
Master’s Thesis

Large-Scale Privacy-Preserving
Statistical Computations for Distributed

Genome-Wide Association Studies

Oleksandr Tkachenko
September 13, 2017

Technische Universität Darmstadt
Center for Research in Security and Privacy

Engineering Cryptographic Protocols

Supervisors: M.Sc. Christian Weinert
Dr. Thomas Schneider

Prof. Dr. Kay Hamacher

Thesis Statement
pursuant to §22 paragraph 7 of APB TU Darmstadt

I herewith formally declare that I have written the submitted thesis independently. I did not use
any outside support except for the quoted literature and other sources mentioned in the paper.
I clearly marked and separately listed all of the literature and all of the other sources which I
employed when producing this academic work, either literally or in content. This thesis has
not been handed in or published before in the same or similar form.

In the submitted thesis the written copies and the electronic version are identical in content.

Darmstadt, September 13, 2017

Oleksandr Tkachenko

Abstract

This thesis focuses on privacy-preserving algorithms for Genome-Wide Association Studies
(GWAS) by applying Secure Multi-Party Computation (SMPC) techniques, which are used to
protect the privacy of participants when medical institutions collaborate to compute statistics
in a distributed fashion. The existing privacy-preserving solutions for this issue lack efficiency
and/or use inadequate algorithms that are of limited practical value.

We implemented multiple algorithms for χ2-, G- and P-test in the ABY framework for Secure
Two-Party Computation and evaluated them in a distributed GWAS scenario. Statistical
tests generally require advanced mathematical operations. For the operations that cannot
be calculated in integer arithmetic, we made use of the existing IEEE 754 floating point
arithmetic implementation in ABY. We improved the efficiency of the algorithms by using
protocol conversion in ABY to make use of advantages of multiple SMPC protocols. In order
to combine the advantages of the aforementioned techniques, we implemented an integer to
floating point conversion functionality in ABY. Furthermore, we extended the contingency
table for the χ2- and G-test to use codeword counts instead of counts for only two alleles.
Additionally, we considered an outsourcing scenario where multiple institutions secret-share
their data, send it to two non-colluding semi-trusted third parties and receive the secret-shared
result. The implemented algorithms are benchmarked and evaluated.

Compared to the prior related work of Constable et al. (BMC Medical Informatics and Deci-
sion Making 2015), we improved the run-time efficiency of the χ2-test by up to factor 35x.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Contributions . 2
1.3 Outline . 3

2 Preliminaries 4
2.1 Notation . 4
2.2 Genomic Primer . 6
2.3 Genome-Wide Association Studies . 7
2.4 Statistical Tests . 7

2.4.1 Chi-squared-test . 8
2.4.2 G-test . 10
2.4.3 P-test . 11

2.5 Secure Multi-Party Computation . 11
2.5.1 Oblivious Transfer . 12

2.6 ABY Framework . 13
2.6.1 Arithmetic Sharing . 14
2.6.2 Boolean Sharing . 15
2.6.3 SIMD Gates . 16
2.6.4 Conversion Gates . 17

2.7 Outsourcing Computation . 18

3 RelatedWork 20
3.1 GWAS using Noise-based Approaches . 20
3.2 GWAS using Homomorphic Encryption . 21
3.3 GWAS using Yao’s Garbled Circuits . 21
3.4 GWAS using Other Techniques . 22

4 Implementation 23
4.1 Integer to Floating Point Number Conversion . 23
4.2 Chi-squared-test . 29

4.2.1 Non-optimized . 29
4.2.2 Fully Optimized . 30
4.2.3 Partially Optimized . 32

4.3 G-test . 34

I

Contents

4.3.1 Non-optimized . 34
4.3.2 Fully Optimized . 36
4.3.3 Partially Optimized . 37

4.4 Extended Chi-squared-test and G-test . 39
4.5 P-test . 39
4.6 Outsourcing Computation . 40

5 Evaluation 41
5.1 Benchmarking Environment . 41
5.2 Benchmarking in the LAN Setting . 41

5.2.1 Chi-squared-test . 41
5.2.2 G-test . 42
5.2.3 Comparison with [CTW+15] . 43
5.2.4 P-test . 45

5.3 Benchmarking in the WAN Setting . 46
5.4 Outsourcing Computation . 46

5.4.1 Local Share Creation . 47
5.4.2 Benchmarking . 48

5.5 Communication . 51

6 Conclusion 53
6.1 Summary and Discussion . 53
6.2 Future Work . 54

List of Abbreviations 57

Bibliography 59

II

1 Introduction

In 2000, the first human genome analysis took 9 months and cost 100 million US-Dollars (USD).
Nowadays, genome sequencing is much more affordable, it costs just about 2000 USD and
requires 15 minutes of computation [WW16]. Since genome sequencing is becoming more
efficient and genomic data is getting collected widely, the research community wants to
conduct analyses on this data for many reasons. One of the possible applications of genomic
data is investigating the associations between diseases and specific parts of the genome. Nev-
ertheless, genomic data is highly sensible and identifies its biological owner with a very high
probability. This is why it must not be disclosed to the public. Disclosing genomic data could
lead to disadvantaging people with predispositions to some diseases, also known as genetic
discrimination. For example, a health insurance fund could increase the fee or even decline
the client’s application because of "bad" genes. Genetic discrimination can be an obstacle not
only for a fair health insurance, but also for one’s career [NAC+14].

Genomic data holders sign contracts with people that provide their genomic information
to them. One of the goals of these contracts is to ensure privacy of the provided data: the
contracts allow an institution to analyze the data, but not to share it with other institutions.
However, since many diseases are very rare, the need of collaboration between institutions
arises to perform distributed analyses on aggregated genomic data in order to collect a
sufficient amount of information for conducting more expressive statistical tests [SSDM09].
Because of the contractual obligation, the institutions cannot perform distributed analyses
without a permission of the data owner.

In the past years, there were attempts by the research community to apply Secure Multi-Party
Computation (SMPC) for guaranteeing privacy of data owners involved in distributed Genome-
Wide Association Studies (GWAS), e.g. [CTW+15]. This approach is very promising since it
makes possible to share data on rare diseases and to potentially improve the curative treatment
of those diseases. However, this approach is slow and of limited use because of the limitation in
the number of participants involved in the protocol, which is 32 768 participants in [CTW+15],
and low precision of the used 16-bit floating point arithmetic.

Other approaches use k-anonymity [Swe02], l-diversity [DMNS06] or differential privacy
[MKGV07; RK17] to perform GWAS on distributed datasets. Nevertheless, several attacks
were proposed immediately after that [GWA+12; SAW13; VSJO13]. These approaches seem
also not to be suitable for GWAS because of their noise-based security, which reduces the
utility of GWAS.

1

1 Introduction

1.1 Motivation

Current approaches for conducting privacy-preserving GWAS have room for improvement in
terms of performance. The ABY framework [DSZ15] appears to be well-suited for this task.
It implements state-of-the-art and highly efficient protocols for Secure Two-Party Computa-
tions (STPC). In particular, it uses efficient Boolean and Arithmetic sharing protocols as well
as protocol conversion. These can be used to design algorithms for the statistical tests used
in GWAS. ABY also supports STPC conversion during the execution, which can be used to
improve the overall efficiency of algorithms by using certain protocols where they perform
best.

Existing SMPC-based GWAS implementations also lack high precision and a possibility to
include a large number of participants. These aspects can be improved by applying floating
point arithmetic on data with increased bit-length, which has both high precision and a
wide range of possible values for adequate bit-lengths, e.g. 2−126 to 2127 for 32-bit arith-
metic.

To improve the efficiency of GWAS, one can use protocol conversion gates in ABY. How-
ever, since we use floating point arithmetic, which can be applied only in Boolean and
Yao sharing, and our most efficient optimizations consider usage of Arithmetic sharing and
then floating point arithmetic, ABY requires the conversion functionality from integer to
floating point numbers inside of the SMPC protocol, which ABY unfortunately does not
provide.

So far, only a very limited number of statistics was implemented for SMPC-based GWAS.
This can be improved by introducing constructions for more advanced statistics that require
more demanding operations that are not feasible in integer arithmetic, e.g. the G-test, which
requires the calculation of the logarithm functionality.

The latest work for SMPC-based GWAS [CTW+15] uses counts for two alleles to construct the
contingency table for the Chi-squared (χ2)-test. This is inadequate because of the information
loss caused by the dimension reduction and can be improved by extending the contingency
table to use codewords instead of alleles.

1.2 Contributions

In this work, we design a large set of algorithms for the χ2-, G- and P-test for the use in
GWAS analysis and present optimizations for their implementation in the ABY framework
[DSZ15]. In prior related work, Constable et al. [CTW+15] used only the χ2-test and the
Minor Allele Frequency (MAF) statistic in GWAS, a two-party LAN scenario, 2 columns in the
contingency table, and performed only a very limited benchmarking. Their circuits operated
only in unsigned integer 32-bit arithmetic and they simulated 16-bit floating point number
arithmetic for the division operation in the χ2-test.

2

1 Introduction

Our contribution begins with the use of Institute of Electrical and Electronics Engineers (IEEE)
754 Floating Point numbers in the implemented algorithms, inter-protocol conversion for
secure computations and the conversion of unsigned integer numbers to floating point
numbers inside of the algorithm. Furthermore, we designed three protocols for each χ2- and
G-test, which are: (i) a straightforward algorithm implementation in Boolean sharing using
only 32-bit floating point numbers, (ii) an optimization that performs input, addition and
multiplication operations in Arithmetic sharing, and (iii) an optimization that uses Arithmetic
sharing as well, but not for multiplications.

Performing the tests only on two allele counts, as it is done in [CTW+15], seems to be inappro-
priate for modern GWAS algorithms. That is why we construct additional algorithms for theχ2-
and G-test considering n codeword counts instead of two allele counts.

We consider an outsourcing scenario for GWAS, where n institutions holding their own
genomic data collaborate in an SMPC protocol. Here, the institution I locally creates shares
s0 and s1 of their genomic data and securely sends them to the corresponding non-colluding
semi-trusted third parties T0 and T1. They collect the information from all of the institutions
and perform GWAS statistics on the aggregated data. After that, they send the resulting
shares to each institution which can (having both shares) locally compute the result from the
received shares. Aggregating the data received from the institutions in Arithmetic sharing
does not add any noticeable run-time costs to the SMPC protocol.

The P-test is implemented as a one-tailed threshold test using a precomputed value from
the χ2-distribution with respect to some p-value. In the one-tailed test, a result becomes
significant by exceeding the given threshold. Here, we first compute the χ2- or G-test and
based on its results we compute the P-test.

Compared to [CTW+15], our implementation of the χ2-test reduces the run-time by: (i) a
factor 35.3x allowing ∼ 10x fewer participants in GWAS, and (ii) a factor 29.8x allowing
millions of participants, which is by a few orders of magnitude larger.

1.3 Outline

This thesis has the following structure: in Chapter 2 we explain the used notation, give an
overview over the basic concepts for SMPC and GWAS and detail the most important concepts.
In Chapter 3 we discuss the latest scientific works in the areas of GWAS and SMPC. In Chap-
ter 4 we give a description of the implementation details of the statistical test routines and the
routines for outsourcing the computation to the semi-trusted third parties. In Chapter 5, we
depict and describe the results of the benchmarks of the implemented algorithms. In Chapter 6
we conclude the thesis and discuss open research questions.

3

2 Preliminaries

In this chapter we introduce basic concepts and the notation for this thesis. We detail
genome basics and the concept of how statistical tests can be used on the human genome
to discover genetic-caused diseases. In addition, we describe the statistical tests used in
this thesis. Next, we give information about SMPC and its building blocks. Afterwards, we
describe the ABY framework for SMPC, the SMPC protocols that it supports, and the strategies
how the efficiency of SMPC can be improved in ABY. Finally, we depict an outsourcing
scenario where multiple parties outsource their secret shared inputs to semi-trusted third
parties.

2.1 Notation

Most of the notation is taken from [DSZ15], where more details are given regarding the
notation.

We write P0 and P1 for the parties among which secure computation is taking place and T0, T1
for the semi-trusted third parties that are used to outsource the computation.

The term l[i] denotes a list operator that references an element i in list l. Alternatively, we
write l.e for the access operator that refers to element e in structure l, e.g. share 〈s〉 in a list l
is l.〈s〉.

We denote 〈s〉ti as share s of party Pi in the sharing type t with t ∈ {A, B, Y } corresponding
to Arithmetic, Boolean and Yao sharings (see Sections (2.6.1) and (2.6.2))). Rect

i (〈x〉
t)

denotes the reconstruction of share 〈x〉 in sharing t by party Pi or Rect
∗(〈x0〉t, 〈x1〉t) if the

party already holds both shares. We write Shrt
i (x) for secret-sharing value x by party Pi in

sharing t.

We denote x ⊕ y and x ∧ y as bit-wise Exclusive OR (XOR) and AND operations, respectively.
We write 〈z〉t = 〈x〉t � 〈y〉t for operations on sharings, where �: 〈x〉t × 〈y〉t 7→ 〈z〉t with
t ∈ {A, B, Y }.

The expression 〈x〉s = t2s(〈x〉t) denotes the conversion from t to s where t 6= s and t, s ∈ {A,
B, Y }, e.g. Y2B converts a Yao share to a Boolean share. This conversion implies that no
additional information about the initial values is leaked in the protocol.

4

2 Preliminaries

We write 〈0〉, 〈1〉 or 〈F(·)〉 for the secret-shared constant values which can also be a result of
some function F that is computed locally and does not belong to the secret sharing protocol
itself.

We denote (C-/R-)OTn
l as n parallel (C-/R-)OTs on l-bit strings.

The Multiplexer (MUX)-gate is defined as MUX(a, b, s)= a if (s = 0); b else, with the selection
bit s ∈ {0, 1}.

5

2 Preliminaries

2.2 Genomic Primer

Genetics is the study of inheritance and genetic variability. Genetic variability is the diversity of
phenotypes in the population and the ability of the successors to develop different genotypes
[RMG12].

= Adenine

= Thymine

= Cytosine

= Guanine

= Phosphate

 backbone

DNA

Figure 2.1: DNA sequence illustration.

Genetic information is stored in a DNA
molecule. All known living organisms and
some viruses contain DNA. It consists
of a phosphate backbone and nucleotides.
A nucleotide consists of one of the four
nucleobases: Adenine (A), Thymine (T),
Cytosine (C) or Guanine (G). Nucleobases
form base pairs according to the base pair-
ing rules. The structure of DNA is shown in
Figure 2.11. DNA builds structures called
chromosomes, where each chromosome is a
DNA molecule containing all or a part of the
genome of an organism. Human DNA con-
sists of 23 pairs of chromosomes. These are
22 pairs of autosomes and a pair of sex chro-
mosomes, which results in 46 chromosomes.
The human genome consists of about 3 bil-
lion base pairs, however, genetic informa-
tion of the human genome is more than 99%
identical among individuals. That is why it
is reasonable to perform genetic analyses only on Single-Nucleotide Polymorphisms (SNPs).
SNPs are variations of base pairs in the DNA sequence. They are inheritable or inherited
variants.

The location of a gene in a chromosome is called locus. A genetic variant in a locus is
called allele, which stands for different forms of a gene located in the certain locus of the
homological chromosome, e.g. one person has the A allele and the other the T allele in
the same locus. Alleles determine alternative developing variants of a trait. They can
result in observable differences in traits, i.e. phenotypes, but usually have no observable
effects.

Genetic techniques are an important milestone in finding associations between genetic
variants and diseases for preventing genetic-caused diseases or when genetic properties have
a boosting effect on a disease.

1Source: https://upload.wikimedia.org/wikipedia/commons/f/fe/DNA_simple2.svg

6

https://upload.wikimedia.org/wikipedia/commons/f/fe/DNA_simple2.svg

2 Preliminaries

2.3 Genome-Wide Association Studies

GWAS are an approach of analyzing SNPs in order to find associations between diseases
and genetic variants. For this purpose, the extent of linkage disequilibrium and the density
of genetic markers should be adequate to make capturing the common variations in data
possible.

The most commonly used strategy in GWAS is called case-control group testing. It is based
on analyzing genetic data of the case and control groups, where the case group denotes
a group of people affected by a disease and the control group denotes a group of healthy
people. GWAS are performed by applying statistical tests on the data of case and control
groups in order to find discriminative patterns that allow to distinguish one group from
another.

