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Abstract: This paper develops a sampling algorithm for bandwidth estimation in a nonparametric
regression model with continuous and discrete regressors under an unknown error density. The
error density is approximated by the kernel density estimator of the unobserved errors, while the
regression function is estimated using the Nadaraya-Watson estimator admitting continuous and
discrete regressors. We derive an approximate likelihood and posterior for bandwidth parameters,
followed by a sampling algorithm. Simulation results show that the proposed approach typically
leads to better accuracy of the resulting estimates than cross-validation, particularly for smaller
sample sizes. This bandwidth estimation approach is applied to nonparametric regression model of
the Australian All Ordinaries returns and the kernel density estimation of gross domestic product
(GDP) growth rates among the organisation for economic co-operation and development (OECD)
and non-OECD countries.

Keywords: cross-validation; Nadaraya-Watson estimator; posterior predictive density;
random-walk Metropolis; unknown error density; value-at-risk
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1. Introduction

Nonparametric regression is an important tool for exploring the unknown relationship between a
response variable and a set of explanatory variables also known as regressors. A simple and commonly
used estimator of the regression function is the Nadaraya-Watson (NW) estimator proposed by [1,2]. In
many empirical applications of nonparametric regression models, regressors are often of mixed types
such as continuous and categorical. In such a situation, [3] proposed estimating the regression function
by the NW-type estimator with different types of regressors being assigned different kernel functions.
Since their seminal work, there have been many theoretical and methodological investigations on
nonparametric regression with mixed types of regressors (see for example, [4–11]). It has been
generally accepted that the performance of the NW estimator is mainly determined by its bandwidths.
In the current literature, the cross-validation (CV) technique is often used for choosing bandwidths.
Following the recent work by [12], this paper aims to investigate a Bayesian sampling approach to
bandwidth estimation for the NW estimator in a nonparametric regression model, where regressors
can be continuous and discrete variables.

The popularity of CV is accredited to its simplicity and reasonably good performance. However,
this bandwidth selection method has some limitations. First, the CV technique tends to choose a too
small bandwidth. As discussed by [13], there are necessary and sufficient conditions to ensure the
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optimality of CV for bandwidth selection in nonparametric regression models. It may not be possible
to examine whether these conditions hold in practice. Second, even though the CV method does not
require an assumption about the error density, it provides no direct solutions to error density estimation.
However, error density estimation is important for assessing the goodness of fit of a specified error
distribution [14–16]; for testing symmetry, skewness and kurtosis of the residual distribution [17–19];
for statistical inference, prediction and model validation [20,21]; and for estimating the density of the
response variable [22,23]. Therefore, being able to estimate the error density is as important as being
able to estimate the regression function.

We present a Bayesian sampling approach to bandwidth estimation for the NW estimator
involving mixed types of regressors, where the errors are independent identically distributed (iid)
and follow a kernel-form error density studied previously by [24] for GARCH models, and [12] for
nonparametric regression models with only continuous regressors. We develop a sampling algorithm,
which is an extension to the algorithm proposed by [12] in the sense that the regressors are of mixed
types. It leads to a posterior estimate of the response density, where the response variable is modeled
as an unknown function of continuous and discrete explanatory variables. The importance of such
models can be explained through finance and economic data examples.1

Suppose we are interested in the distribution of daily returns of the All Ordinaries (Aord) index
of the Australian stock market. Many analysts believe that since the beginning of the global financial
crisis, the Australian stock market generally follows the overnight performance of the US and several
European markets. As the US stock market is thought to have a leading effect on other markets
worldwide, we may choose the daily return of the S&P 500 index as a regressor, and a binary variable
indicating the sign of the daily return of FTSE index as another regressor. With our proposed sampling
algorithm, we are able to not only estimate bandwidths for the NW estimator and the kernel-form
error density, but also derive a posterior estimate of the response density. When CV is used to choose
bandwidths for the NW estimator, one might have to apply likelihood cross-validation to the residuals
so as to derive a kernel density estimator of residuals. This would result in a two-stage procedure for
choosing bandwidths in the regression and error-density estimators, and we show that it is empirically
inferior to our sampling procedure through a series of simulation studies.

We conduct Monte Carlo simulation studies to compare the in-sample and out-of-sample
performances between Bayesian sampling and CV in choosing bandwidths for the regression estimator
and error density estimator. Our Bayesian sampling approach to bandwidth estimation leads to more
accurate estimators than CV in most situations and in particular for smaller sample sizes, while the
latter performs as well as the former in only a few occasions.

Our sampling algorithm is empirically validated through an application to bandwidth estimation
in the nonparametric regression of the Aord daily return on the overnight S&P 500 return and a
binary variable showing the sign of overnight FTSE return. An important and very useful output from
this sampling algorithm is the one-day-ahead posterior predictive density of the Aord daily return,
which we use to calculate value-at-risk (VaR). Given the close relationship between conditional mean
regression and conditional density estimation, we also modify the sampling algorithm for the purpose
of choosing bandwidths in kernel condition density estimation of GDP growth rate of a country given
its OECD status and the year value of growth-rate observations.

The rest of the paper is organized as follows. Section 2 presents a brief description of the NW
estimator when the regressors include continuous and discrete variables. In Section 3, we derive the
likelihood and posterior for bandwidth parameters. A sampling algorithm is also presented. Section 4
presents Monte Carlo simulation studies that examine the performance of the proposed sampling
method for bandwidth estimation. In Section 5, we use the sampling method to estimate bandwidths

1 A former version of this paper is [25], based on which [26] studied bandwidth selection for a nonparametric functional
regression model with mixed types of regressors, where the distance metric is not well defined in a function space.
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for a nonparametric regression model of stock returns. We modify the proposed sampling algorithm
to estimate bandwidths in kernel conditional density estimation of a country’s GDP growth rate in
Section 6. Section 7 concludes the paper.

2. Nadaraya-Watson Estimator with Mixed Types of Regressors

We present a brief description of the NW estimator of the unknown regression function that
contains continuous and discrete explanatory variables. More details can be found in [6]. We consider
the nonparametric regression model given by

yi = m(xi) + εi, i = 1, 2, · · · , n, (1)

where yi is an observation of a scalar response, xi =
(

x(c)i , x(d)i

)
with x(c)i being a vector of p continuous

variables and x(d)i a vector of q discrete variables, and ε1, ε2, · · · , εn are iid errors with an unknown
probability density function denoted as f (ε). The discrete variables can be either ordered or unordered,
which in turn affects the choice of kernel functions.

The flexibility of model (1) stems from the fact that the unknown regression function m(·) does
not need to have a specific functional form. With some smoothness properties, m(·) is estimated by the
NW estimator of the form given by

m̂ (x; h, λ) =
∑n

i=1Kh,λ (x, xi) yi

∑n
i=1Kh,λ (x, xi)

, (2)

where Kh,λ (x, xi) = K(c)
h

(
x(c) − x(c)i

)
× K(d)

λ

(
x(d), x(d)i

)
is a generalized product kernel that admits

continuous and discrete regressors. There is a wide range of kernel functions for continuous type of
variables (see for example, [6]), and kernel functions for discrete type of variables (see for example, [27]).
Here, the kernel function for continuous regressors is a product of p identical Gaussian kernel functions
expressed as

K(c)
h

(
x(c) − x(c)i

)
=

p

∏
j=1

1
hj

φ

 x(c)j − x(c)i,j

hj

 ,

where x(c)j and x(c)i,j are respectively, the jth elements of x(c) and x(c)i , h = (h1, h2, · · · , hp)′ is a vector of
bandwidths associated with the p continuous regressors, and φ(·) is the standard Gaussian density
being used as the kernel function for a continuous variable throughout this paper.

The kernel function for discrete regressors is a product of q identical discrete kernel functions
expressed as

K(d)
λ

(
x(d), x(d)i

)
=

q

∏
j=1

K(d)
λj

(
x(d)j , x(d)ij

)
.

If the jth element of x(d) is nominal, the kernel function is Aitchison and Aitken’s kernel [28] given by

K(d)
λj

(
x(d)j , x(d)i,j

)
=

{
1− λj if x(d)j = x(d)i,j
λj
/
(c− 1) otherwise

, (3)

where x(d)j and x(d)i,j are respectively, the jth elements of x(d) and x(d)i , and λj ∈ (0, (c− 1)
/

c) is the
bandwidth, for j = 1, 2, · · · , q, and c denotes the number of discrete outcomes. Note that this kernel
function can be used for either unordered categorical variables or unequal-interval ordered variables.
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If the jth element of x(d) is ordinal, its kernel is Li and Racine’s kernel [6] kernel expressed as

K(d)
λj

(
x(d)j , x(d)i,j

)
=

 1 if x(d)j = x(d)i,j

λ

∣∣∣x(d)j −x(d)i,j

∣∣∣
j otherwise

, (4)

for j = 1, 2, · · · , q, and i = 1, 2, · · · , n, where λ = (λ1, λ2, · · · , λq)′ is a vector of bandwidths assigned
to the corresponding q discrete regressors. These bandwidths are restricted to be within (0, 1).

For the case where discrete explanatory variables are included in a nonparametric regression
model, there exists a conventional frequency estimator of the regression function in the literature. This
frequency approach involves splitting data into cells based on different values of the discrete variables
and using the data in each cell to derive an estimator of the regression function. Li and Racine [6]
found that the NW estimator given by (2) is strongly supported against the frequency estimator for
both theoretical and practical reasons.

