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Abstract

Spike sorting is a critical first step in extracting neural signals from large-scale
electrophysiological data. This manuscript describes an efficient, reliable pipeline
for spike sorting on dense multi-electrode arrays (MEAs), where neural signals
appear across many electrodes and spike sorting currently represents a major
computational bottleneck. We present several new techniques that make dense MEA
spike sorting more robust and scalable. Our pipeline is based on an efficient multi-
stage “triage-then-cluster-then-pursuit” approach that initially extracts only clean,
high-quality waveforms from the electrophysiological time series by temporarily
skipping noisy or “collided” events (representing two neurons firing synchronously).
This is accomplished by developing a neural network detection method followed
by efficient outlier triaging. The clean waveforms are then used to infer the set
of neural spike waveform templates through nonparametric Bayesian clustering.
Our clustering approach adapts a “coreset” approach for data reduction and uses
efficient inference methods in a Dirichlet process mixture model framework to
dramatically improve the scalability and reliability of the entire pipeline. The
“triaged” waveforms are then finally recovered with matching-pursuit deconvolution
techniques. The proposed methods improve on the state-of-the-art in terms of
accuracy and stability on both real and biophysically-realistic simulated MEA data.
Furthermore, the proposed pipeline is efficient, learning templates and clustering
much faster than real-time for a ' 500-electrode dataset, using primarily a single
CPU core.

1 Introduction

The analysis of large-scale multineuronal spike train data is crucial for current and future neuroscience
research. These analyses are predicated on the existence of reliable and reproducible methods that
feasibly scale to the increasing rate of data acquisition. A standard approach for collecting these data
is to use dense multi-electrode array (MEA) recordings followed by “spike sorting” algorithms to
turn the obtained raw electrical signals into spike trains.

A crucial consideration going forward is the ability to scale to massive datasets–MEAs currently scale
up to the order of 104 electrodes, but efforts are underway to increase this number to 106 electrodes1.
At this scale any manual processing of the obtained data is infeasible. Therefore, automatic spike
sorting for dense MEAs has enjoyed significant recent attention [15, 9, 51, 24, 36, 20, 33, 12]. Despite
these efforts, spike sorting remains the major computational bottleneck in the scientific pipeline when
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Algorithm 1 Pseudocode for the complete proposed pipeline.
Input: time-series of electrophysiological data V ∈ RT×C , locations ∈ R3

[waveforms, timestamps]← Detection(V) % (Section 2.2)
% “Triage” noisy waveforms and collisions (Section 2.4):
[cleanWaveforms, cleanTimestamps]← Triage(waveforms, timestamps)
% Build a set of representative waveforms and summary statistics (Section 2.5)
[representativeWaveforms, sufficientStatistics]← coresetConstruction(cleanWaveforms)
% DP-GMM clustering via divide-and-conquer (Sections 2.6 and 2.7)
[{representativeWaveformsi, sufficientStatisticsi}i=1,...]
← splitIntoSpatialGroups(representativeWaveforms, sufficientStatistics, locations)

for i=1,. . . do % Run efficient inference for the DP-GMM
[clusterAssignmentsi]← SplitMergeDPMM(representativeWaveformsi, sufficientStatisticsi)

end for
% Merge spatial neighborhoods and similar templates
[allClusterAssignments, templates]←
mergeTemplates({clusterAssignmentsi}i=1,..., {representativeWaveformsi}i=1,..., locations)

% Pursuit stage to recover collision and noisy waveforms
[finalTimestamps,finalClusterAssignments]← deconvolution(templates)
return [finalTimestamps, finalClusterAssignments]

using dense MEAs, due both to the high computational cost of the algorithms and the human time
spent on manual postprocessing.

To accelerate progress on this critical scientific problem, our proposed methodology is guided by
several main principles. First, robustness is critical, since hand-tuning and post-processing is not
feasible at scale. Second, scalability is key. To feasibly process the oncoming data deluge, we use
efficient data summarizations wherever possible and focus computational power on the “hard cases,”
using cheap fast methods to handle easy cases. Next, the pipeline should be modular. Each stage in
the pipeline has many potential feasible solutions, and we improve by rapidly iterating and updating
each stage as methodology develops further. Finally, prior information is leveraged as much as
possible; we share information across neurons and electrodes in order to extract information from the
MEA datastream as efficiently as possible.

We will first outline the methodology that forms the core of our pipeline in Section 2.1, and then
we demonstrate the improvements in performance on simulated data and a 512-electrode recording
in Section 3. We provide additional results in the appendix to further support the details of our
methodology.

2 Methods

2.1 Overview

The inputs to the pipeline are the band-pass filtered voltage recordings from all C electrodes and
their spatial layout, and the end result of the pipeline is the set of K (where K is determined by
the algorithm) binary neural spike trains, where a “1” reflects a neural action potential from the
kth neuron. The voltage signals are spatially whitened prior to processing and are modeled as the
superposition of action potentials and background Gaussian noise [12]. Succinctly, the pipeline is
a multistage procedure as follows: (i) detecting waveforms and extracting features, (ii) screening
outliers and collided waveforms, (iii) clustering, and (iv) inferring missed and collided spikes.
Pseudocode for the flow of the pipeline can be found in Algorithm 1. A brief overview is below,
followed by additional details.

Our overall strategy can be considered a hybrid of a matching pursuit approach (similar to that
employed by [36]) and a classical clustering approach, generalized and adapted to the large dense
MEA setting. Our guiding philosophy is that it is essential to properly handle “collisons” between
simultaneous spikes [37, 12], since collisions distort the extracted feature space and hinder clus-
tering, but that matching pursuit methods (or other sparse deconvolution strategies) are relatively
computationally expensive compared to clustering primitives. This led us to a “triage-then-cluster-
then-pursuit” approach. Our approach “triages” collided or overly noisy waveforms, putting them

2

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/151928doi: bioRxiv preprint first posted online Jun. 19, 2017; 

http://dx.doi.org/10.1101/151928
http://creativecommons.org/licenses/by/4.0/


aside during the feature extraction and clustering stages, and later recovers these spikes during a
final “pursuit” or deconvolution stage. The triaging begins during the detection stage in Section 2.2,
where we develop a neural network based detection method that significantly improves sensitivity and
selectivity. For example, on a simulated 30 electrode dataset with low SNR, the new approach reduces
false positives and collisions by 90% for the same rate of true positives. Furthermore, the neural
network is significantly better at the alignment of signals, which improves the feature space and
signal-to-noise power. The detected waveforms then are projected to a feature space and restricted to
a local spatial subset of electrodes as in [24] in Section 2.3. Next, in Section 2.4 an outlier detection
method further “triages” the detected waveforms and reduces false positives and collisions by an
additional 70% while removing only a small percentage of real detections. All of these steps are
achievable in nearly linear time. In our simulations, we demonstrate that this large reduction in false
positives and collisions dramatically improves accuracy and stability.

Following the above steps, the remaining waveforms are partitioned into distinct neurons via cluster-
ing. Our clustering framework is based on the Dirichlet Process Gaussian Mixture Model (DP-GMM)
approach [48, 9], and we modify existing inference techniques to improve scalability and performance.
Succinctly, each neuron is represented by a distinct Gaussian distribution in the feature space. Directly
calculating the clustering on all of the channels and all of the waveforms is computationally infeasible.
Instead, the inference first utilizes the spatial locality via masking [24] from Section 2.3. Second, the
inference procedure operates on a coreset of representative points [13] and the resulting approximate
sufficient statistics are used in lieu of the full dataset (Section 2.5). Remarkably, we can reduce a
dataset with 100k points to a coreset of ' 10k points with trivial accuracy loss. Next, split and merge
methods are adapted to efficiently explore the clustering space [21, 24] in Section 2.6. Using these
modern scalable inference techniques is crucial for robustness because they empirically find much
more sensible and accurate optima and permit Bayesian characterization of posterior uncertainty.

