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Abstract: We present a framework for deriving anomaly detection algorithms on timeseries
data when the time and expression of anomalous behaviour is unknown. The framework is suited
for problems in which individual machine learning paradigms cannot be directly implemented:
supervised learning is not applicable due to the lack of labelled data, unsupervised learning
is not effective since the normal operations are insufficiently defined and take complex and
diverse forms, and deep learning risks confusing problematic behaviours for expected ones due
to the possible repetitiveness of similar anomalies. The proposed approach is comprised of two
phases: unsupervised discovery of anomalies, and semi-supervised construction and tuning of the
anomaly detection algorithm. By leveraging data exploration methods and expert knowledge,
the resulting algorithms are interpretable and detect a wide range of anomalous behaviours.
The approach is applied to the early detection of wear and tear of maritime propulsion and
manoeuvring machinery. We show that the final algorithm is able to detect different types of
anomalies, including an actual internal leakage in a thruster which is otherwise overlooked by
the present rule-based alarm system.
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1. INTRODUCTION sented (Tan et al., 2020). However, the use of unsuper-

vised learning requires a well-defined normal behaviour
and identification of informative features that are able
to discern symptoms of malfunction from e.g., different
operational modes or unusual environmental conditions.
If these conditions are not met, unsupervised algorithms
exhibit low performance.

Automated condition monitoring in complex physical sys-
tems requires flexible algorithms that are able to detect
a wide range of irregularities indicative of malfunction.
Through the ability to find complex patterns in the data,
machine learning methods can detect less pronounced and
less predictable deviations from regular operation than
e.g., rule-based monitoring systems, usually suited to iden-
tify specific problems.

To circumvent the need for manual feature engineering,
many works propose the use of deep autoencoders, which
belong to the semi-supervised category (Kong et al., 2021;
Zhang et al., 2019). These may not be appropriate for
condition monitoring, as anomalies which are symptomatic
of machinery malfunction are expected to be similar and
repetitive, therefore they may be missed by the autoen-
coder that conceptualizes recurring patterns as normal be-
haviour. In addition, autoenconders require great amounts
of data representing all the normal modes of operation and
do not provide interpretable metrics (Pang et al., 2021).

Machine learning algorithms are typically divided into two
categories: supervised and unsupervised. In the supervised
approach, such as in Kim et al. (2020), the algorithm learns
representations of anomalous and normal behaviours based
on labels corresponding to each sample e.g., the normal
and abnormal class, or a value indicative of a deviation.
In reality, labelled data with representative anomalies are
usually not available in quantities sufficient to learn such
representations, especially since anomalies can take many
forms, which makes supervised methods inapplicable. In

In this work, we propose a two-phase framework for con-
structing anomaly detection algorithms without labelled

unsupervised approaches, anomalies are detected as out-
liers in data that are otherwise considered to represent
normal conditions (Vanem and Brandseeter, 2019). These
methods are often preferred even when labelled data are
available, as anomalous states are usually underrepre-

data and sufficiently defined normal behaviour, as pre-
sented in Fig. 1. The first phase is anomaly discovery
which incorporates data exploration and expert knowl-
edge. This is reminiscent of active learning, i.e., interactive
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Fig. 1. Framework pipeline.

labelling of new anomalous instances using expert feed-
back (Das et al., 2016; Beaugnon et al., 2017; Gornitz
et al., 2012), though the methods are suited for discovering
diverse anomalies to model informative features, rather
than for labelling data to train a supervised algorithm.
In the second phase, the final algorithm is constructed,
tuned with the sparse anomalous labels and prevented
from overfitting through the inclusion of expert knowledge.
Depending on the application, the final algorithm can use
human-interpretable features that allow for analysis of the
detected anomalies.

The paper is organized as follows: Section 2 introduces
the general framework, Section 3 presents the use case
of a propulsion and manoeuvring system, to which the
framework is applied in Section 4. Section 5 presents the
performance of the derived algorithm on the basis of its
ability to detect a variety of anomalies, while Section 6
derives the main conclusions of the work.

2. FRAMEWORK FOR DISCOVERY AND
DETECTION OF ANOMALIES

In this section, we describe each phase of the framework
leading to the construction of an anomaly detection algo-
rithm, as summarized in Fig. 1. Phase 1 is an iterative
process of feature engineering and data exploration for
detecting outliers and identifying anomalies in the train-
ing data. In phase 2, the most informative features are
used to construct the anomaly detection algorithm and
expert knowledge is included to avoid bias towards spe-
cific anomalies. The transition criterion from one phase to
another is purposefully undetermined: Phase 1 continues
until a diverse array of anomalies is found, and phase 2
until the detection algorithm achieves satisfactory perfor-
mance.