It is noteworthy that if λj = 0 for all j = 1, 2, · · · , q, then K(d)
λj

(
x(d)j , x(d)i,j

)
becomes an indicator

function taking values 1 and 0, corresponding to the conventional frequency estimator. When λj = 1,

this indicates that x(d)j is “smoothed out” and becomes an irrelevant variable [5]. Similarly, if hj is very

large in the kernel function given by (2), it indicates that x(c)j is smoothed out and has no explanatory
effect on the response variable. As a by-product, the ability of distinguishing irrelevant variables from
relevant variables makes the resulting NW estimator very attractive, in comparison to the conventional
frequency estimator.

The performance of the NW estimator is mainly determined by its bandwidths, and in the current
literature, bandwidths are often chosen through CV with the CV function defined as

CV(h, λ) =
1
n

n

∑
i=1

[
yi − m̂(−i) (xi; h, λ)

]2
w(xi),

where m̂(−i)(xi; h, λ) is the leave-one-out NW estimator given by

m̂(−i)(xi; h, λ) =
∑n

j=1;j 6=i Kh,λ
(
xi, xj

)
yj

∑n
j=1;j 6=i Kh,λ

(
xi, xj

) ,

and w(·) is a weight function taking values in [0, 1]. The purpose of the weight function in CV(h, λ) is
to avoid difficulties caused either by division by zero or by the slow convergence rate when xi is near
the boundary of the support of x (see [13]). We follow [10] and choose

w(xi) =
p+q

∏
j=1

I
(∣∣xi,j − xj

∣∣ ≤ 1.5sj
)

, (5)

where I(·) is an indicator function, and xj and sj are the sample mean and standard deviation
of {xi,j : 1 ≤ i ≤ n}.

In some empirical studies, CV tends to choose too small a bandwidth. Li and Zhou [13] observed
that there are some conditions to ensure the optimality of the CV function. However, it is impossible
to check whether all these conditions hold due to the unknown regression function. This problem
has motivated us to investigate an alternative approach to bandwidth estimation, namely a Bayesian
sampling approach.
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3. Bayesian Estimation of Bandwidths

We consider the nonparametric regression model given by (1) and assume that the iid errors
follow an unknown distribution with its density approximated by

f̃ (ε; b) =
1
n

n

∑
i=1

1
b

φ

(
ε− εi

b

)
, (6)

where φ(·) is the standard Gaussian probability density function. Being previously introduced by [24]
in GARCH models, this density function of errors is a mixture of n identical standard Gaussian densities
with different means located at individual errors and a common standard deviation b. Moreover,
from the view of kernel smoothing, this error density can be regarded as a kernel density based on
independent errors, where b plays the role of bandwidth or smoothing parameter. Note that the error
density given by (6) is different from the one proposed by [29], who used residuals as proxies of errors
and employed the kernel density estimator of residuals to approximate the true error density.

In order to conduct Bayesian sampling for the purpose of estimating bandwidths, we treat
the bandwidths in the NW estimator of the regression function and the kernel-form error density
as parameters. Even though chosen bandwidths depend on sample size as revealed by existing
asymptotic results, such a treatment will not cause problems for a fixed-size sample (see also [30–32]).

Let (yi, xi), for i = 1, 2, · · · , n, denote the observations of (y, x). Under the error density given by
(6), we have

yi ∼ f̃ ({yi −m(xi)} ; b) ,

for i = 1, 2, · · · , n. As m(·) is unknown, we replace it with its leave-one-out NW estimator. Thus, the
density of yi is approximated by

f̃
({

yi − m̂(−i)(xi; h, λ)
}

; b
)
≈ 1

n

n

∑
j=1

1
b

φ


{

yi − m̂(−i)(xi; h, λ)
}
−
{

yj − m̂(−j)(xj; h, λ)
}

b

 , (7)

for i = 1, 2, · · · , n.

3.1. An Approximate Likelihood

The vector of all bandwidths denoted as (h′, λ′, b)′ are treated as parameters, given which we
wish to derive an approximate likelihood of y = (y1, y2, · · · , yn)′. For this purpose, we cannot use
the approximate density of yi given by (7) directly because it contains φ(0)/b for j = i. When
b is a parameter and is estimated based on a fixed-size sample, numerical optimization of the
likelihood built up through (7) may end up with an arbitrarily small bandwidth due to the existence of
φ(0)/b. Therefore, any pair of observations that leads to a zero argument of φ(·) should be excluded
from the summation given by (7). Following the suggestion of [12], we exclude the jth term when{

yj − m̂(−j)(xj; h, λ)
}
=
{

yi − m̂(−i)(xi; h, λ)
}

, from the summation given in (7). Let

Ji =
{

j : yj − m̂(−j)(xj; h, λ) 6= yi − m̂(−i)(xi; h, λ), for j = 1, 2, · · · , n
}

,

and ni is the number of terms excluded from the sum given in (7). Although the response variable is
continuous, by chance, the set Ji may contain more than one element. Therefore, the density of yi is
approximated by

f̃
({

yi − m̂(−i)(xi; h, λ)
}

; b
)
≈ 1

n− ni
∑
j∈Ji

1
b

φ


{

yi − m̂(−i)(xi; h, λ)
}
−
{

yj − m̂(−j)(xj; h, λ)
}

b

 ,

for i = 1, 2, · · · , n.
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Let h2 denote a row vector whose elements are the squared elements of h. Thus, given (h2, λ′, b2)′,
the likelihood of y is approximated by

`
(

y
∣∣h2, λ, b2

)
≈

n

∏
i=1

 1
n− ni

∑
j∈Ji

1
b

φ


{

yi − m̂(−i)(xi; h, λ)
}
−
{

yj − m̂(−j)(xj; h, λ)
}

b

 . (8)

Note that if ni = 1, this likelihood function reduces to the leave-one-out likelihood.

3.2. Priors

We follow [12] choices of priors of bandwidths for continuous regressors and the kernel-form
error density. Let π(h2

j ) denote the prior of h2
j , for j = 1, 2, · · · , p, and π(b2) the prior of b2. The

priors of h2
j and b2 can be chosen from a variety of densities with a positive domain, such as log

normal and inverse Gamma densities. As the Gaussian kernel is used for each variate in this situation,
each bandwidth is also considered as the standard deviation of the corresponding Gaussian density.
Therefore, the prior of each squared bandwidth can be chosen to be an inverse Gamma density, which
is a frequently used proper prior for the variance parameter. Thus, the prior of h2

j is

π
(
h2

j
)
=

(βh)
αh

Γ(αh)

(
1
h2

j

)αh+1

exp

{
− βh

h2
j

}
, for j = 1, 2, · · · , p,

and the prior of b2 is

π
(
b2) = (βb)

αb

Γ(αb)

(
1
b2

)αb+1
exp

{
− βb

b2

}
,

where the hyperparameters are chosen as αh = αb = 1 and βh = βb = 0.05 (see for example, [33]
and [34] pp. 38–39).

Let π(λj) denote the prior of λj, the bandwidth assigned to the jth discrete regressor, for
j = 1, 2, · · · , q. The prior of λj is assumed to be a uniform density defined on (za, zb). For nominal
regressors, za = 0 and zb = (c− 1)/c; and for ordered categorical regressors, za = 0 and zb = 1. See
for example, [8], for discussion of restrictions on these smoothing parameters.

The joint prior of
(
h2, λ′, b2)′ is the product of all the marginal priors and is denoted

as π
(
h2, λ, b2).

3.3. An Approximate Posterior

An approximate posterior of
(
h2, λ′, b2)′ is obtained as the product of the approximate likelihood

given by (8) and the joint prior, and is expressed as (up to a normalizing constant)

π
(

h2, λ, b2∣∣y) ∝ `
(

y|h2, λ, b2
)
× π

(
h2, λ, b2

)
. (9)

The random-walk Metropolis algorithm can be used to carry out the simulation, where the acceptance
rate of random-walk Metropolis algorithm is targeted at 0.234 for multivariate draws and 0.44 for
univariate draws [35,36]. In order to achieve similar levels of acceptance rates, we use the adaptive
random-walk Metropolis algorithm proposed by [36]. This algorithm is capable of selecting appropriate
scales, and achieves the targeted acceptance rates without manual adjustment. The sampling procedure
is described as follows.

Step 1: Specify a Gaussian proposal distribution, and start the sampling iteration process by choosing
an arbitrary value of (h2, λ′, b2)′ and denoting it as (h2

(0), λ′(0), b2
(0))
′. For example, the

elements of h2
(0) and b2

(0) can be any values on (0, 1) and the elements of λ(0) can be any
values on (0, (c− 1)/c) for nominal regressors and (0, 1) for categorical regressors.
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Step 2: At the kth iteration, the current state h2
(k) is updated as h2

(k) = h2
(k−1) + γ(k−1)u/||u||, where

u is drawn from the proposal density which is the p dimensional standard Gaussian density,
and γ(k−1) is an adaptive tuning parameter with an arbitrary initial value γ(0). The updated
h2
(k) is accepted with a probability given by

min

 π
(

h2
(k), λ(k−1), b2

(k−1)

∣∣y)
π
(

h2
(k−1), λ(k−1), b2

(k−1)

∣∣y) , 1

 .

Step 3: The tuning parameter for the next iteration is set to

γ(k) =

{
γ(k−1) + c (1− ξ) /k if h2

(k) is accepted

γ(k−1) − cξ/k if h2
(k) is rejected

,

where c = γ(k−1)
/ (

ξ − ξ2) is a constant, and ξ is the optimal target acceptance probability,
which is 0.234 for multivariate updating and 0.44 for univariate updating (see for
example, [35,36]).

