

Dynamic Run-Time HW/SW Scheduling Techniques for
Reconfigurable Architectures*

Juanjo Noguera
Research & Development Dept.

Hewlett-Packard InkJet Commercial Division (ICD)

jnoguera@bpo.hp.com

Rosa M. Badia
Computer Architecture Dept. (DAC)

Technical University of Catalonia (UPC)

rosab@ac.upc.es

ABSTRACT
Dynamic run-time scheduling in System-on-Chip platforms has
become recently an active area of research because of the
performance and power requirements of new applications.
Moreover, dynamically reconfigurable logic (DRL) architectures
are an exciting alternative for embedded systems design.
However, all previous approaches to DRL multi -context
scheduling and HW/SW scheduling for DRL architectures are
based on static scheduling techniques. In this paper, we address
this problem and present: (1) a dynamic scheduler hardware
architecture, and (2) four dynamic run-time scheduling
algorithms for DRL-based multi -context platforms. The
scheduling algorithms have been integrated in our codesign
environment, where a large number of experiments have been
carried out. Results demonstrate the benefits of our approach.

Keywords
Dynamic run-time scheduling, reconfigurable architectures.

1. INTRODUCTION
Scheduling the tasks of an embedded system on a “System-On-
Chip (SoC)” platform is one of the main challenges in HW/SW
codesign. A scheduling policy is said to be static when tasks are
executed in a fixed order determined at compile-time, and
dynamic when the execution order is decided at run-time. There
is a wide range of approaches to static scheduling [2]. However,
recently there has been a growing interest in the development of
run-time scheduling techniques for platform-based designs
[9][14]. This interest is due to several reasons:

 * This work is funded by CICYT-TIC project TIC2001-2476-CO3-02
and DURSI project 2001SGR00226. Juanjo Noguera acknowledges the
support of Hewlett-Packard ICD in the preparation of his PhD thesis.

� A growing class of embedded systems need to execute

multiple applications concurrently [9] rather than just a single
application. An example is a set-top box application where
audio, video and graphics applications run simultaneously.
Additionally, these applications may have to be dynamically
invoked (i.e. run or stopped at user request) or may have an
intrinsic dynamic behavior (e.g. MPEG4) [14].

� Typical scheduling algorithms assume that the task’s execution
time is the worst-case execution time (WCET) [2]. However,
systems designed using WCET estimates could be highly
under-utili zed. The execution time of a task is rarely
deterministic. For instance, it could be “data-dependent” (e.g.,
run-length encoding of video frames depends on the
information within frames). Moreover, the execution time
could depend on the available resources, especially when
multiple applications share a system.

� Achieving energy-eff icient computation is a major challenge
in embedded systems design. Dynamic power management [3]
is a design methodology that dynamically adapts an embedded
system to provide the requested services and performance
levels with a minimum number of active components. This
methodology is based on the idea that not all system
components are always required to be in the active state, and
peak performance is only required during some time intervals.

Additionally, the importance of having on-chip programmable
logic regions in System-on-Chip platforms is becoming
increasingly evident. Partitioning an application among software
and programmable logic hardware can substantially improve
performance, but such partitioning can also improve power
consumption by performing computations more effectively and
by allowing for longer microprocessor shutdown periods.
In this area of Reconfigurable Computing (RC), Dynamic
Reconfiguration has emerged as a particularly attractive
technique to increase the effective use of programmable logic
blocks. Dynamically Reconfigurable Logic (DRL) devices allow
the change of the device configuration on the fly during system
operation. A clear example is the CS2112 chip from Chameleon
Systems, Inc [1]. This device integrates a RISC core, embedded
memory, and four run-time reconfigurable logic blocks.
However, this attractive idea of time-multiplexing the needed
device configuration does not come for free. The reconfiguration
latency has to be minimized to improve performance. There are
two main approaches to address this challenge.