For very large arrays, instead of operating on all channels simultaneously, each distinct spatial
neighborhood is processed by a separate clustering algorithm that may be run in parallel. This
parallelization is crucial for processing very large arrays because it allows greater utilization of
computer resources (or multiple machines). It also helps improve the efficacy of the split-merge
inference by limiting the search space. This divide-and-conquer approach and the post-processing
to stitch the results together is discussed in Section 2.7. The computational time required for the
clustering algorithm scales nearly linearly with the number of electrodes C and the experiment time.

After the clustering stage is completed, the means of clusters are used as templates and collided and
missed spikes are inferred using the deconvolution (or “pursuit” [37]) algorithm from Kilosort [36],
which recovers the final set of binary spike trains. We limit this computationally expensive approach
only to sections of the data that are not well handled by the rest of the pipeline, and use the faster
clustering approach to fill in the well-explained (i.e. easy) sections.

We note finally that when memory is limited compared to the size of the dataset, the preprocessing,
spike detection, and final deconvolution steps are performed on temporal minibatches of data; the
other stages operate on significantly reduced data representations, so memory management issues
typically do not arise here. See Section B.3 for further details on memory management.

2.2 Detection

The detection stage extracts temporal windows around action potentials from the noisy raw elec-
trophysiological signal V to use as inputs in the following clustering stage. The number of clean
waveform detections (true positives) should be maximized for a given level of detected collision and
noise events (false positives). Because collisions corrupt feature spaces [37, 12] and will simply
be recovered during pursuit stage, they are not included as true positives at this stage. In contrast
to the plethora of prior work on hand-designed detection rules (detailed in Section C.1), we use
a data-driven approach with neural networks to dramatically improve both detection efficacy and
alignment quality.

The crux of the data-driven approach is the availability of prior training data. We are targeting the
typical case that an experimental lab performs repeated experiments using the same recording setup
from day to day. In this setting hand-curated or otherwise validated prior sorts are saved, resulting
in abundant training data for a given experimental preparation. In the supplemental material, we
discuss the construction of a training set (including data augmentation approaches) in Section C.2,
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Figure 1: Illustration of Neural Network Detection, Triage, and Coreset from a primate retinal
ganglion cell recording. The first column shows spike waveforms from SpikeDetekt in their PCA
space. Due to poor alignment, clusters have a non-Gaussian shape with many outliers. The second
column shows spike waveforms from our proposed neural network detection in the PCA space. After
triaging outliers, the clusters have cleaner Gaussian shapes in the recomputed feature space. The last
column illustrates the coreset. The size of each coreset diamond represents its weight. For visibility,
only 10% of data are plotted.

the architecture and training of the network in Section C.3, the detection using the network in Section
C.4, empirical performance in Section C.5, and scalability in Section C.5.

A key result is that our neural network dramatically improves the alignment of detected waveforms.
This improved alignment improves the fidelity of the feature space and the signal-to-noise power, and
the result of the improved feature space can clearly be seen by comparing the detected waveform
features from one standard detection approach (SpikeDetekt [24]) in Figure 1 (left) to the detected
waveform features from our neural network in Figure 1 (middle). Note that the output of the neural
net detection is remarkably more Gaussian compared to the output of SpikeDetekt.

2.3 Feature Extraction and Mask Creation

Following detection we have a collection of N events defined as Xn ∈ RR×C with detection time
tn for n = 1, . . . , N . Recall that C is the total number of electrodes, and R is the number of time
samples, in our case chosen to correspond to 1.5ms. Next features are extracted by using uncentered
Principal Components Analysis (PCA) on each channel separately with P features per channel. Each
waveform Xn is transformed to the feature space Yn. To handle duplicate spikes, Yn is kept only
in its dominant channel, if cn = arg max{||ync||c∈Nc

}, where Nc is the local neighborhood of
electrodes for the cth electrode. To address dimensionality increases, spikes are localized by using
the sparse masking vector {mn} ∈ [0, 1]C method of [24], where the mask should be set to 1 only
where the signal exists. The sparse vector reduces the dimensionality and facilitates sparse updates to
improve computational efficiency. We give additional mathematical details in Supplemental Section
D.

4

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/151928doi: bioRxiv preprint first posted online Jun. 19, 2017; 

http://dx.doi.org/10.1101/151928
http://creativecommons.org/licenses/by/4.0/


2.4 Collision Screening and Outlier Triaging

Many collisions and outliers remain even after our improved detection algorithm. Because these
events destabilize the clustering algorithms, the pipeline benefits from a “triage” stage to further
screen collisions and noise events. Note that triaging out a small fraction of true positives is a minor
concern at this stage because they will be recovered in the final deconvolution step.

We use a two-fold approach to perform this triaging. First, obvious collisions with overlapping spike
times and spatial locations are removed. Second, k-Nearest Neighbors (k-NN) is used to detect
outliers in the masked feature space based on [27]. To develop a computationally efficient and
effective approach, waveforms are grouped based on their primary (highest-energy) channel, and then
k-NN is run for each channel. Empirically, these approximations do not suffer in efficacy compared
to using the full spatial area. When the dimensionality of P , the number of features per channel, is
low, a kd-tree can find neighbors in O(N logN) average time. We demonstrate that this method is
effective for triaging false positives and collisions in Figure 1 (middle).

2.5 Coreset Construction

“Big data” improves density estimates for clustering, but the cost per iteration naively scales with the
amount of data. However, often data has some redundant features, and we can take advantage of
these redundancies to create more efficient summarizations of the data. Then running the clustering
algorithm on the summarized data should scale only with the number of summary points. By choosing
representative points (or a “coreset") carefully we can potentially describe huge datasets accurately
with a relatively small number of points [19, 13, 2].

There is a sizable literature on the construction of coresets for clustering problems; however, the
number of required representative points to satisfy the theoretical guarantees is infeasible in this
problem domain. Instead, we propose a simple approach to build coresets that empirically outperforms
existing approaches in our experiments by forcing adequate spatial coverage. We demonstrate
in Supplemental Figure S5 that this approach can cover clusters completely missed by existing
approaches, and show the chosen representative points on data in Figure 1 (right). This algorithm
is based on recursively performing k-means; we provide pseudocode and additional details in in
Supplemental Section E. The worst case time complexity is nearly linear with respect to the number
of representative points, the number of detected spikes, and the number of channels. The algorithm
ends by returning G representative points, their sufficient statistics, and masks.

2.6 Efficient Inference for the Dirichlet Process Gaussian Mixture Model

For the clustering step we use a Dirichlet Process Gaussian Mixture Model (DP-GMM) formulation,
which has been previously used in spike sorting [48, 9], to adaptively choose the number of mixture
components (visible neurons). In contrast to these prior approaches, here we adopt a Variational
Bayesian split-merge approach to explore the clustering space [21] and to find a more robust and
higher-likelihood optimum. We address the high computational cost of this approach with several key
innovations. First, following [24], we fit a mixture model on the virtual masked data to exploit the
localized nature of the data. Second, following [9, 24], the covariance structure is approximated as a
block-diagonal to reduce the parameter space and computation. Finally, we adapted the methodology
to work with the representative points (coreset) rather than the raw data, resulting in a highly scalable
algorithm. A more complete description of this stage can be found in Supplemental Section F, with
pseudocode in Supplemental Algorithm S2.

In terms of computational costs, the dominant cost per iteration in the DPMM algorithm is the
calculation of data to cluster assignments, which in our framework will scale at O(Gm̄P 2K), where
m̄ is the average number of channels maintained in the mask for each of the representative points. As
a reminder, G is the number of representative points and P is the number of features per channel.
This is in stark contrast to a scaling of O(NC2P 2K + P 3) without our above modifications. Both
K and G are expected to scale linearly with the number of electrodes and sublinearly with the length
of the recording. This leads to a unfortunate dependence on the square of the number of electrodes
for each iteration; fortunately, it is feasible to utilize local structure to reduce computations to scale
linearly with the number of electrodes. We discuss this approach below in Section 2.7.
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Figure 2: Simulation results on 30-channel ViSAPy datasets. Left panels show the result on
ViSAPy with high collision rate and Right panels show the result on ViSAPy with low SNR setting.
(Top) stability metric (following [5]) and percentage of total discovered clusters above a certain
stability measure. The noticeable gap between stability of YASS and the other methods results
from a combination of high number of stable clusters and lower number of total clusters. (Bottom)
These results show the number of clusters (out of a ground truth of 16 units) above a varying
quality threshold for each pipeline. For each level of accuracy, the number of clusters that pass that
threshold is calculated to demonstrate the relative quality of the competing algorithms on this dataset.
Empirically, our pipeline (YASS) outperforms other methods.