The representation of SNP data for GWAS is shown in Table 2.1. The number of observations in
each cell of the table is denoted as follows: a and c represent observations of the corresponding
alleles 1 and 2 in the case group. Analogously, b and d correspond to the same alleles, but
in the control group. In addition, we describe the total number of observations in alleles as
nA1
= a+ b and nA2

= c + d for alleles 1 and 2, as well as the number of observations in case
and control groups as nG1

= a+ c and nG2
= b+ d. The total number of observations for a

SNP is denoted as n= nA1
+ nA2

= nG1
+ nG2

.

Table 2.1: SNP distribution table.

Allele 1 Allele 2 Total
Case Group a c nG1

Control Group b d nG2

Total nA1
nA2

n

2.4 Statistical Tests

Statistical tests can be used for accepting or rejecting the null hypothesis (H0), which states
that there is no statistically significant difference between two distributions with respect to
some significance level α. The null hypothesis, in simpler words, states that two distributions
are different due to a chance and not due to a regularity.

In the following, we describe three tests that are relevant for our work. These tests are applied
to compare two distributions and test the significance of the results with respect to some α.
The tests are: χ2-test, G-test, and the P-test which uses results of one the first two tests. A
result is statistically significant if it is very unlikely to obtain this result when H0 holds true.
The significance level is the probability of mistaking and, therefore, rejecting H0 given that it
is true.

7

2 Preliminaries

Choosing α = 0.05 is considered to be a good practice in statistics [Fis25], but in GWAS
much smaller values are used for α, e.g. 5 · 10−8 [BCGW12]. However, the method of
significance testing was questioned by many researchers because of its unreliability in some
cases and misuse to offer excuses for lower-quality scientific works [Car78; Ioa05]. Some
journals even banned the publications that used significance testing in their research papers
[Woo15].

Although the P-test on its own is considered to be a weak evidence of the result, it is still
widely used as an additional method in combination with other testing techniques. This
problem was controversially discussed in the scientific community. For example, Antonakis
writes the following in [Ant17]:

“Banning the reporting of p-values, as Basic and Applied Social Psychology
recently did, is not going to solve the problem because it is merely treating
a symptom of the problem. There is nothing wrong with hypothesis testing
and p-values per se as long as authors, reviewers, and action editors use them
correctly.”

2.4.1 Chi-squared-test

The term χ2-test refers to a statistical hypothesis test group which assumes that the sample
distribution is the χ2 distribution if H0 holds true. The χ2 distribution is a probability
distribution. Its only parameter is the degrees of freedom, which is defined as n= (columns−
1) · (rows− 1), where columns is the number of columns and rows is the number of rows in
the frequency table. We reject H0 only if there is a statistically significant difference between
the distribution of the sample and the distribution of the population. By rejecting H0, we
accept the alternative hypothesis H1 - also known as Ha. The alternative hypothesis states
that the distributions come from different populations.

In this work, we apply theχ2-test of independence and theχ2-goodness-of-fit test.

Test of Independence

The test of independence is used for comparing multiple nominal variables and evaluating
whether the proportions of these variables significantly differ. The test is described in
Equation (2.1):

χ2 =
∑

i, j

(Oi, j − Ei, j)2

Ei, j
, (2.1)

where Oi, j are the observed values of index i and Ei, j are the expected values.

8

2 Preliminaries

While the observed value Oi, j equals the corresponding cell value in column i and row j,
e.g. value a in the cell (1,1) in Table 2.1 for O1,1, the expected value Ei, j is computed using
Equation (2.2):

Ei, j =
nAi
· nG j

n
, (2.2)

where Ei, j is the expected value in the cell (i, j), nAi
is the number of observations in the

column i and nG j
is the number of observations in the row j.

In Equation (2.3), we provide an example for the calculation of E1,1 in Table 2.1 to exemplify
Equation (2.2):

E1,1 =
nA1
· nG1

n
=
(a+ b) · (a+ c)
(a+ b+ c + d)

(2.3)

Goodness-of-Fit Test

Goodness-of-fit indicates how good a statistical model can explain the dataset. In other words,
it measures the deviation of an observed from the expected value. Its only difference from the
test of independence is the calculation of the expected value, which equals the value in the
corresponding cell. In GWAS, the expected value equals the number of observations in the
corresponding cell in the control group. However, since the case and control groups do not
necessarily contain the same number of observations, we weight the values in the contingency
table by the number of observations in a group and then compare the proportions of the
groups.

The numbers of weighted observations are hence computed as follows:

c′i, j =
ci, j

∑n
k=1 ci,k

, (2.4)

where ci, j it the count of observations in the cell (i, j) and c′i, j is the weighted count of
observations.

Computing the χ2-value based on a p-value

The critical χ2-test value is calculated from the inverted χ2 Cumulative Distribution Func-
tion (CDF) given a p-value as described in Equation (2.5) [Mat17]:

x = F−1(p, v) = {x : F(x , v) = p}

p = F(x , v) =

∫ x

0

t(v−1)/2e−t/2

2v/2Γ (v/2)
dt,

(2.5)

9

2 Preliminaries

where x is the critical χ2-value, Γ (·) is the Gamma function, p is the p-value and v is the
degrees of freedom parameter.

There exist already available functions in high-level programming languages that allow one
to compute the required critical value for the χ2-distribution, which is a threshold value for
the one-tailed χ2-test stepping out of which the result of the statistic becomes significant.
An example of such a function can be found in the Python library SciPy1 as demonstrated in
Listing 2.1.

1 alpha = 0.05
2 degrees_of_freedom = 1
3 c r i t i c a l _ c h i 2 = scipy . s ta t s . chi2 . i s f (alpha , degrees_of_freedom)

Listing 2.1: Critical value calculation for the χ2-distribution using the Python library
SciPy

Essentially, the χ2-test is an approximation of the log-likelihood based statistics that was
developed to avoid the calculation of logarithmic operations in log-likelihood statistics. On
the one hand, this was due to unfeasibility of the logarithm calculation before computers
and electronic calculators were massively developed and manufactured, whereas χ2-tests
can be performed manually by a human for small values. On the other hand, the χ2-test is
nowadays present in many textbooks [Hoe12]. Although the χ2-test is easy to compute and
it remains in many textbooks as one of the most standard statistics, it slowly gets replaced by
the G-test [McD09].

2.4.2 G-test

The G-test is a likelihood-ratio or maximum likelihood statistical significance test. It has
the following advantages over the χ2-test: it can better deal with a small number of ob-
servations and its result is additive, thus, the test can be performed stepwise and after
that summed for the complete statistic. The calculation of the G-test is shown in Equa-
tion (2.6):

g = 2
∑

i, j

Oi, j · ln
�Oi, j

Ei, j

�

, (2.6)

where Oi, j is the observed value in the cell (i, j), Ei, j is the expected value when H0 is true
and ln stands for the natural logarithm function.

Here, Oi, j and Ei, j are calculated as for the χ2-test (see Section 2.4.1).

1https://www.scipy.org/

10

https://www.scipy.org/

2 Preliminaries

2.4.3 P-test

The P-test is a statistical test for proving that the result of a statistic exceeds a critical threshold
that is based on a significance parameter α. This threshold is determined as a parameter
and corresponds to the probability of rejecting H0 given it is true, i.e. the significance
level α. Hence, we reject H0 if p-value p < α. The calculation of the P-test is shown in
Equation (2.7).

ei =

¨

1 if S(X i)> Sα
0 if S(X i)≤ Sα

, (2.7)

where ei is an indicator flag for exceeding the critical threshold, S(X i) is the result of the
statistic S ∈ {g, χ2} for SNP i and Sα is the critical value for the statistic S. We compute
Sα using a lookup table for p-values (computed as described in Equation (2.5)) in the χ2-
distribution given a predefined α and reject H0 if S(X i)> Sα.

2.5 Secure Multi-Party Computation

The main technique that is used in this thesis for privacy-preserving computation of statistics
on genome data is called Secure Multi-Party Computation (SMPC). The goal of SMPC is
to jointly compute a function f on the inputs of multiple parties while keeping the inputs
private.

For example: protocol participants P1, . . . , Pn have their respective inputs d1, . . . , dn that
correspond to their salaries. They want to know the highest salary among them, but without
revealing their own salary to each other. They securely compute the function f (d1, . . . , dn) =
max(d1, . . . , dn) and obtain the highest salary as an output. The biggest challenge of SMPC
is to create a protocol that allows secure computation without relying on a trusted third
party.

There exist different adversary models for proving the protocol security, e.g. passive (honest
but curious), active (malicious), and covert:

• A passive adversary does not deviate from the protocol, but tries to learn as much as
possible from the protocol execution itself. Parties can also collude to try to gain more
information. The passive model yields only weak security regarding real-world threats,
but constructing protocols assuming a passive adversary is often an important step for
creating also maliciously secure protocols. In addition to that, they are usually very
efficient.

• The active adversary model assumes that an attacker can arbitrarily deviate from the
protocol in attempt to cheat. Protocols designed with active security are considered to
be very secure for real-world applications.

11

2 Preliminaries

• In the covert model, the adversary can arbitrarily deviate from the protocol, but he
is caught with some probability, e.g. 20%. The deviation from the protocol can be
attractive for this kind of adversary, but might be very costly when caught cheating.

2.5.1 Oblivious Transfer

OT is a cryptographic protocol where a sender holds two or more strings and a receiver
obtains one of those strings based on its choice. The sender does not know which of the
strings was chosen by the receiver and the receiver obtains only the chosen string and learns
nothing about the other strings.

A common OT scheme is 1-out-of-2 OT, which was introduced by Rabin [Rab81]. We depict
it in Figure 2.2. It is organized in the following way: the sender holds two messages m0 and
m1, and the receiver holds a choice bit c. The receiver wants to obtain mc without disclosing
the value of c, while the sender wants the receiver to receive only mc, but no information
about m1−c .

Receiver OT Sender

c

mc

(m0, m1)

Figure 2.2: 1-out-of-2 Oblivious Transfer protocol.

There also exist other OT protocols, e.g. 1-out-of-n and k-out-of-n OT. In the 1-out-of-n
OT protocol, the sender holds n messages m1, . . . , mn and the receiver holds index i. The
receiver wants to obtain knowledge about mi and the sender wants to ensure that the
receiver learns nothing new about other messages. In the k-out-of-n protocol, the sender
holds a collection of n messages and the receiver wants to obtain k elements from this
collection.

OT is an important building block for SMPC, namely for evaluating interactive operations
securely, but it inherently lacks efficiency. Furthermore, it was shown that OT always requires
public-key cryptography [IR89]. There exist many solutions that improve efficiency of OT
protocols, e.g. OT Extension, Random Oblivious Transfer (R-OT) and Correlated Oblivious
Transfer (C-OT) [ALSZ13]. Application of OT extension allows one to use symmetric cryp-
tography to extend a few base OTs instead of using demanding public-key cryptography for
each OT. In R-OT, the sender has no inputs and it obtains random m0 and m1 as an output,
and the receiver obtains the message selected by a random choice bit. In C-OT, the sender
has a correlation function f∆(·) as input and it obtains m0 and m1, where m0 is random and
m1 = f∆(m0).

12

2 Preliminaries

2.6 ABY Framework

ABY [DSZ15] is a state-of-the-art and highly efficient framework for generic SMPC. It is freely
accessible on GitHub2.

ABY supports three different SMPC protocols: Arithmetic (see Section 2.6.1), Boolean (see
Section 2.6.2) and Yao (see Section 2.6.2) circuits. For complex functions, the protocols can be
interchanged inside of the computation process, i.e. a part of the function will be evaluated for
example in Arithmetic and the other part in Yao sharing. However, the structure of the circuit
must be determined before the execution. Since the protocols have different advantages and
disadvantages and thus are better suited for different computations, they can be combined
for many application scenarios to improve the overall efficiency.

Demmler et al. provide many code examples of how the framework can be efficiently applied,
e.g. for complex cryptographic algorithms, such as AES and SHA1, biometric identification
[DSZ15], and Private Set Intersection (PSI) [PSSZ15]. Through application of the mixed-
protocol strategy, not only the computation, but also the communication overhead can be
significantly reduced. While the inter-protocol conversion can result in better performance, it
is hard to automate and optimize the overall design process especially considering different
application scenarios and different network settings: Wide Area Network (WAN) and Local
Area Network (LAN). Since there are protocols that require a non-constant number of
communication rounds, they are less efficient in the WAN setting because of the higher
network latency compared to the LAN setting.

ABY supports IEEE 754 floating point arithmetic in Goldreich-Micali-Wigderson (GMW)
and Yao protocols [DDK+15]. However, we construct our algorithms only considering GMW
because of the correctness problems with floating point arithmetic in the Yao protocol. Floating
point arithmetic is very costly in SMPC in terms of interactive operations, e.g. the addition
operation in 64-bit and 32-bit floating point arithmetic in ABY requires 9x more AND-gates
than in unsigned integer arithmetic. This drawback can be avoided by implementing integer to
floating point conversion gates as we do in this thesis (see Section 4.1).

Among all operations in the circuits, we differentiate between interactive and non-interactive
operations whereby the first term describes gates that require interaction between parties for
the gate evaluation and the second term describes those that do not. As indicated by the name
of the non-interactive gate, it can be evaluated locally without any communication between
parties. For interactive gates, ABY uses multiplication triples (see Section 2.6.1). Since
the benchmarking of DGK [DGK08], Paillier [DJN10] and OT-Extension [Bea96; IKNP03;
ALSZ13] in [DSZ15] indicated that the OT-Extension based approach is the best in most
cases, we use it in this work.

The evaluation of a protocol in ABY is divided into two phases: setup and online. Setup phase
precomputes as much as possible, but independent of the inputs, and online phase does
interactive computations depending on the inputs.

2https://github.com/encryptogroup/ABY

13

https://github.com/encryptogroup/ABY

2 Preliminaries

2.6.1 Arithmetic Sharing

In this section we describe the protocols for arithmetic sharing that were introduced in
[ABL+04; PBS12; KSS14] and implemented in ABY [DSZ15]. We denote arithmetic sharing
as additive sharing of an l-bit value x as the sum of two integer values in the ring Z2l . More
formally, 〈x〉A0 + 〈x〉

A
1 ≡ x mod 2l with 〈x〉A0, 〈x〉A1 ∈ Z2l . The value is shared as follows: Pi

chooses random value r ∈R Z2l and computes 〈x〉Ai = x − r. After that, Pi sends r to Pi−1 and
Pi−1 sets 〈x〉Ai−1 = r. The shared value can be reconstructed in the following way: Pi−1 sends
〈x〉Ai−1 to Pi and Pi sets x = 〈x〉A0 + 〈x〉

A
1.

There are two types of operations in arithmetic sharing: addition and multiplication. While
addition can be computed locally as 〈z〉Ai = 〈x〉

A
i + 〈y〉

A
i for each party Pi, multiplication

must be evaluated interactively in the online phase. In the following, we describe how
multiplication in arithmetic sharing can be computed using multiplication triples. Pi wants
to compute 〈z〉A = 〈x〉A · 〈y〉A. For that, we require a multiplication triple 〈c〉A = 〈a〉A · 〈b〉A.
First, Pi sets 〈e〉Ai = 〈x〉

A
i − 〈a〉

A
i and 〈 f 〉Ai = 〈y〉

A
i − 〈b〉

A
i . After that, parties reconstruct values

e and f and Pi computes 〈z〉Ai = i · e · f + f · 〈a〉Ai + e · 〈b〉Ai + 〈c〉
A
i .

Multiplication triples

Multiplication triples are used to evaluate interactive operations, e.g. in the GMW protocol
(see Section 2.6.1) and for additive sharing (see Section 2.6.2). Typically, multiplication
triples are defined as 〈a〉t � 〈b〉t = 〈c〉t , where � ∈ {·, ∧} and t ∈ {A, B, Y }. Many strategies
exist for the generation of multiplication triples, such as DGK [DGK08], Paillier [DJN10] and
OT-Extension [Bea96; IKNP03; ALSZ13].