Step 4: Update λ(k−1) and b2
(k−1) in the same way as described by Steps 2 and 3.

Step 5: Repeat Steps 2–4, discard the burn-in period of iterations, and the draws after the burn-in

period are recorded and denoted as
{(

h(k), λ′(k), b(k)
)′

: k = 1, 2, · · · , M
}

.

Upon completing the above iterations, we use the ergodic mean (or posterior mean) of each
simulated chain as an estimate of each bandwidth. The mixing performance of each simulated chain is
monitored by the simulation inefficiency factor (SIF). As each simulated chain is a Markov chain, its
SIF can be interpreted as the number of draws required so as to derive independent draws from the
simulated chain (see for example, [33,37–39]).

In the following analyses, the burn-in period is taken as 1000 iterations and the number of
recorded iterations after the burn-in period is 10, 000. The number of batches is 200, and there are 50
draws within each batch.

4. Monte Carlo Simulation Study

A Monte Carlo simulation study was conducted to investigate the properties of the proposed
Bayesian sampling approach to bandwidth estimation in comparison to the CV method for bandwidth
selection in the NW regression estimator. The conventional frequency estimator, which is equivalent
to setting the bandwidths for all discrete and continuous regressors to zero in the NW estimator [6]
(Chapter 3) was also included in the comparison.

A range of different simulation experiments were conducted using seven different data generating
processes (DGPs), five of which were discussed in [4]. To assess the performance of each approach,
at each iteration we generated 2n observations denoted as

{(
yi, x(d)i , x(c)i

)
: 1 ≤ i ≤ 2n

}
, where yi is

calculated via the DGP, x(d)i is the vector of discrete regressors and x(c)i is the vector of continuous
regressors. The first n observations were used for estimation and in-sample evaluation, and the last n
observations for out-of-sample evaluation (see also [10]). We used the average squared error (ASE) as
an evaluation measure for both in-sample and out-of-sample evaluation:

ASEin =
1
n

n

∑
i=1

[
m
(

x(d)i , x(c)i

)
− m̂

(
x(d)i , x(c)i ; θ̂

)]2
w (xi) ,

ASEout =
1
n

n

∑
i=1

[
m
(

x(d)n+i, x(c)n+i

)
− m̂

(
x(d)n+i, x(c)n+i; θ̂

)]2
w (xi) ,
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where θ = (h, λ, b) under the Bayesian method, θ = (h, λ) under CV, and θ = h for the frequency
estimator; m̂

(
x(d)i , x(c)i ; θ

)
is the NW estimator of m based on the sample of the first n observations,

and w(xi) is the weight function given by (5) for the in-sample and out-of-sample evaluation. The
purpose of the weight function is to trim those extreme observations that lie outside most of the data
points in the continuous regressors [4]. We calculated the mean, median, standard deviation (SD) and
interquartile range (IQR) of each ASE averaged over the 1000 Monte Carlo replications.

In order to test whether variations in in-sample ASE between the different estimation methods
are significantly different, we conducted the Kruskal-Wallis test [40]. When the Kruskal-Wallis test
rejects the null hypothesis of no difference among the methods considered, we implement a posthoc
multiple comparison, which is Dunn’s test [41] with Bonferroni correction, to examine which method
differs significantly from others. Differences in out-of-sample ASEs were assessed using the model
confidence set (MCS) procedure of [42].

4.1. Accuracy of Regression Estimator

4.1.1. Experiment 1: Binary and Continuous Regressors

This experiment involves three DGPs. The first DGP is given by

yi =
4

∑
j=1

x(d)i,j +
4

∑
j=1

4

∑
k 6=j
k=1

1
2

x(d)i,j x(d)i,k +
4

∑
j=1

x(d)i,j m1

(
x(c)i

)
+ m2

(
x(c)i

)
+ ui,

for i = 1, 2, · · · , n, where x(d)i,j takes values of 0 and 1 with an equal probability of 0.5,

j = 1, 2, · · · , 4, x(c)i is drawn from the uniform distribution on [0, 2], m1

(
x(c)i

)
= sin

(
x(c)i π

)
;

m2

(
x(c)i

)
= x(c)i − 0.5

(
x(c)i

)2
+ 0.3

(
x(c)i

)3
, and ui is drawn from N(0, 1). Sample sizes of n = 100,

200 and 500 were used, and the results are presented in Table 1.

Table 1. Mean, median and variation measures of the average squared error (ASE) values derived
through 1000 samples simulated according to the first data generating processes (DGP). The bolded
numbers represent the minimum summary statistics of ASEs.

n Method In-Sample ASE Out-of-Sample ASE

Mean Median SD IQR Mean Median SD IQR

100
Bayesian 0.5562 0.5390 0.1301 0.1520 1.0740 0.9692 0.4451 0.4827
CV 0.5877 0.5192 0.3017 0.1320 1.0990 0.9927 0.4525 0.5230
Frequency 0.6098 0.5707 0.1931 0.1590 1.3680 1.2840 0.4858 0.5990

200
Bayesian 0.3571 0.3512 0.0571 0.0750 0.5233 0.4998 0.1567 0.1683
CV 0.3577 0.3520 0.0567 0.0727 0.5355 0.5070 0.1617 0.1740
Frequency 0.4115 0.3952 0.0865 0.0877 0.6132 0.5927 0.1533 0.1947

500
Bayesian 0.1994 0.1978 0.0255 0.0332 0.2158 0.2120 0.0415 0.0489
CV 0.1997 0.1989 0.0253 0.0333 0.2175 0.2146 0.0411 0.0506
Frequency 0.2298 0.2169 0.0562 0.0436 0.2332 0.2300 0.0420 0.0529

The NW estimator with bandwidths estimated through Bayesian sampling slightly outperforms
the same estimator with bandwidths selected through CV, and these methods outperform the
conventional frequency estimator in terms of all four summary statistics. The differences decline
as n increases. The Kruskal-Wallis test has a p value of zero for each value of n implying that there are
significant differences in performance between at least one pair of methods. According to Dunn’s test
with Bonferroni correction, the Bayesian method differs significantly from the frequency method for
all sample sizes, but differs significantly from the CV method for n = 100 only. For n = 200 and 500,
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differences between the Bayesian and CV methods are insignificant. Based on the out-of-sample ASE
values, the MCS procedure determines that the Bayesian method performs best for all values of n.

The second and third DGPs are given by

yi = x(d)i,1 + x(d)i,2 + x(c)i,1 + x(c)i,2 + ui,

and

yi = x(d)i,1 + x(d)i,2 + x(d)i,1 x(d)i,2 + x(c)i,1 + x(c)i,2 + x(c)i,1 x(c)i,2 + ui,

for i = 1, 2, · · · , n, where x(d)i,1 and x(d)i,2 take values from {0, 1} with equal probabilities of 0.5, x(c)i,1 and

x(c)i,2 are drawn from N(0, 1), and ui is drawn from N(0, 1). The third DGP differs from the second by
the inclusion of two interaction terms. Again, sample sizes of n = 100, 250 and 500 were used. The
results are presented in Table 2.

Table 2. Mean, median and variation measures of the ASE values derived through 1000 samples
simulated according to the second and third DGPs. The bolded numbers represent the minimum
summary statistics of ASEs.

n Method In-Sample ASE Out-of-Sample ASE

Mean Median SD IQR Mean Median SD IQR

Second DGP

100
Bayesian 0.3082 0.2947 0.0884 0.1142 0.3296 0.3111 0.1220 0.1455
CV 0.3188 0.3019 0.1018 0.1297 0.3380 0.3147 0.1413 0.1623
Frequency 0.3192 0.3004 0.1022 0.1275 0.3846 0.3653 0.1361 0.1644

200
Bayesian 0.2098 0.2037 0.0492 0.0668 0.1990 0.1932 0.0606 0.0791
CV 0.2114 0.2050 0.0520 0.0682 0.1987 0.1903 0.0608 0.0835
Frequency 0.2116 0.2050 0.0515 0.0677 0.2228 0.2135 0.0646 0.0807

500
Bayesian 0.1277 0.1258 0.0236 0.0305 0.1100 0.1033 0.0642 0.0331
CV 0.1282 0.1258 0.0243 0.0315 0.1068 0.1033 0.0269 0.0331
Frequency 0.1283 0.1257 0.0247 0.0318 0.1165 0.1126 0.0278 0.0344

Third DGP

100
Bayesian 0.3751 0.3643 0.0920 0.1172 0.4715 0.4438 0.1866 0.2401
CV 0.6132 0.5809 0.2045 0.2438 0.4931 0.4619 0.1925 0.2161
Frequency 0.6136 0.5795 0.2021 0.2453 0.4917 0.4600 0.1797 0.2310

200
Bayesian 0.2707 0.2647 0.0557 0.0696 0.2829 0.2691 0.0870 0.1139
CV 0.4218 0.4085 0.1069 0.1329 0.2953 0.2836 0.0974 0.1171
Frequency 0.4226 0.4086 0.1091 0.1325 0.2917 0.2785 0.0847 0.1056

500
Bayesian 0.1727 0.1706 0.0289 0.0367 0.1533 0.1490 0.0357 0.0481
CV 0.2619 0.2567 0.0495 0.0647 0.1550 0.1526 0.0348 0.0480
Frequency 0.2619 0.2567 0.0495 0.0644 0.1557 0.1522 0.0355 0.0490

To estimate the regression functions for the two DGPs, we employed the NW estimator with
bandwidths estimated through Bayesian sampling and CV, as well as the conventional frequency
estimator. The summary statistics for the in-sample and out-of-sample ASE values for both DGPs are
tabulated in Table 2.