2.1 Pre-processing

The suggested framework utilizes data divided into equal-
length time series, where each time series is a sequence of
multiple measurements treated as an independent observa-
tion. This approach reduces the data that needs to be anal-
ysed by summarizing the intervals with consideration of
time dependencies, which requires much less computation
than analysing each point individually. Although dividing
the data into smaller periods disrupts its continuity and
may cause some time-dependent interactions to be lost,
an appropriate interval length and overlap can alleviate
this problem. The intervals should be longer than the time

scale of variation in the data, but shorter than the time
we expect the observed system to stay in an anomalous
state. Physical anomalies are expected to persist, therefore
they should be detected through multiple consecutive time
intervals.

The pre-processing procedure depends on system details.
In this work, we consider the following steps:

e Resampling: Sensor data is often gathered under an
event-triggered sampling regime, such as Lebesgue
sampling. Resampling is applied to emulate an even
sample rate and align data from different sensors;

e Missing value imputation: If a value is not available
at some time within the resampling interval, the last
available measurement is typically used;

e Correcting values to ensure physical consistency;

e Outlier removal: Time series with infeasible values are
discarded.

2.2 Phase 1: Detecting anomalies in the training data

The goal of the first phase is to use unsupervised data
exploration techniques, outlier detection and manual ver-
ification of the resulting outliers to identify anomalous
states. It is unclear how the normal and anomalous opera-
tions are expressed in the data, therefore the first step is to
understand relationships that highlight the differences be-
tween them. The goal of the initial anomaly detection is to
aid feature engineering, rather than identify all anomalies.

Oftentimes anomalies are more pronounced in data that
may not be available in deployment, due to sensor limi-
tations. In the first phase, we identify anomalous periods
using all available data, and aim to understand patterns
that occur in the final-model data during these periods.

Below we highlight some considerations with regard to
feature engineering:

Variable interactions: ~ Though some anomalies may be
identifiable by one variable alone, multi-variable interac-
tions are typically more informative. Visual analysis can
identify relationships in the data and be a basis for deriv-
ing new features and detecting anomalies. The analysis can
consist of raw data plots, pairwise variable comparisons,
and density plots. Data exploration should be aided with
domain knowledge whenever possible.

Leveraging variable dependencies:  State estimation can
reveal changes in underlying assumptions through an in-
creased deviation of measurement and estimate. The esti-
mate can be based on other measurements available in the
data.

Automatized feature extraction: The data can be anal-
ysed either as individual timestamps or as summarized
characteristics of time series. In the latter, the feature
extraction can be a combination of expert knowledge, and
automatized feature extraction tools, such as tsfresh in
Python (Christ et al., 2018).

Dimensionality reduction: In cases with many variables,
or when a large set of descriptive statistics is produced,
the data can be transformed using dimensionality re-
duction techniques, such as principal component analysis
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(PCA) or t-distributed stochastic neighbour embedding
(t-SNE) (Pedregosa et al., 2012). Such techniques aim
to retain the most information while discarding noise.
However, in some cases the anomalous behaviour may be
lost in the transformation, especially if the dimensionality
is significantly reduced. Similarly, removal of correlated
variables may result in removing information that high-
lights anomalous behaviour.

Initially, detected anomalies can help identify features that
capture their characteristics, and conversely, these features
can be used to detect more anomalies. Identification of in-
formative features can be conducted by comparing feature
distributions for samples of anomalous and non-anomalous
observations. One option is a two-sample Kolmogorov-
Smirnov test (Dodge, 2008) with the null hypothesis that
the two samples (anomalous and non-anomalous) come
from the same distribution. The features with the lowest
p-values are then used to detect anomalies.

Relevant features are leveraged, either individually or
with data reduction techniques, to detect further outliers
through thresholds on feature values, outlier-aware clus-
tering methods, or outlier detection algorithms such as
isolation forest and one-class support vector machines.

2.8 Phase 2: Iterative tuning of the detection algorithm

The second phase can be conceptualized as semi-supervised
learning. The problem is posed as supervised anomaly
detection, as the initial anomalies are already found, but
an unsupervised algorithm is used due to the proportion
of anomalies in the data and that some anomalies remain
undiscovered. In the tuning process, some proportion of
false positives is desired, as long as it indicates discoveries
of new anomalies. Simultaneously, the aim is to maximise
the number of true positives, while maintaining a low
number of false negatives. In contrast to the first phase,
only sensor measurements that are available in deployment
are used.