Here, we provide an example of generating a multiplication triple using OT in additive
sharing [DSZ15]. We make use of OT-Extension to improve the efficiency of the generation
routine. This protocol was proposed in [Gil99] and works as follows: we want to generate a
multiplication triple 〈c〉Ai = 〈a〉

A
i · 〈b〉

A
i for party Pi . We can write 〈a〉A · 〈b〉A =

�

〈a〉A0 + 〈a〉
A
1

�

·
�

〈b〉A0 + 〈b〉
A
1

�

= 〈a〉A0 · 〈b〉
A
0 + 〈a〉

A
0 · 〈b〉

A
1 + 〈a〉

A
1 · 〈b〉

A
0 + 〈a〉

A
1 · 〈b〉

A
1. For that, P0 generates

random 〈a〉A0, 〈b〉A0 ∈R Z2l and P1 generates random 〈a〉A1, 〈b〉A1 ∈R Z2l . Knowing 〈a〉A0 · 〈b〉
A
1 in

plaintext would leak the information about the shared value. This is why we compute it as
〈u〉A = 〈〈a〉A0 · 〈b〉

A
1〉

A, and the same for 〈a〉A1 · 〈b〉
A
0. The share 〈u〉A is computed securely, i.e. it

is shared between two parties as 〈u〉A0 and 〈u〉A1.

The parties perform a C-OTl
l , where P0 acts as the sender and P1 acts as the receiver. P1

uses 〈b〉A1[i] as the choice bit for each bit in 〈b〉A1 and P0 uses the correlation function
f∆i
(x) =

�

〈a〉A0 · 2
i − x

�

mod 2l as the input. P0 obtains
�

si,0, si,1

�

where si,0 ∈R Z2l and si,1 =
f∆i

�

si,0

�

=
�

〈a〉A0 · 2
i − si,0

�

and P1 obtains si,〈b〉A1[i]
=
�

〈b〉A1[i] · 〈a〉
A
0 · 2

i − si,0

�

mod 2l . After

that, P0 and P1 compute their corresponding 〈u〉A0 =
�∑l

i=1 si,0

�

and 〈u〉A1 =
�∑l

i=1 si,〈b〉A1[i]
�

.

Similarly, the parties compute 〈v〉A = 〈〈a〉A1 · 〈b〉
A
0〉

A. After all precomputations are done, the
party Pi sets 〈c〉Ai = 〈a〉

A
i · 〈b〉

A
i + 〈u〉

A
i + 〈v〉

A
i .

14

2 Preliminaries

2.6.2 Boolean Sharing

A Boolean Circuit (BC) is a directed acyclic graph consisting of boolean gates which are based
on the boolean logic. Usually, there are AND, XOR and NOT gates and all other gates are
constructed from those primitive gates. More complex combined gates can perform addition,
multiplication, and even more demanding operations [Vol13]. The complexity of the circuit
is typically measured in the number of gates and/or the depth of the circuit, but for specific
implementations other measures can be used, e.g. the number of AND-gates in SMPC because
of their high cost compared to free XOR gates. The last is due to the interactiveness that is
required for evaluating an AND-gate.

In Boolean sharing, the function to be computed is converted to a BC and then evaluated
securely. ABY supports two types of Boolean sharing: GMW and Yao. Although both protocols
operate on BCs, we reference GMW as Boolean and Yao as Yao sharing as it was done in
[DSZ15].

GMW

The protocol of Goldreich-Micali-Wigderson (GMW) is an interactive SMPC protocol that
was first introduced in [GMW87]. In GMW, two parties P0 and P1 interactively compute
a function f , represented as a BC. Each bit in the circuit corresponds to a so-called wire
and each wire is shared among the participants using a 2-out-of-2 secret sharing scheme
meaning that both parties are required to reconstruct the secret. The value v of a wire is
represented as v = v1 ⊕ v2, where v1 and v2 are the shares of the parties. The shares are
random-looking and thus do not leak any information about the value v. Since XOR is an
associative operation, XOR gates can be evaluated non-interactively. However, AND gates
require interaction between the parties.

For the evaluation of an interactive AND gate, oblivious transfer or multiplication triples
can be used. OT can be used as follows: for the secure evaluation of an AND gate on input
shares x1, x2 and y1, y2, the parties can run a 1-out-of-4 OT protocol. P1 inputs x1 and
y1 as input, P2 chooses a random output share z2 and four inputs. At the end of the OT
protocol, P1 receives z1 = z2 ⊕ ((x1 ⊕ x2)∧ (y1 ⊕ y2)). Multiplication triples, on the other
hand, can be used as follows: ai , bi , ci are generated in the setup phase of the protocol such
that (c1 ⊕ c2) = (a1 ⊕ a2)∧ (b1 ⊕ b2). In the online phase, the parties mask their inputs x i
and yi and exchange di = x i ⊕ ai and ei = yi ⊕ bi . After that, the parties reassemble output
shares z1 = (d ∧ e)⊕ (b1 ∧ d)⊕ (a1 ∧ e)⊕ c1 and z2 = (b2 ∧ d)⊕ (a2 ∧ e)⊕ c2. The usage of
multiplication triples generates less overhead as per multiplication triple only a single message
with a smaller size must be sent during the protocol execution.

15

2 Preliminaries

Yao

Yao’s Garbled Circuits (GCs) is a secure two-party computation protocol introduced by Yao
[Yao86]. It uses BCs for the computation of an arbitrary function f , where there are two
parties P0 and P1 that want to compute f on their corresponding inputs d0 and d1 without
revealing inputs to each other.

In the setup phase of the protocol, the parties locally construct a BC for the function f . P0
acts as a garbler, i.e. it encrypts the circuit and its input d0 and sends it to P1 who acts as
an evaluator, i.e. evaluates the received circuit. To obtain its encrypted input d1, P1 uses
OTs. By evaluating the circuit, P1 obtains the encrypted output. Finally, P1 decrypts the
result.

For creating a garbled circuit out of the initial BC, P0 creates two labels of bit-length k for
each wire in the circuit, where k is the security parameter. Labels are random bit strings that
replace 0 and 1 values on the wires in the truth tables of the gates.

In Yao’s garbled circuit protocol, unlike in GMW, there is a constant number of communication
rounds in the online phase, where only symmetric cryptography is required. Thus, the
evaluation of all gates becomes non-interactive. Various strategies were proposed in the
literature to improve the speed of the protocol: point-and-permute [MNP+04], free XOR
[KS08], fixed-key AES garbling [BHKR13], and half-gates [ZRE15]. These techniques can be
combined efficiently to allow free non-cryptographic and non-interactive evaluation of XOR
gates in the protocol for both, setup and online phases.

2.6.3 SIMD Gates

ABY implements the Single Instruction Multiple Data (SIMD) approach. Bogdanov et al. show
in [BJL12] that the usage of SIMD gates can result in significant efficiency improvements.
The idea of SIMD is to evaluate one sub-circuit on an n-bit value instead of evaluating n
identical sub-circuits on 1-bit values. Since for SIMD gates we generate a circuit only once,
the routine requires much less Random Access Memory (RAM).

In [SZ13], Schneider and Zohner benchmarked GMW in the two-party setting. They compute
a huge benchmarking circuit consisting of millions of gates using two gate configurations:
SIMD and non-SIMD gates. Their results are the following: the usage of SIMD gates in GMW
slightly decreases setup time and significantly decreases online time, namely by a factor 7.5x.
Memory demands of the circuit were reduced even more significant, i.e. by a factor ∼15x.
It is worth to mention that the overhead that SIMD gates cause due to conversion between
bitwise and SIMD operations is negligible.

16

2 Preliminaries

2.6.4 Conversion Gates

The concepts of inter-protocol conversion for SMPC was proposed by many researchers,
e.g. [BPSW07; BFK+09; KSS13]. However, these concepts lack real improvements that
outperform single protocol performance. This is due to the expensive conversion between
garbled circuits and homomorphic encryption which was used mostly.

ABY implements efficient protocols for the protocol conversion which we detail below
[DSZ15].

Yao to Boolean Sharing (Y2B)

Conversion from 〈x〉Y to 〈x〉B is the most natural one since it can be computed locally. The
permutation bits [MNP+04] in the Yao shares already contain a valid Boolean sharing of x .
To convert the value 〈x〉Yi , Pi locally computes 〈x〉Bi .

Boolean to Yao Sharing (B2Y)

Conversion from Boolean to Yao sharing corresponds to sharing a one-bit value in Yao. For
performing a conversion on an n-bit value, n parallel operations are performed for each bit
of that value.

Yao to Arithmetic Sharing (Y2A)

To convert a Yao share to an Arithmetic share, P0 generates a random r ∈R Z2l and shares it in
Yao sharing. Afterwards, both of the parties evaluate a subtraction circuit 〈d〉Y = 〈x〉Y − 〈r〉Y

and set 〈x〉A0 = r and 〈x〉A1 = RecY
1

�

〈d〉Y
�

.

Demmler et al. [DSZ15] consider it to be more efficient to locally compute Y 2B and after that
the cheaper B2A which results in 〈x〉A = Y 2A

�

〈x〉Y
�

= B2A
�

Y 2B
�

〈x〉Y
��

. The B2A conversion
is explained below.

Arithmetic to Yao Sharing (A2Y)

To convert an Arithmetic share into a Yao share, as proposed in [HSS+10], we can evaluate
an addition circuit. Pi computes x i = 〈x〉Ai and sets 〈x i〉Y = ShrY

i (x i). After that, the parties
can compute 〈x〉Y = 〈x0〉Y + 〈x1〉Y .

17

2 Preliminaries

Arithmetic to Boolean Sharing (A2B)

There are two approaches proposed in ABY to perform Arithmetic to Boolean share conversion.
The first and less efficient one evaluates a bit-extraction circuit as proposed in [CD10]. The
second one, similar to A2Y, makes use of the equation 〈x〉B = A2B

�

〈x〉A
�

= Y 2B
�

A2Y
�

〈x〉A
��

.
This results in better performance since Y 2B is "for free" and an addition circuit in Yao is
efficient as confirmed by the benchmarking results in [DSZ15].

Boolean to Arithmetic Sharing (B2A)

Two solutions are provided in [DSZ15] for Boolean to Arithmetic share conversion. The first
solution is to evaluate a Boolean addition circuit. Here, P0 has 〈x〉B0 and random r ∈R {0, 1}l

and then sets 〈x〉A0 = r. P1 has 〈x〉B1 as input and computes 〈x〉A1 = x − r. This approach
would be inefficient because of its either big circuit size or big depth.

The second solution is similar to the generation of multiplication triples for Arithmetic sharing.
In this approach, the parties perform an OT for each bit in the value. The sender transfers
two additively correlated values. The receiver obtains only one of the values. The sum of the
values forms a valid Arithmetic share. This solution results in a performance improvement
compared to the first solution.

2.7 Outsourcing Computation

There exist functions in ABY for outsourcing computation to semi-trusted third parties,
i.e., the parties do not receive any plaintext values, but are not supposed to collude. The
goal of outsourcing could be for example moving the SMPC execution from WAN to LAN.
This is due to efficiency losses for SMPC in the WAN setting compared to the LAN setting.
Furthermore, using this approach, n > 2 parties can efficiently use secure computation
protocols constructed for 2 parties. The outsourcing functions were constructed for and
applied in [CDC+16].

The execution of the protocols in the LAN setting would be a hard task for the medical
institutions that want to share their genome data, because they will very unlikely be near to
each other. By considering a scenario with few or dozens of institutions, the probability of them
being in the same LAN is extremely low. The protocol, however, can be applied in the LAN
setting by outsourcing the computations to semi-trusted third parties.

The outsourcing protocol works as shown in Figure 2.3: each party P that wants to compute
the statistic S by outsourcing the computations, secret-shares its value s locally, thus knowing
both 〈s〉t0 and 〈s〉t1. Afterwards, it sends the share 〈s〉tj to the server T j. The non-colluding
servers receive shares from all of the parties and compute the statistic S interactively on the ag-
gregate share 〈a〉t . The main SMPC protocol is performed between T0 and T1 which send their

18

2 Preliminaries

output shares to each party P after the computation is done. Each party receives both shares
〈r〉t0 from T0 and 〈r〉t1 from T1 and locally computes Rect

∗(〈r〉
t
0, 〈r〉t1).

T0 P T1

�

〈s〉t0, 〈s〉t1
�

= Shrt(s)

〈s〉t0 〈s〉t1

〈a〉t0 =
∑

j

〈s j〉t0 〈a〉t1 =
∑

j

〈s j〉t1

〈r0〉t = S
�

〈a〉t0
�

〈r1〉t = S
�

〈a〉t1
�

SMPC, LAN

〈r〉t0 〈r〉t1

r = Rect
∗

�

〈r〉t0, 〈r〉t1
�

Figure 2.3: Outsourcing computation scheme for computing a statistic S on aggregate data
received from multiple parties.

19

3 RelatedWork

In this chapter, we describe different existing approaches for computation of privacy-preserving
Genome-Wide Association Studies (GWAS).

Homer et al. [HSR+08] introduced an attack showing that the participation of an individual
in GWAS can be revealed from the aggregate data. After that, many attacks were proposed to
deanonymize individuals in distributed GWAS [WLW+09; ZPL+11]. The attacks started from
demands of extremely large databases for the de-anonymization and moved to more realistic
sizes, and finally, a practical attack was constructed in [CHW+15].

Considering these attacks, the research community started to move towards privacy-preserving
solutions for distributed GWAS, which are nowadays divided into three distinct fields based
on the underlying techniques that guarantee privacy:

• Noise-based

• Based on Homomorphic Encryption (HE)

• Based on Secure Multi-Party Computation (SMPC), e.g. Yao’s Garbled Circuits (GCs)

• Other techniques

3.1 GWAS using Noise-based Approaches

Noise-based is the most popular approach for ensuring privacy of individuals in privacy-
preserving GWAS. Many solutions were proposed in the last decade for applying differential
privacy to privacy-preserving GWAS, e.g. [FSU11; USF13; JS13; YFSU14; YJ14; JZW+14;
ZWJ+14; SB16; RK17].

Unfortunately, these methods have drawbacks. Adding noise to the data generally reduces its
utility and can influence results. Furthermore, researchers will have difficulties convincing
approving authorities of this method.

20

3 Related Work

3.2 GWAS using Homomorphic Encryption

HE is a form of public-key cryptography that allows to perform computations on ciphertexts
and get correct results after decryption. The operations are performed without disclosing
encrypted data to the party performing the calculation. The ciphertext can be decrypted only
by the party possessing the private key [Rap04].

At the Integrating Data for Analysis, Anonymization and SHaring (iDASH) research competition
in 20151, several attempts to apply HE for distributed GWAS were presented, which we
describe below.

Zhang et al. [ZDJ+15] used the FORESEE framework to fully outsource GWAS into the cloud.
The main advantage of their framework is that it is able to compute the division operation
unlike many other frameworks. They state their best run-times of about 52 ms for a single
SNP in the χ2-test.

In [LYS15], Lu et al. performed GWAS in the cloud. They use a packing technique for the
frequency table to improve the efficiency of the routine. They state 35 ms run-time for a
χ2-test evaluation on a single SNP with 10 000 observations.

Kim and Lauter [KL15] apply the BGV [GHS12] and YASHE schemes [BLLN13] for fully
homomorphic encryption to compute the χ2-test. The YASHE-based solution resulted in
better efficiency, namely in 5 ms amortized run-time for a SNP.

3.3 GWAS using Yao’s Garbled Circuits

To the best of our knowledge, the latest work that performs GWAS using secure circuit
evaluation is presented by Constable et al. in [CTW+15]. The statistical tests they use are
the χ2-test and the MAF, which yields the most infrequent allele in a SNP. They perform
GWAS in the LAN setting on two servers in the local network of Syracuse University. Their
servers have 6 GB RAM and Intel Core i5 750 processors with 4 cores which is quite similar
to our benchmarking environment (cf. Section 5.1).

In their work, they simulate floating point arithmetic using 16-bit half-precision numbers.
This is an important constraint since there are multiplications in the χ2-test that can lead to an
overflow or to precision interference. Beyond that, they provide very few information on the
benchmarking results of their algorithms which makes it hard to compare run-times of the al-
gorithms presented in this thesis and the algorithms presented in [CTW+15]. Constable et al.
provide only two values for run times of the χ2-test. These are 47.27 seconds for 311 SNPs
and 1 342 seconds for 9 330 SNPs, i.e. 143 ms for a single SNP.

1http://www.humangenomeprivacy.org/2015/index.html

21

3 Related Work

They employ the PCF circuit framework [KSMB13] for performing SMPC. SNPs are prepro-
cessed locally using Python in exactly the same ways as in this thesis, before the execution of
the routine starts.

For the preprocessing, they parse the required number of SNPs and count how many times
alleles occurred in the observations. For example, the base pair AA will be parsed as two
occurrences of the allele A, whereas AT and TA are both counted as one allele A and one T.
However, by ignoring the positions of the alleles, they ignore an important information in
genes.