One of these approaches is known as temporal partitioning, in
which the system specification must be partitioned into temporal
exclusive segments (called reconfiguration contexts) [13]. A
different approach is to find an execution order for a set of tasks
that meets system design objectives (e.g. minimize the execution
time), which is usually known as DRL multi-context scheduling
[10][13].

1.1. Contributions of the paper
All existing approaches to DRL multi-context scheduling are
based on static (compile time) scheduling techniques, which
assume that tasks have a fixed (deterministic) execution time.
To the best of our knowledge, no previous work has been carried
out in order to define a dynamic run-time HW/SW scheduling
approach for DRL-based multi-context platforms.
In this paper, we address this open problem and present four
dynamic run-time scheduling algorithms for dynamically
reconfigurable architectures. Moreover, we present a hardware
architecture for the implementation of the dynamic run-time
scheduler. This hardware implementation is thought to minimize
run-time scheduling overheads.
The paper is organized as follows: Section 2 is an overview of
previous work. Section 3 introduces our HW/SW codesign
methodology, which is based on a dynamic run-time scheduling
strategy. In section 4, we explain the basic architecture of the
dynamic run-time scheduler. Section 5 presents four dynamic
run-time scheduling algorithms. In section 6, we explain the
experiments that we have carried out, and give the obtained
results. Finally, section 7 presents the conclusions of this work.

2. PREVIOUS WORK
Software scheduling for real-time embedded systems have been
widely covered in the literature. Balarin et al. present a survey of
these techniques in [2]. Most of the work related with dynamic
scheduling can be classified as fixed priority or dynamic priority
assignment policies. Rate Monotonic Analysis (RMA) is an
example of fixed priority dynamic scheduling. Earliest Deadline
First (EDF) is an example of dynamic priority assignment policy.
EDF offers attractive theoretical improvements over RMA,
however EDF is not widely used in embedded systems because
of its costly run-time overhead. To the best of our knowledge
there is not any approach to DRL multi-context scheduling which
uses a fixed priority dynamic scheduling technique.
In the other hand, several references can be found addressing
temporal partitioning for reconfiguration latency minimization
[13]. Moreover, configuration prefetching techniques are used to
minimize reconfiguration overhead. They are based on the idea
of loading the next reconfiguration context before it is required,
hence overlapping device reconfiguration and application
execution. Hauck firstly introduced configuration prefetching in
[7], where a single-context prefetching technique is presented.
DRL multi-context scheduling has been addressed in many
publications [10]. However, all these approaches are based on
static (compile-time) scheduling techniques. Moreover, these
previous approaches do not address HW/SW scheduling.
In [4] an integrated algorithm for HW/SW partitioning and
scheduling, temporal partitioning and context scheduling is
presented. This approach is similar to [5] and [8] which address
HW/SW scheduling for dynamically reconfigurable devices.
However, they are also based on static scheduling algorithms.

3. HW/SW CODESIGN METHODOLOGY

3.1. Definitions
In our approach, we model a single application as a task graph.
Concurrent and multi-function systems are modeled as a set of
several task graphs. A task graph is a directed acyclic graph
where each node represents a task. Each task is associated with a
task type. A task represents a coarse grained computation in an
embedded system (e.g., loops are examples of tasks). An
embedded system may contain more than one task of the same
type (e.g. a DCT task may occur in several video applications).
Each task has associated a priority of execution. This priority is
calculated and assigned to each task statically (at compile time).
Tasks are connected using directed edges. Edges represent data
dependencies between tasks. Each edge is associated with a
scalar denoting the amount of data that must be transferred
between the tasks it connects. A task may begin execution only
after all its incoming edges have been executed.
Once a task is ready for execution, this is explicitly indicated by
an event. An event consists of the following information: TaskId,
TaskGraphId1, TaskPriority and TaskType. Events are
sequentially ordered by the TaskPriority field. The list of sorted
events is the Event Stream.
A Functional Unit is a physical component (i.e. DRL device or
SW processor) that executes tasks. A DRL device has an active
reconfiguration context, which in our methodology, is associated
to a task type. If it is required to process a new task, which has a
different task type from the currently loaded in the DRL device, a
reconfiguration will be needed.
During the processing of a task, a functional unit can be in
several states (e.g., execution, reconfiguration, etc.). We also
define the functional unit active set to include the following
information: functional unit state, TaskId, TaskType and
TaskGraph, of the task being processed in the functional unit.