Initially, the algorithm is trained on samples without
known anomalies. Here we propose one-class SVM (Sec-
tion 4.4), but clustering methods or outlier detection al-
gorithms are also suitable. Only the features that showed
the best separation of anomalous and normal samples in
phase 1 are utilised at this stage.

To track the progress of the algorithm we employ super-
vised learning evaluation metrics. While if applied on fully
labelled data these would be estimates of the algorithm’s
real-life performance, here they serve as a guide while
tuning the algorithm. The metrics used in this work are
precision and recall.

Newly discovered anomalies are reported as false positives,
leading to a decrease in precision, while a stable high recall
indicates that known anomalies are still detected. False
positives are investigated manually and labelled (re-setting
precision and recall) before repeating feature selection and
training. This process stops when precision stabilises, i.e.,
no new anomalies are found.

It must be noted that this procedure tunes the algorithm

to find known samples, and there is no corresponding way
to obtain the precision-recall metric on new unlabelled
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Fig. 2. The control scheme run by the PLC to control the
pitch of the propeller of a thruster.

data. To prevent overfitting of the training data, as well
as to increase the explainability of the algorithm, feature
engineering must be validated against domain expertise,
and simpler and more interpretable features should be
favoured. Without validation, the resulting features may
be very specific to a particular piece of data for each
anomaly in the training data but fail to generalize to
unseen examples.

3. USE CASE: MARITIME MACHINERY

The presented framework is applied to the problem of
detecting leakages and other undesired occurrences in mar-
itime propulsion and manoeuvring systems, specifically,
tunnel and azimuth thrusters. Manoeuvring systems can
experience tough operating conditions that can lead to
increased fuel consumption and wear of the equipment.
While many deviations can be detected by simple rule-
based algorithms operating on sensor data, others can
present themselves in unpredictable ways and hence be
difficult to discern from normal behaviour.

8.1 Maritime propulsion and manoeuvring systems

The thrusters are equipped with controllable-pitch pro-
pellers (CPP) regulated by a programmable logic con-
troller (PLC) running a simple control scheme (Fig. 2).
The controller uses the deviation between the pitch set-
point and the measured pitch angle to compute a voltage
that adjusts a valve. Opening the valve allows for oil to
flow into a cylinder, increasing pressure and pushing the
propeller’s pitch mechanism. There are known deadbands
on the valve command voltage and pitch deviation.

When the valve is closed, the pitch should ideally be
unchanging. In the presence of an internal leakage, some
amount of oil still flows even if the valve is closed, which
changes the pressure and the pitch angle.

3.2 Data

The available data consists of historical measurements
from sensors installed on thrusters and information from
control systems provided by Brunvoll, a maritime systems
manufacturer. The data is gathered from four units located
on two vessels in the years 2016 to 2019.

The pitch setpoint, valve command and measured pitch
are used to construct the predictive features, while drive
motor load is used as an indicator for whether the thrusters
are running. The initial anomaly discovery phase utilizes
additional variables, such as oil pressure and temperature,
and thrust feedback and setpoint. These are not part of the
final algorithm as they are not available for all thrusters.
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Fig. 3. Feedback follows the setpoint both in the presence
of a leakage, and under normal operation. In the
former, however, the command must compensate at
all times, even when the setpoint is unchanging.

4. APPLICATION TO THE USE CASE

This section illustrates the application of the framework
to the problem of condition monitoring in maritime ma-
chinery. Derived features, as well as data pre- and post-
processing are specific to the use case.

4.1 Pre-processing

Periods where thrusters are active were divided into 5 min
intervals, which resulted in ~20000 time-series samples.
The time series were resampled at a rate of At = 400 ms,
corresponding to the highest sensor frequency. Missing
values were handled by forward filling. Valve command
values within the control signal deadband were set to O.
Large, sudden jumps in the feedback are considered non-
physical and assumed to be due to sensor errors. The time
series displaying this behaviour were therefore removed
from the training data.

4.2 Initial anomaly detection

The first anomalies were detected using the first two prin-
cipal components of over 2000 features for pitch feedback,
pitch setpoint and valve command extracted with tsfresh.
In the next iterations, significant features were identified
with the two-sample Kolmogorov-Smirnov test. We in-
vestigated 12 features with p-value < 0.0001: principal
components derived from these features alone were more
efficient in separating known anomalies from normal be-
haviour and led to the discovery of additional anomalies.

Leveraging domain knowledge, we formulated features
that capture meaningful interactions between variables,
such as the mean absolute deviation in pitch, and between
estimated pitch and feedback. Additional anomalies were
identified by investigating extreme values of summary
statistics of these interaction-variables, e.g., mean and
maximum values, variance, and standard deviation.

