mod p, Chip

bus scramble support} . . .

On initial power-up:

6. Generate random b

7. Store b in OTP memory

8. BK = (ga)b mod p
11/10.gb mod p

←−−−−−−−−− 9. LBK [R+]
12.BK = (gb)a mod p

13/14.BK

−−−−−−−−−→
15.UBK [R+]

(b) Using ElGamal key agreement.

Fig. 4. Simplified variants of the bus scrambling based IC activation

protocol. The role of the Manufacturer is not shown.

physically unclonable functions can be used to further

strengthen and simplify cryptographic IC metering.

A. Security Assumption

In general, the security of a cryptographic activation

protocol can rely on two assumptions: (1) the integrity

of the IP Owner’s public key embedded in the IC or

(2) the confidentiality of a shared secret key hidden in

the Chip. The first assumption enables a confidential

channel from the Chip to IP Owner and an authenticated

channel from the IP Owner to the Chip, while the latter

allows confidential and authenticated communication in

both directions.

As is clear from our adversary model in Section II-B,

assuming the existence of a shared secret key between

the IP Owner and the Chip might be presumptuous, as

the Manufacturer is able to partially reverse engineer

the mask set. For this reason, we assume that schemes

based on the integrity of a public key provide a stronger

security guarantee than symmetric protocols. In order

IP Owner

1.(MKpub, MKpri)← G
2.R+ = {R, MKpub,

public key crypto} Chip

3.R# = L [R+] . . .

On initial power-up:

6. r ← PUF

9.IK = DMKpri
[c]

8/7.c=EMKpub
[r]

←−−−−−−−−−
10/11.IK

−−−−−−−−−→ 12.r′ ← PUF

13.if δ [IK, r′] < ε then

R+ = U
[
R#

]

end if

Fig. 5. PUF based activation protocol. The role of the Manufacturer

is not shown.

to break this type of schemes, the adversary first has

to discover the public key and next substitute it with its

own, which we assessed to be infeasible for an adversary

with the incentive to make profit.

B. Locking Mechanism

The choice to solely rely on the integrity of the IP

Owner’s public key has implications on the locking

mechanism. It is impossible for the IP Owner to deliver

an activation key in a confidential manner. For this

reason, we propose to not send any unlocking secret at all

during the activation protocol. If the locking technique

depends on an unlocking key, as in [1], [2], it should

just be embedded in the enriched design. Alternatively,

the Chip can be made non-operational using a simple

internal enable signal.

C. Physically Unclonable Function as Chip Identifier

The improved activation protocols described in the

previous sections follow a similar structure: (1) the Chip

generates a random number acting as a challenge and (2)

the design is unlocked if a correct response is received

from the IP Owner. This challenge-response nature im-

plies that an online connection is present between the IP

Owner and the Chip.

Offline activation of IP cores can be accomplished

by storing the challenge and response of the initial

online protocol in non-volatile memory. The security

requirements for this non-volatile storage are different

for both messages:

• The challenge must be stored in one-time-

programmable memory (e.g. fuses) inside the IC in

order to guarantee its integrity.

• The response can be stored in untrusted storage, be-

cause its authenticity is protected cryptographically.

80 2009 IEEE International Workshop on Hardware-Oriented Security and Trust (HOST)

Physically unclonable functions provide an alternative

means to randomly generate and persistently store the

challenge. This is illustrated in Fig. 5, which describes

a PUF based variant of Fig. 2(b). It is important to

note that a PUF response is unique for every Chip, but

its measurement is noisy. Therefore, during an offline

verification of the activation code IK the Hamming

distance δ between the new and initial measurement

of the PUF response, r′ and r respectively, must be

bounded.

We remark that an equivalent scheme can be con-

structed using a TRNG and non-volatile memory instead

of a PUF. However, the use of a PUF alleviates the need

for on-chip non-volatile memory, which is not always

available. Moreover, it enhances the resilience against

physical attacks. Experiments with coating PUFs [11]

have demonstrated that invasive attacks substantially

alter the PUF’s response behavior.

VI. CONCLUSION

We analyzed the cryptographic activation protocols of

two IC metering schemes by Roy et al. The first scheme

uses a combinational locking mechanism and relies on

the integrity of a public key for secure activation. In the

second proposal the system bus is scrambled such that

the chip is non-functional on start-up. The security of the

bus-scrambling protocol to (re-)activate the IC depends

on the confidentiality of a secret function embedded on

the chip.

We suggest improvements to simplify both schemes

and to fix a security vulnerability in the EPIC scheme.

Finally we present a new activation protocol using phys-

ically unclonable functions.

ACKNOWLEDGMENTS

This work was in part supported by the IAP Program

P6/26 BCRYPT of the Belgian State, by K.U.Leuven-

BOF funding (OT/06/04), by the FWO project G.0300.07

(Security components for trusted computer systems) and

by the European Commission through the IST Pro-

gramme under Contract IST-027635 OPEN TC. The first

author’s research is funded by IWT-Vlaanderen under

grant number 71369.