2.7 Divide and Conquer and Template Merging

Neural action potentials have a finite spatial extent [6]. Therefore, the spikes can be divided into
distinct groups based on the geometry of the MEA and the local position of each neuron, and each
group is then processed independently. Thus, each group can be processed in parallel, allowing
for high data throughput. This is crucial for exploiting parallel computer resources and limited
memory structures. Second, the split-and-merge approach in a DP-GMM is greatly hindered when
the numbers of clusters is very high [21]. The proposed divide and conquer approach addresses this
problem by greatly reducing the number of clusters within each subproblem, allowing the split and
merge algorithm to be targeted and effective.

To divide the data based on the spatial location of each spike, the primary channel cn is determined
for every point in the coreset based on the channel with maximum energy, and clustering is applied
on each channel. Because neurons may now end up on multiple channels, it is necessary to merge
templates from nearby channels as a post-clustering step. When the clustering is completed, the
mean of each cluster is taken as a template. Because waveforms are limited to their primary channel,
some neurons may have “overclustered” and have a distinct mixture component on distinct channels.
Also, overclustering can occur from model mismatch (non-Gaussianity). Therefore, it is necessary to
merge waveforms. Template merging is performed based on two criteria, the angle and the amplitude
of templates, using the best alignment on all temporal shifts between two templates. The pseudocode
to perform this merging is shown in Supplemental Algorithm S3. Additional details can be found in
Supplemental Section G.
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Figure 3: Performance comparison of spike sorting pipelines on primate retina data. (Left)
The same type of plot as in the top panels of Figure 2. (Right) The same type of plot as in the bottom
panels of Figure 2 compared to the “gold standard” sort. Similar trends

2.8 Recovering Triaged Waveforms and Collisions

After the previous steps, we apply matching pursuit [36] to recover triaged waveforms and collisions.
We detail the available choices for this stage in Supplemental Section I.

3 Performance Comparison

We evaluate performance to compare several algorithms (detailed in Section 3.1) to our proposed
methodology on both synthetic (Section 3.2) and real (Section 3.3) dense MEA recordings. For
each synthetic dataset we evaluate the ability to capture ground truth in addition to the per-cluster
stability metrics. For the ground truth, inferred clusters are matched with ground truth clusters via the
Hungarian algorithm, and then the per-cluster accuracy is calculated as the number of assignments
shared between the inferred cluster and the ground truth cluster over the total number of waveforms
in the inferred cluster. For the per-cluster stability metric, we use the method from Section 3.3 of [5]
with the rate scaling parameter of the Poisson processes set to 0.25. This method evaluates how robust
individual clusters are to perturbations of the dataset. In addition, we provide runtime information to
empirically evaluate the computational scaling of each approach. The CPU runtime was calculated
on a single core of a six-core i7 machine with 32GB of RAM. GPU runtime is given from a Nvidia
Titan X within the same machine.

3.1 Competing Algorithms

We compare our proposed pipeline to three recently proposed approaches for dense MEA spike
sorting: KiloSort [36], Spyking Circus [51], and MountainSort [31]. Kilosort, Spyking Cricus,
and MountainSort were downloaded on January 30, 2017, May 26th, 2017, and June 7th, 2017,
respectively. We dub our algorithm Yet Another Spike Sorter (YASS). We discuss additional details
on the relationships between these approaches and our pipeline in Supplemental Section I. All results
are shown with no manual post-processing.

3.2 Synthetic Datasets

First, we used the biophysics-based spike activity generator ViSAPy [18] to generate multiple 30-
channel datasets with different noise levels and collision rates. The detection network was trained
on the ground truth from a low signal-to-noise level recording. Then, the trained neural network is
applied to all signal-to-noise levels. The neural network dramatically outperforms existing detection
methodologies on these datasets. For a given level of true positives, the number of false positives
can be reduced by an order of magnitude. The properties of the learned network are shown in
Supplemental Figure S3 and the ROC curves are shown in Supplemental Figure S4.

Performance is evaluated on the known ground truth. For each level of accuracy, the number of
clusters that pass that threshold is calculated to demonstrate the relative quality of the competing
algorithms on this dataset. Empirically, our pipeline (YASS) outperforms other methods. This is
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Detection (GPU) Data Ext. Triage Coreset Clustering Template Ext. Total
1m7s 42s 11s 34s 3m12s 54s 6m40s

Table 1: Running times of the main processes on 512-channel primate retinal recording of
30 minutes duration. Results shown using a single CPU core, except for the detection step (2.2),
which was run on GPU. We found that full accuracy was achieved after processing just one-fifth
of this dataset, leading to significant speed gains. Data Extraction refers to waveform extraction
and Performing PCA (2.3). Triage, Coreset, and Clustering refer to 2.4, 2.5, and 2.6, respectively.
Template Extraction describes revisiting the recording to estimate templates and merging them (2.7).
Each step scales approximately linearly (Section B.2).

especially true in low SNR settings, as shown in Figure 2. The per-cluster stability metric is also
shown in Figure 2. The stability result demonstrates that YASS has significantly fewer low-quality
clusters than competing methods.

3.3 Real Datasets

To examine real data, we focused on 30 minutes of extracellular recordings of the peripheral primate
retina, obtained ex-vivo using a high-density 512-channel recording array [30]. The half-hour
recording was taken while the retina was stimulated with spatiotemporal white noise. A “gold
standard" sort was constructed for this dataset by extensive hand validation of automated techniques,
as detailed in Supplemental Section H. Nonstationarity effects (time-evolution of waveform shapes)
were found to be minimal in this recording (data not shown).

We evaluate the performance of YASS and competing algorithms using 4 distinct sets of 49 spatially
contiguous electrodes. Note that the gold standard sort here uses the information from the full
512-electrode array, while we examine the more difficult problem of sorting the 49-electrode data;
we have less information about the cells near the edges of this 49-electrode subset, allowing us to
quantify the performance of the algorithms over a range of effective SNR levels. By comparing the
inferred results to the gold standard, the cluster-specific true positives are determined in addition to
the stability metric. The results are shown in Figure 3 for one of the four sets of electrodes, and the
remaining three sets are shown in Supplemental Section B.1. As in the simulated data, compared
to KiloSort, which had the second-best overall performance on this dataset, YASS has dramatically
fewer low-stability clusters.

Finally, we evaluate the time required for each step in the YASS pipeline (Table 1). Importantly, we
found that YASS is highly robust to data limitations: as shown in Supplemental Figure S2 and Section
B.2, using only a fraction of the 30 minute dataset has only a minor impact on performance. We
exploit this to speed up the pipeline. Remarkably, running primarily on a single CPU core (only
the detect step utilizes a GPU here), YASS achieves a several-fold speedup in template and cluster
estimation compared to the next fastest competitor2, Kilosort, which was run in full GPU mode and
spent about 30 minutes on this dataset. We plan to further parallelize and GPU-ize the remaining
steps in our pipeline next, and expect to achieve significant further speedups.