Observations with low servo pressure (< 20 bar) and high
drive motor load (> 2000 kW) are clear outliers in the
data, as illustrated in Fig. 4. During such time intervals,
the pitch is deviating due to the pressure dropping without
a corresponding command. Low drive motor load and low
servo pressure are characteristic of starting of the motor
and do not indicate an anomaly.

4.8 Informative features

Data exploration and the initial anomaly discovery in
phase 1 resulted in four descriptive features that can detect
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Fig. 4. Raw values of drive motor load and the sum of
servo pressures. Low servo pressure with high drive
motor load indicate an anomaly.
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Fig. 5. In presence of a leakage (same as in Fig. 3), the
measured pitch follows the desired setpoint, but the
command given to maintain it is disproportionately
large. Hence, the expected pitch from Eq. A.2 deviates
from the measured pitch.

different types of physical anomalies, as well as sensor
issues. Each 5 min interval is characterized by features z;-
x4 based on the values of measured pitch feedback, pitch
setpoint and valve command:

x1. Deviation of feedback from expected pitch: Pitch is
estimated based on valve commands given and its
initial value in each 5min interval. Disproportionate
commands indicate that the system has to compen-
sate for some problems and show as a large deviation.

9. The longest time with pitch deviation exceeding 4°:
The control system reacts to pitch deviations above
4° therefore not correcting for such deviation over
time is indicative of problems with the machinery.

x3. Pitch feedback-setpoint deviation: High overall pitch
deviation can indicate a lack of response or delayed
response to the command.

x4. Maximal change in pitch feedback: Pitch feedback is
a measured variable, and it is only feasible for it to
change at a certain speed. Sudden, large jumps in the
pitch feedback suggest sensor problems.

Detailed formulas for the derived features are in the
Appendix.

4.4 Machine learning algorithm

Once the informative features have been identified, they
can be used in a machine learning algorithm. In this work,
we use a one-class support-vector machine (SVM), which is
an unsupervised machine learning algorithm that bounds
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the feature space to represent one class (normal behaviour)
(Tan et al., 2020). The new data which enters the model
can be either predicted as this class or as an outlier, while
the choice of the class boundary alters the tolerance to
outliers.

4.5 Filtering out false positive samples

The algorithm returns not only anomalies but also some
outliers that display abnormal, but not anomalous, be-
haviour. In the presented use case, some known abnor-
malities can be filtered out by simple rules based on the
domain knowledge about thrusters.

Rapid setpoint changes:  Feature x; is based on the
assumption that the pitch can be described by a first order
differential equation. However, it is observed that this as-
sumption does not hold when the setpoint changes before
a steady state is reached. To flag these false positives
we consider the number of sign changes in the measured
pitch error over some very short period of time (e.g., 3
timesteps, or 1.2s). If the sign changes more than twice
within this window, it indicates that the steady state has
not been reached. Minimal feedback-setpoint deviations,
e.g., < 0.1°, are ignored to adjust for the sensor noise.

Manual operation: In the manual operation mode, the
control system is deactivated, so that the feedback change
is not prompted by command and the setpoint remains
stable. Manual mode can be detected if the pitch feedback
changes over some period (e.g., 1 min) with no change in
the command or setpoint.

5. RESULTS AND DISCUSSION

Since the anomalies are unknown in our use case, the
performance of the algorithm cannot be quantified by
standard evaluation metrics. We, therefore, present the
algorithms application and ability to detect distinct types
of anomalous behaviour, one of them being an internal
leakage which was physically simulated in a testing setting.

5.1 Detected anomalies

The derived algorithm is able to detect anomalies that can
be conceptualized into five categories:

a1. Compensating command: When a change in feedback
requires unusually high command. Such occurrences
suggest an internal leakage in a thruster. Detected by
feature ;.

as. Delayed pitch response: When pitch reacts to the
command but only after a certain delay. Detected by
features x1, 3.

as. Unreactive pitch: When the pitch does not react to
the command. Detected by features xi-x3.

a4. Unreactive command: When the setpoint is changed
and not reached by the feedback, but no new com-
mand is given. Detected by features x, x3.

as. Sensor issues: Characterized by very sudden changes
in feedback or long constant periods in original fea-
tures during activities in corresponding features. De-
tected by feature xy4.
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Fig. 6. Examples of anomaly types ai-as.

Examples of the distinct anomaly types are presented in
Fig. 6. The algorithm was also able to detect a physically
simulated internal leakage in a thruster, which pertained
to ap category. The comparison of this occurrence to the
regular operation is presented in Fig. 3 and Fig. 5.