REFERENCES

[1] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending

Piracy of Integrated Circuits,” in Design, Automation and Test

in Europe, DATE 2008, Munich, Germany, March 10-14, 2008.

IEEE, 2008, pp. 1069–1074.

[2] ——, “Protecting Bus-based Hardware IP by Secret Sharing,”

in Proceedings of the 45th Design Automation Conference, DAC

2008, Anaheim, CA, USA, June 8-13, 2008, L. Fix, Ed. ACM,

2008, pp. 846–851.

[3] E. Simpson and P. Schaumont, “Offline Hardware/Software

Authentication for Reconfigurable Platforms,” in Cryptographic

Hardware and Embedded Systems - CHES 2006, 8th Interna-

tional Workshop, Yokohama, Japan, October 10-13, 2006, Pro-

ceedings, ser. Lecture Notes in Computer Science, L. Goubin

and M. Matsui, Eds., vol. 4249. Springer, 2006, pp. 311–323.

[4] J. Guajardo, S. Kumar, G.-J. Schrijen, and P. Tuyls, “FPGA

Intrinsic PUFs and Their Use for IP Protection,” in Cryp-

tographic Hardware and Embedded Systems - CHES 2007,

9th International Workshop, Vienna, Austria, September 10-13,

2007, Proceedings, ser. Lecture Notes in Computer Science,

P. Paillier and I. Verbauwhede, Eds., vol. 4727. Springer, 2007,

pp. 63–80.

[5] ——, “Physical Unclonable Functions, FPGAs and Public-

Key Crypto for IP Protection,” in FPL 2007, International

Conference on Field Programmable Logic and Applications,

Amsterdam, The Netherlands, 27-29 August 2007, K. Bertels,

W. A. Najjar, A. J. van Genderen, and S. Vassiliadis, Eds.

IEEE, 2007, pp. 189–195.

[6] ——, “Brand and IP Protection with Physical Unclonable

Functions,” in International Symposium on Circuits and Systems

(ISCAS 2008), 18-21 May 2008, Sheraton Seattle Hotel, Seattle,

Washington, USA. IEEE, 2008, pp. 3186–3189.

[7] Y. Alkabani, F. Koushanfar, and M. Potkonjak, “Remote Acti-

vation of ICs for Piracy Prevention and Digital Right Manage-

ment,” in 2007 International Conference on Computer-Aided

Design (ICCAD’07), November 5-8, 2007, San Jose, CA, USA,

G. G. E. Gielen, Ed. IEEE, 2007, pp. 674–677.

[8] Y. Alkabani and F. Koushanfar, “Active Hardware Metering for

Intellectual Property Protection and Security,” in Proccedings

of 16th USENIX Security Symposium. USENIX Association,

2007, p. 291306.

[9] ——, “Active Control and Digital Rights Management of Inte-

grated Circuit IP Cores,” in Proceedings of the 2008 Interna-

tional Conference on Compilers, Architecture, and Synthesis for

Embedded Systems, CASES 2008, Atlanta, GA, USA, October

19-24, 2008, E. R. Altman, Ed. ACM, 2008, pp. 227–234.

[10] B. Gassend, D. E. Clarke, M. van Dijk, and S. Devadas, “Silicon

Physical Random Functions,” in ACM Conference on Computer

and Communications Security – CCS 2002, V. Atluri, Ed.

ACM, 2002, pp. 148–160.

[11] P. Tuyls, G.-J. Schrijen, B. Škorić, J. van Geloven, N. Ver-

haegh, and R. Wolters, “Read-Proof Hardware from Protective

Coatings,” in Cryptographic Hardware and Embedded Systems

– CHES 2006, 8th International Workshop, Yokohama, Japan,

October 10-13, 2006, Proceedings, ser. LNCS, L. Goubin and

M. Matsui, Eds., vol. 4249. Springer-Verlag, 2006, pp. 369–

383.

[12] S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls,

“The Butterfly PUF: Protecting IP on every FPGA,” in IEEE

International Workshop on Hardware-Oriented Security and

Trust, HOST 2008, Anaheim, CA, USA, June 9, 2008. Proceed-

ings, M. Tehranipoor and J. Plusquellic, Eds. IEEE Computer

Society, 2008, pp. 67–70.

[13] J. A. Roy, F. Koushanfar, and I. L. Markov, “Ending Piracy of

Integrated Circuits (to appear),” IEEE Computer, 2009.

[14] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook

of Applied Cryptography. Boca Raton, FL, USA: CRC Press,

Inc., 1996.

812009 IEEE International Workshop on Hardware-Oriented Security and Trust (HOST)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