For the communication evaluation, they unfortunately provide only a figure and no exact
values. Hence, it is hard to determine exact communication demands of their protocol
implementation. An execution of the protocol with 311 SNPs requires roughly a few gigabytes
of communication and with 9 330 SNPs roughly 50-100 GB.

In this thesis, we improve the work of Constable et al. [CTW+15] and use it to compare
with the performance of our mixed-protocol algorithms. Additionally, we extend the number
of alleles in the contingency table. Finally, we consider an outsourcing scenario where
multiple institutions perform SMPC on aggregate data by outsourcing the computation
to semi-trusted third parties. We reach 4 ms amortized run-time per SNP for our most
efficient χ2-test algorithm which outperforms [CTW+15] by a factor 35.3x, and 4.8 ms
for the algorithm that allows millions of participants and by a factor 29.8x faster than
[CTW+15].

3.4 GWAS using Other Techniques

Zhang et al. [ZBA15] propose a solution using Shamir’s secret sharing scheme with (n,
t)-threshold where n is the number of protocol participants, t + 1 shares are required to
reconstruct the secret, t = 1, and n = 3, thus assuming non-colluding parties. They bring
up a promising protocol for the privacy-preserving χ2-test stating the amortized run-time of
4.5 ms for a SNP.

In [CDD+16], Chen et al. proposed to compute several GWAS statistics in a secure enclave
using Intel Software Guard Extensions (SGX) [BBB+16].

22

4 Implementation

In this chapter we describe the implementation details of the statistical tests applied to the ge-
netic data as well as the implementation of the required underlying techniques.

The algorithms that we implement are the following:

Preprocessing The raw data (sequences of alleles, e.g. "SNP #1:

observations
︷ ︸︸ ︷

AA TA . . . TT") must be
processed and converted to a suitable format, i.e. the counts of alleles. For this purpose,
we compose a very simple Python script which we do not describe further. We operate
on data from the iDASH competition 20151 and duplicate it to produce the required
number of observations and SNPs.

Integer to floating point number conversion gates These are the prerequisite for most of
our algorithms. The goal of the conversion gates is to make it possible to perform
the most calculations in unsigned integer arithmetic in additive sharing, which is very
efficient, and then to perform a conversion to floating point numbers where all further
computations are performed.

Statistical tests We implements 4 versions of χ2- and G-test which differ in the way they
are mathematically computed, the SMPC protocols in which they are computed and the
number of alleles/codewords used in the contingency table. Additionally, we implement
the P-test, which is generic and can be applied after each of the aforementioned tests
in order to evaluate statistical significance of the result of the statistic.

Outsourcing computation As the last step, we implement a scenario where the institutions
holding their genomic data send their secret-shared data to two semi-trusted third
parties, which aggregate the received data and perform the computation of the statistical
test in the SMPC protocol and send the resulting shares to each institution. The
institutions then reconstruct the result locally.

4.1 Integer to Floating Point Number Conversion

Multiple algorithms were proposed for computing floating point arithmetic in SMPC [HSS+10;
ABZS13; ZSB13; KW14; DDK+15; PS15] and in HE [LDD+16]. The corresponding algorithms

1http://www.humangenomeprivacy.org/2015/index.html

23

4 Implementation

were implemented either in Sharemind [BLW08] and PICCO [ZSB13], or as standalone
applications.

For the conversion of integer to floating point numbers we use the state-of-the-art algorithm
introduced by Aliasgari et al. in [ABZS13] and adapt it to ABY. The algorithm is implemented
in a simplified fashion and optimized for our purposes. We describe different optimization
steps (labeled O0 . . . O4) in the following.

The initial version of the algorithm is described in Protocol 4.1, where additive secret-sharing
of value v is denoted as [v] and vectors containing values v1, v2 as 〈v1, v2〉. Here, Aliasgari et
al. use the integer number [a], integer bit-length γ and floating-point number representation
bit-length l as input arguments. The function returns a vector containing the floating point
number [v], exponent [p], indicator of [a] being 0 [z] and indicator of being less than 0
[s].

In the protocol, they first assign the length of γ cutting out the sign bit of the signed integer
to λ. Next, they determine whether a is less than 0 using the according function. Then, they
assign 1 to z if a equals 0 and 1 otherwise. The value of a is inverted if it was negative before.
After that, a is split into bits using the bit decoder function. In Line 6 of Protocol 4.1, the
prefix-OR function is applied to the decomposed value of a, where it computes bi =

∨i
j=1 a j .

Then, the value of v is calculated by shifting the bit-representation of a by k bits, where
k = yi+1. This gives us a2k, hence, the output exponent needs to be set to−k, which happens
in Line 8. In Lines 10 and 11, the value is truncated if it is too long for the representation or
it is shifted if it is too short. At the end, the number of shifted bits in Line 10 is added to the
exponent p and it is reset if the value equals 0.

〈[v], [p], [z], [s]〉 ← INT2FP([a],γ, l)

1 : λ← γ− 1

2 : [s]← LTZ([a],γ)
3 : [z]← EQZ([a],γ)
4 : [a]← (1− 2[s])[a]
5 : [aγ−1], . . . , [a0]← BitDec([a],λ,λ)

6 : [b0], . . . , [bλ−1]← PreOR([aλ−1], . . . , [a0])

7 : [v]← [a](1+
∑λ−1

i=0 2i(1− [bi]))

8 : [p]←−(λ−
∑λ−1

i=0 [bi])
9 : if (γ− 1)> l then [v]← Trunc([v],γ− 1,γ− l − 1)

10 : else [v]← 2l−γ+1[v]
11 : [p]← ([p] + γ− 1− l)(1− [z])
12 : return 〈[v], [p], [z], [s]〉

Protocol 4.1: Integer to floating point number conversion algorithm from [ABZS13].

24

4 Implementation

For our goals, we can immediately exclude the following parts of the protocol:

• All lines where negative values are handled (Lines 2 and 4), because in the ABY
framework only unsigned integer numbers are used.

• Bit decomposition, because in the framework all values in binary circuits are decom-
posed by default (Line 5).

• Bit shifting/truncation (Lines 9 and 10). Since we require a limited amount of observa-
tions to perform expressive statistical analyses, and the number of possible observations
is naturally limited, we assume that the integer numbers will fit exactly into the repre-
sentation. This reduces the computation overhead.

As an effect of these exclusions, we can also ignore the bit shifting in Line 11, because we fit
exactly into the representation of the fraction. Moreover, the subtraction (1− [z]) in Line 11
can be simplified for BCs by replacing it with the XOR operation. Therefore, we simplify it to
(1⊕ [z]) as z ∈ {0,1}. Since the exponentiation in Line 7 is very costly, we replace it with
MUX gates of precomputed constant values of form 2i and use the inverted value b as the
selection bit. In addition to the aforementioned simplifications, we provide the optimizations
described below where Oi+1 contains Oi .

Optimization 1 (O1): In Line 7, we still need λ additions. This implies communication
overhead because of the large number of AND-gates that are needed for addition in boolean
circuits. To optimize this step, we can simply invert b and reverse its bit order. This gives
us the correct value for padding [a] to the size of the significand. In ABY, bit-reversing
needs no gates and an inversion gate can be evaluated without cryptographic computa-
tion.

Optimization 2 (O2): In Line 11, there is a need for multiplication, which is extremely costly
in BCs. In the original simplified version of the protocol, we compute [p]← [p] · ([1]⊕ [z]).
This multiplication can be avoided by choosing either p or constant 0 by using a MUX gate
with selection bit z. Hence, we compute [p]←MUX([p], [0], [z]), where the MUX operation
yields [p] if ([z] = [0]), and [0] otherwise.

Optimization 3 (O3): In Line 7, we perform an addition of 1 to (2k − 1) in the original
protocol. We can avoid this addition by using a chain of XOR gates, where we apply the XOR
operation to bits ai and ai−1. As a result, we obtain a bit bi, which indicates whether the
input variables contained different values. Since we know that the bit representation of the
value (2k − 1) is a string of 1-bits followed by 0-bits, we want to indicate the bit next after
the last 1-bit, which represents the value 2k. The applied scheme is graphically represented
in Figure 4.1 for an 8-bit integer value.

Optimization 4 (O4): In Line 7, we need to multiply a by 2k which, in BCs, can be represented
as a bit-shift of k-bits. Since there is no bit-shifter in the standard functionality of the ABY
framework, we implemented the barrel shifter algorithm introduced in [PSW02]. Using a
barrel shifter instead of multiplication, we significantly reduce the total number of gates
as well as the number of AND-gates which are considered to be most costly. A graphical

25

4 Implementation

a7 a6 a5 a4 a3 a2 a1 a00

b8 b7 b6 b5 b4 b3 b2 b1 b0

1

Figure 4.1: XOR-chain for computing (2k − 1) 7→ 2k.

representation of an 8-bit barrel shifter is shown in Figure 4.2. Here, to shift the bits a7, . . . , a0
of the value a we use the selection bits s2, . . . , s0. By setting s0 = 1 and other bits to 0, we shift
a by one bit, and by setting also s2 = 1, we shift the value by 5 bits.

0 1 0 1 0 10 1 0 1 0 1 0 10 1

0 1 0 1 0 10 1 0 1 0 1 0 10 1

0 1 0 1 0 10 1 0 1 0 1 0 10 1

0 a7 a6 a5 a4 a3 a2 a1 a0

b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0

s 2

s 1

s 0

4 bit

2 bit

1 bit

Figure 4.2: 8-bit logical barrel right shifter [PSW02].

The final version of the algorithm is described in Protocol 4.2. The function INT2FP takes
a share 〈a〉B, the value bit-length γ and the desired representation length l as arguments
and it returns a floating point number 〈 f 〉B as share. In the first step, we assign the return
value of the equality test EQZ based on the share 〈a〉B to the share 〈z〉B. Afterwards, the
prefix-OR function PreOR is calculated using the input share 〈a〉B and its return value is
assigned to 〈p〉B. After that, we invert 〈b〉B bit-wise and calculate the Hamming weight
[BP08] on 〈b〉B which we then assign to 〈v〉B, where the Hamming weight is the number
of 1-bits in a bit string. As explained before, this value is required to shift 〈a〉B in order to
fit the size of the significand. In Line 6, the barrel right shifter function is applied on 〈a〉B

to shift it by the value of 〈v〉B. We resize the bit-length of the fraction to form the correct
IEEE 754 [IEE08] representation. The fraction size is computed using a lookup table. We
truncate the most significant bits of the fraction if it is too long or pad it with constantly
shared zero bits if it is too short. In Line 8, we calculate the Hamming weight [BP08] of the
share 〈p〉B and assign it to the exponent share 〈e〉B after which we add a constantly shared
bias for the representation length l using the lookup table. In Line 10, we check if 〈a〉B

equals 〈0〉B and if it is the case, we assign 〈0〉B to 〈e〉B. To form the final representation of the
floating point number, we concatenate the fraction share 〈v〉B, the exponent share 〈e〉B and

26

4 Implementation

a constant 〈0〉B. The last one is constant due to the fact that we operate only on unsigned
integer values and the most significant bit in floating point arithmetic being 0 means that
the number is positive. After that we return the computed share 〈 f 〉B. To convert integer
values that are shared in Arithmetic sharing to floating point numbers, we have to invoke the
function INT2FP(〈a〉A,γ, l), which solely performs a conversion 〈a〉B ← A2B(〈a〉A) before the
main routine.

〈 f 〉B ← INT2FP(〈a〉B,γ, l)

1 : 〈z〉B ← EQZ(〈a〉B)

2 : 〈p〉B ← PreOR(〈a〉B)

3 : 〈b〉B ← Reverse(〈p〉B)

4 : 〈b〉B ← Invert(〈b〉B)

5 : 〈v〉B ← HammingWeight(〈b〉B)

6 : 〈v〉B ← RShifter(〈a〉B, 〈v〉B)

7 : 〈v〉B ← Resize(〈v〉B,FractionSize(l))

8 : 〈e〉B ← HammingWeight(〈p〉B)

9 : 〈e〉B ← 〈e〉B + 〈FPBias(l)〉B

10 : 〈e〉B ←MUX(〈e〉B, 〈0〉B, 〈z〉B)

11 : 〈 f 〉B ← Concatenate(〈v〉B, 〈e〉B, 〈0〉B)

12 : return 〈 f 〉B

Protocol 4.2: Implementation of the fully optimized integer to floating point number conver-
sion algorithm.

The effects of the improvements are shown in Table 4.1 and visualized in Figure 4.3. It is
obvious that every improvement brought more efficiency benefits in the number of gates, but
the last improvement is the most important one. In both, Table 4.1 and Figure 4.3, the last 2
columns denote an addition of 64-bit floating point (FP+) and unsigned integer numbers
(UINT+) and are illustrated here for the purpose of comparison. Again, the notation Oi stands
for the optimization number i of the 64-bit conversion. Figure 4.3 contains statistics not only
for the amount of AND- and XOR-gates, but also for the amount of MUX-gates, which are
optimized in ABY [DSZ15].

Altogether, the improvements reduce the total number of gates and the number of AND-
gates by factor ∼7x. Compared to the 64-bit floating point number addition, a conversion
operation requires a similar total number of gates, but ∼6 times fewer AND-gates. This can
be interpreted as a clear indicator of the benefit of using integer operations whenever possible
in BCs to reduce the communication overhead of the protocol before using floating point
operations.

27

4 Implementation

O0 O1 O2 O3 O4 O4 FP+ UINT+
0

3 000

6 000

9 000

12 000

15 000

18 000

21 000

24 000

64-bit

To
32
bit

To 64-bit
3151

293
307 305

1 458

630

260

1

17 707
14899 14219 14 029

1 264
545

154

319

4884 4 884 4 663 4331

629 277

4103

448

N
um

be
r

of
G

at
es

AND-gates
XOR-gates
MUX-gates

Figure 4.3: Integer to floating point number conversion and optimizations.

Table 4.1: Integer to floating point number conversion and optimizations.

To 64-bit To 32-bit 64-bit

Gates O0 O1 O2 O3 O4 O4 FP+ UINT+

AND 4 884 4 884 4 663 4 331 629 277 4 103 448

XOR 17 707 14 899 14 219 14 209 1 264 545 154 154

Other 3 151 293 307 305 1 458 630 260 1

Total 25 745 20 076 19 189 18 665 3 351 1 452 4 517 768

28

4 Implementation

4.2 Chi-squared-test

For the χ2-test we implement three different algorithm variants: the first one is not optimized,
the second one is fully optimized and the last one is partially optimized. Using the term
optimization we mean a deviation from the "classical" protocol for the purpose of improving its
efficiency. We denote replacing all multiplication and addition operations in integer BCs with
the corresponding operations in arithmetic sharing whenever possible as full optimization
whereas replacing only addition operations is denoted as partial optimization. With non-
optimized implementation we denote a pure BC containing only floating point number gates
in ABY. A description of the χ2-test algorithm is provided in Section 2.4.1 that also contains
Equation (2.1) on p. 8.

4.2.1 Non-optimized

We use Equation (2.1) and boolean floating point number gates in ABY to implement the
non-optimized algorithm. As mentioned in Section 2.6, floating point number gates are
slower and larger than integer gates because of the more demanding operations that floating
point arithmetic rely on. But, due to the precision and the variety of operations that floating
point arithmetic allows, the usage of those gates can not always be avoided. An example of
such kind of situation is the division operation in the χ2-test. The result of the χ2-test can
vary in small ranges and hence integer arithmetic becomes unreliable when high precision
is needed. Constable et al. [CTW+15] emulate 16-bit floating point division which is 2x
less than our lowest precision (32-bit). The exact steps of the algorithm can be found in
Protocol 4.3.

In the following, we give a detailed description of Protocol 4.3. The χ2 function takes an
array of matrices (see Table 2.1) snps as an input. At the very beginning, we create a return
vector v and assign an empty set to it. In Line 2 we go into a loop for each matrix m in
snps containing shares for case and control groups and two alleles and, again, reserve a
return vector r as a result buffer. We precompute sums of observations in the alleles and
groups assigning it to the list sums. We assign the total number of observations in m to 〈n〉B

which equals a+ b+ c + d in Equation (2.3) using the precomputed values from sums. After
that, we perform a loop iteration for each entry 〈entry〉B in m. In Line 7, the number of
observations in the allele at the position of 〈entry〉B in m is assigned to 〈C〉B. Analogously,
〈P〉B gets assigned the number of observations for the group based on the position of 〈entry〉B

in m (cf. Section 2.4.1). Both operations are performed on the precomputed values in sums
to prevent redundant computation of the values. In Line 9, we compute the expected value
〈e〉B followed by assigning the value of entry to 〈o〉B. Next, we append the statistic for the
current entry to r, which is based on the already well-known χ2 Equation (2.1). After that,
we sum up all the values in r as a tree to get low depth, which form the χ2 statistic for the
current SNP. It is then appended to v which, at the end of the algorithm, contains statistic
score for each SNP. Finally, v is returned as the result.