For the second DGP, Bayesian sampling leads to a slightly better NW estimator than CV in most
cases based on the summary statistics of ASE values, but these differences are not significant because
the Kruskal-Wallis test cannot reject the null hypothesis of no differences between the three methods
for all three sample sizes. Using the out-of-sample ASE values, the MCS procedure finds in favour of
the Bayesian approach for n = 100 and the CV method for n = 200 and 500.
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For the third DGP, the Kruskal-Wallis test clearly rejects the null hypothesis of no difference
between the three methods for all values of n. Using Dunn’s test with Bonferroni correction, we
found that the Bayesian method differs significantly from the CV and frequency methods respectively.
However, the CV method does not differ significantly from the frequency method. The MCS procedure
finds that under the out-of-sample ASE, the Bayesian method performs better than the CV method,
and both methods outperform the frequency approach.

4.1.2. Experiment 2: Ordered and Unordered Categorical Regressors

The fourth and fifth DGPs were used to examine the difference between kernel functions for
ordered categorical variables given by (4) and those for unordered categorical variables given by (3).
The fourth DGP includes ordered categorical and continuous variables and is expressed by

yi = x(c)i,1 + x(c)i,2 + x(d)i,1 + x(d)i,2 + ui,

where x(c)i,j is drawn from N(0, 1), for j = 1 and 2, x(d)i,j takes values from {0, 1, · · · , 5} with an equal
probability of 1/6, for j = 1 and 2, and the error term ui is drawn from N(0, 1), for i = 1, 2, · · · , n.

Let x(c) denote the vector of two continuous regressors and x(d) the vector of two discrete
regressors. The relationship between the response and regressors is modeled by

yi = m
(

x(c)i , x(d)i

)
+ ui, (10)

where ui, for i = 1, 2, · · · , n, are assumed to be independent. Bandwidths in the NW regression
estimator are estimated through the proposed Bayesian method and the CV approach each applied in
two different ways; first using the kernel for ordered categorical variables given by (4) and then using
the kernel for unordered categorical variables given by (3). Together with the conventional frequency
estimator, this means that we are now evaluating five different estimators. We expect that the use of
the ordered kernel should dominate the use of the unordered kernel because the observations of the
discrete regressors have a natural order. Sample sizes of n = 100, 200, 500 and 1000 were used and the
results are presented in Table 3.

The Kruskal-Wallis test has a p value of zero for all values of n thus rejecting the null hypothesis of
no difference in performance among the five estimators. According to the in-sample and out-of-sample
ASE measures, the Bayesian method performs slightly better than the corresponding CV method, and
the use of the kernel function for the ordered variables outperforms the use of the kernel function
for the unordered variables. The Bayesian method using the ordered kernel almost always has the
lowest values of all four summary statistics for both in-sample and out-of-sample ASEs. Applying
Dunn’s test with Bonferroni correction to the in-sample ASEs, we found that the Bayesian method with
ordered kernel is similar to the Bayesian method with unordered kernel and CV with ordered kernel,
but differs from the CV method with unordered kernel and frequency method for all sample sizes. The
Bayesian method with unordered kernel differs from the CV method with ordered and unordered
kernels and frequency method when n = 100. As n increases, the Bayesian method differs only from
the CV with unordered kernel and frequency method. There are significant differences between the
CV method with ordered and unordered kernels and frequency method. The MCS procedure finds
that the ordered kernel should be used for ordered categorical variables, and the Bayesian method
performs better than the CV method.



Econometrics 2016, 4, 24 11 of 27

Table 3. Mean, median and variation measures of the ASE values derived through 1000 samples
simulated according to the fourth DGP, where the bolded numbers represent the minimum summary
statistics of ASEs. Note that “order” refers to the kernel function for ordered categorical variables given
by (4), and “unorder” refers to the kernel function for unordered categorical variables given by (3).

n Method In-Sample ASE Out-of-Sample ASE

Mean Median SD IQR Mean Median SD IQR

100

Bayesian (order) 0.5035 0.4925 0.1044 0.1306 0.6236 0.5903 0.2255 0.2993
Bayesian (unorder) 0.5127 0.4995 0.1096 0.1371 0.6382 0.6003 0.2588 0.2948
CV (order) 0.5535 0.4828 0.1055 0.1348 0.6553 0.6163 0.2469 0.3138
CV (unorder) 0.6333 0.6232 0.1097 0.1411 0.7958 0.7660 0.2902 0.3525
Frequency 0.8950 0.8516 0.2504 0.3071 1.9830 1.9150 0.6116 0.7890

200

Bayesian (order) 0.3758 0.3689 0.0615 0.0793 0.4085 0.3978 0.1128 0.1525
Bayesian (unorder) 0.3845 0.3794 0.0619 0.0790 0.4124 0.3998 0.1134 0.1554
CV (order) 0.3812 0.3755 0.0611 0.0778 0.4252 0.4098 0.1205 0.1641
CV (unorder) 0.4968 0.4918 0.0647 0.0844 0.5456 0.5351 0.1497 0.1928
Frequency 0.6438 0.6261 0.1348 0.1747 1.0660 1.0430 0.2816 0.3550

500

Bayesian (order) 0.2610 0.2580 0.0315 0.0420 0.2466 0.2434 0.0526 0.0726
Bayesian (unorder) 0.2646 0.2606 0.0381 0.0441 0.2489 0.2441 0.0600 0.0734
CV (order) 0.2633 0.2595 0.0322 0.0438 0.2562 0.2529 0.0563 0.0770
CV (unorder) 0.3458 0.3425 0.0343 0.0455 0.3325 0.3280 0.0663 0.0885
Frequency 0.4204 0.4146 0.0610 0.0746 0.4895 0.4883 0.0907 0.1220

1000

Bayesian (order) 0.1948 0.1947 0.0185 0.0249 0.1714 0.1715 0.0287 0.0367
Bayesian (unorder) 0.1965 0.1958 0.0230 0.0253 0.1718 0.1717 0.0286 0.0380
CV (order) 0.1968 0.1955 0.0298 0.0251 0.1731 0.1728 0.0282 0.0370
CV (unorder) 0.2554 0.2557 0.0210 0.0285 0.2300 0.2289 0.0367 0.0466
Frequency 0.3040 0.3026 0.0353 0.0486 0.2992 0.2997 0.0450 0.0573

The fifth DGP includes ordered categorical and continuous regressors and is given by

yi = 1 +
√

x(d)i + x(c)i + ui, for i = 1, 2, · · · , n,

where x(d)i is drawn from {0, 1, · · · , 4}with an equal probability of 1/5, x(c)i is drawn from N(0, 1), and
the error term ui is drawn from N(0, 1). As the response variable is affected by the discrete regressor
through its square root, the actual distance between categories 0 and 1 is 1, between categories 1 and 2
is
√

2− 1 ≈ 0.41, between categories 2 and 3 is
√

3−
√

2 ≈ 0.32, and between categories 3 and 4 is√
4−
√

3 ≈ 0.27 (see also [4]).
The purpose of this simulation is to investigate the five estimators in a situation where the distance

between any pair of successive observations is not a fixed constant. Sample sizes of n = 50, 100 and
200 were used, and the results are presented in Table 4.

Again the Kruskal-Wallis test has a p value of zero for all values of n thus rejecting the null
hypothesis of no difference in performance among the five estimators. This time the Bayesian method
using the unordered kernel almost always has the lowest values of all four summary statistics
for both in-sample and out-of-sample ASEs. Differences diminish as n increases. According to
Dunn’s test with Bonferroni criterion, the Bayesian method with ordered and unordered kernels
behave similarly, while the CV method with unordered kernel performs similarly to the frequency
method. There are significant differences among the Bayesian method with unordered kernel, CV with
ordered and unordered kernels, and frequency methods. Based on the in-sample ASEs, the ordered
Bayesian method is also better than both CV methods and the frequency approach for all values of n.
Not surprisingly, the MCS procedure finds in favour of the Bayesian method using the unordered
kernel for all n values.
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What is surprising is that differences between the CV method with unordered kernel and the
frequency approach are not significant. In order to examine the role of the choice of kernel in the
relative performance of the various estimators, we repeated the last simulation using Wang and Van
Ryzin’s kernel function [43], where bandwidths were estimated through Bayesian, CV and frequency
approaches. Table 5 presents a summary of descriptive statistics of the in-sample and out-of-sample
ASE values. Under the criterion of in-sample ASE, the frequency approach is comparable to the
Bayesian method, but both perform poorer than CV. However, under the criterion of out-of-sample
ASE, the Bayesian approach is comparable to CV, but both perform better than the frequency approach.
The Kruskal-Wallis test reveals no significant differences between the three methods for all values of n.