4 Conclusion

YASS has demonstrated state-of-the-art performance in accuracy, stability, and computational ef-
ficiency; we believe the tools presented here will have a major practical and scientific impact in
large-scale neuroscience. In our future work, we plan to continue iteratively updating our modular
pipeline to better handle template drift, refractory violations, and improved strategies for collision
deconvolution.
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2Spyking Circus took over a day to process this dataset on a 6-core machine. The runtime of Mountainsort
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smaller-scale experiments, it is expected to take approximately 10 hours on a 6-core machine.
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Notation Explanation Default value (if exists)
Data Constants

T Recording length
C Total number of channels
N Number of detected spikes
tn Temporal location of spike n
cn Index of the main channel of spike n
Ceff Number of neighboring channels
G Number of representative points after the Coreset algorithm

Data structures
V ∈ RT×C Recording
Xn ∈ RR×C Voltage trace (waveform) of spike n
mn ∈ [0, 1]C Masking vector for spike n
Yn ∈ RP×C Xn mapped to the feature (PCA) space

xnc,ync cth column of Xn,Yn

mnc cth entry of mm

X̃n, x̃nc, Ỹn, ỹnc Virtual data distribution of Xn,xnc,Yn,ync
P ∈ RT×C Probability output of NN

Wk ∈ RR×C Template of cluster k
mw
k ∈ {0, 1}C Mask of cluster k

Parameters
R Temporal window size of spike 1.5 ms
R′ Half of window size
P Per channel dimension of data in PCA domain 3
τ probability threshold on P 0.5

θw, θs weak and strong threshold for masking F−1
χ2,P (0.5), F−1

χ2,P (0.9)

F−1
χ2,df Inverse CDF of Chi-squared Distribution with df d.f.

K++ Number of Clusters in Kmeans++ for Coreset 10
Dmax Distance threshold for Coreset 2F−1

χ2,PCeff
(0.9)

m0, λ0,W0, v0 Prior parameters for the DP-GMM Normal-Whishart 0, 0.01, 1
v0

IP , P + 2
α0 Prior parameter for beta dist. in stick-breaking in DP-GMM 1

smax Maximum shift allowance for template merging 0.5 ms
θ1 threshold on cosine angle in template merging 0.85
θ2 threshold on size in template merging 0.6

Table S1: Summary table of notation used within the manuscript.

A Notation

The following notation is employed: scalars are lowercase italicized letters, e.g. x, constants such
as max indices are represented by uppercase italicized letters, e.g. N , vectors are bolded lowercase
letters, e.g. x, and matrices are bolded uppercase letters, e.g. X. Major notations used in the paper
are summarized in Table S1.

B Additional results

In this section, we first provide the performance metrics on the other three sets of 49-channel
recordings of the primate retina referenced from Section 3.3. Next, we describe how limiting the
temporal duration of the data effects performance.

12

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/151928doi: bioRxiv preprint first posted online Jun. 19, 2017; 

http://dx.doi.org/10.1101/151928
http://creativecommons.org/licenses/by/4.0/


5060708090100
Stability % Threshold

0

20

40

60

Stability (Electrode Subset 2)

YASS
Kilosort
Mountain
SpyKing

5060708090100
True Positive % Threshold

0

10

20

30

Accuracy (Electrode Subset 2)

5060708090100
Stability % Threshold

0

20

40

60

%
of

x
(%

)
S
ta

b
le

C
lu

st
er

s Stability (Electrode Subset 3)

5060708090100
True Positive % Threshold

0

10

20

30

#
of

x
(%

)
A

cc
u
ra

te
C
lu

st
er

s Accuracy (Electrode Subset 3)

5060708090100
Stability % Threshold

0

20

40

60

80
Stability (Electrode Subset 4)

5060708090100
True Positive % Threshold

0

10

20

30

40

Accuracy (Electrode Subset 4)

Figure S1: Comparison of performance on the other three 49 channel datasets from primate
retina. Each row corresponds to one of the three additional datasets. Figures on the left depict stability
metric and what percentage of total discovered clusters are above the chosen stability threshold on
the x axis. Figures on the right depict the true positive accuracies with respect to partial ground truth
and how many discovered clusters are above the chosen true positive accuracy.

B.1 Results on Three Additional Real 49-Electrode Sets of Data

The summary performance metrics for the three additional recordings of the primate retina are
reported in Figure S1. Note that YASS outperforms the other methods, especially in terms of stability
of the clusters. This is due to YASS providing both more stable clusters and fewer total clusters in
general.

B.2 Accuracy with Respect to Data Length

The effect of using a partial recording to estimate waveform templates is investigated further. The
summary is described in the left and right panels of Figure S2. To illustrate the effect, the full
recording is randomly subsetted by the specified length. Waveform templates are estimated using
information only from the subset. Accuracy loss becomes insignificant with more than 20% of the
full length on a 30 minute dataset.

Furthermore, the scalability of YASS is demonstrated in the bottom panel of Figure S2. As illustrated,
the main parts of the full pipeline, coreset and clustering, scale almost linearly.
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Figure S2: Using only a portion of data to estimate templates. (Top) YASS is tested on two sets
of recording with 49 channels and 30 minutes length from the retinal cells. Only a portion of data
is randomly extracted and templates are estimated. As shown, extracting only 5-10 minutes was
enough to produce similar performance as on the full dataset. (Bottom) The scalability of YASS is
shown. As shown, the coreset and clustering algorithms are roughly linear in computational costs
with increasing time.

B.3 When Data Exceeds Memory

Large recordings exceed the memory capacity of typical workstations. This issue in handled in
the preprocessing and spike detection by temporally partitioning the recording and processing each
temporal subsection individually. Afterwards, the divide and conquer approach from Section 2.7
significantly reduces the memory requirement by reducing the number of waveforms and their spatial
extent. If the memory limits are still exceeded due to extremely long recordings, data are randomly
subsetted and postprocessed.

Another possible approach is that, following the result of Section B.2, data can be processed partially
up to the point where it does not exceed memory. Once the templates are estimated based on the
partial recording, deconvolution should handle spikes from the remainder of recording. We have not
yet needed to implement this approach, however.

C Additional details on the Detection Algorithm

C.1 Relationships to Existing Detection Algorithms

The goal of a detection algorithm within a spike sorting pipeline is to extract (unsorted) action
potentials from the raw electrophysiological signal to use as inputs for a downstream clustering
algorithms. It is crucial for the subsequent steps of the pipeline that the detected action potentials
cover all present neural shapes with few false positives, where false positives here are defined as either
noise events, collisions (two or more waveforms simultaneously occurring in time or space), or poorly
aligned spikes. Historically, most research labs have used a simple voltage threshold to determine
whether a section of signal should be considered an action potential [29], but many other decision
rules have been considered, such as the nonlinear energy operator [32] and wavelet thresholding [50].
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Most proposed detection rules above operated on a single channel at a time (although Bayesian
optimal detection has been used on multiple channels [8, 33]). A simple approach that works
either for a single channel or for many channels is simply to use template matching [4]. However,
template matching requires having templates that are specific to the recording of interest in advance
and does not allow much variability in spike shape. Even in a repeated experiment setting, small
changes in the environment, such as shift in electrodes, would change the shape of templates and,
thus, render templates obtained from a previous experiment unusable. This viewpoint is taken in
several approaches, such as [28, 12, 36]. Despite the appeal of these approaches, they are often
computationally expensive and difficult to combine with state-of-the-art clustering approaches.

With the increasing popularity of dense MEAs, more complex rules have been proposed to utilize
information from all channels simultaneously, such as SpikeDetekt [24]. We note that our method-
ology is structured in a modular way, such that our pipeline can easily adopt any of these existing
methods. However, we also advocate for the development of data-driven approaches. In many cases
the same device types have been reused for many experiments, and there exists a large collection of
example data where false positives and true positives have been thoroughly assessed and curated. In
these cases, we will propose a novel approach based on recent advances in deep learning to learn
efficient, real-time detection algorithms. This is in contrast to many existing approaches where
features hand-tuned (e.g. threshold, NEO, SpikeDetekt).