29

4 Implementation

v← χ2(snps)

1 : v← ;
2 : foreach m in snps do

3 : r ← ;
4 : sums← PrecomputeSums(m)

5 : 〈n〉B ← TotalObs(sums)

6 : foreach 〈entry〉B in m do

7 : 〈C〉B ← SumAlleles(〈entry〉B, sums)

8 : 〈P〉B ← SumGroups(〈entry〉B, sums)

9 : 〈e〉B ← 〈P〉B · 〈C〉B/〈n〉B

10 : 〈o〉B ← 〈entry〉B

11 : Append(r, (〈o〉B − 〈e〉B)2/〈e〉B)
12 : Append(v,

∑

i〈r[i]〉
B)

13 : return v

Protocol 4.3: Non-optimized χ2-test algorithm.

The naive implementation of this algorithm in ABY requires a huge amount of RAM. An
execution of the algorithm on 500 SNPs for one party reserves ∼ 7 GB of memory, which
does not satisfy our expectations of performing an efficient large-scale analysis. The amount
of required RAM can be significantly reduced by using so-called SIMD gates in ABY (see
Section 2.6.3). These gates evaluate one gate with longer input constructed from the initial
inputs rather than building a separate gate for each input. Thus, we require much fewer
gates for the same operations which are even a little bit faster compared to simple gates. The
application of the SIMD functionality decreases the amount of used RAM by at least an order
of magnitude. Occupying a similar amount of memory, it is possible to execute the protocol
on 213 = 8 192 SNPs in the aforementioned setting. In this algorithm we use only 32-bit
floating point numbers.

4.2.2 Fully Optimized

For the optimized version of the protocol, we use the formula provided by [Gif14]:

χ2 =
(ad − bc)2(a+ b+ c + d)
(a+ b)(c + d)(b+ d)(a+ c)

, (4.1)

where a, b, c and d are the entries of the matrix for a SNP. Values a and b correspond to the
entries of allele A1 for case (a) and control (b) group. Similarly, values c and d correspond
to the entries of A2 for cases and controls.

30

4 Implementation

The aforementioned formula allows us to efficiently precompute almost all values using
ABY’s Arithmetic circuits (see Section 2.6). We can split the formula into 4 arithmetic
operations: addition, subtraction, division and multiplication. The last one covers also the
squaring operation. Since we operate on unsigned integers in ABY, we have to prevent
subtraction operations yielding negative values. For that purpose, we make use of the
extended expression (a − b)2 = a2 + b2 − 2ab. The implementation details are shown
in Protocol 4.4. Precomputation of values in arithmetic circuits for χ2 leads to the need of
only one floating point number operation for each SNP, i.e. the division of nominator by
denominator in Equation (4.1).

v← χ2
f (snps)

1 : v← ;
2 : foreach m in snps do

3 : 〈ad〉A← m.〈a〉A ·m.〈d〉A

4 : 〈bc〉A← m.〈b〉A ·m.〈c〉A

5 : 〈sum1〉A← m.〈a〉A+m.〈b〉A

6 : 〈sum2〉A← m.〈c〉A+m.〈d〉A

7 : 〈sum3〉A← m.〈b〉A+m.〈d〉A

8 : 〈sum4〉A← m.〈a〉A+m.〈c〉A

9 : 〈nomleft〉A← (〈ad〉A · 〈ad〉A) + (〈bc〉A · 〈bc〉A)− (〈ad〉A · 〈bc〉A)

10 : 〈nomright〉A← 〈sum1〉A+ 〈sum2〉A

11 : 〈nom〉A← 〈nomleft〉A · 〈nomright〉A

12 : 〈denom〉A← (〈sum1〉A · 〈sum2〉A) · (〈sum3〉A · 〈sum4〉A)

13 : 〈nom〉B ← INT2FP(〈nom〉A, 64, 64)

14 : 〈denom〉B ← INT2FP(〈denom〉A, 64, 64)

15 : Append(v, 〈nom〉B/〈denom〉B)
16 : return v

Protocol 4.4: Fully optimized χ2-test algorithm.

In Protocol 4.4, the only input for the algorithm is a set of SNPs snps. The algorithm begins
with reserving the result vector v by assigning an empty set to it. After that, we perform an
iteration of the main routine for each matrix m, i.e. a SNP table, in snps. Then, in Lines 5 and
6, we compute 〈ad〉A and 〈bc〉A by multiplying the corresponding values in the matrix m. In
Lines 5 to 8, we compute the sums of the elements according to the denominator computation
in Equation (4.1). Afterwards, we precompute the left and right parts of the nominator in the
same equation. It is worth to mention, that we use the aforementioned extended formula for
(a− b)2 to calculate it in unsigned integer arithmetic in Line 9. Having both nominator parts,
we need to only multiply them as we do in Line 10 which results in 〈nom〉A. After that, we
calculate the denominator by multiplying the precomputed sums of the rows and columns of

31

4 Implementation

the matrix m. We do this by multiplying the left and right parts of the equation and then we
multiply the results. This action reduces the depth of the circuit from 3 to 2 multiplications,
because we perform the first two multiplications in parallel. In Lines 13 and 14, we convert the
arithmetic shares 〈nom〉A and 〈denom〉A to the 64-bit double precision floating point numbers
shared in the Boolean sharing. Finally, we calculate the last division of the nominator 〈nom〉A

by the denominator 〈denom〉A and append the result to the vector v, which is returned after
the main routine ends.

For this setting, because of a big number of multiplications, we use 64-bit input values for
arithmetic sharing and convert the values into 64-bit double precision floating point numbers.
The reason for not converting the Arithmetic shares to the 32-bit representation is that in
Equation (4.1) we perform many additions followed by many multiplications. This results
in an integer number overflow or in the resulting number being greater than the fraction
size which we want to prevent to not lose the precision of the results. Since we have to
perform only one operation using floating point arithmetic, i.e. division of the nominator by
the denominator, we assume it to be a better choice.

4.2.3 Partially Optimized

In this section, we describe the partially optimized version of the χ2-test algorithm. Similarly
to Section 4.2.2, we use Equation (4.1) to compute the statistic, but here we optimize only
the addition operation in Arithmetic sharing. This is due to an integer overflow in the fully
optimized algorithm when the number of participants becomes relatively large, i.e. >3 000
participants. Since we can accept only correct results and want to perform computations
assuming a very large number of participants, we implement this version of the protocol. It
can be seen as a trade-off between the better efficiency of conversion gates (see Section 2.6.4)
and the broader functionality of slower floating point operations. The algorithm is described
in Protocol 4.5.

In the following, we describe the single steps of Protocol 4.5. This algorithm is very similar
to the fully optimized χ2-test algorithm. The only one exception here is that we optimize
only the addition gates and perform all other operations in a BC. Similarly to the previous
algorithm, we precompute sums of the rows and the columns 〈sumi〉A of the matrix m as well
as the total number of observations n. After that, we convert all entries of m, 〈sumi〉A, and n
to 32-bit floating point numbers in the Boolean sharing. In Lines 15 and 16, we calculate the
multiplications a · d and b · c which we then use to compute the left part of the nominator
equation in Line 17 where we do not need the extended formula for (a − b)2 anymore
and calculate it directly. Afterwards, we calculate the nominator 〈nom〉B by multiplying
the precomputed left part of the nominator 〈nomleft〉B by the right part which is 〈n〉B. We
compute the multiplication of 〈sumi〉B using the depth-optimized multiplication strategy
analogously to Section 4.2.2. As the last step, we divide 〈nom〉B by 〈denom〉B and append
it to the vector v which is returned as the result of the function after we processed all
SNPs.

32

4 Implementation

v← χ2
p (snps)

1 : v← ;
2 : foreach m in snps do

3 : 〈sum1〉A← m.〈a〉A+m.〈b〉A

4 : 〈sum2〉A← m.〈c〉A+m.〈d〉A

5 : 〈sum3〉A← m.〈b〉A+m.〈d〉A

6 : 〈sum4〉A← m.〈a〉A+m.〈c〉A

7 : 〈n〉A← 〈sum1〉A+ 〈sum2〉A

8 : 〈a〉B ← INT2FP(m.〈a〉A, 32, 32)

9 : 〈b〉B ← INT2FP(m.〈b〉A, 32, 32)

10 : 〈c〉B ← INT2FP(m.〈c〉A, 32, 32)

11 : 〈d〉B ← INT2FP(m.〈d〉A, 32, 32)
12 : for i in 1: 4 do

13 : 〈sumi〉B ← INT2FP(〈sumi〉A, 32, 32)

14 : 〈n〉B ← INT2FP(〈n〉A, 32, 32)

15 : 〈ad〉B ← 〈a〉B · 〈d〉B

16 : 〈bc〉B ← 〈b〉B · 〈c〉B

17 : 〈nomleft〉B ← (〈ad〉B − 〈bc〉B)2

18 : 〈nom〉B ← 〈nomleft〉B · 〈n〉B

19 : 〈denom〉B ← (〈sum1〉B · 〈sum2〉B) · (〈sum3〉B · 〈sum4〉B)

20 : Append(v, 〈nom〉B/〈denom〉B)
21 : return v

Protocol 4.5: Partially optimized χ2-test algorithm.

33

4 Implementation

Since we optimize only addition, there is only a small probability that we will exceed the
23-bit fraction size of the floating point number. Hence, we use 32-bit additive sharing in
this algorithm which we then convert into 32-bit single precision floating point numbers. We
operate on 32-bit numbers and the fraction size of a 32-bit floating point number is 23 bits.
Consequently, we assume that the overall number of GWAS participants will be always smaller
than 223 (8 388 608) for the partially optimized algorithm. This is a relatively big number and
it is supposed to be more than enough for most application scenarios. However, one could use
64-bit numbers for a scenario requiring a larger number of participants.

4.3 G-test

Analogously to the previous section, we implement three versions of the G-test: non-optimized,
fully optimized and partially optimized. The non-optimized version uses only floating point
arithmetic in Boolean sharing. The full optimization uses additions and multiplications in
arithmetic sharing and conversion gates to convert numbers into boolean floating point
numbers. The partial optimization optimizes only addition operations in the Arithmetic
sharing.

4.3.1 Non-optimized

The structure of the non-optimized algorithm is shown in Protocol 4.6. The general idea
of this algorithm is a straightforward implementation of Equation (2.6) on p. 10. The only
deviation from the protocol is that the sums of observations are precomputed for a SNP
at the beginning of the protocol in order to prevent repeated computation of the same
values.

In the following, we describe Protocol 4.6 in detail. The function g(snps) takes the vector of
SNPs snps as input and returns the vector of resulting shares v as output. At the beginning of
the protocol, we reserve the result vector v and perform a loop iteration for each matrix m in
snps. The matrix m consists of four values containing the number of observations for two
alleles and two groups, i.e. case and control groups. Afterwards, we reserve the result vector
for the statistic r and precompute the sums of observations in the columns and rows, and
assign the resulting vector to sums. After that, we compute the total number of observations
in m using the precomputed sum values and assign the result to the share 〈n〉B. In Line 6,
we perform a loop iteration for each entry 〈entry〉B of the matrix m. We assign the numbers
of observations in alleles and groups to the corresponding values 〈C〉B and 〈P〉B also using
the precomputed values in sums based only on the position of 〈entry〉B in m. In Line 9, we
compute the expected value 〈e〉B for 〈entry〉B in m. We assign the value of 〈entry〉B to 〈o〉B for
better readability and compute the complete statistic by dividing the observed value 〈o〉B by
the expected value 〈e〉B and calculating the natural logarithm of the result which we assign
to 〈s〉B. At the end of the protocol, we perform the last operation for the statistic, which is the

34

4 Implementation

v← g(snps)

1 : v← ;
2 : foreach m in a do

3 : r ← ;
4 : sums← PrecompSums(m)

5 : 〈n〉B ← TotalObs(sums)

6 : foreach 〈entry〉B in m do

7 : 〈C〉B ← SumAlleles(〈entry〉B, sums)

8 : 〈P〉B ← SumGroups(〈entry〉B, sums)

9 : 〈e〉B ← 〈P〉B · 〈C〉B/〈n〉B

10 : 〈o〉B ← 〈entry〉B

11 : 〈s〉B ← 〈o〉B/〈e〉B

12 : 〈s〉B ← ln(〈s〉B)

13 : 〈s〉B ← 〈s〉B · 〈o〉B

14 : Append(r, (〈s〉B)
15 : Append(v,

∑

i〈r[i]〉
B)

16 : return v

Protocol 4.6: Non-optimized G-test algorithm.

35

4 Implementation

multiplication of the aforementioned result by 〈o〉B and appending the result to the vector r.
Now we can compute the sum of the computed values which corresponds to the statistic for
the current SNP and append it to the vector v.

4.3.2 Fully Optimized

The fully optimized G-test is implemented as follows: the algorithm takes 32-bit additively
secret-shared values as input and produces 32-bit boolean shares as output. The protocol
uses unsigned integer arithmetic in the arithmetic sharing and floating point arithmetic in the
boolean sharing. In the fully optimized algorithm, we optimize addition as well as multiplica-
tion operations to maximally utilize the advantages of the protocol conversion gates. We show
the implementation details of the current algorithm in Protocol 4.7.

v← g f (snps)

1 : v← ;
2 : foreach m in snps do

3 : r ← ;
4 : sums← PrecompSums(m)

5 : 〈n〉A← TotalObs(sums)

6 : 〈n〉B ← INT2FP(〈n〉A, 32,32)

7 : foreach 〈entry〉A in m do

8 : 〈C〉A← SumAlleles(〈entry〉A, sums)

9 : 〈P〉A← SumGroups(〈entry〉A, sums)

10 : 〈e〉A← 〈P〉A · 〈C〉A

11 : 〈entry〉B ← INT2FP(〈entry〉A, 32,32)

12 : 〈e〉B ← INT2FP(〈e〉A, 32, 32)

13 : 〈e〉B ← 〈e〉B/〈n〉B

14 : 〈o〉B ← 〈entry〉B

15 : 〈s〉B ← 〈o〉B/〈e〉B

16 : 〈s〉B ← ln(〈s〉B)

17 : 〈s〉B ← 〈s〉B · 〈o〉B

18 : Append(r, (〈s〉B)
19 : Append(v,

∑

i〈r[i]〉
B)

20 : return v

Protocol 4.7: Fully optimized G-test algorithm

In Protocol 4.7 the function g f takes an array of SNPs snps as input and produces a result
vector v as output. The algorithm begins with allocation of the result vector v after which a

36

4 Implementation

loop iteration is performed for each matrix m in snps. In Line 3, we reserve a result vector r
for m and then precompute sums of the columns and rows of m, and store them in the variable
sums. Based on sums, we also compute the total number of observations in m using the
function TotalObs and convert the resulting share into a floating point number shared in the
Boolean sharing. Afterwards, an iteration of the routine is performed for each entry 〈entry〉A

in m. First, we compute the sums of alleles and groups in m based on the position of 〈entry〉A

using the precomputed array sums. After that, the expected value 〈e〉A is calculated by
multiplying 〈P〉A and 〈C〉A, converting 〈e〉A and 〈entry〉A to Boolean floating point numbers
and dividing 〈e〉B by 〈n〉B. As the last step, we divide the observed value 〈o〉B by 〈e〉B and
perform the calculation of the natural logarithm of the resulting value, and then we multiply
it by 〈o〉B. At the end of the routine, the resulting value 〈s〉B is appended to r and after
performing all iterations we append the sum of the shares in r to v.

When testing the fully optimized version of the G-test we already faced problems for >2 000
participants which is due to the integer overflow caused by many multiplication operations
and small 32-bit numbers, thus yielding incorrect results. However, the G-test requires much
more operations to be computed in floating point arithmetic after the conversion compared
to the χ2-test. That is why the use of 64-bit values will make the routine very inefficient, and
this is the reason to keep 32-bit numbers for this protocol.