Table 4. Mean, median and variation measures of the ASE values derived through 1000 samples
simulated according to the fifth DGP. The bolded numbers represent the minimum summary statistics
of ASEs.

n Method In-Sample ASE Out-of-Sample ASE

Mean Median SD IQR Mean Median SD IQR

50

Bayesian (order) 0.2134 0.1979 0.0919 0.1255 0.2410 0.2110 0.1343 0.1570
Bayesian (unorder) 0.2090 0.1939 0.0884 0.1203 0.2291 0.2006 0.1266 0.1494
CV (order) 0.2311 0.2135 0.0994 0.1170 0.2670 0.2260 0.1674 0.1780
CV (unorder) 0.2785 0.2628 0.1116 0.1416 0.3023 0.2540 0.1996 0.2267
Frequency 0.2797 0.2638 0.1130 0.1423 0.3886 0.3525 0.1982 0.2371

100

Bayesian (order) 0.1349 0.1282 0.0530 0.0723 0.1375 0.1228 0.0702 0.0801
Bayesian (unorder) 0.1340 0.1272 0.0521 0.0700 0.1342 0.1216 0.0679 0.0776
CV (order) 0.1605 0.1523 0.0530 0.0684 0.1480 0.1300 0.0795 0.0915
CV (unorder) 0.1755 0.1676 0.0628 0.0793 0.1610 0.1412 0.0898 0.1041
Frequency 0.1758 0.1677 0.0628 0.0794 0.2002 0.1852 0.0890 0.1069

200

Bayesian (order) 0.0842 0.0808 0.0283 0.0401 0.0790 0.0746 0.0332 0.0404
Bayesian (unorder) 0.0841 0.0810 0.0282 0.0393 0.0782 0.0737 0.0328 0.0398
CV (order) 0.1178 0.1151 0.0298 0.0383 0.0846 0.0786 0.0382 0.0434
CV (unorder) 0.1075 0.1044 0.0348 0.0450 0.0884 0.0815 0.0390 0.0478
Frequency 0.1077 0.1048 0.0349 0.0450 0.1155 0.1033 0.0697 0.0538

Table 5. Mean, median and variation measures of the ASE values derived through 1000 samples
simulated according to the fifth DGP, where Wang and Van Ryzin’s kernel function [43] is used. The
bolded numbers represent the minimum summary statistics of ASEs.

n Method In-Sample ASE Out-of-Sample ASE

Mean Median SD IQR Mean Median SD IQR

50
Bayesian 0.2315 0.2202 0.0865 0.1153 0.2601 0.2296 0.1417 0.1660
CV 0.2158 0.1958 0.0970 0.1172 0.2625 0.2245 0.1614 0.1715
Frequency 0.2302 0.2132 0.0982 0.1174 0.3992 0.3519 0.2197 0.2497

100
Bayesian 0.1639 0.1554 0.0516 0.0682 0.1492 0.1322 0.0781 0.0920
CV 0.1439 0.1369 0.0553 0.0687 0.1465 0.1309 0.0783 0.0924
Frequency 0.1610 0.1531 0.0539 0.0701 0.2176 0.1954 0.1118 0.1215

200
Bayesian 0.1191 0.1162 0.0288 0.0383 0.0830 0.0772 0.0354 0.0429
CV 0.0983 0.0948 0.0309 0.0385 0.0843 0.0778 0.0387 0.0437
Frequency 0.1181 0.1151 0.0304 0.0384 0.1208 0.1093 0.0564 0.0568
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4.1.3. Experiment 3: Time Series Regression with Continuous and Binary Regressors

The sixth DGP includes a time series response variable explained by its lagged variable, a
continuous time series regressor xt and a binary regressor It, which is generated based on another time
series. This model is expressed as

yt = 0.25yt−1 + 0.6xt + r(It − 0.5) + εt,

εt = σy,tet,

σ2
y,t = 0.02 + 0.05ε2

t−1 + 0.9σ2
y,t−1, (11)

for t = 1, 2, · · · , n, where r is a random number that follows the uniform distribution on (0, 1), and
e1, e2, · · · , en are iid N(0, 0.49). The continuous regressor xt is generated as

xt = σx,tut,

σ2
x,t = 0.02 + 0.05x2

t−1 + 0.9σ2
x,t−1,

where u1, u2, · · · , un are iid N(0, 1). The binary regressor It is an indicator of zt and equals one with a
positive zt and zero otherwise, where zt is generated as

zt = σz,tvt,

σ2
z,t = 0.02 + 0.05z2

t−1 + 0.9σ2
z,t−1,

where v1, v2, · · · , vn are iid N(0, 1). The variance-covariance matrix of (et, ut, vt)′, for t = 1, 2, · · · , n, is 0.49 0.25 0.25
0.25 1 0.25
0.25 0.25 1

 .

Sample sizes of n = 100, 200 and 500 were used in this experiment and the results are presented
in Table 6.

Table 6. Mean, median and variation measures of the ASE values derived through 1,000 samples
simulated according to the sixth DGP. The bolded numbers represent the minimum summary statistics
of ASEs.

n Method In-Sample ASE Out-of-Sample ASE

Mean Median SD IQR Mean Median SD IQR

100
Bayesian 0.3825 0.3464 0.1677 0.1693 0.3558 0.3233 0.1652 0.1656
CV 0.4107 0.3567 0.2078 0.1959 0.4449 0.3733 0.2752 0.2405
Frequency 0.4123 0.3573 0.2075 0.1952 0.4372 0.3657 0.2622 0.2264

200
Bayesian 0.2930 0.2773 0.0854 0.0954 0.2769 0.2568 0.0925 0.0950
CV 0.3044 0.2790 0.1085 0.1064 0.3249 0.2936 0.1491 0.1396
Frequency 0.3032 0.2786 0.1043 0.1045 0.3239 0.2939 0.1388 0.1400

500
Bayesian 0.2367 0.2309 0.0417 0.0464 0.2289 0.2216 0.0424 0.0484
CV 0.2397 0.2298 0.0476 0.0516 0.2528 0.2390 0.0624 0.0658
Frequency 0.2397 0.2298 0.0480 0.0520 0.2554 0.2433 0.0629 0.0684

The Kruskal-Wallis test rejects the null hypothesis of no difference between the ASEs of the three
methods for n = 100 but not for n = 200 and 500. The Bayesian method always has the smallest
mean ASE and almost always has the smallest median across both in-sample and out-of-sample ASEs.
According to Dunn’s test with Bonferroni correction, the Bayesian method significantly differs from the
frequency method, while the CV method performs similarly to the Bayesian and frequency methods
for n = 100. For this sample size, the in-sample and out-of-sample mean ASEs obtained through
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CV are respectively, 8.8% and 23.2% larger than those for the Bayesian method. Based on the MCS
procedure applied to the out-of-sample ASEs, the Bayesian method is significantly better than its
two counterparts.

4.1.4. Experiment 4: The Presence of Irrelevant Regressors

In a nonparametric regression model, the NW estimator has the ability to smooth out irrelevant
regressors through a data-driven bandwidth selection method such as CV by choosing very
large bandwidth parameters for those regressors. This has important implications for variable
selection (see [5]). This experiment compares the Bayesian and CV methods in the presence of two
irrelevant regressors.

The seventh DGP generates variables as follows. Binary variables z1,i and z2,i were generated
so that Pr{z1,i = 1} = 0.69 and Pr{z2,i = 1} = 0.73 and continuous variables x1,i and x2,i were
generated as independent standard normal values for i = 1, 2, . . . , n. They were generated so there is
no correlation between any pair of regressors. The response variable was generated via

yi = z1,i + x1,i + εi,

where εi ∼ N(0, 1), for i = 1, 2, . . . , n. In order to examine whether irrelevant regressors can be
smoothed out by assigning them large bandwidths, we estimate the following model:

yi = z1,i + z2,i + x1,i + x2,i + εi,

for i = 1, 2, . . . , n. This model means that z2 and x2 are irrelevant regressors. Samples sizes of n = 100
and 250 were used. Summary statistics of the estimated bandwidths for 1000 iterations are presented
in Table 7 with the summary statistics for the ASEs of the two methods given in Table 8.

Table 7. Summary statistics of the estimated bandwidths derived through 1000 repetitions simulated
according to the seventh DGP.

n Method Bandwidth Mean Median SD Quantile

2.5% 97.5%

100

Bayesian λ1 0.1247 0.1095 0.0717 0.0336 0.3117
λ2 0.3079 0.3223 0.0768 0.1255 0.4165
h1 0.3593 0.3570 0.0938 0.1951 0.5529
h2 1.7690 1.5302 1.2477 0.3495 4.2122

CV λ1 0.0612 0.0449 0.0723 0.0000 0.2403
λ2 0.3810 0.5000 0.1602 0.0040 0.5000
h1 0.3654 0.3796 0.1094 0.1196 0.5472
h2 6.53×106 1.41×106 1.14×107 0.3829 3.65×107

250

Bayesian λ1 0.0676 0.0614 0.0302 0.0265 0.1449
λ2 0.3291 0.3466 0.0762 0.1524 0.4300
h1 0.3153 0.3181 0.0606 0.1932 0.4419
h2 2.2348 2.1492 1.1106 0.5045 4.5167

CV λ1 0.0302 0.0290 0.0235 0.0000 0.0839
λ2 0.3966 0.5000 0.1414 0.0573 0.5000
h1 0.3209 0.3289 0.0682 0.1614 0.4385
h2 4.29×106 1.45× 106 7.36× 106 0.5236 2.38×107
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Table 8. Mean, median and variation measures of the ASE values derived through 1000 samples
simulated according to the sixth DGP. The bolded numbers represent the minimum summary statistics
of ASEs.

n Method In-Sample ASE Out-of-Sample ASE

Mean Median SD IQR Mean Median SD IQR

100 Bayesian 0.1492 0.1309 0.0879 0.0908 0.1291 0.1068 0.1017 0.0922
CV 0.1509 0.1213 0.1081 0.1029 0.1304 0.1017 0.1057 0.0996

250 Bayesian 0.0694 0.0630 0.0401 0.0380 0.0545 0.0481 0.0445 0.0329
CV 0.0667 0.0590 0.0346 0.0386 0.0515 0.0458 0.0275 0.0328

For the proposed Bayesian bandwidth selection method, the average bandwidth chosen for z2 is
larger than that chosen for z1 by 1.47 times when n = 100 (3.87 times when n = 250), and the average
bandwidth chosen for x2 is larger than that chosen for x1 by 3.92 times when n = 100 (3.87 times when
n = 250). This shows that due to their large bandwidths, irrelevant regressors may not explain too
much about the response variable in comparison to their corresponding relevant regressors.