There have been some previous data driven efforts to train a detection algorithm. For example, [25]
used hand-curated results from previous sorts to train a neural network, but this was used to classify
waveforms rather than as a pure detection method. Furthermore, [45] trained a support vector machine
to detect spikes in a simulated recording that provided improvements over a threshold method. Our
approach is down a similar line, where we use both previous hand-curated results and synthetic data
to train a neural network that dramatically improves the detection quality, as demonstrated in Figure
S4 compared to SpikeDetekt.

While this approach is dependent on existing training data and may not be practical everywhere, we
emphasize that our pipeline gives state-of-the-art or near state-of-the-art results conditioned on the
spike detection method. When curated training data exists (which is true for many research labs),
though, this approach will learn features necessary for detection from the data, and we demonstrate
that it can significantly improve performance in real data problems. It dramatically reduces the
amount of false positives for the same level of true spikes. More importantly, by detecting only well
isolated spikes and aligning them properly, it improves the quality of the feature extraction and the
signal-to-noise ratio.

C.2 Neural Network Training Data

The training data for the neural network is constructed from previous sorts. Training labels are either
defined from a full deconvolution pipeline or a hand-curated effort to validate results. We first focus
on a single channel to facilitate training and improve generalization. Specifically, we assume that
we have Ntrain time series, where xn ∈ RRn reflects the noisy voltage signal and y ∈ {0, 1}Rn is a
binary time series where the value “1” denotes the presence of a well-isolated action potential (i.e. no
collisions). We assume that Rn >> R, where R is the length of an action potential.

It is likely that previous sorts do not reflect a perfect ground truth. They may contain false negatives
and poorly aligned spikes, which could lead to the creation of faulty training set. As an alternative,
synthetic spikes can be constructed from the previous sorts [49, 43].

We also provide a simple method to augment the training set which requires that the mean of clusters
must resemble the shape of spikes. A “noise” training set can be obtained from the noise floor,
which is determined by using a low amplitude threshold so that it excludes most of spikes. As a low
threshold is used, it is rescaled to match the real noise level presented in the recording. An augmented
spike train is constructed by superimposing real noise onto randomly-scaled templates. This way,
spikes are well aligned and also vary in size.

C.3 Neural Network Structure

The architecture of the detection network is a fully convolutional neural network with two hidden
layers (see [17] for a background on neural networks). There are K1, K2, and K3 filters of length
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Figure S3: Illustration of the Neural Network Detection (Left) The 10 learned filters in the
first convolutional layer of the neural network. (Right) The neural network transforms a neural
recording (Top) into probabilities of spikes (Bottom). Locations of isolated spikes clearly have high
probabilities.
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Figure S4: Receiver Operating Characteristic (ROC) curve for Neural Network Detection and
SpikeDetekt. The left panel shows the ROC curve for a cluster with SNR 1.4 and the right panel
shows for a cluster with SNR 2.3. Note that instead of the false positive rate, the number of false
positive spikes are used for comparison.

R1, R2, and R3, respectively, in each of the convolutional filter banks. In our experiment, R1 = R,
which corresponds to 2 milliseconds (K1 = 60 for 30kHz recording) and R2, R3 = 5. K1, K2, and
K3 are set to 10, 5, and 1 respectively. The input at the first layer is the electrophysiological time
series on a single channel, and the output is the binary labels. A rectified linear unit nonlinearity,
defined as ReLU(x) = max(x, 0), is used at each hidden layer. A sigmoid nonlinearity σ(x) =
exp(x)/(1 + exp(x)) was used at the output to map the probability to the [0, 1] space. The model
was regularized by adding an `2 penalty on the filter weights. The parameters are learned using the
Adam algorithm [26] with the parameter settings to minimize the cross-entropy training loss.

C.4 Detection using the Neural Network

After the neural network has been learned, it is applied in a channel-wise manner to transform the
recorded voltages V ∈ RT×C into a matrix of probabilities P ∈ [0, 1]T×C . A spike is declared if the
maximum value of P passes a threshold τ in a local temporal area; spatial overlaps are handled in a
following step as discussed in Section 2.3. The threshold τ is tunable to alter tradeoff between false
positives and true positives. In our experiments, τ is simply set to 0.5.

To capture the temporal windows, each waveform includes R′ = R−1
2 samples before and after

the spike time (corresponding to 1 milliseconds). For each n of the N detections, let tn and cn be
temporal location and spatial location of the waveform. Each spike is then defined as Xn ∈ RR×C ,
where the cth channel is defined xnc = (Vtn−R′,c, . . . , Vtn+R′,c).
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C.5 Empirical Performance and Scalability

The performance of the proposed detection algorithm is empirically tested and compared to
SpikeDetekt on simulated data with high noise level using ViSAPy. Since spikes with high enough
energy are captured well, cluster-specific ROC curves are plotted. As shown in Figure S4, using the
neural network for detection dramatically reduces the number of false positives while keeping the
number of true positives reasonably high. Here, SNR is defined as ||Template||2/σ

√
|Template|,

where Template is the mean of all waveforms in the cluster at its highest energy channel and σ is
the noise standard deviation.

When the trained neural network is applied, the algorithm scales linearly with the time duration of the
sample and the number of channels. As an example of the computational needs of applying this step,
on a 5 minute recording of 49 channels, the proposed detection algorithm requires 6 seconds on a
single NVIDIA Titan X GPU. Training the network is more time consuming, but not a computational
bottleneck. For a 512 channel recording used in our experiments (described in Section 3), the training
process required 2 minutes on the same GPU. Compared to the total spike sorting time, as discussed
in Section 3.3, training the network is a reasonable cost that quickly becomes trivial as the algorithm
is applied to more and more datasets.

D Additional Details on Feature Extraction and Masking

The data dimensionality of each spike increases linearly with the number of channels, which naively
poses huge computational challenges and renders real-time analysis of large MEAs infeasible.
Therefore, it is necessary to utilize spatial locality: a given neuron will appear strongly on only a
subset of neighboring electrodes. This spatial locality is constructed by restricting detected waveforms
to nearby channels via a sparse masking vector, {mn} = [mn1, . . . ,mnC] ∈ [0, 1]C , as in [24]. This
masking vector should be 1 on channels where the neural waveform is reasonably strong (i.e. only
the local area), and 0 otherwise. Once the sparse representation is used, the waveform only needs to
be considered on channels where the mask is 1, dramatically reducing the effective dimensionality.
The effective dimensionality is then dependent on the spatial density of the array and not its total
size, so increasing the size of the array does not alter the effective dimensionality. This is a crucial
consideration for computational efficiency in many steps of the pipeline, where there is a linear (or
worse) scaling with the effective dimensionality.

The construction of the sparse masking vector follows from [24]. First, note that in the feature space a
channel that does not have waveform signal present (i.e. a “noise” channel) is expected to follow the
normal distributionN (0, IP ). This distribution follows from the assumption of whitened background
noise. Therefore, the task is to decide whether the signal on each channel is simply a noise event or
not. Using a “strong" and “weak" threshold, θs and θw, respectively, each mask entry for waveform
n in each channel c is determined based on the norm of the power in the feature space, given by

mnc =


1 if ||yn,c||2 > θs
0 if ||yn,c||2 < θw
||yn,c||−θw
θs−θw otherwise

.

Note that there is additional spatial connectivity considered in [24], which is ignored here. In our
empirical results, there was no additional benefit to considering spatial connectivity and it added
significant extra computational time.

To facilitate efficient inference, the detected waveforms are represented by a “virtual” data distribution,
where {X̃n} = [x̃n1, . . . , x̃nC], which is given by

x̃nc =

{
xnc with probability mnc

N (0, IR) with probability 1−mnc
.

Thus, virtual data are given by a mixture of either the original value or a draw from the noise
distribution. R is the temporal length of each waveform. Remarkably, the virtual data distribution
allows trivial updates during the clustering stage whenever mnc is 0 [24]. This is crucial to make
the computational costs in the DP-GMM scale linearly with the number of electrodes and the length
of the recording, as discussed in Section 2.6. The same approach is used to construct a virtual data
distribution in the feature space, which would be used in the clustering algorithm.
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Figure S5: Illustration of coreset construction. Simulated data from Gaussian Mixture models.
Four different clusters are clearly visible. (Left) Coreset from [2]. The red points are the coreset
and their size represents the weight. It is clear that the cluster shapes will not be well represented by
the existing coreset method. (Right) Coreset from the proposed method. The sizes of red diamonds
represent the weights and the circles are two times standard deviations of each group. As all points
contribute to the coreset, the shape of cluster will be well preserved.