4.3.3 Partially Optimized

The implementation of the partially optimized G-test algorithm is shown in Protocol 4.8.
The implementation uses a similar strategy as was used in Section 4.2.3, but using the standard
Equation (2.6) on p. 10. The difference to Section 4.3.2 is that only addition operations are
optimized where it is possible using the Arithmetic sharing. This strategy results in a good
performance and allows a large number of participants which is limited to 8 388 608 (223).
In this protocol, 32-bit unsigned integer numbers in Arithmetic sharing are used as an input
and 32-bit floating point numbers in Boolean sharing as an output.

The function gp described in Protocol 4.8 takes an array of SNPs snps as an input and yields a
result vector v as an output. First of all, we reserve a vector v for the results and perform an
iteration of the routine for each matrix m in snps. After that, a result vector r for m is reserved.
In Line 4, sums of observations in the rows and columns of m are computed and stored in the
variable sums. Next, the total number of observations in m is computed and converted to the
floating point number representation in Boolean sharing which is then stored in 〈n〉B. Each
variable in sums is also converted to the floating point representation in Boolean sharing.
In Line 9, we perform a loop iteration for each entry 〈entry〉A in m. First, 〈entry〉A is converted
to a floating point number in Boolean sharing. Afterwards, the sums of observations in alleles
and groups are computed based on the position of 〈entry〉B in m using the precomputed values
in sums, and are stored in the corresponding shares 〈C〉B and 〈P〉B. In Line 13, the expected
value is computed using the basic χ2-test equation. After that, we compute the resulting
value 〈s〉B dividing 〈o〉B by 〈e〉B. We also perform the logarithm operation on the result and

37

4 Implementation

v← gp(snps)

1 : v← ;
2 : foreach m in snps do

3 : r ← ;
4 : sums← PrecompSums(m)

5 : 〈n〉A← TotalObs(sums)

6 : 〈n〉B ← INT2FP(〈n〉A, 32, 32)
7 : for i in 1 : 4 do

8 : 〈sums[i]〉B ← INT2FP(〈sums[i]〉A, 32, 32)

9 : foreach 〈ent r y〉A in m do

10 : 〈entry〉B ← INT2FP(〈entry〉A, 32, 32)

11 : 〈C〉B ← SumAlleles(〈entry〉B, sums)

12 : 〈P〉B ← SumGroups(〈entry〉B, sums)

13 : 〈e〉B ← 〈P〉B · 〈C〉B/〈n〉B

14 : 〈o〉B ← 〈entry〉B

15 : 〈s〉B ← 〈o〉B/〈e〉B

16 : 〈s〉B ← ln(〈s〉B)

17 : 〈s〉B ← 〈s〉B · 〈o〉B

18 : Append(r, (〈s〉B)
19 : Append(v,

∑

i〈r[i]〉
B)

20 : return v

Protocol 4.8: Partially optimized G-test algorithm

38

4 Implementation

multiply it by 〈o〉B. The resulting value is then stored in r. Finally, we append the sum of the
statistics for single entries in m and append the result to the vector v.

4.4 Extended Chi-squared-test and G-test

Using the term "extended" test, we describe a column extension of the matrix shown in
Table 2.1. We construct a contingency table with k gene counts for both case and control
groups. While the columns in Table 2.1 correspond to counts of single alleles in observed
genotypes, here, columns correspond to codewords, i.e. genotypes or genotype sequences,
whose length can vary depending on the task. The idea of this approach is to prevent the
loss of information, e.g. the information that the first allele in a genotype is dominant and
the second one is recessive will be considered in this method. The loss occurs due to the
dimension reduction of genotypes to only two counts of alleles. The data representation for
the extended χ2-test is shown in Table 4.2, where columns correspond to the codeword IDs
and rows to the groups. Therefore, the variable in a cell (i, j) corresponds to the number of
observations of the codeword with id j in the groupi .

Table 4.2: Contingency table for the extended χ2-test.

id1 id2 ... idn

group1 obs1,1 obs1,2 ... obs1,n
group2 obs2,1 obs2,2 ... obs2,n

A statistic can be computed on this table using Equations (2.1) and (2.6). The only one
difference is the calculation of observed and expected values. The calculation of the χ2-
test causes a large overhead using the extended contingency table. In order to reduce the
overhead, the values are calculated as described in Section 2.4.1 for the goodness-of-fit
test.

For summing up columns we construct an addition binary tree. This does not change the
number of operations we have to perform, but reduces the depth of the subtree to O

�

log n
�

from O
�

n
�

compared to the sequential addition.

4.5 P-test

The P-test is based on the other statistics. It checks if the result of the statistic is significant
with respect to some significance value α (see Section 2.4.3). We use the expression S(snps) to
denote performing a generic statistical test on an array of SNPs snps.

In the following, we describe Protocol 4.9 in detail which computes the P-test. The algorithm
gets an array of SNPs snps, as also used in the underlying statistics, containing matrices m and

39

4 Implementation

v← gp(snps, 〈c〉B)

1 : v← S(snps)

2 : foreach 〈s〉B in v do

3 : 〈d〉B ← 〈c〉B − 〈s〉B

4 : 〈s〉B ←MUX(〈1〉B, 〈0〉B, 〈d[msb]〉B)
5 : return v

Protocol 4.9: P-test algorithm

a share in boolean sharing containing the critical value c derived from α (see Section 2.4.1).
As in the first step of this algorithm, we apply a static S on snps and obtain a result vector v
with a computed test value for each SNP. After that, an iteration of the routine is performed
on each test result share 〈s〉B in v. We subtract 〈s〉B from the critical value and assign its
result to difference share 〈d〉B which is then used as follows: the most significant bit msb
in 〈d〉B indicates whether the value is negative and thus implies that 〈s〉B was greater than
〈c〉B if the value is negative. Finally, if 〈s〉B was greater than 〈c〉B, 〈s〉B is set to 〈1〉B and 〈0〉B

otherwise. After the routine is finished, the altered vector v containing only secret-shared
zeros and ones is returned as the result.

4.6 Outsourcing Computation

In the outsourcing routine, multiple parties send their pre-shared inputs to the semi-trusted
third parties in order to perform collaborative SMPC. The routine consists of the following
three parts:

Outsourcing inputs Here, we use the already available ABY routine for creating shares to
avoid implementing the routines on our own as computing shares locally without ABY
leads to very low-level programming, especially for floating point numbers. After shares
are created locally using two ABY instances, an institution sends shares s0 and s1 to the
non-collaborative semi-trusted third parties T0 and T1.

Executing the algorithm The servers, after receiving the shares, run the routine for calcu-
lating the algorithm and send their outputs back to the institutions.

Revealing results After receiving the result shares, an institution reconstructs plaintext
results from shares using, again, two local ABY instances.

Hence, the outsourcing algorithm differs from the standard algorithms only in one aspect,
namely handling input and output gates. Instead of the usual PutINGate and PutOUTGate
methods in the ABY circuit, we use the PutSharedINGate and PutSharedOUTGate routines.
The first one requires pre-shared values as input and produces shared values, whereas the
second one performs it vice-versa.

40

5 Evaluation

5.1 Benchmarking Environment

We run all our benchmarks on two servers that are equipped with Intel Core i7-4770K
processors, 16 GB of RAM, and 1 TB Solid-State Drives (SSDs).

In the LAN setting, our servers have a bandwidth of 1 GB/s and the network latency is
restricted to 1.2 ms, whereas for the WAN setting we restrict the bandwidth to 100 MB/s and
the network latency to 100 ms.

5.2 Benchmarking in the LAN Setting

In the following, we describe and analyze the benchmarking results of the implemented
statistical tests in the LAN setting.

5.2.1 Chi-squared-test

The benchmarking results of all the variants of the χ2-test in the LAN setting are depicted in
Figure 5.1. We benchmark the algorithms with as many SNPs as possible while keeping the
execution using only RAM to not influence run-times by using the swap space on the hard
drive, which is fast on the SSD, but still slower by a factor 2-3x compared to the computation
using only RAM.

It can be seen that the non-optimized version of the algorithm is significantly (1.5-4x) slower
than the two optimized versions. This is not only due to the optimization using conversion
gates, but also due to the more suitable equation for this task. The crucial remark is that the
partially optimized algorithm is only slightly slower than the fully optimized algorithm, but
allows a huge number of participants in GWAS.

More precisely, the fully optimized χ2 algorithm is by a factor 1.6-3.5x faster than the
non-optimized, and the partially optimized algorithm is by a factor 1.5-3x faster than the
non-optimized. The fully-optimized algorithm is by a factor 1.4x faster than the partially
optimized. The extended algorithm with 2 IDs is on average by a factor 1.35x faster than the
non-optimized.

41

5 Evaluation

28 29 210 211 212 213 214 215

0

20

40

60

80

100

120

140

Number of SNPs

R
un

-T
im

es
in

s

Non-optimized
Extended

Partially optimized
Fully optimized

Figure 5.1: Run-times of the χ2-test algorithms in ABY in the LAN setting.

5.2.2 G-test

The performance results of the G-test are depicted in Figure 5.2. Since we use only one
equation for all implementations, the difference between the versions is not so significant as
for the χ2-test. However, a tendency of the performance improvement can be seen directed
to the optimized algorithms. The fully optimized algorithm is by a factor 1.5-1.7x faster
than the non-optimized, and the partially optimized algorithm is by factor 1.2-1.5x faster
than the non-optimized. The fully-optimized algorithm is by a factor 1.1-1.3x faster than the
partially optimized. The extended algorithm is on average by a factor 1.4x faster than the
non-optimized.

In addition, the running times of the χ2- and G-test are shown in Table 5.1. As it can be seen,
the optimized versions of the χ2 algorithms are more efficient than the other algorithms.
On the other hand, the G-test nearly reaches the performance of the non-optimized χ2-test
algorithm only in the fully optimized algorithm. The non-optimized χ2-test is by a factor
1.3-2x faster than the corresponding G-test. We benchmarked only the settings where the ABY
instance fits into RAM. That is why most of the statistics are marked with "-" in the last two
rows and only the most light-weight ones (χ2

p , χ2
f , and p) succeeded.

42

5 Evaluation

28 29 210 211 212 213

0

20

40

60

80

100

120

140

160

Number of SNPs

R
un

-T
im

es
in

s

Non-optimized
Extended

Partially optimized
Fully optimized

Figure 5.2: Run-times of the G-test algorithms in ABY in the LAN setting.

Table 5.1: Run-times for the χ2-, G- and P-test algorithms in ABY in the LAN setting in
seconds.

SNPs χ2 χ2
e χ2

p χ2
f g ge gp g f p

28 3.0 4.3 1.9 1.8 6.6 4.8 4.5 3.9 0.2
29 8.6 6.3 3.2 2.8 13 9.1 8.6 7.4 0.4

210 15 11 5.3 5.2 21 16 16 14 0.7
211 29 22 12 8.6 40 29 32 26 1.3
212 57 42 21 17 81 54 64 52 2.6
213 118 82 39 33 161 107 130 102 4.8
214 - - 77 65 - - - - 9.5
215 - - - 133 - - - - 19

5.2.3 Comparison with [CTW+15]

In Figure 5.3, we compare the run-times of our χ2 algorithms and the χ2 algorithm intro-
duced in [CTW+15]. Their implementation is not publicly accessible. Hence, we use the
benchmarking results mentioned in the paper. We also use the number of SNPs for the
benchmarks that they use in the paper. They do not provide much information about their

43

5 Evaluation

results, but only for 311 and 9 330 SNPs. That is why we show only the results for those
two SNP counts. Since we have a similar benchmarking environment, the results are roughly
comparable in the LAN setting.

311 9 330

0

200

400

600

800

1 000

1 200

1 400

×10

×3

Number of SNPs

R
un

-T
im

es
in

s

[CTW+15]
Non-optimized

Extended
Partially optimized

Fully optimized

Figure 5.3: Comparison of the run-times of our χ2-test algorithms with those of [CTW+15]
in the LAN setting.

As appears from Figure 5.3, the run-times of the algorithm introduced in [CTW+15] are
always worse than ours, even compared to our slowest algorithms. As depicted in the figure,
the non-optimized χ2-test outperforms the solution of Constable et al. by factor 10x. Both,
the fully and the partially optimized algorithm, produce roughly 30x better results compared
to [CTW+15]. Therefore, we assume their algorithms to be slower also in our benchmarking
environment.

The exact comparison results are also shown in Table 5.2. More precisely, the non-optimized,
fully, and partially optimized algorithms are accordingly 9.2x, 22.3x, and 20.4x faster for the
311 SNPs setting and 10.1x, 35.3x, and 29.8x faster for the 9330 SNPs setting. We suggest
using the partially optimized algorithm, because it is almost as fast as the fully optimized
algorithm, but can handle a large number of participants in GWAS.

44

5 Evaluation

Table 5.2: Comparison of the run-times of our χ2-test algorithms with those of [CTW+15]
in the LAN setting in seconds.

311 SNPs 9330 SNPs
[CTW+15] 47 1342
Non-optimized 5.1 132
Extended 4.9 92
Partially optimized 2.3 45
Fully optimized 2.1 38

5.2.4 P-test

We depict the benchmarking results of the P-test in Figure 5.4. As the underlying statistic for
the P-test, we use our three variants of the χ2, and G-test. The overhead caused by the P-test
is marked in yellow. This benchmark is performed on 8 192 SNPs, which is the upper bound
for all statistics keeping the computation only in RAM. As appears from the figure, the P-test
overhead is constant with a small jitter because of the network connection and comparably
small compared to the run-time of any of the statistics (2-4.3 s, which amounts to 1-11 % of
the total run-time). The P-test, as well as the underlying statistic, has linear complexity in
the number of SNPs. Thus, the overhead will grow proportionally with an increasing number
of SNPs.

We show the results of the P-test benchmarking in Table 5.3. The P-test routine definitely
does not add a significant overhead to the protocol. That is why we assume that also the
P-test will be much faster using any of the aforementioned tests as the underlying statistic
compared to the χ2-test in [CTW+15].

Table 5.3: P-test run-time overhead on 213=8 192 SNPs based on the run-times of the under-
lying statistic in seconds.

χ2 χ2
p χ2

f g gp g f

Used statistic 118 39 33 161 130 102
P-test overhead 4 2.5 4.2 2 3 2
Total run-time 122 42 38 163 133 104

Since the P-test can be performed without a significant overhead, one can efficiently ap-
ply it to hide the exact results of the statistic, but still allow to perform hypothesis test-
ing on data, and parametrize the algorithm by setting different significance threshold val-
ues.

45

5 Evaluation

χ2 χ2
p χ2

f
g gp g f

0

20

40

60

80

100

120

140

160

4

2.5
4.29

2

3

2

118

39.83 33.7

161

130

102

R
un

-T
im

es
in

s

Used statistic
P-test overhead

Figure 5.4: P-test run-time overhead on 213=8 192 SNPs based on the run-times of the
underlying statistic with and without the P-test.

5.3 Benchmarking in the WAN Setting

In Figure 5.5, we depict the benchmarking results of the implemented χ2-test algorithms
in the WAN setting. We want to emphasize the substantial overhead for all protocols in
the WAN setting compared to the LAN setting. Furthermore, the partially optimized χ2-
test algorithm performs better than the fully optimized due to a by 22% larger number of
AND-gates.

In our benchmarks, the algorithms in the WAN setting were approximately by an order of
magnitude slower than in the LAN setting. This is a big difference that was a motivation
to find a way of using our algorithms in the LAN setting by keeping the usage scenarios
practical.

5.4 Outsourcing Computation

In the outsourcing scenario, we have multiple medical institutions that want to perform a
GWAS analysis on an aggregated dataset. The institutions are randomly located around the

46

5 Evaluation

28 29 210 211 212

0

200

400

600

Number of SNPs

R
un

-T
im

es
in

s

Non-optimized
Extended

Partially optimized
Fully optimized

LAN

Figure 5.5: Run-times of the χ2-test algorithms in ABY in the WAN setting.

world. Since SMPC is much slower in high-latency networks, they want to outsource the com-
putation to the non-colluding Semi-Trusted Third Parties (STTPs). Institutions are connected to
the STTPs via WAN. STTPs, on the other hand, are connected via LAN.

Institutions locally secret share their data and send it to STTPs via a Transport Layer Secu-
rity (TLS) channel, such that an attacker cannot intercept both shares during transfer and
reconstruct the secret data from them. The STTPs receive the data and compute a prede-
fined routine for statistical testing. After that, they send the data to each institution, which
reconstructs the result from the shares received from the STTPs.