3.2. Codesign Methodology
The proposed methodology [11][12] is divided into three stages:
Application Stage, Static Stage and Dynamic Stage. The
application stage is focused on the system specification.
The static stage includes: (1) extraction, (2) estimation, (3)
HW/SW partitioning, and (4) HW and SW synthesis. The
extraction phase has two main objectives: (1) obtain the task
graph representation from the system specification and assign to
each task a priority of execution, and (2) obtain a list of
independent task types found in the task graph(s). The estimation
phase can use typical estimators (e.g., delay and area) that can be
obtained using high-level synthesis and profiling tools. The
HW/SW partitioning phase decides which task types will be
executed in reconfigurable HW and which in SW.
HW/SW partitioning has been demonstrated to be a critical point
when targeting DRL architectures [12]. The dynamic scheduling
results highly depend on the quality of the HW/SW partitioning,
which helps to reduce the run-time reconfiguration overhead.
The dynamic stage includes HW/SW Scheduling and DRL Multi-
Context Scheduling. Both of them run in parallel and base their
functionality on events present in the event stream. To better
understand how this works, let us explain the target architecture.

1 TaskGraphId identifies the task graph to which the task belongs

The target architecture is depicted in fig. 1. It is a heterogeneous
architecture, which comprises a software processor, a DRL-based
hardware architecture and shared memory resources. The CPU is
a uniprocessing system and it can execute only one task at a time.
The HW/SW and DRL Multi -Context Scheduler are mapped to
hardware using a centralized control scheme. DRL contexts are
stored in the DRL Context memory. The Event Stream is stored
in the Event Stream memory.
Events are executed in the DRL Array or in the CPU. The data
that must be transferred between tasks executed in the DRL
Array is stored in the RAM banks. A concrete DRL may access
any RAM bank using the Memory Crossbar. Several memory
accesses to different banks are possible concurrently. A read and
write operation are possible concurrently in a single bank.
The HW/SW and DRL schedulers co-operate and run in parallel
during application run-time execution, in order to meet system
constraints. Their functionality is based on the use of a look-
ahead strategy into the event stream memory. Event Window
(EW) is the number of events that are observed in advance.
At run-time, the HW/SW scheduler assigns events to functional
units and decides the execution order of the events stored in the
event window. The DRL multi -context scheduler is used to
minimize reconfiguration overhead. The objective of the DRL
multi -context scheduler is to decide: (1) which DRL must be
reconfigured, and (2) which reconfiguration context (task type)
must be loaded in the DRL. This scheduler tries to minimize this
reconfiguration overhead by overlapping the execution of events
with DRL reconfigurations.

4. A SCHEDULER ARCHITECTURE FOR
RECONFIGURABLE PLATFORMS

4.1. Dynamic Scheduler Architecture
In this section, we will explain the internal architecture of the
centralized scheduler (HW/SW and DRL multi -context). This
architecture is shown in figure 2. The proposed architecture is
divided in three main parts: (1) The Dynamic Scheduling
Algorithm, (2) The Graph Dependence Check Logic, and (3) The
Event Stream Memory Interface Logic.
This dynamic scheduler architecture can be seen as two processes
that run concurrently and interact using a shared memory. There