When CV is used for bandwidth choice, we find that the average bandwidth chosen for z2 is
larger than the one chosen for z1 by 5.23 times when n = 100 (12.13 times when n = 250). Moreover,
the average bandwidth chosen for x2 is larger than that chosen for x1 by 1.79× 107 times when n = 100
(1.34× 107 times when n = 250). Clearly, CV leads to a larger bandwidth than the Bayesian approach
for each irrelevant regressor.

With respect to the ASE measure of accuracy, the proposed Bayesian sampling method leads to
slightly better accuracy than CV when n = 100 with CV being better when n = 250. The Kruskal-Wallis
test rejects the null hypothesis at the 5% significance level of no difference between the two methods
for both sample sizes. Having implemented Dunn’s test with Bonferroni criterion, we found that the
Bayesian method differs significantly from the CV method for all sample sizes. The MCS procedure
applied to the out-of-sample ASEs finds the Bayesian method is significantly better when n = 100 and
CV is significantly better when n = 250.

In the above seven simulation studies, we only consider certain types of discrete variables such as
binary and categorical variables. We have not considered DGPs that allow for other possible types of
discrete variables. In terms of other types of discrete variables, [44,45] studied performance of several
associate kernels including the binomial kernel for count data in nonparametric regression models.

4.2. Accuracy of the Error Density Estimator

The proposed Bayesian sampling algorithm is based on the assumption of a kernel-form error
density given by (6), whose bandwidth is sampled at the same time as when bandwidths of the
NW estimator are sampled. Upon completion of the sampling algorithm, we also obtain a kernel
density estimator of the error density. However, when CV is used for selecting bandwidths for the
NW estimator, one may obtain the kernel density estimator of residuals, but its bandwidth has to be
selected based on residuals through an existing bandwidth selector such as likelihood cross-validation.
Thus, it requires two stages of using the cross-validation method to select bandwidths for the NW
estimator and the kernel density estimator of residuals, and we call it two-stage CV.

The performance of a kernel estimator of the error density denoted as f̂ (·), is examined by its
integrated squared errors (ISE). In our Monte Carlo simulation studies, the ISE was numerically
approximated at 1001 equally spaced grid points on [−5, 5]:

ISE ≈
1001

∑
i=1

{
f
(
−5 +

i− 1
100

)
− f̂

(
−5 +

i− 1
100

)}2
× 10

1000
.
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The mean ISE (MISE) was approximated by the mean of ISE values derived from the 1000 Monte
Carlo replications for each DGP. The in-sample MISE of the kernel estimator of error density with its
bandwidth chosen through Bayesian sampling or the two-stage CV for all seven DGPs are presented
in Table 9. For any DGP and any sample size considered, Bayesian sampling obviously outperforms
the two-stage CV in estimating the bandwidth for the kernel estimator of the error density, based on
the mean of in-sample ISE values. For the third and fifth DGPs, the Bayesian method outperforms the
two-stage CV in all four summary statistics.

Table 9. Mean, median and variation measures of the in-sample integrated squared errors (ISE) values
derived through 1000 repetitions for all seven DGPs, where the bandwidths of the kernel error density
estimator were chosen through Bayesian sampling and two-stage cross-validation (CV). The bolded
numbers represent the minimum summary statistics of ISEs.

DGP n Bayesian Two-Stage CV

Mean Median SD IQR Mean Median SD IQR

100 0.0085 0.0055 0.0085 0.0071 0.0241 0.0090 0.0421 0.0219
1 200 0.0039 0.0030 0.0031 0.0031 0.0047 0.0028 0.0057 0.0041

500 0.0015 0.0012 0.0012 0.0012 0.0018 0.0015 0.0012 0.0012

100 0.0099 0.0056 0.0295 0.0073 0.0165 0.0067 0.0347 0.0107
2 200 0.0041 0.0029 0.0037 0.0031 0.0047 0.0028 0.0059 0.0032

500 0.0020 0.0014 0.0071 0.0011 0.0033 0.0013 0.0343 0.0011

100 0.0102 0.0059 0.0161 0.0074 0.0220 0.0086 0.0449 0.0163
3 200 0.0043 0.0030 0.0058 0.0033 0.0062 0.0036 0.0086 0.0047

500 0.0017 0.0014 0.0014 0.0012 0.0019 0.0014 0.0017 0.0014

100 0.0199 0.0107 0.0305 0.0161 0.0468 0.0181 0.1208 0.0394
4 200 0.0065 0.0040 0.0092 0.0044 0.0072 0.0046 0.0090 0.0062

500 0.0023 0.0017 0.0020 0.0016 0.0024 0.0018 0.0019 0.0019
1000 0.0013 0.0011 0.0010 0.0009 0.0018 0.0013 0.0056 0.0012

50 0.0101 0.0068 0.0096 0.0080 0.0156 0.0101 0.0262 0.0111
5 100 0.0056 0.0040 0.0051 0.0041 0.0082 0.0064 0.0081 0.0059

200 0.0030 0.0025 0.0022 0.0021 0.0048 0.0041 0.0028 0.0032

100 0.0940 0.0938 0.0164 0.0207 0.1138 0.1165 0.0157 0.0173
6 200 0.0894 0.0899 0.0111 0.0147 0.1055 0.1068 0.0107 0.0129

500 0.0845 0.0846 0.0068 0.0091 0.0966 0.0972 0.0072 0.0093

7 100 0.0168 0.0073 0.0687 0.0121 0.0311 0.0054 0.2599 0.0096
250 0.0027 0.0022 0.0020 0.0024 0.0031 0.0020 0.0041 0.0025

With all the bandwidths chosen based on in-sample observations for each DGP, we calculated the
out-of-sample MISE of the kernel estimator of the error density. All the out-of-sample MISE values
were tabulated in Table 10. We found that for the second, fifth and sixth DGPs, Bayesian sampling
slightly outperforms two-stage CV in terms of all four summary statistics, and for the other three
DGPs, results obtained from Bayesian sampling are comparable to those obtained from two-stage CV.
Out of all 19 cases of different DGPs and different sample sizes, Bayesian sampling performs better
than the two-stage CV for 12 cases, while the latter performs better in 2 cases. Both perform similarly
in 5 cases.



Econometrics 2016, 4, 24 17 of 27

Table 10. Mean, median and variation measures of the out-of-sample ISE values derived through 1000
repetitions for all seven DGPs, where the bandwidths of the kernel error density estimator were chosen
through Bayesian sampling and two-stage CV. The bolded numbers represent the minimum summary
statistics of ISEs.

DGP n Bayesian Two-Stage CV

Mean Median SD IQR Mean Median SD IQR

100 0.0013 0.0009 0.0013 0.0013 0.0012 0.0008 0.0013 0.0011
1 200 0.0007 0.0005 0.0006 0.0006 0.0007 0.0005 0.0007 0.0006

500 0.0004 0.0003 0.0003 0.0004 0.0006 0.0005 0.0004 0.0005

100 0.0021 0.0018 0.0015 0.0018 0.0023 0.0017 0.0021 0.0017
2 200 0.0012 0.0010 0.0009 0.0010 0.0012 0.0010 0.0009 0.0010

500 0.0006 0.0005 0.0004 0.0005 0.0006 0.0005 0.0004 0.0005

100 0.0017 0.0012 0.0021 0.0013 0.0021 0.0018 0.0015 0.0016
3 200 0.0008 0.0007 0.0007 0.0007 0.0013 0.0012 0.0009 0.0010

500 0.0004 0.0003 0.0003 0.0003 0.0008 0.0008 0.0004 0.0005

100 0.0011 0.0008 0.0009 0.0009 0.0012 0.0009 0.0011 0.0010
4 200 0.0006 0.0005 0.0004 0.0005 0.0007 0.0006 0.0004 0.0005

500 0.0003 0.0003 0.0002 0.0002 0.0004 0.0004 0.0002 0.0003
1000 0.0002 0.0002 0.0001 0.0002 0.0003 0.0003 0.0002 0.0002

50 0.0040 0.0030 0.0032 0.0030 0.0038 0.0029 0.0041 0.0028
5 100 0.0023 0.0020 0.0016 0.0019 0.0023 0.0019 0.0018 0.0018

200 0.0014 0.0012 0.0009 0.0010 0.0014 0.0012 0.0010 0.0009

100 0.0914 0.0896 0.0225 0.0298 0.1085 0.1075 0.0253 0.0315
6 200 0.0892 0.0879 0.0165 0.0215 0.1031 0.1026 0.0185 0.0253

500 0.0886 0.0885 0.0105 0.0137 0.0991 0.0989 0.0115 0.0155

7 100 0.0599 0.0594 0.0160 0.0220 0.0627 0.0624 0.0161 0.0222
250 0.0588 0.0584 0.0108 0.0148 0.0603 0.0601 0.0108 0.0143

To summarize, we have found that for all seven DGPs considered, our Bayesian sampling
approach outperforms its competitor, the two-stage CV, in estimating bandwidths for the NW estimator
of the regression function and kernel estimator of error density.