5.4.1 Local Share Creation

The time for the local generation of shares is shown in Table 5.4. We use ABY to generate
shares in order to abstract from the details of the manual protocol processing. The evaluation
of the circuit routine is slower than dealing with bit-values, but much more simple and
demands much less manual work.

As can be seen from Table 5.4, Arithmetic shares from integer numbers are generally gener-
ated faster than Boolean shares from floating point numbers. More detailed, 64-bit Arithmetic
share generation is 1.8-4.5x faster than Boolean, and 32-bit Arithmetic share generation is by
a factor 2-3x faster than that for 64-bit numbers. In the table, we provide run-times only for
the sharings and bit-lengths that were used to produce input shares in this thesis, i.e. 32-bit
Boolean sharing for the non-optimized algorithms, 64-bit Arithmetic sharing for the fully opti-
mized χ2-test, and 32-bit Arithmetic sharing for all other algorithms.

47

5 Evaluation

Table 5.4: Run-times in milliseconds for the local generation of outsourced inputs in Arith-
metic (A) and Boolean (B) sharings including instantiation time of the ABY routine.

SNPs 32-bit (A) 64-bit (A) 32-bit (B)
28 1.5 3.1 5.7
29 2.4 5.5 17

210 4.2 10 38
211 7.7 19 79
212 14 38 171
213 28 76 353
214 56 153 704
215 113 306 1397

5.4.2 Benchmarking

For the purpose of comparison, we run our implemented tests for different numbers of parties
in order to determine how much overhead an increased number of protocol participants
brings in GWAS. The results of this experiment is shown in Table 5.5.

As it appears from the table, the tests where input numbers are shared in Arithmetic sharing
have a nearly constant run-time on the number of involved parties. This is due to non-
interactive addition in Arithmetic sharing, i.e. absolutely no communication between parties
is required. The additionally required computation time however does not influence the
results for even a 128-fold difference in the number of participants.

For the optimized χ2-tests, the run-times are very similar and are roughly almost always
2.5 seconds, whereas for the G-tests we observe higher run-times for the fully optimized
(4 s, which is slower by a factor 1.6x) and the partially optimized (5 s, which is slower
by a factor 2x) algorithms, which also remain nearly constant in the number of partici-
pants.

Nevertheless, the algorithms that are run in only Boolean sharing are (i) much slower and
(ii) constantly grow in the number of participants. Performing tests on a small number of
participants, the overhead growth is not intensive, e.g. 1.26x (2 parties), 1.19x (4 parties),
1.37x (8 parties), etc. for the non-optimized χ2-test. This changes with a large number of
participants, e.g. for the same χ2-test 1.86x (128 parties), 1.92x (256 parties). The run-times
of the non-optimized G-test follow a similar tendency.

In Figure 5.6, we depict the information from Table 5.5. We limit it to 256 parties, such that
the execution of the protocol fits into RAM in ABY. However, the run-times for Arithmetic
sharing will be valid also for a larger number of participants, because we can sum up all the
shares before the execution of the ABY instance. In the figure, the growth of run-times of the
non-optimized algorithms can be perceived more intuitively. The main point of this figure

48

5 Evaluation

Table 5.5: Run-times of χ2- and G-test on 256 SNPs for multiple parties in the LAN setting
in seconds.

Parties χ2 χ2
f χ2

p g g f gp

2 4.1 2.3 2.5 6.3 4 5
4 5.2 2.5 2.5 6.9 4 5
8 6.2 2.5 2.5 7.8 4 5

16 8.5 2.5 2.5 10 4 5
32 13 2.5 2.5 15 4 5
64 22 2.5 2.5 24 4 5

128 41 2.5 2.5 43 4 5
256 79 2.5 2.5 82 4 5

is that only the non-optimized algorithms (marked orange) have non-constant growth of
run-times.

For the purpose of comparison, we fixed the number of SNPs to 256 which was the maximum
such that all algorithms finish without running out of RAM to prevent increasing the run-times
by using swap space.

We exclude the P-test from this benchmark, because it has a constant overhead on top of
the underlying statistic that depends on the number of SNPs. Since the number of SNPs is
constant in this case, the P-test will not change the tendency of growth of the single algorithms,
and the tendency of growth is what we want to show in Figure 5.6.

Secure Trasfer of Shares

We performed an analysis of the transfer times in the WAN setting using TLS, which is used for
securing the communication between institutions and STTPs in order to protect transferred
shares from disclosure. We observed that the transfers have large variations in the transfer
speed. Speed for transferring data from 128 B up to 512 MB varies in the range 32-98 Mbit/s.
Despite these variances, the time required for transferring shares is negligible compared to
the run-time for any of the protocols.

Reconstruction of Results

The time for parties to locally retrieve the results from the received shares for all protocols
is ∼ 1.6 ms for 256 SNPs, which is also negligible compared to the run-time of any of the
protocols.

49

5 Evaluation

21 22 23 24 25 26 27 28

0

20

40

60

80

Number of parties

R
un

-T
im

es
in

s

Non-optimized
Partially optimized
Fully-optimized
χ2

g

Figure 5.6: Run-times of our χ2- and G-test algorithms on 256 SNPs for multiple parties in
the LAN setting in the outsourcing scenario.

Extended algorithm

2

128
256 2

128
256

0

50

R
un

-T
im

es
in

s

0

20

40

60

80

2

128
256 2

128
256

0

50

Number of parties Number of IDs

Number of parties Number of IDs

χ2-test G-test

Figure 5.7: Run-times of the extended χ2- and G-test on 64 SNPs for multiple parties and
IDs in the LAN setting in the outsourcing scenario.

In Figure 5.7, we show the run-times of the extended χ2- and G-test on 64 SNPs from 2 to
256 collaborating institutions and from 2 to 256 number of codewords. As it can be seen in

50

5 Evaluation

the figure, the overhead for the extended protocol grows in the number of codewords, but
remains constant in the number of parties.

5.5 Communication

In Figure 5.8, we provide the communication requirements for all of the proposed algorithms.
Since for multiple parties we aggregate the information in additive sharing (which is for
free), and other sharings are suboptimal for this task, we do not detail the communication
requirements for >2 parties.

28 29 210 211 212 213

2−2

2−1

20

21

22

23

24

25

Number of SNPs

C
om

m
un

ic
at

io
n

in
G

B

Non-optimized
Extended
Partially optimized
Fully-optimized
χ2

g

Figure 5.8: Communication of our χ2- and G-test algorithms depending on number of SNPs.

The amortized communication costs for performing a test on one SNP are shown in Ta-
ble 5.6. Communication is almost equally distributed among parties. Hence, for find-
ing communication requirements for one party, the values from Table 5.6 have to be di-
vided by 2.

In Table 5.7, we show the amortized communication costs for the extended χ2- and G-test
for multiple IDs. As it can be seen in the table, the algorithms scale linearly in the number of
IDs.

51

5 Evaluation

Table 5.6: Total amortized communication of our χ2- and G-test algorithms for one SNP in
megabytes.

χ2 χ2
e χ2

p χ2
f g ge gp g f p

Communication 2.95 1.88 0.98 0.82 4.06 2.44 3.32 2.63 0.05

Table 5.7: Total amortized communication of our extended χ2- and G-test algorithms for
multiple IDs for one SNP in megabytes.

IDs 2 4 8 16 32 64 128 256
χ2

e 1.6 3 5.9 11 23 46 92 184
ge 2.3 4.6 9.1 18 36 71 143 286

52

6 Conclusion

In this chapter we summarize the results of this work and give an outlook for possible future
work.

6.1 Summary and Discussion

In the recent years there were many attempts to design algorithms for privacy-preserving dis-
tributed GWAS. They were not successful though in terms of practicality, because they either
reduced the utility of the results by adding noise or were too inefficient.

Using and extending the state-of-the-art SMPC framework ABY [DSZ15] enabled us to con-
struct and implement very efficient algorithms for χ2-, G-, and P-tests that outperform the
best previous work by up to factor 35x.

In addition, we implemented a more realistic version of the protocols that operates on code-
word counts instead of counts of only two alleles. This prevents information losses because
of the dimension reduction in the preprocessing step of the protocols.

Finally, we considered an outsourcing scenario where multiple medical institutions privately
share their data and conduct statistical tests on it. More specifically, the secret-shared data
is securely transmitted via TLS to two Semi-Trusted Third Parties (STTPs) that perform the
computation in a low-latency network,e.g. two data centers in the same local network or
directly connected via a high-speed fiber-glass channel, and also return the results in secret-
shared form. It turns out that the run-time of the optimized protocols only slightly depends
on the number of involved parties, thereby making the approach scalable for a large number
of participants.

All protocols are very efficient (especially in the LAN setting) in terms of run-time, which
does not depend on the number of participants, i.e. observations. For example, it takes 4 ms
to compute the fully optimized χ2-test, 12.5 ms to compute the fully optimized G-test, and
0.5 ms overhead to compute the P-test on one SNP.

53

6 Conclusion

6.2 Future Work

The privacy-preserving GWAS protocols can be improved in many ways. We describe our
ideas for possible future improvements below:

• Security against malicious adversaries. In this thesis, we consider only passive
adversaries, which is commonly done before designing protocols that consider also
active adversaries. The passive model is not realistic for real-world applications, because
in the real world, adversaries can actively interfere in protocols and will not conform
to rules. However, a semi-honest adversary protocol can be extended to malicious at a
moderate cost.

• Implementation of other statistical tests. GWAS can be performed based on a variety
of statistics. First of all, adding new statistical tests, e.g. Student’s t-test [QCA+14]
or Fisher’s exact text [ABV+15], to the SMPC suite would contribute to analyzing
the complexity of statistical tests in SMPC, and would allow to use the tests in other
application scenarios. In addition, one could possibly find tests that better fit to today’s
GWAS and/or are more efficient in SMPC.

• Extension to n parties in SMPC. Our implementation assumes only two non-colluding
parties. An extension to n parties [BNP08; CHK+12; AFL+16; FLNW17] allows more
institutions to participate in privacy-preserving GWAS. This extension can also be
applied to STTPs for the outsourcing scenario in this thesis.

54

List of Figures

2.1 DNA sequence illustration. 6
2.2 1-out-of-2 Oblivious Transfer protocol. 12
2.3 Outsourcing computation scheme for computing a statistic S on aggregate data

received from multiple parties. 19

4.1 XOR-chain for computing (2k − 1) 7→ 2k. 26
4.2 8-bit logical barrel right shifter [PSW02]. 26
4.3 Integer to floating point number conversion and optimizations 28

5.1 Run-times of the χ2-test algorithms in ABY in the LAN setting. 42
5.2 Run-times of the G-test algorithms in ABY in the LAN setting. 43
5.3 Comparison of the run-times of our χ2-test algorithms with those of [CTW+15]

in the LAN setting. 44
5.4 P-test run-time overhead on 213=8 192 SNPs based on the run-times of the

underlying statistic with and without the P-test. 46
5.5 Run-times of the χ2-test algorithms in ABY in the WAN setting. 47
5.6 Run-times of our χ2- and G-test algorithms on 256 SNPs for multiple parties

in the LAN setting in the outsourcing scenario. 50
5.7 Run-times of the extended χ2- and G-test on 64 SNPs for multiple parties and

IDs in the LAN setting in the outsourcing scenario. 50
5.8 Communication of our χ2- and G-test algorithms depending on number of SNPs. 51

55

List of Tables

2.1 SNP distribution table. 7

4.1 Integer to floating point number conversion and optimizations. 28
4.2 Contingency table for the extended χ2-test. 39

5.1 Run-times for the χ2-, G- and P-test algorithms in ABY in the LAN setting in
seconds. 43

5.2 Comparison of the run-times of our χ2-test algorithms with those of [CTW+15]
in the LAN setting in seconds. 45

5.3 P-test run-time overhead on 213=8 192 SNPs based on the run-times of the
underlying statistic in seconds. 45

5.4 Run-times in milliseconds for the local generation of outsourced inputs in
Arithmetic (A) and Boolean (B) sharings including instantiation time of the
ABY routine. 48

5.5 Run-times of χ2- and G-test on 256 SNPs for multiple parties in the LAN setting
in seconds. 49

5.6 Total amortized communication of our χ2- and G-test algorithms for one SNP
in megabytes. 52

5.7 Total amortized communication of our extended χ2- and G-test algorithms for
multiple IDs for one SNP in megabytes. 52

56

List of Abbreviations

A Adenine

BC Boolean Circuit

C Cytosine

C-OT Correlated Oblivious Transfer

CDF Cumulative Distribution Function

DNA Deoxyribonucleic Acid

G Guanine

GC Garbled Circuit

GMW Goldreich-Micali-Wigderson

GWAS Genome-Wide Association Studies

HE Homomorphic Encryption

iDASH Integrating Data for Analysis, Anonymization and SHaring

IEEE Institute of Electrical and Electronics Engineers

LAN Local Area Network

MAF Minor Allele Frequency

MUX Multiplexer

OT Oblivious Transfer

PSI Private Set Intersection

R-OT Random Oblivious Transfer

RAM Random Access Memory

SGX Software Guard Extensions

SIMD Single Instruction Multiple Data

SMPC Secure Multi-Party Computation

SNP Single-Nucleotide Polymorphism

57

List of Abbreviations

SSD Solid-State Drive

STPC Secure Two-Party Computations

STTP Semi-Trusted Third Party

T Thymine

TLS Transport Layer Security

USD US-Dollars

WAN Wide Area Network

XOR Exclusive OR

χ2 Chi-squared

58

Bibliography

[ABL+04] M. Atallah, M. Bykova, J. Li, K. Frikken, and M. Topkara, “Private collaborative
forecasting and benchmarking”, in WPES, 2004 (cit. on p. 14).

[ABV+15] F. Aminkeng, A. P. Bhavsar, H. Visscher, S. R. Rassekh, Y. Li, J. W. Lee, L. R.
Brunham, H. N. Caron, E. C. van Dalen, L. C. Kremer, et al., “A coding variant
in RARG confers susceptibility to anthracycline-induced cardiotoxicity in
childhood cancer”, Nature Genetics, 2015 (cit. on p. 54).

[ABZS13] M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele, “Secure computation on
floating point numbers”, in NDSS, 2013 (cit. on pp. 23 sq.).

[AFL+16] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara, “High-throughput
semi-honest secure three-party computation with an honest majority”, in
CCS, 2016 (cit. on p. 54).

[ALSZ13] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient oblivious
transfer and extensions for faster secure computation”, in CCS, 2013 (cit.
on pp. 12 sqq.).

[Ant17] J. Antonakis, “On doing better science: from thrill of discovery to policy
implications”, The Leadership Quarterly, 2017 (cit. on p. 8).

[BBB+16] R. Bahmani, M. Barbosa, F. Brasser, B. Portela, A.-R. Sadeghi, G. Scerri, and
B. Warinschi, “Secure multiparty computation from SGX”, FC, 2016 (cit. on
p. 22).

[BCGW12] G. S. Barsh, G. P. Copenhaver, G. Gibson, and S. M. Williams, “Guidelines for
genome-wide association studies”, PLoS Genet, 2012 (cit. on p. 8).

[Bea96] D. Beaver, “Correlated pseudorandomness and the complexity of private
computations”, in STOC, 1996 (cit. on pp. 13 sq.).

[BFK+09] M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R. Sadeghi, and T. Schnei-
der, “Secure evaluation of private linear branching programs with medical
applications”, in ESORICS, 2009 (cit. on p. 17).

[BHKR13] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway, “Efficient garbling
from a fixed-key blockcipher”, in S&P, 2013 (cit. on p. 16).

[BJL12] D. Bogdanov, R. Jagomägis, and S. Laur, “A universal toolkit for crypto-
graphically secure privacy-preserving data mining”, in PAISI, 2012 (cit. on
p. 16).

59

Bibliography

[BLLN13] J. W. Bos, K. E. Lauter, J. Loftus, and M. Naehrig, “Improved security for a
ring-based fully homomorphic encryption scheme”, in IMACC, 2013 (cit. on
p. 21).

[BLW08] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: a framework for fast
privacy-preserving computations”, ESORICS, 2008 (cit. on p. 24).

[BNP08] A. Ben-David, N. Nisan, and B. Pinkas, “FairplayMP: a system for secure
multi-party computation”, in CCS, 2008 (cit. on p. 54).

