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Abstract. Bayesian approaches to density estimation and clustering using mix-
ture distributions allow the automatic determination of the number of components
in the mixture. Previous treatments have focussed on mixtures having Gaussian
components, but these are well known to be sensitive to outliers. This can lead
to excessive sensitivity to small numbers of data points and consequent over-
estimates of the number of components. In this paper we develop a Bayesian
approach to mixture modelling based on Studedistributions, which are heav-

ier tailed than Gaussians and hence more robust. By expressing the Student-
distribution as a marginalisation over additional latent variables we are able to
derive a tractable variational inference algorithm for this model, which includes
Gaussian mixtures as a special case. Results on a variety of real data sets demon-
strate the improved robustness of our approach.

1 Introduction

Mixture models are ubiquitous in virtually every facet of statistical analysis, machine
learning and data mining. For data sets comprising continuous variables, the most
common approach involves mixture distributions having Gaussian components fitted
by maximum likelihood, for which the EM algorithm has a closed-form M-step.

A central issue in mixture modelling is the choice of the number of components
in the mixture. Maximum likelihood is unable to address this issue since it favours
ever more complex models, leading to over-fitting. This problem can be addressed
elegantly by adopting a Bayesian framework in which we marginalize over the model
parameters with respect to appropriate priors. The resulting model likelihood can then
be maximized with respect to the number of components in the mixture if the goal
is model selection, or combined with a prior over the number of components if the
goal is model averaging. While exact Bayesian inference for Gaussian mixtures is
intractable, it has been addressed through Markov chain Monte Carlo [1] and more
recently using variational methods [2, 3].

A major limitation of Gaussian mixture models, however, is their lack of robust-
ness to outliers. This is easily understood by recalling that maximization of the like-
lihood function under an assumed Gaussian distribution is equivalent to finding the
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least-squares solution, whose lack of robustness is well known. In the Bayesian model
selection context, the presence of outliers often increase the number of mixture com-
ponents employed in the model.

In this paper we develop a Bayesian treatment of mixture models based on com-
ponents having a Student distribution [4] which has heavier tails compared to the
exponentially decaying tails of a Gaussian. In order to obtain a tractable variational
solution for this model we express the Student distribution as an infinite sum of scaled
Gaussians through the introduction of additional latent variables. Results on real data
sets demonstrate a worthwhile improvement in robustness compared with Gaussian
mixtures.

2 Bayesian Student Mixture Models

Our approach to robust Bayesian mixture modelling is based on component distribu-
tions given by a multivariate Student distribution, also known asligtribution,

T(v/2 +d/2)|A|Y/2 AZ\ —(rtd)/2
S(xlu- A v) = (F/(V/Q)({/W))'d/L (1 —> (1)
where
A% = (x = p) A(x — p) )

is the squared Mahalanobis distance fretio 1. The Student distribution represents

a generalization of the Gaussian, as shown in Figure 1. In contrast to the Gaussian,
there is no closed form solution for maximizing likelihood under a Student distribu-
tion. However, there is a useful representation of the Student as an infinite mixture of
scaled Gaussians. In particular we can write the Student distribution in the form

Sx|p, A, v) = /000 N(x|p, ul)G(ulv/2,v/2) du 3

whereN (x|, A) denotes the Gaussian distribution with mgsand precision matrix
A, andG(u|a, b) is the Gamma distribution. For each observation tfiere is a cor-

responding posterior distribution over the latent variabland this can be exploited
to find maximum likelihood solutions using the EM algorithm [5].
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We now consider densities comprising mixtures of Student distributions,

M
p(x|{ll’m7Am’ Vm}’”) = Z 7r7115()(“1'7)17jxma Vm): (4)
m=1
where the mixing coefficients = (r1,...,ma)7 satisfyr,, > 0and}", mm, = 1.

In order to find a tractable variational treatment of this model we re-express the
mixture density in terms of a marginalization over a binary latent variabfalimen-
sion M having component§s ; } such thats; = 1 for j = m ands; = 0 for j # m,
giving

M
P8, {bs Ay v }) = T St Ay vin) ™™ ®)

m=1

with a corresponding prior distribution oveof the form

M
p(slm) = I = (6)
m=1

It is easily verified that marginalization of the product of (5) and (6) over the latent
variables recovers the Student mixture (4).

We consider a data s& comprisingN observations,, wheren = 1,..., N
which we shall suppose are drawn independently from the distribution (4). Thus for
each data observatiot), we have corresponding discrete latent variablspecifying
which component of the mixture generated that data point, and a continuous latent
variableu,,,,, specifying the scaling of the precision for the corresponding equivalent
Gaussian from which the data point was hypothetically generated.

Finally, in a Bayesian treatment we need priors over the variables in the model,
and again for tractability we choose conjugate priors from the exponential family, of
the form

P(t) = N (B m, 1), p(Ay) = W(AR[Wo,m0) and p(w) = D(r|a) (7)

whereW(A|-,-) denotes the Wishart distribution afi{7r|-) denotes the Dirichlet.
The parameters of the priors gnand A are chosen to give broad distributions, in
particularm = 0, p = 1073, Wy = I andn, = 1. For the prior overr we can
interpret the parametets = {a,,, } as effective numbers of prior observations, which
we set ton,,, = 1073,

Note that there is no conjugate distribution for the parametétowever, there is
only one such parameter per mixture component, and so we set its value by optimiza-
tion as part of the variational procedure discussed in Section 3.