E Additional details on the Coreset Construction

There is significant prior work on how to develop a set of representative points that make up a
coreset [19, 13]. These prior works developed rigorous approaches with statistical guarantees on
representation fidelity. After the development of the coreset, the clustering algorithm is then run
on the summary data in time that scales with the size of the coreset, G rather than the raw data
size. However, in practice, we found the resulting G to not be large enough to provide reasonable
guarantees. Furthermore, following existing strategies with a smaller number of representative points
empirically failed to provide coverage over all clusters, as shown in Figure S5.

Thus we provide a simple alternative method to construct the coreset that empirically worked well
to capture all visible clusters. The procedure begins by first running K-means++ [1] based on the
Euclidean distance with a predefined number of clusters, K++. The running time of this step is
O(dK++N) if we assume constant iterations, as is common [1, 3]. d here represents the complete
dimensionality of each point, which is CP without considering the effect of the masking vector.
To finish the construction of the coreset, if any center in k-means has a associated point that is
unacceptably far away (determined by a threshold Dmax), each cluster is recursively partitioned by
reapplying K-means++. At the end, only sufficient statistics, mean and covariance of each partition,
need to be passed on to DP-GMM described in the next section. The details of this recursive strategy
are shown in Algorithm S1.

Unfortunately, this approach is infeasible to run on all channels simultaneously. To address this
problem, data are partitioned based on their primary channels (the channel with the highest energy),
and only the waveform data on the primary channel and its neighbors are used to construct the coreset.
Algorithm S1 is then applied on each set (primary channel) in the partition. These approach reduces
the complexity of the primary K-means++ call to O(PCeffK++Nc), where Ceff is the number of
neighboring channels and Nc is the number of waveforms in the cth partition. Note that K++ is set to
a smaller value when applied to a single channel, providing a large source of computational savings.
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Algorithm S1 Constructing the Coreset of Representative Points
[representativeWaveforms, sufficientStatistics]← coresetConstruction(cleanWaveforms)
Input: cleanWaveforms are given by X = {xn}n=1,...,N ∈ Rd
Algorithmic Settings: Distance threshold Dmax, number of splits K, and the maximum

iteration number Imax, distance function D(·, ·)
Output: Representative waveforms and their sufficient statistics
Apply coreset (below) to partition the data
Return: centroids (representativeWaveforms) and sufficient statistics of each entry in the partition

Support function: {X1, . . . } = coreset(X , Dmax,K)
% Run initial partition
{X1, . . . } = Kmeans++(X ,K, Imax)
% Recursively split partitions that are too diffuse
for k = 1, . . . ,K do

if max(D(Xk,mean(Xk))) > Dmax then
{Xk1, . . . } = coreset(Xk, Dmax,K)

end if
end for
Gather all partitions and reconstruct into {X1, . . . }
for k = 1, . . . do
Xk = {xkn}n=1,...,Nk

∈ Rd

sufficientStatistics =
(∑Nk

n=1 x
k
n,
∑Nk

n=1(xkn)T (xkn)
)

end for

F Additional details on the Dirichlet process Gaussian mixture model
(DP-GMM)

One of the biggest issues with using GMMs for clustering is that the appropriate number of mixture
components k (the number of visible distinct neural signals) is unknown a priori. A common
approach is to fit a GMM with varying values of k and then perform model selection through the
Akaike Information Criterion or the Bayesian Information Criterion [24, 44].

A contrasting approach is the Dirichlet Process Gaussian Mixture Model (DP-GMM), which defines a
prior over k. There is a rich literature on inferring k using either Markov chain Monte Carlo methods
or variational inference; see [48, 9] for previous spike sorting applications. Here, we will first set up
the DP-GMM and describe a split-merge Variational inference method to learn the model based on
[21]. We will then describe how to alter these algorithms to work with our coreset to facilitate fast
and scalable inference. All GMM approaches require inference over a non-convex log-likelihood,
where finding optimal parameters is non-trivial. The split-merge approach empirically improves
efficiency and finds improved local solutions through efficient search of the parameter space.

When the GMM formulation is used to analyze multiple channels simultaneously, certain modifica-
tions need to be made for both statistical and computational considerations. Following [24], we fit a
mixture model on the virtual masked data {Ỹn} = [ỹn1, . . . , ỹnC], instead of the actual data {Yn}.
This allows the mixture model to use the localized nature of the data, which can dramatically reduce
computations. Second, following [9, 24], we define the covariance structure in the GMM between
channels to be 0. This step reduces the number of parameters to estimate in the covariance matrix to
O(C) from O(C2).

This full model can be represented succinctly using a stick-breaking formulation of mixture weights
[22] and a Normal-Wishart prior for each cluster and electrode. The assignment variable zn denotes
which cluster the nth waveform is assigned to. Letting k define the cluster index, the full generative
process of this model is

ỹnc| {µkc,Λkc}k=1,... , zn ∼ N(µznc,Λ
−1
znc), zn ∼ Discrete(w),

{µkc,Λk} ∼ NW(m0, λ0,W0, v0), wk = bk
∏k−1
`=1 (1− b`), bk ∼ Beta(1, α0).

We note that if the mean and precision are known for a cluster, then inference for the optimal
placement of a waveform exactly follows traditional GMM approaches. Second, we note that the
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stick-breaking formulation on w is such that the sum of the probabilities goes to 1 as k →∞. While
this has nice theoretical properties, this is a practically difficult representation, typically requiring
the use of a Chinese Restaurant Process formulation [34] or adaptive methods such as Retrospective
Sampling [10]. In practice, it is common to simply truncate the maximum value K at a high value.

We alternatively perform inference in this model via by adapting the Variational Bayesian (VB)
split-merge approach of [21], which dynamically chooses this truncation level K, to utilize our
coreset representation. The key idea of the split-merge approach is based on two moves. First, the
merge, or cluster death, will combine two clusters if there is not sufficient statistical evidence to
support distinct clusters. Vice versa, the split, or cluster birth, will take a cluster that represents an
inhomogeneous waveform population and split it into multiple clusters (or neurons).

The first step in the mathematical formulation of this approach is to define approximate posterior
forms. Letting Θ = {µkc,Λkc}k=1,...,K,c=1,...,C , this is given by

q(z,Θ,b) = (1)[∏N
n=1 q(zn|r̂n1, ..., r̂nK)

] [∏K
k=1 q(bk|α̂k1, α̂k0)

∏C
c=1 q(µkc,Λkc|m̂kc, λ̂kc, Λ̂kc)

]
,

where q(zn = k) = r̂nk, q(bk|α̂k1, α̂k0) = Beta(α̂k1, α̂k0), q(µkc|Λkc) = N(m̂kc, (λ̂kcΛkc)
−1),

and q(Λkc) = δ(Λ̂kc), a delta function at a particular point. The use of a delta function on the
precision is non-standard and breaks the mean-field formulation, but allows us to provide an option
to enforce a minimum variance. Enforcing that the minimum cluster variance does not go below
the known background variance can improve robustness is certain situations; however, it comes
with an increase in computational costs, so the algorithm default is to not use a minimum variance.
Precedence of this approximation in VB inference can be found in [21]. Because the DP has infinite
mixture components, we implicitly assume that q(zn = k) = 0 ∀k > K. The variational parameters
are learned to minimize the KL-divergence between the true posterior and the variational distribution,
which maximizes the Evidence Lower Bound Objective (ELBO), given by

L̃(q) = EỸ|Y
[
Eq
[

log p(Ỹ, z,Θ, b)− log q(z,Θ, b)
]]
. (2)

Compared to the typical ELBO used in [21], we have an expectation over Ỹ|Y given by the masking
approach. While this initially seems like it increases the complexity of the variational updates, the
expectation over the mask will simply lead to a linear multiplicative factor when calculating updates.
Hence, since the mask is typically 0, this allows great speedups by allowing sparse updates and
reduces overfitting.