is a producer process (the Graph Dependence Check Logic) and
a consumer process (the Dynamic Scheduling Algorithms). Both
processes produce and consume events, which are stored in the
event stream memory (Event Stream Memory Interface Logic).
The Graph Dependence Check Logic knows the functional unit
active set (functional unit state, TaskId, TaskType and
TaskGraph) of all DRL’s and CPU. It also receives the interrupts
signals indicating that a concrete execution has finished.
In case, a concrete DRL or CPU has finished the execution of a
task, new tasks may become ready for execution if all it s
dependences have been completed. This is the main function of
the Graph Dependence Check Logic block. This module
internally has the required data structures to check task
dependences. In the next section, this module will be explained
in more detail . If new tasks become ready for execution this
module generates new events, which are inserted in the event
stream memory using Event Stream Memory Interface Logic.
The event stream consists of a sorted list of events. Events are
sorted by the TaskPriority field of the event. This TaskPriority
field is assigned to each task at compile time. Several priority
functions can be used for this objective (e.g., number of output
edges of the task, criti cal path analysis, etc.).
The event window block consumes events from the event stream
memory. This will occur at the end of the execution of an event,
when a concrete functional unit is available to process a new
event. The event with the highest priority within the event stream
will be inserted in the event window. Within the event window,
there are events being processed and events waiting for
execution. All events waiting for execution within the event
window are candidates for execution. From all these events, the
dynamic scheduling algorithm must select a concrete event for
execution. This selection process changes depending on the
scheduling algorithm, which may depend on several
characteristics of the events (e.g., priority, task type, etc.).
The Dynamic Scheduling Algorithm block implements the
dynamic run-time HW/SW and DRL multi -context scheduling
algorithms. It assigns events to functional units (DRL’s or CPU)
and specifies the execution order of events present in the event
window. In order to implement this functionality it knows the
current functional units active sets. The scheduling policy
depends on the event window size (i.e. number of events which
are input to the dynamic scheduling algorithm). In section 5,
several dynamic scheduling algorithms are explained.

HW/SW & DRL
Multi-Context

Scheduler

DRL0 DRL1 DRLN

DRL Context
RAM

Event Stream
RAM

CPU System RAM

· · ·

DRL-based Hardware Co-processor Architecture

System Bus

Memory Crossbar

Event Bus

Context Bus

DRL Array

RAM Bank0 RAM Bank1 RAM BankM· · ·

Interrupts HW/SW & DRL
Multi-Context

Scheduler

DRL0 DRL1 DRLN

DRL Context
RAM

Event Stream
RAM

DRL Context
RAM

Event Stream
RAM

CPU System RAM

· · ·

DRL-based Hardware Co-processor Architecture

System Bus

Memory Crossbar

Event Bus

Context Bus

DRL Array

RAM Bank0 RAM Bank1 RAM BankM· · ·

Interrupts

 Figure 1. Target Architecture.

Interrupts

Insert

Event(s) In
Graphs Dependence

Check Logic

A
ct

iv
e

S
et

(s
)

In
fo

rm
at

io
n

Dynamic Scheduling
Algorithm

DRL0

Active Set

DRLN

Active Set

CPU
Active Set

· · ·

Event Stream
Memory

Interface Logic

Event Window

Event(s) Out

Context Bus

Event Bus

System Bus

Interrupts

Insert

Event(s) In
Graphs Dependence

Check Logic
Graphs Dependence

Check Logic

A
ct

iv
e

S
et

(s
)

In
fo

rm
at

io
n

Dynamic Scheduling
Algorithm

DRL0

Active Set

DRLN

Active Set

CPU
Active Set

· · ·

Event Stream
Memory

Interface Logic

Event Stream
Memory

Interface Logic

Event Window

Event(s) Out

Context Bus

Event Bus

System Bus
Figure 2. Dynamic Scheduler Architecture

4.2. Graph Dependence Check Logic
As previously introduced, the main goal of this block is to
generate new events, which are inserted in the event stream.
These new events are generated at the end of the execution of a
task. The architecture of this block is shown in figure 3.
In this architecture, there are three main components: (1) the
Successors List (SUCC lists), (2) the SET Matrix, and (3) the
TEST Matrix. These three components must be replicated for
each task graph. The successors list maintains for each task a list
of all it s successor tasks with their associated information
(TaskType and TaskPriority). The SET matrix stores, for each
task, which ones of its predecessor tasks have finished its
execution. Finally, the TEST matrix stores for each task which
tasks must be previously executed. This matrix should be
initialized before the application begins its execution.
This architecture supports several tasks finishing at the same
time. Thus, a selector block decides which finished active set is
processed first. The finished task (FTi) identifier is used as input
to the successors list block. These successor tasks are the output
of this block, and they are processed sequentially. The following
process is repeated for each successor task)(j