4.3. Sensitivity of Prior Choices

To examine the sensitivity of prior choices, we change the priors in two ways. First, we keep
the same prior densities, namely inverse Gamma, as before but alter the values of hyperparameters.
Second, we change the prior densities for squared bandwidth parameters from the inverse Gamma
density to log normal density. When we focus on bandwidth parameters, the use of Cauchy prior
densities has been considered by [46]. With one sample of size 500 generated through the first DGP, we
derived the Markov chain Monte Carlo (MCMC) simulation results using different priors. The results
are summarized in Table 11. We use the SIF to monitor the mixing performance of a simulated chain.
The last column of Table 11 shows that the mixing performance is not particularly sensitive to different
choices of the prior density.
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Table 11. Arithmetic mean, 95% Bayesian credible interval, standard deviation, batch-mean standard
deviation and simulation inefficiency factor (SIF) of each simulated chain obtained under different
choices of priors for the first DGP with a sample size of 500.

Prior Parameter Mean 95% Bayesian Standard Batch–mean SIFCredible Interval Deviation Standard dev.

IG(1, 0.05)

λ1 0.0295 (0.0046, 0.0575) 0.0129 0.0007 26.32
λ2 0.0205 (0.0007, 0.0428) 0.0117 0.0007 32.49
λ3 0.0245 (0.0018, 0.0518) 0.0134 0.0008 33.59
λ4 0.0318 (0.0040, 0.0595) 0.0129 0.0008 38.90
h 0.1349 (0.1135, 0.1576) 0.0120 0.0004 13.18
b 0.2685 (0.1543, 0.3970) 0.0621 0.0013 4.23

IG(5, 0.25)

λ1 0.0267 (0.0015, 0.0555) 0.0135 0.0008 36.30
λ2 0.0216 (0.0021, 0.0469) 0.0115 0.0007 36.89
λ3 0.0244 (0.0020, 0.0522) 0.0132 0.0008 36.01
λ4 0.0342 (0.0080, 0.0618) 0.0135 0.0007 27.50
h 0.1471 (0.1263, 0.1739) 0.0124 0.0004 10.59
b 0.2572 (0.1742, 0.3546) 0.0481 0.0012 6.52

Cauchy(0, 1)

λ1 0.0277 (0.0058, 0.0527) 0.0124 0.0008 46.30
λ2 0.0210 (0.0016, 0.0457) 0.0118 0.0008 46.55
λ3 0.0226 (0.0011, 0.0479) 0.0127 0.0008 38.07
λ4 0.0321 (0.0058, 0.0557) 0.0133 0.0008 34.85
h 0.1338 (0.1093, 0.1608) 0.0130 0.0004 11.20
b 0.3000 (0.1651, 0.4301) 0.0661 0.0015 5.34

Log N(0,1)

λ1 0.0268 (0.0006, 0.0528) 0.0123 0.0007 28.91
λ2 0.0204 (0.0028, 0.0455) 0.0111 0.0007 38.04
λ3 0.0229 (0.0012, 0.0503) 0.0125 0.0005 17.91
λ4 0.0332 (0.0065, 0.0614) 0.0134 0.0006 22.93
h 0.1415 (0.1182, 0.1709) 0.0135 0.0005 12.33
b 0.3392 (0.2241, 0.4623) 0.0588 0.0013 5.21

5. An Application to Modeling Stock Returns

The purpose of this study is to demonstrate the benefit of the proposed sampling algorithm
for bandwidth estimation in comparison with the existing bandwidth selection method. We are
interested in modeling the daily return of the All Ordinaries (Aord) index in the Australian stock
market, where one explanatory variable is the overnight daily return of the S&P 500 index because
from the beginning of 2007 onwards, the US has had a leading effect on other markets worldwide.
Such a nonparametric regression model was previously studied by [12] to demonstrate their sampling
algorithm for bandwidth estimation.

Although the Australian stock market typically followed the overnight market movement in the
US, there are some exceptions where the Australian market moves in the opposite direction. This
motivated us to look for another explanatory variable, and one such variable is an indicator of a major
stock market in the European zone. The indicator was expected to suggest the market movement in
Australia because the US stock market was also supposed to have a leading effect on European stock
markets. Therefore, we model the Aord daily return as an unknown function of the overnight S&P
500 return and a binary variable indicating whether the overnight FTSE index went up or down. This
nonparametric regression model should better reveal the actual relationship between the Australian
stock market and the US market than the model investigated by [12], where only a continuous regressor
was considered.

5.1. Data

We downloaded daily closing index values of the Aord, S&P 500 and FTSE between January
3, 2007 and October 1, 2012 from Yahoo Finance. Each value of the Aord index was matched to the
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corresponding overnight values of the S&P 500 and FTSE indices. Whenever one market experienced
a non-trading day, the trading data collected from all three markets on that day were excluded. The
sample contains n = 1373 observations of the daily continuously compounded return of each index.

We fitted the nonparametric regression model given by

yi = m(x1,i, x2,i) + εi, for i = 1, 2, · · · , n, (12)

to the sample data, where yi is the Aord daily return, xi,1 is the S&P 500 daily return, xi,2 is a
binary regressor taking the value of one if the FTSE daily return is positive and zero otherwise,
and ε1, ε2, · · · , εn are assumed to be iid and follow a distribution with its density given by (6).

5.2. Results

The proposed Bayesian sampling algorithm was employed to estimate bandwidths in the NW
estimator and the kernel–form error density. The first row panel of Table 12 presents the estimates of
bandwidths, their 95% Bayesian credible intervals and associated SIF values. These small SIF values
indicate that the sampler achieved very good mixing. In our experience, a SIF value of no more than
100 usually indicates reasonable mixing.

Table 12. Estimated bandwidths for the regressors in the Nadaraya-Watson (NW) estimator and the
kernel–form error density.

Bandwidth Parameter Mean 95% Bayesian Standard Batch-Mean SIFSelector Credible Interval Deviation Standard Error

Bayesian hS&P 500 0.6816 (0.5850, 0.7887) 0.0016 0.0533 9.1
λFTSE 0.2630 (0.1221, 0.4076) 0.0033 0.0724 20.8
b 0.4932 (0.4375, 0.5517) 0.0008 0.0297 6.5

Two-stage hS&P 500 0.3354
CV λFTSE 0.8249

b 0.3181

The second row panel of Table 12 presents the bandwidths selected through two-stage CV. The
bandwidths for the continuous regressor and the kernel-form error density derived through two-stage
CV are clearly different from those derived through Bayesian sampling.

With the first pair of out-of-sample observations of S&P 500 and FTSE returns, we can make
the one-day-ahead forecast of the Aord return before the Australian stock market opens its trading.
We collected observations of the S&P 500 and FTSE returns on October 1, 2012 (local time), and then
used the nonparametric regression model given by (12) to make a point forecast of the Aord return on
October 2, 2012. Such a point forecast was made at each iteration of the MCMC sampling procedure.
Upon finishing the sampling procedure, we derived a posterior point forecast of the Aord return
by averaging these forecasts made at all iterations. The point posterior forecast of the Aord return
is 0.1984%, and its 95% Bayesian credible interval is (0.1553%, 0.2382%). The actual Aord return on
October 2, 2012 is 0.9842%. In comparison to the point forecast of the Aord return of 0.0416% obtained
by the same nonparametric kernel regression with bandwidth selected by CV, the proposed Bayesian
method leads to a closer forecast than CV.

The kernel-form error density given by (6) allows us to forecast the one-day-ahead density of the
Aord return. According to (7), the density of yn+1 is

f̃y

(
yn+1

∣∣h2, λ, b2
)
=

1
n

n

∑
j=1

1
b

φ

(
{yn+1 − m̂ (xn+1; h, λ)} −

{
yj − m̂

(
xj; h, λ

)}
b

)
, (13)
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where xn+1 is the vector of first out-of-sample observations of S&P 500 and FTSE returns. The
one-day-ahead posterior predictive density is given by

fy
(
yn+1

∣∣y) = ∫
f̃y

(
yn+1

∣∣h2, λ, b2
)

π
(

h2, λ, b2∣∣y) dh2dλdb2, (14)

which we approximate by averaging (13) over the simulated chain of
(
h2, λ′, b2)′. At each iteration

during the sampling procedure, we calculated f̃y
(
yn+1

∣∣h2, λ, b2) at 25,000 grid points with the
simulated values of h2, λ and b2 being plugged-in. Upon finishing the sampling procedure,
we calculated the average of these calculated density values at each grid point. The posterior
predictive cumulative density function (CDF) of the Aord daily return was obtained similarly.
The posterior predictive density of the Aord return and its CDF are plotted in blue solid lines in
Figures 1 and 2, respectively.
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Figure 1. Graphs of posterior predictive density of the forecasted All Ordinaries return on
October 2, 2012.

At the 95% and 99% confidence levels, the one-day-ahead VaRs were computed through
the posterior predictive CDF. With bandwidths estimated through Bayesian sampling for the
nonparametric regression model given by (12), the VaRs for a $100 investment on the Aord index are
respectively, $1.4861 and $2.5176 at the 95% and 99% confidence levels.