[BP08] J. Boyar and R. Peralta, “Tight bounds for the multiplicative complexity of
symmetric functions”, TCS, 2008 (cit. on p. 26).

[BPSW07] J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel, “Privacy-preserving
remote diagnostics”, in CCS, 2007 (cit. on p. 17).

[Car78] R. Carver, “The case against statistical significance testing”, Harvard Edu-
cational Review, 1978 (cit. on p. 8).

[CD10] O. Catrina and S. De Hoogh, “Improved primitives for secure multiparty
integer computation”, in SCN, 2010 (cit. on p. 18).

[CDC+16] M. Chiesa, D. Demmler, M. Canini, M. Schapira, and T. Schneider, “Towards
securing internet exchange points against curious onlookers”, in ANRW,
2016 (cit. on p. 18).

[CDD+16] F. Chen, M. Dow, S. Ding, Y. Lu, X. Jiang, H. Tang, and S. Wang, “PREMIX:
privacy-preserving estimation of individual admixture”, in AMIA, 2016
(cit. on p. 22).

[CHK+12] S. G. Choi, K.-W. Hwang, J. Katz, T. Malkin, and D. Rubenstein, “Secure
multi-party computation of boolean circuits with applications to privacy
in on-line marketplaces”, in CT-RSA, 2012 (cit. on p. 54).

[CHW+15] R. Cai, Z. Hao, M. Winslett, X. Xiao, Y. Yang, Z. Zhang, and S. Zhou, “Determinis-
tic identification of specific individuals from GWAS results”, Bioinformatics,
2015 (cit. on p. 20).

[CTW+15] S. D. Constable, Y. Tang, S. Wang, X. Jiang, and S. Chapin, “Privacy-preserving
GWAS analysis on federated genomic datasets”, BMC Medical Informatics
and Decision Making, 2015 (cit. on pp. 1 sqq., 21 sq., 29, 43 sqq.).

[DDK+15] D. Demmler, G. Dessouky, F. Koushanfar, A.-R. Sadeghi, T. Schneider, and S.
Zeitouni, “Automated synthesis of optimized circuits for secure computa-
tion”, in CCS, 2015 (cit. on pp. 13, 23).

[DGK08] I. Damgard, M. Geisler, and M. Kroigard, “Homomorphic encryption and
secure comparison”, IJACT, 2008 (cit. on pp. 13 sq.).

[DJN10] I. Damgård, M. Jurik, and J. B. Nielsen, “A generalization of Paillier’s public-
key system with applications to electronic voting”, IJISS, 2010 (cit. on
pp. 13 sq.).

60

Bibliography

[DMNS06] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensi-
tivity in private data analysis”, in TCC, 2006 (cit. on p. 1).

[DSZ15] D. Demmler, T. Schneider, and M. Zohner, “ABY-a framework for efficient
mixed-protocol secure two-party computation”, in NDSS, 2015 (cit. on
pp. 2, 4, 13 sqq., 17 sq., 27, 53).

[Fis25] R. A. Fisher, “Statistical methods for research workers”. Genesis Publishing
Pvt Ltd, 1925 (cit. on p. 8).

[FLNW17] J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein, “High-throughput secure
three-party computation for malicious adversaries and an honest major-
ity”, in EUROCRYPT, 2017 (cit. on p. 54).

[FSU11] S. E. Fienberg, A. Slavkovic, and C. Uhler, “Privacy preserving GWAS data
sharing”, in ICDMW, 2011 (cit. on p. 20).

[GHS12] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the AES
circuit”, in CRYPTO, 2012 (cit. on p. 21).

[Gif14] D. K. Gifford. (2014). “Foundations of computational and systems biology”,
[Online]. Available: https://ocw.mit.edu/courses/biology/7- 91j-
foundations-of-computational-and-systems-biology-spring-2014/
lecture-slides/MIT7_91JS14_Lecture20.pdf (visited on 05/14/2017)
(cit. on p. 30).

[Gil99] N. Gilboa, “Two party RSA key generation”, in CRYPTO, 1999 (cit. on p. 14).

[GMW87] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game, or
a completeness theorem for protocols with an honest majority”, in STOC,
1987 (cit. on p. 15).

[GWA+12] A. Gutmann, J. Wagner, Y. Ali, A. Allen, J. Arras, B. Atkinson, N. Farahany,
A. Garza, C. Grady, S. Hauser, et al., “Privacy and progress in whole genome
sequencing”, Presidential Committee for the Study of Bioethical Issues, 2012
(cit. on p. 1).

[Hoe12] J. Hoey, “The two-way likelihood ratio (G) test and comparison to two-way
Chi squared test”, ArXiv:1206.4881, 2012 (cit. on p. 10).

[HSR+08] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J. V.
Pearson, D. A. Stephan, S. F. Nelson, and D. W. Craig, “Resolving individuals
contributing trace amounts of DNA to highly complex mixtures using high-
density SNP genotyping microarrays”, PLoS Genet, 2008 (cit. on p. 20).

[HSS+10] W. Henecka, A.-R. Sadeghi, T. Schneider, I. Wehrenberg, et al., “TASTY: tool for
automating secure two-party computations”, in CCS, 2010 (cit. on pp. 17,
23).

[IEE08] IEEE Computer Society, “IEEE standard for floating-point arithmetic”, IEEE
Std 754-2008, 2008 (cit. on p. 26).

61

https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-biology-spring-2014/lecture-slides/MIT7_91JS14_Lecture20.pdf
https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-biology-spring-2014/lecture-slides/MIT7_91JS14_Lecture20.pdf
https://ocw.mit.edu/courses/biology/7-91j-foundations-of-computational-and-systems-biology-spring-2014/lecture-slides/MIT7_91JS14_Lecture20.pdf

Bibliography

[IKNP03] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious transfers
efficiently”, in CRYPTO, 2003 (cit. on pp. 13 sq.).

[Ioa05] J. P. Ioannidis, “Why most published research findings are false”, PLoS Med.,
2005 (cit. on p. 8).

[IR89] R. Impagliazzo and S. Rudich, “Limits on the provable consequences of
one-way permutations”, in STOC, 1989 (cit. on p. 12).

[JS13] A. Johnson and V. Shmatikov, “Privacy-preserving data exploration in genome-
wide association studies”, in SIGKDD, 2013 (cit. on p. 20).

[JZW+14] X. Jiang, Y. Zhao, X. Wang, B. Malin, S. Wang, L. Ohno-Machado, and H.
Tang, “A community assessment of privacy preserving techniques for hu-
man genomes”, BMC Medical Informatics and Decision Makingg, 2014 (cit. on
p. 20).

[KL15] M. Kim and K. Lauter, “Private genome analysis through homomorphic
encryption”, BMC Medical Informatics and Decision Making, 2015 (cit. on
p. 21).

[KS08] V. Kolesnikov and T. Schneider, “Improved garbled circuit: free XOR gates
and applications”, ICALP, 2008 (cit. on p. 16).

[KSMB13] B. Kreuter, A. Shelat, B. Mood, and K. R. Butler, “PCF: a Portable Circuit
Format for scalable two-party secure computation”, in USENIX Security,
2013 (cit. on p. 22).

[KSS13] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider, “A systematic approach to
practically efficient general two-party secure function evaluation proto-
cols and their modular design”, JCS, 2013 (cit. on p. 17).

[KSS14] F. Kerschbaum, T. Schneider, and A. Schröpfer, “Automatic protocol selection
in secure two-party computations”, in ACNS, 2014 (cit. on p. 14).

[KW14] T. Krips and J. Willemson, “Hybrid model of fixed and floating point num-
bers in secure multiparty computations”, in ISC, 2014 (cit. on p. 23).

[LDD+16] X. Liu, R. H. Deng, W. Ding, R. Lu, and B. Qin, “Privacy-preserving outsourced
calculation on floating point numbers”, IEEE TIFS, 2016 (cit. on p. 23).

[LYS15] W.-J. Lu, Y. Yamada, and J. Sakuma, “Privacy-preserving genome-wide associ-
ation studies on cloud environment using fully homomorphic encryption”,
BMC Medical Informatics and Decision Making, 2015 (cit. on p. 21).

[Mat17] MathWorks. (2017). “Chi-square inverse cumulative distribution function”,
[Online]. Available: http://mathworks.com/help/stats/chi2inv.html
(visited on 08/21/2017) (cit. on p. 9).

[McD09] J. H. McDonald, “Handbook of biological statistics”. Sparky House Publishing
Baltimore, MD, 2009 (cit. on p. 10).

[MKGV07] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, “l-
diversity: privacy beyond k-anonymity”, TKDD, 2007 (cit. on p. 1).

62

http://mathworks.com/help/stats/chi2inv.html

Bibliography

[MNP+04] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella, et al., “Fairplay-secure two-party
computation system”, in USENIX Security, 2004 (cit. on pp. 16 sq.).

[NAC+14] M. Naveed, E. Ayday, E. W. Clayton, J. Fellay, C. A. Gunter, J.-P. Hubaux, B.
Malin, X. Wang, et al., “Privacy and security in the genomic era”, CCS, 2014
(cit. on p. 1).

[PBS12] P. Pullonen, D. Bogdanov, and T. Schneider, “The design and implementation
of a two-party protocol suite for Sharemind 3”, CYBERNETICA Institute of
Information Security, Tech. Rep, 2012 (cit. on p. 14).

[PS15] P. Pullonen and S. Siim, “Combining secret sharing and garbled circuits
for efficient private IEEE 754 floating-point computations”, in FC, 2015
(cit. on p. 23).

[PSSZ15] B. Pinkas, T. Schneider, G. Segev, and M. Zohner, “Phasing: private set
intersection using permutation-based hashing”, in USENIX Security, 2015
(cit. on p. 13).

[PSW02] M. R. Pillmeier, M. J. Schulte, and E. G. Walters III, “Design alternatives for
barrel shifters”, in SPIE, 2002 (cit. on pp. 25 sq.).

[QCA+14] E. E. Quillen, X.-D. Chen, L. Almasy, F. Yang, H. He, X. Li, X.-Y. Wang, T.-Q. Liu,
W. Hao, H.-W. Deng, et al., “ALDH2 is associated to alcohol dependence and
is the major genetic determinant of “daily maximum drinks” in a GWAS
study of an isolated rural Chinese sample”, American Journal of Medical
Genetics Part B: Neuropsychiatric Genetics, 2014 (cit. on p. 54).

[Rab81] M. O. Rabin, “How to exchange secrets with oblivious transfer”, Technical
Report TR-81, 1981 (cit. on p. 12).

[Rap04] D. K. Rappe. (2004). “Homomorphic cryptosystems and their application”,
(visited on 07/15/2017) (cit. on p. 21).

[RK17] R. Rogers and D. Kifer, “A new class of private Chi-square hypothesis tests”,
in AISTATS, 2017 (cit. on pp. 1, 20).

[RMG12] R. Rieger, A. Michaelis, and M. M. Green, “Glossary of genetics and cytoge-
netics: classical and molecular”. Springer Science & Business Media, 2012
(cit. on p. 6).

[SAW13] L. Sweeney, A. Abu, and J. Winn, “Identifying participants in the personal
genome project by name”, Data Privacy Lab, IQSS, 2013 (cit. on p. 1).

[SB16] S. Simmons and B. Berger, “Realizing privacy preserving genome-wide as-
sociation studies”, Bioinformatics, 2016 (cit. on p. 20).

[SSDM09] C. C. Spencer, Z. Su, P. Donnelly, and J. Marchini, “Designing genome-wide as-
sociation studies: sample size, power, imputation, and the choice of geno-
typing chip”, PLoS Genet, 2009 (cit. on p. 1).

[Swe02] L. Sweeney, “k-anonymity: a model for protecting privacy”, International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002 (cit. on
p. 1).

63

Bibliography

[SZ13] T. Schneider and M. Zohner, “GMW vs. Yao? Efficient secure two-party
computation with low depth circuits”, in FC, 2013 (cit. on p. 16).

[USF13] C. Uhler, A. Slavković, and S. E. Fienberg, “Privacy-preserving data sharing
for genome-wide association studies”, JPC, 2013 (cit. on p. 20).

[Vol13] H. Vollmer, “Introduction to circuit complexity: a uniform approach”.
Springer Science & Business Media, 2013 (cit. on p. 15).

[VSJO13] J. Vaidya, B. Shafiq, X. Jiang, and L. Ohno-Machado, “Identifying inference at-
tacks against healthcare data repositories”, AMIA Summits on Translational
Science, 2013 (cit. on p. 1).

[WLW+09] R. Wang, Y. F. Li, X. Wang, H. Tang, and X. Zhou, “Learning your identity and
disease from research papers: information leaks in genome wide associa-
tion study”, in CCS, 2009 (cit. on p. 20).

[Woo15] C. Woolston. (2015). “Psychology journal bans P values”, [Online]. Available:
https://www.nature.com/news/psychology-journal-bans-p-values-
1.17001 (visited on 05/24/2017) (cit. on p. 8).

[WW16] A. Weintraub and I. Wünnenberg, “Das Genom ist nicht genug”, Technology
Review, 2016 (cit. on p. 1).

[Yao86] A. C.-C. Yao, “How to generate and exchange secrets”, in FOCS, 1986
(cit. on p. 16).

[YFSU14] F. Yu, S. E. Fienberg, A. B. Slavković, and C. Uhler, “Scalable privacy-preserving
data sharing methodology for genome-wide association studies”, Journal
of Biomedical Informatics, 2014 (cit. on p. 20).

[YJ14] F. Yu and Z. Ji, “Scalable privacy-preserving data sharing methodology for
genome-wide association studies: an application to iDASH healthcare pri-
vacy protection challenge”, BMC Medical Informatics and Decision Making,
2014 (cit. on p. 20).

[ZBA15] Y. Zhang, M. Blanton, and G. Almashaqbeh, “Secure distributed genome
analysis for GWAS and sequence comparison computation”, BMC Medical
Informatics and Decision Making, 2015 (cit. on p. 22).

[ZDJ+15] Y. Zhang, W. Dai, X. Jiang, H. Xiong, and S. Wang, “Foresee: fully outsourced
secure genome study based on homomorphic encryption”, BMC Medical
Informatics and Decision Making, 2015 (cit. on p. 21).

[ZPL+11] X.-y. Zhou, B. Peng, Y. F. Li, Y. Chen, H. Tang, and X. Wang, “To release or
not to release: evaluating information leaks in aggregate human-genome
data”, in ESORICS, 2011 (cit. on p. 20).

[ZRE15] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole”, in EURO-
CRYPT, 2015 (cit. on p. 16).

[ZSB13] Y. Zhang, A. Steele, and M. Blanton, “PICCO: a general-purpose compiler
for private distributed computation”, in CCS, 2013 (cit. on pp. 23 sq.).

64

https://www.nature.com/news/psychology-journal-bans-p-values-1.17001
https://www.nature.com/news/psychology-journal-bans-p-values-1.17001

Bibliography

[ZWJ+14] Y. Zhao, X. Wang, X. Jiang, L. Ohno-Machado, and H. Tang, “Choosing blindly
but wisely: differentially private solicitation of DNA datasets for disease
marker discovery”, Journal of the American Medical Informatics Association,
2014 (cit. on p. 20).

65

	Introduction
	Motivation
	Contributions
	Outline

	Preliminaries
	Notation
	Genomic Primer
	Genome-Wide Association Studies
	Statistical Tests
	Chi-squared-test
	G-test
	P-test

	Secure Multi-Party Computation
	Oblivious Transfer

	ABY Framework
	Arithmetic Sharing
	Boolean Sharing
	SIMD Gates
	Conversion Gates

	Outsourcing Computation

	Related Work
	GWAS using Noise-based Approaches
	GWAS using Homomorphic Encryption
	GWAS using Yao's Garbled Circuits
	GWAS using Other Techniques

	Implementation
	Integer to Floating Point Number Conversion
	Chi-squared-test
	Non-optimized
	Fully Optimized
	Partially Optimized

	G-test
	Non-optimized
	Fully Optimized
	Partially Optimized

	Extended Chi-squared-test and G-test
	P-test
	Outsourcing Computation

	Evaluation
	Benchmarking Environment
	Benchmarking in the LAN Setting
	Chi-squared-test
	G-test
	Comparison with constable2015privacy
	P-test

	Benchmarking in the WAN Setting
	Outsourcing Computation
	Local Share Creation
	Benchmarking

	Communication

	Conclusion
	Summary and Discussion
	Future Work

	List of Abbreviations
	Bibliography