iS :
� The successor task id. is used to address the SET matrix in
order to know the predecessor tasks that have been executed.

� The read data from the SET matrix is used to update the
completed dependences of the task, performing a bit-wise OR
function with the decoded finished task identifier.

� This updated information of task’s completed dependences is
compared with the value read from the TEST matrix. In addition,
the SET matrix is updated.

� Finally, if the values read from both matrices are equal, a
new event is generated and the insert signal is asserted,
indicating that the event must be inserted in the event stream.

5. SCHEDULING ALGORITHMS

5.1. Single In-Order Dynamic Scheduling
The first dynamic scheduling algorithms (HW/SW and DRL
multi -context scheduling) were presented in [11].
In this approach, a single event is being executed on a functional
unit (DRL or CPU) at the same time. In addition, it is in-order
because the scheduling algorithm processes events following the
order in which they are consumed from the event stream.

Hardware/Software Scheduling
This algorithm follows a First-In-First-Out policy for the
scheduling of the events within the event window.
A second objective of the HW/SW scheduler is to manage the

functional units active sets (i.e., functional unit state, TaskId,
TaskType and TaskGraph). It is important to explain the states
required to process an event (see figure 4).
In the figure 4.a., the HW/SW scheduler assigns one event to be
processed in a DRL that is in the idle state. Depending on the
active reconfiguration contexts, a DRL reconfiguration may be
initiated. In addition, it is always mandatory to change the active
TaskId (task switch state). Finally, it is possible that a DRL
finishes reconfiguration and task switch, but the event cannot be
executed because the previous events in the event window have
not finished. In this case, the DRL enters into the wait state.
Figure 4.b., has a similar functionality for the CPU. The major
changes are related with the HW/SW communication. In order to
minimize communications overheads, it is possible to start the
CPU communication process, while an event is being executed in
the DRL array. As in the case of DRL, the CPU has a wait state.

DRL Multi-Context Scheduling
However, in order to minimize reconfiguration overheads to the
HW/SW scheduler, it is possible to use a reconfiguration pre-
fetching scheme, which overlaps the reconfiguration of a DRL
with the event execution in another DRL. From the
reconfiguration contexts that are loaded in the DRL array, and
the task types which are required within the event window, the
DRL multi -context scheduler decides: (1) which reconfiguration
context must be loaded, and (2) in which DRL it will be loaded.
This algorithm is executed at the end of the execution of a
concrete event. At that time, a new event starts its execution and
a new event enters in the event window. This insertion probably
means that a new reconfiguration context will be required.
The basis of the proposed DRL multi -context scheduling
algorithm is to obtain an array that represents the required
reconfiguration contexts within the event window. This array is
obtained from the current state of the DRL’s and from the event
window. Afterwards, the algorithm obtains from this array the
number of DRL contexts that are not required within the event
window. If there is not any DRL available for reconfiguration,
the algorithm selects (to reconfigure) the DRL that has an active
reconfiguration context that will be required latest (remember
that events are processed using a FIFO policy). Note that this is
not a typical LRU replacement policy. Finally, the first
reconfiguration context found in the event window, which is not
loaded within the DRL array will be loaded.

5.2. Single Out-of-Order Dynamic Scheduling
As in the previous algorithm, a single event is executed on a
functional unit at the same time. The main difference of this
algorithm with the previous one is that events are executed out-
of-order. That is, events may be executed in a different order
from the one in which they enter in the event window.