5.2 Classification of detected anomalies

Following the detection, the algorithm’s interpretability
can be increased by applying simple rules to categorize
the anomalies, as described in the previous section.

It is important to note that purely rule-based detection,
which potentially could be formulated after phase 1, would
introduce the following trade-off: While strictly defined
rules would limit the detection to specific anomalies,
more general rules would result in an increase of false
positives and lower the precision. We therefore argue that
it is preferred to use an algorithm that defines desired
behaviour and detects deviations from it, as proposed in
this work.

5.8 Data quality

The algorithm is sensitive to the data quality and may
falsely classify regular operation as anomalies if the pro-
vided sensor frequency is much lower than the one used
in training, or in the presence of sensor noise. Alterna-
tive approaches, such as rule-based anomaly detection are
however not resistant to these problems.

5.4 Application and deployment

In practice, the state of the thrusters is monitored over
time, rather than on a single-occurrence basis. A system-
atic increase of anomalies in individual thrusters over time
can be indicative of an actual problem, while a single
anomaly may be treated as an unusual behaviour that is
not an indication of problems, i.e., a false positive. This can
be monitored as illustrated in Fig. 7. The probability of an
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Fig. 7. Ilustration of the proportion of anomalous to
normal operation over time. The fictive thruster 11310
experiences a gradual increase of anomalies from Nov
2020 indicating wear. The thruster 11312 has 0 <
2z < 1% anomalies in Sept 2020, which likely can be
attributed to an unusual operation that is not a true
anomaly.

actual anomaly can be evaluated based on a sliding window
frequency of anomalous time series intervals relative to the
total number of analysed time series in the period.

6. CONCLUSIONS

The proposed framework leads to a construction of an
anomaly detection algorithm in the absence of labelled
data and with initially unknown characteristics of anoma-
lies. The framework fills the gap in the anomaly detection
literature, where data-driven methods are called for, but
neither purely supervised, unsupervised, nor deep learning
algorithms are sufficient. The process focuses on deriving
features that are indicative of anomalies, resulting in an
interpretable algorithm. At the same time, expert feedback
is used to ensure that the algorithm is not biased toward
specific anomalies and potentially able to detect unseen
anomaly types. The drawback of this approach is that since
the features are derived to account for unseen anomalies,
they may return some proportion of false positives.

The method is validated on a maritime propulsion and
manoeuvring system, where five types of distinct anoma-
lous states are identified. While the final algorithm returns
two categories of false positives, they are easy to filter out
with simple rules based on domain knowledge. The use
case illustrates the entire process as well as the potential
for deployment in real-time condition monitoring.
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Appendix A. USE-CASE FEATURES

Features x1-z4 are based on the values of measured pitch
feedback y, pitch setpoint r, valve command u and pitch
deviation e = y — r. Hereafter, y;[t;] denotes the pitch
feedback for each 5min interval 7 at time ¢;. Likewise for
r, u and e.

x1: Deviation of feedback from expected pitch:

We assume that the pitch p is governed by the first-order
linear system p = bu, where b is an unknown constant
input gain. Discretizing with sample time At and assuming
zero-order hold, the pitch at time ¢; can be expressed as:

Jj—1

plt;) = plto] +bAL Y ufty].
k=0
Hence, for time series i from time to until ¢,, and some

(A1)
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estimate of b, denoted 13, the feedback and valve command
can be used to calculate the expected pitch:

j—1
ﬁ[tj} = y[to] + I;AtZu[k] Vi < t; <ty (A2)

Consequently, the constant b can be estimated for time
series ¢ by solving the least squares problem:

b = arg;nin b Us — Vil (A.3)
where U = At [ui[to], wilto] + wilta], .. Y00 wlt ]}
and V; = [yi[t1] — vilto], vilte] — viltols - -, wiltn] — yilto]].

Here, b is computed by taking the average of b; for a set
of time series without known anomalies.

The deviation of feedback from expected pitch is defined as
the mean absolute deviation of the expected and measured
pitch for time series i:

T = Zm —yilty) (A4)

x9: The longest time with pitch deviation exceeding 4°:

The maximal number of consecutive timesteps where the
pitch deviation exceeds 4°is expressed as:

Tig = mamegn eilt;] —4), (A.5)

such that sign(e;[t;]—4) =land ¢ <r,¢q,7 € {0,1,...,n}.

x3: Pitch feedback-setpoint deviation:

1 n
Tiz = > leilt]] (A.6)
j=0
x4: Mazximal change in pitch feedback:

v = max((yalt;] — iltyal). Vi€ (0 —1} (A7)
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