If the minimum variance constraint is set, then it is necessary to solve arg maxΛ̃kc�σ2
minI
L̃(q) given

the other parameters. Fortunately, a simple procedure can give the optimal solution. Succinctly, the
MAP value from the standard variational update on the Wishart distribution is projected to the feasible
set on its singular values. The projection is performed by taking the SVD, setting the projected
singular values to the minimum of itself and σ2

min, and reconstructing. It is straightforward to prove
that this update is optimal on the feasible set. A detailed mathematical description of this update
and how the standard updates from [21] change is given in the following section. This step gives a
modest reduction in overfitting and improves stability at the expense of additional computation.

As discussed in previous sections, running on all data points can lead to slow and redundant computa-
tions, so we want to modify the existing VB structure to utilize computations only on the coreset. In
mixture models of exponential families, the mean-field parameters for the approximate posterior are
determined completely by additive sufficient statistics. Therefore, when working with a coreset, each
representative point can store the sufficient statistics of its members that can easily be used when
updating variational parameters. Importantly, despite using only a computationally-friendly small set
of representative points, these representative points allow the sufficient statistics from each member
point to be included in posterior estimates. Specifically, the G representative points, {Yg

n}, their
masks, {mg

n}, and their sufficient statistics, tg = t({Yg
n}, {mg

n}) for the G representative points
n = 1, . . . , Ng, g = 1, . . . , G can be passed to the clustering algorithm to be used in the updates.

Once the ELBO is set up and modified to address masked data and representative points, there is a
principled way to choose whether splitting or merging clusters is appropriate. We use the approach of
[21], where following an update based off of the coreset, the algorithm proposes splits and merges to
search for an optimal point. We give a high-level description of this in Algorithm S2, and further
mathematical details in Section F.1.
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Algorithm S2 Overview of the DPMM procedure on a Coreset.
Input: G sufficient statistics for each group, tg , g = 1, . . . , G

Initialize: number of clusters, K(0), global parameters, θk, and local parameters for each group
and cluster, r̂g,k, suff. stat. for each group and cluster, S

(0)
g,k =

∑G
g=1 r̂g,ktg

S̄k =
∑G
g=1 S

(0)
g,k

for i=1,. . . do
Randomly pick a cluster k, split it into K ′ + 1 clusters, yielding K(i−1) +K ′ clusters
for g=1,. . . , G do

Update r̂g,k and S
(i)
g,k

end for
Update θk, for k = 1, · · · ,K(i−1) +K ′ using S

(i)
g,k

Calculate L̃(q)(i)

Merge clusters if resulting L̃(q) is lower than L̃(q)(i). LetK(i) ≤ K(i−1) +K ′ be the resulting
number of clusters
end for

Choosing the hyperparameters in the DP-GMM will vary the performance of the algorithm. The
default settings used in this algorithm are shown in Table S1, of which the most important are the
hyperparameter for the stick-breaking parameter and the hyperparameters for the Normal-Wishart
prior. The stick-breaking parameter was set to 1; however, similar performances were obtained from
10−1 to 101. The hyperparameters for the Normal-Wishart were set such that the expected covariance
of the cluster matches the background noise signal (e.g. I) with a non-informative mean.

F.1 Additional Mathematical Details

Estimating the variational parameters is done such that they minimize the KL-divergence between
the posterior distribution and variational distribution, which is equivalent to maximizing the evidence
lower bound (ELBO). However, as the virtual data, {Ỹ}, is not directly observed, the expected value
of L(q) given {Yn} is maximized. Accordingly, the following objective function is optimized:

L̃(q) = EỸ|Y
[
Eq
[

log p(Ỹ, z, µ,Λ, b)− log q(z, µ,Λ, b)
]]

The local parameters given global parameters are updated as:

ρnk = exp(EỸ|Y[Eq[log p(Ỹn|µk,Λk) + logwk]]), r̂nk =
ρnk∑K
j=1 ρnk

Given sufficient statistics, N̂k =
∑N
n=1 r̂nk, s̃k1 =

∑N
n=1 r̂nkEỸ|Y[Ỹn], s̃k2 =∑N

n=1 r̂nkEỸ|Y[ỸnỸT
n ], the global parameters are updated as following:

α̂k1 = 1+N̂k, α̂k0 = α0+

K∑
j=k+1

N̂j , λ̂k = λ0+N̂k, m̂k =
1

λ̂k
(λ0m0+s̃k1), v̂k = N̂k+v0

Updating Λ̂k is a two-step process. Λ̂k is first updated to maximize expected ELBO.

Λ̂k = (N̂k − P − 1)
(
W−1

0 + s̃k2 −
1

N̂k
s̃k1s̃

T
k1 +

λ0N̂k

λ0 + N̂k
(
s̃k1

N̂k
−m0)(

s̃k1

N̂k
−m0)T

)−1

Then, let Ŵk = AkΣkBT
k , which is a singular value decomposition. The second update is

(Σk)ii =

{
1 if (Σk)ii > 1
(Σk)ii if (Σk)ii ≤ 1

It ensures that the variance of each component is bigger than 1 as the variance is the sum of cluster
variance and noise variance, which is one.
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To further simplify the process, the independence of data across the channels can be assumed. Then,
the covariance matrix of cluster has a block-diagonal shape and the cluster shape in each channel can
be estimated separately using the above update. This is reasonable assumption as spatially whitened
data is used.

The split and merge steps are conceptually the same as in [21], but adjusted to use the coreset.

G Addditional details on the Divide and Conquer approach

Because of the method used to divide the data in the divide-and-conquer step, it is possible that the
same neuron may have templates and clusters under different spatial subsets. Furthermore, the GMM
approach may overcluster due to model mismatch (e.g. non-Gaussianity of the clusters). Therefore, it
is necessary to merge the templates prior to the deconvolution step.

The templates are constructed as follows. After the clustering process, each spike Xn has been
associated with one of K clusters, which is denoted by an assignment variable, zn ∈ {1, . . . ,K}.
Then, let Wk ∈ RR×C be defined as the mean of each cluster defined as mean({Xn|zn = k}),
which is taken with respect to the original data rather than the virtual data distribution. In addition, a
binary mask is defined for each cluster by mw

k ∈ {0, 1}C , where

mw
kc =

{
1, mode({mnc|zn = k}) > θmaskw

0, otherwise
.

The mode on this continuous distribution is estimated by the peak of a kernel density estimate. θmaskw
is set to 0.5. Given template masks, templates can be localized by considering channels with only
non-zero mask entries. Template merging is performed based on two criteria, the angle and the
amplitude of templates. When two templates are in fact the same neuron, the template waveforms
should have a similar shape and their amplitudes should approximately match. To determine whether
the waveforms have a similar shape, typically the cosine distance is used; however, the cosine distance
is greatly affected when templates are not temporally aligned. Therefore, the “angle” is calculated
as the cosine distance on the best alignment between two templates. After the similarity check, an
undirected graph can be created by considering each template as a node and constructed edges based
off of similarity. Once the graph is obtained, strongly connected components are computed using
Tarjan’s algorithm [42] to group templates. Then, new templates are created by taking the mean of
each group. The pseudocode to perform this merging is shown in Algorithm S3.

H Constructing a proxy to ground truth for a real dataset

It is notoriously difficult to obtain ground truth data for large-scale extracellular recordings of neural
activity with MEAs. However, in rare cases, sufficiently strong anatomical and functional priors are
available for the tissue under study and make it possible to hand-curate the outcome of a sorting
pipeline, resulting in an acceptable partial proxy to ground truth on these data.