3 Variational Inference

Exact inference in our Bayesian model is intractable. However, given our choice of
model and prior distributions over the variables in the model, we can make use of
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established methods for variational inference [6]. This form of approximate inference
maximizes a lower bound of the (intractable) log-likelihood of the data with respect
to a chosen, parameterisadyiational distribution over the variables in the model.

If we chose this distribution to factorise over the different variables in our model,
{t, Am}, 7, and{s,,u, }, it turns out that we can obtain a closed form fomula for
the marginal distribution governing any particular variable. Moreover, this distribution
will have the same form as the corresponding prior in (3), (6) or (7), and its parameters
will depend on the parameters of the prior as well as statistics calculated under the
current fixed variational distributions of the other variables in the model.

If we initialise the parameters of the variational distribution to reasonable values,
we can subsequently circulate through the model variables in an iterative fashion, up-
dating the corresponding marginal variational distribution of each variable. This pro-
cess will converge to a stable posterior variational distribution over all the variables.

We can also evaluate the lower bound in terms of moments of the variational dis-
tribution and use this value as a surrogate for the log-marginal likelihood of the data
for the purpose of model selection. Note, however, that the lower bound is a non-
convex function of the variational posterior distribution, and so there will in general
exist multiple maxima, and the resulting solution will depend on the initialization. We
address this by performing multiple optimizations from random starts, and retaining
the solution giving the largest value of the resulting bound. This procedure uses the
entire training set in a single pass for each random start and does not require cross-
validation, such as would be needed with maximum-likelihood.

4 Experimental Results

We now present the results of applying the Student mixture model to three real data
sets. First, however, we note that if a model having an excess of components is used,
then in our Bayesian treatment the unwanted components simply revert to their broad
prior distributions, and do not interact with the data. The corresponding terms in the
lower bound cancel out, and such components are effectively pruned out of the model.
We say that thesffective number of components is the number of components for
which there exists at least one data point in which the posterior probability that the
component generated this data point is numerically greater than zero.

We fitted Gaussian mixture models (GMMs) and Student mixture models (SMMs)
having between 1 and 6 mixture components to three real data sets, with and without
added outliers, and then compared them in terms of the resulting bounds as well as the
effective number of mixture components used in the fitted models. For each model
we used 50 different random initializations to handle the non-convexity of the lower
bound. The data sets were the univariate Enzyme, Acidity and Galaxy data used
by Richardson and Green [1]. All data sets were normalized to zero mean and unit
variance. Outliers, numbering 2% of the size of the original data set, were drawn from
a uniform distribution or—10, 10], and added after the normalization.

The results are shown in Figure 2. Let us start with the Enzyme data set (top).
Without the outliers added, both the GMM and SMM give similar results, favouring
models having two effective components. With the outliers, however, the best per-
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Figure 2: Comparison of Gaussian (GMM) and Student (SMM) mixture models in
their robustness to outliers on three different data sets, showing plots of the lower
bound of the fitted model versus the effective number of components. All plots share
the same horizontal range of [0, 6] and all plots on the same row have the same scale
on the vertical axis. Each solution is plotted as a '+'-sign and a small amount of
uniform noise has been added to its horizontal position, in order to make the results
visually clearer.

forming GMM favours three components, whereas the SMM continues to favour two
components. Results from the Acidity data set (middle), show the same pattern.

For the Galaxy data set (bottom), we see a rather different behaviour. Before
adding outliers we see that the GMM has a clear preference for two components
whereas the SMM strongly favours just one component. It turns out, the two com-
ponent Gaussian mixture essentially mimics a Student distribution, with components
having similar values for their means but very different variances; the resulting mix-
ture distribution has a sharp peak and heavy tails. It is thus not surprising that the
addition of artificial outliers leaves this situation unchanged.

It is worth noting that, for all three data sets, the GMM models preferred by the
variational bound have fewer components than those preferred under the MCMC se-
lection scheme used by Richardson and Green [1]. This is unsurprising since the
factorized variational distribution tends to under-estimate the variance of the posterior
distribution, leading to an under-estimate of the model evidence, and this effect be-
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comes more pronounced as the number of hidden variables increases. However, the
advantage of a variational approach compared with MCMC is its applicability to large
scale applications without incurring high computational cost [7]

5 Conclusions

In this paper we have developed a novel approach to Bayesian mixture modelling
which includes Gaussian mixture models as a special case, but which is more robust
to non-Gaussianity in the data. Singularities of the kind associated with maximum
likelihood are absent, and surplus components revert to the prior distribution and play
no role in the predictive density.

It should be emphasized that our approach involves only a small computational
overhead compared to the use of maximum likelihood techniques, since the dominant
computational costs arise from the evaluation and inversion of weighted empirical
precision matrices, which is also the dominant cost in maximum likelihood EM.

A further advantage of our approach is that the inference ofriis® of a cluster
of data points is also less sensitive to outliers when a heavy tailed Student distribution
is used in place of a Gaussian. One of the most common motivations for using Student
distributions is to obtain robust estimates for the mean of a set of data points.
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