With bandwidths selected through the two–stage CV for the nonparametric regression model
given by (12), the graphs of the one-day-ahead density forecast of the Aord return and its CDF are
also plotted in red dot-dash lines in Figures 1 and 2, respectively. The 95% and 99% VaRs for a
$100 investment on the Aord index are respectively, $1.6048 and $2.5523, which are larger than the
corresponding VaRs derived through Bayesian sampling.

It seems that the two-stage CV leads to an over-estimated VaR in comparison to its Bayesian
counterpart. However, the above results were derived based on forecasted densities of one day’s
Aord return only. To further justify the empirical importance of our method, we checked the relative
frequency of exceedance through rolling samples.
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Figure 2. Graphs of the posterior predictive cumulative density of the forecasted All Ordinaries return
on October 2, 2012.

5.3. Relative Frequency of Exceedance

The concept of exceedance refers to the phenomenon that the actual daily loss exceeds the
estimated daily VaR during the same period of holding the invested asset. The relative frequency
of exceedance is a measure of the accuracy of a VaR estimate. Therefore, we use this measure to
evaluate the performance of the proposed Bayesian bandwidth estimation method in comparison to
the two-stage CV for the nonparametric regression model with both continuous and binary regressors.
The performance of the one-day-ahead forecasted VaR was examined by the relative frequency of
exceedance derived through rolling samples. Let α denote the confidence level for computing VaRs. If
the relative frequency of exceedance is close to (1− α), the underlying method for computing the VaR
can be regarded as appropriate. The closer the relative frequency of exceedance is to (1− α), the better
the underlying VaR estimation method would be.

In order to calculate the relative frequency of exceedance, the samples have a fixed size of 1000.
During the whole sample period, the first sample contains the first 1000 observed vectors of the Aord,
S&P 500 and FTSE returns, based on which we estimated bandwidths through Bayesian sampling and
computed the VaRs at the 95% and 99% confidence levels. The second sample was derived by rolling
the first sample forward one day. Based on the second sample, we did the same as for the previous
sample. This procedure continued until the second last observation was included in the sample for
estimating bandwidths. There are a total of 373 samples for forecasting the one-day-ahead VaRs.

With the daily VaRs forecasted through rolling samples, we calculated the relative frequency of
exceedance at different α values with bandwidths chosen through Bayesian sampling and the two-stage
CV. With Bayesian sampling, the resultant relative frequencies are respectively, 0.80% and 4.81% at
the 99% and 95% confidence levels. However, with two-stage CV method, the corresponding relative
frequencies of exceedance are 1.07% and 6.95%, respectively. It shows that two-stage CV for bandwidth
selection leads to under-estimated VaRs in comparison to our proposed sampling method, particularly
at the 95% confidence level.

6. Conditional Density Estimation of GDP Growth Rates

Given the close relationship between the conditional mean regression and conditional density
estimation, the sampling algorithm proposed in Section 3 can be modified for the purpose of choosing
bandwidths in kernel density estimation of continuous and discrete variables. Maasoumi, Racine, and
Stengos [7] investigated kernel density estimation of the gross domestic product (GDP) growth rate
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among OECD and non-OECD countries from 1965 to 1995, where the OECD status of the country
and the year of the observed growth rate are included in the data matrix. They aimed to estimate the
trivariate density of growth rates (denoted as x(c)), OECD status and year (denoted as x(d)), where
the last two variables are respectively, binary and ordered categorical. Their primary purpose was to
explore the dynamic evolution of OECD and non-OECD countries’ distributions of GDP growth rates
across different years. Maasoumi et al. [7] proposed using the kernel estimator with unordered and
ordered discrete kernels assigned to the discrete variables to estimate such trivariate densities, where
bandwidths were selected through the likelihood cross-validation (LCV) (see also [7,47]).
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Figure 3. Density and distribution functions of GDP growth rate by year and OECD status.
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Figure 4. Density and distribution functions of GDP growth rate by year and OECD status (continued).

We are interested in choosing bandwidths for the kernel estimator of x =
(

x(c), x(d)
)′

, which is
expressed as

f̂
(

x(c), x(d); h, λ
)
=

1
n

n

∑
j=1

K(c)
h

(
x(c) − x(c)j

)
× K(d)

λ

(
x(d), x(d)j

)
.

where x(c)i and x(d)i , for i = 1, 2, · · · , n, are observations of x(c) and x(d), respectively. The kernel
function for GDP growth rates is the Gaussian kernel, while the OECD status is assigned with a kernel
function given by (3), and the kernel for years is given by (4).
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Figure 5. Stacked plots of density and distribution functions of GDP growth rate.

The likelihood of x =
{(

x(c)i , x(d)i

)
: i = 1, 2, · · · , n

}
for given (h, λ) is approximately

`
(

x
∣∣h, λ

)
≈

n

∏
i=1

f̂(−i)

(
x(c)i , x(d)i ; h, λ

)
,

where f̂(−i) is the leave–one–out version of f̂ (see for example, [48]).
The priors of bandwidth parameters are the same as those discussed in Section 3.2. The posterior

of (h, λ) is proportional to the product of `
(
x
∣∣h, λ

)
and the priors of bandwidths. The adaptive

random-walk Metropolis algorithm was used to implement the posterior simulation, where the
proposal density is the standard trivariate Gaussian, and the tuning parameter was chosen to make
the acceptance rate around 0.234. The posterior mean of each simulated chain is used as an estimate of
the corresponding bandwidth.

With the estimated bandwidths, we derived the joint density of GDP growth rate, OECD status
and years. The conditional density of GDP growth rates for given values of OECD status and year is
the joint density estimator divided by the marginal density estimator of OECD status and year. Note
that bandwidths estimated for the joint trivariate kernel density estimator can be used for the kernel
conditional density estimator.
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Given different values of OECD status and year, we calculated the conditional densities and
CDFs of GDP growth rates with their graphs presented in Figures 3 and 4. It shows that Bayesian
sampling and LCV lead to clearly different density functions of growth rates. The probability density
estimates obtained from LCV have higher peaks than those obtained from the Bayesian method,
although they both center at about the same points. The growth-rate distributions of an OECD country
and a non-OECD country are very different from 1965 to 1995. Second, the growth-rate density of
an OECD country is almost symmetrical and less dispersed than that of a non-OECD country, and
this phenomenon becomes obvious over time. The growth-rate density of a non-OECD country is
asymmetrical and has larger variation than that of an OECD country. It appears to manifest bimodality
and indicate “polarization” within non-OECD countries. The results re-confirm the findings of [7].
Figure 5 presents the stacked plots of OECD and non-OECD density and distribution functions of
growth rates for all years, where bandwidths were estimated through Bayesian sampling.

We found the following empirical evidence. First, given the year value at either 1965 or 1970,
the conditional growth-rate distribution of an OECD country (purple dotted line on the two top
right graphs of Figure 3) stochastically dominates that of a non-OECD country (blue solid line).
However, there has been no such stochastic dominance since 1975. Second, given the OECD
status of a country, the country’s growth-rate distribution in 1965 (black solid line on the top right
graph of Figure 5) stochastically dominates its growth-rate distributions in the other years; and
its growth-rate distribution in 1990 (pink long- and short-dashed line) stochastically dominates its
growth-rate distributions in 1980 (blue dot-dash line), 1985 (brown dashed line) and 1995 (purple
solid line), respectively.

7. Conclusions

We have presented a Bayesian sampling approach to the estimation of bandwidths in a
nonparametric regression model with continuous and discrete regressors, where the regression function
is estimated by the NW estimator and the unknown error density is approximated by a kernel-form
error density. Monte Carlo simulation results show that the proposed Bayesian sampling method
typically performs better than, or at least on par in only a few occasions with, cross-validation for
choosing bandwidths. In particular, the Bayesian method performs better than the CV method when
the sample size is small. The advantage of the proposed Bayesian approach over cross-validation is its
ability to estimate the error density. As measured by the MISE, the Bayesian method outperforms the
two-stage cross-validation method for estimating the bandwidth in the kernel-form error density. Thus,
the proposed sampling method is recommended for estimating bandwidths in the regression-function
and kernel-form error density estimators.

The proposed Bayesian sampling algorithm is used to estimate bandwidths for the nonparametric
regression of All Ordinaries (Aord) daily return on the overnight S&P 500 return and an indicator of
the FTSE return. In comparison to cross-validation for bandwidth selection, the proposed sampling
method leads to a different one-step-ahead forecasted density of the Aord return. Consequently, the
resulting value-at-risk measure, as well as the relative frequency of exceedance, is different from the
one derived with bandwidths selected through cross-validation. In this example, Bayesian sampling
for bandwidth estimation in the nonparametric regression of mixed regressors leads to better results
than cross-validation. In an application that involves of kernel density estimation of a country’s
GDP growth rate conditional on its OECD status and the year of observations, Bayesian sampling
for bandwidth estimation leads to different density estimates from those with bandwidths selected
through likelihood cross-validation.

There are several ways, along which this paper can be extended. First, the proposed Bayesian
algorithm can be extended to several other models, one of which is the nonparametric regression
model with conditional heteroscedastic errors or correlated errors. Second, it is possible to consider
using asymmetric kernel functions for continuous variables, such as the beta and gamma kernels
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discussed by in [45], as well as other kernels for discrete variables, such as the binomial and Poisson
kernels discussed by [44]. We leave these extensions for future research.
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