The data we used to construct such a proxy consisted of 30 minutes of extracellular recordings of the
peripheral primate retina, obtained ex-vivo using a high-density 512-channel recording array [30].
During the half-hour recording, the retina was stimulated with spatio-temporal white noise in which
a lattice of square pixels were updated randomly and independently of one another over time. The
intensity of each display primary at each pixel location was chosen from a binary distribution at each
refresh, yielding a stimulus with chromatic variation.

The reference set of spike times was manually assembled as follows. Events whose amplitude
exceeded 4 times the RMS noise on each electrode were detected, aligned to the time of peak
deviation from baseline using cubic spline interpolation for sub-sample alignment, and noise-whitened.
Principal component analysis was performed on the collection of events detected on each electrode
and the surrounding 6 electrodes, and the collection of events was clustered using a variation of
the Ng-Jordan-Weiss spectral clustering algorithm [35, 52]. The hyper-parameters of the clustering
algorithm were sweeped, resulting in a large collection of candidate neurons. Candidate neurons
whose spike train exhibited significant violations of the refractory period were rejected.

Reference neurons were then identified on the basis of their light response properties. Anatomical and
functional priors guarantee that classes of retinal ganglion cells in the primate retina tile the visual
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Algorithm S3 Template Merging
templates← mergeTemplates({clusterAssignmentsi}i=1,..., {representativeWaveformsi}i=1,...)
Algorithmic Settings: Maximum shift allowance smax ∈ N, thresholds, θ1, θ2 ∈ (0, 1), number of
clusters, K, temporal length of waveform, R, number of channels, C.
Input: clusterAssignments are given by {zn}n=1,...,N ∈ {1, . . . ,K} and representativeWaveforms
are given by {Xs

n}n=1,...,N,s=−smax,...,smax
∈ RC×R, waveforms shifted by s from its center.

Output: templates

% Get templates with all shifts
for k = 1, . . . ,K do

Ws
k = mean({Xs

n|zn = k})
wk = |{Xs

n|zn = k}|
end for

Initialize: Undirected Graph G with K nodes and 0 Edges
for k1, k2 = 1, . . . ,K do

% shift that maximizes the cosine of two templates
s′ = arg maxs cosineDist(W

0
k1
,Ws

k2
)

if cosineDist(W0
k1
,Ws′

k2
) < θ1 and θ2 <

||W0
ck1
||2

||Ws′
ck2
||2
< 1

θ2
, c = 1, . . . , C then

Add edge on (k1, k2)
end if

end for
Using strongly connected components on G [42], templates are grouped into K ′ groups.
For k = 1, . . . ,K ′, new template W̃k, is the mean of properly shifted templates in each group
weighted by wk.

field uniformly, forming well-coordinated mosaics [11]. After calculating the spike-triggered average
response of each neuron, cells were therefore separated in unique functional types, corresponding to
the ON and OFF midget cells, ON and OFF parasol cells, ON and OFF upsilon cells, small bistratified
cells, and polyaxonal amacrine cells. For each cell detected more than once in a mosaic, only the cell
with the largest spike count was kept. All cells with physiological properties incompatible with the
anatomical and functional priors of the primate retina were discarded from the analysis, resulting in a
final collection of unique reference neurons of known cell types (n = 355), as well as a few neurons
whose physiological properties were consistent with yet unreported cell types (n = 31).

Note that, by construction, this gold standard database includes a collection of trusted spike shapes
and times, but we do not claim that this analysis captures every single true spikes from this recording;
indeed, we expect that the dataset includes a number of unlabeled small or collided spikes.

I Relationship to existing pipelines

Prior to the clustering stage, several important preprocessing steps take place. Filtering with wavelets
[47] can improve sorting performance; however, we chose to use a bandpass Butterworth filter [29]
because it is used in most academic and commercial implementations, such as the Plexon Offline
SorterTM.

The most common detection algorithm selects events that cross a threshold, with alignment to the
threshold crossing or a peak [29]. Alternatively, [24] used multiple thresholds and temporal and
spatial adjacency to improve detection, and aligned to the mean energy of a soft thresholded signal;
[38] used wavelets to denoise and detect spikes. All these methods generally lead to many false
positives that negatively affect the clustering step. Our pipeline improves on these issues by triaging
false positives and addressing them in a later post-processing step (see Section C.1).

The clustering stage of the spike sorting problem has been discussed in several reviews [41, 29, 16, 39].
Spike sorting on dense MEAs has been explored via template matching [15], blind deconvolution
[8, 37, 12], and clustering [24, 9]. Our approach is based on the Dirichlet process Gaussian mixture
model (DP-GMM), which first introduced to the spike sorting problem by [48]. There have been
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significant improvements in efficient inference for the DP-GMM, and our work heavily utilizes the
memoized approach of [21], but several alternatives exist, including online approaches [46], utilized
in [8], and parallel computing [7].

Compared to prior work, we directly address collisions and outliers by excluding them from the clus-
tering step with triaging, which enables significantly improved clustering performance. Furthermore,
local minima are a critical problem in many clustering, template matching, and blind deconvolution
approaches due to the non-convex nature of these approaches. While our model is also non-convex,
our empirical results (not shown) demonstrated that adapting modern variational inference techniques
improved both reliability and accuracy. These results match the conclusions of [21]. This is of crucial
importance as the field moves towards millions of distinct waveforms, because common hand-sorting
and hand-correction steps are intractable on such data.

There are a number of alternative approaches to the clustering step in the literature. Many of these
approaches address the Gaussianity assumption on the shape of the clusters. One of the most common
alternative approaches to a Gaussian mixture model formulation for clustering is a density based
approach. This has been done in the form of superparamagnetic clustering [38], consensus clustering
[14], unimodal clustering [31], spectral clustering, finding density peaks [40, 51], and the mean shift
algorithm [20]. MountainSort [31] uses a non-parametric clustering step that assumes the clusters
are unimodal in the sense that they have a single point of maximal density when projected onto any
line. These approaches hold significant promise for dealing with non-Gaussian waveform clusters,
and many of these clustering methods could be interchanged with our DPMM in our complete
pipeline to alter the clustering step. However, as empirically demonstrated in our experiments, while
these approaches can deliver improved performance on non-Gaussian clusters, on our metrics, for the
datasets analyzed here, the average performance is below the proposed DPMM.

Recently, the Kilosort algorithm [36] was proposed to perform clustering and inference directly
on the time series instead of using clustering. Collisions generally cause problems in the PCA and
clustering space [12]; the matching pursuit approach of [36] sidesteps the clustering step entirely.
In our pipeline, we address the collision problem with our triage-then-pursuit strategy; this lets us
use fast clustering primitives to estimate templates, leading to significant scalability gains relative to
full matching pursuit approaches. (Clustering approaches are also better able to handle uncertainty
in template shape and spike assignments than greedy matching pursuit approaches.) After we have
an appropriate clustering and waveform shape estimate, we use some of the methods proposed in
[36] and [12] for the final collision-unmixing step. Other methods implicitly incorporate overlapping
spike detection in their model training [8]; however, this approach has not yet been demonstrated to
scale to large dense MEA datasets.

Spyking Circus [51] is another algorithm that aims to scale spike sorting to large MEA recordings
by density estimation clustering of dimensionally reduced spikes by PCA, followed by template
estimation and matching. Spikes are detected according to threshold crossings on each channel which
can affect PCA projections negatively because of collisions and alignment issues. The algorithm
is scaled to large recording sizes by sub-sampling spikes (data points), which can under represent
units with lower firing rates. This method allows for parallelizing the computation of affinity matrices
of data points which has lead to GPU and multi-threading implementations. However a great deal
of post processing of results of each channel is needed that in practice renders the method time
inefficient compared to YASS and KiloSort.

JRClust [23] follows a similar method as Spyking Circus. It does not use deconvolution to infer
collisions. The method, however, addresses an issue of non-stationarity caused by noise and probe
drift. Due to methodological similarity to Spyking Circus, it is expected that their performances
are comparable. We hope to provide more detailed comparisons in the future.
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