Hardware/Software Scheduling
The key point of this approach is the selection (within the event

COMP

SET Matrix TEST Matrix

Insert

Active Set(s)
Information

S
el

e
ct

o
r

SUCC List(s)

· · ·

S0

S1

SN-1

SN-2

FTi

D
e

co
de

r

@

SETbits

@{ Si, …, Si }
K-1 0

Event

TESTbits

Interrupts

COMP

SET MatrixSET Matrix TEST Matrix

Insert

Active Set(s)
Information

S
el

e
ct

o
r

SUCC List(s)

· · ·

S0

S1

SN-1

SN-2

· · ·

S0

S1

SN-1

SN-2

· · ·

S0

S1

SN-1

SN-2

FTi

D
e

co
de

r
D

e
co

de
r

@

SETbits

@{ Si, …, Si }
K-1 0{ Si, …, Si }
K-1 0

Event

TESTbits

Interrupts

Figure 3. Graph Dependence Check Logic

RECONF.

TASK
SWITCH

WAITEXEC.

IDLE

(A)
(B)

(C)

(D)
(E)

(F)

(G)

HW/SW COMM.

TASK
SWITCH

WAITEXEC.

IDLE

(A)

(C)

(E)

(D)(F)

(B)

RECONF.

TASK
SWITCH

WAITWAITEXEC.EXEC.

IDLEIDLE

(A)
(B)

(C)

(D)
(E)

(F)

(G)

HW/SW COMM.HW/SW COMM.

TASK
SWITCH

TASK
SWITCH

WAITWAITEXEC.EXEC.

IDLEIDLE

(A)

(C)

(E)

(D)(F)

(B)

 (a) (b)

Figure 4. Single Event Execution: DRL and CPU states.

window) of the next event to be executed. In the previous case,
the algorithm follows a First-In-First-Out policy. However, the
previous approach has two main drawbacks:

� It may occur that the next event to be scheduled cannot be
executed because it has not finished the DRL reconfiguration
and/or task switch. In this case, no useful computation is carried
out in any functional unit.

� It may also occur that the DRL array suffers an excessive
number of reconfigurations, which indeed means that it spends
more time reconfiguring than performing useful computations.
This single out-of-order scheduling algorithm tries to overcome
these limitations. This is achieved changing the selection criteria
of the next event to be executed. In this new approach, the next
event selected for execution will be such that:
(1) There is an active reconfiguration context within the DRL
array ready for the execution of an event.
(2) From all the events within the event window that meet the
previous condition, select the event with the highest priority.
This selection criteria has as main goal to process consecutively
(in the same DRL) events which require the same reconfiguration
context. Thus, reconfiguration overhead can be reduced.
In this approach, the used finite state machines for the functional
units (fig. 4) and the DRL multi -context scheduler algorithm are
the same as the ones described in the previous section.

5.3. Concurrent Dynamic Scheduling
Our target architecture is a multi -processor architecture (fig. 1).
Executing a single event at the same time prevents the
architecture of achieving high throughput or utili zation. This new
approach schedules a new event while multiple events can be
executing concurrently.

Hardware/Software Scheduling
In this approach, it is important to note that the several states
required to process an event have changed. This functionality can
be observed in figure 5. The major difference between figures 4
and 5 is that the wait state has disappeared. Having a functional
unit in the wait state limits the concurrent execution capabilit y.
This algorithm is executed at the end of the execution of an event
or when a DRL finishes its reconfiguration process. In this
approach, the next event selected for execution will be such that:
(1) There is an active reconfiguration context within the DRL
array ready for the execution of an event.
(2) From all the events within the event window that meet the
previous condition, select the event with the highest priority.

DRL Multi-Context Scheduling
This algorithm is executed at the end of the execution of a
concrete event, if a new event cannot be scheduled for execution
by the HW/SW scheduler.
At that time, a new event will enter in the event window, and
probably, a new reconfiguration context will be required. This
needed reconfiguration context will be loaded in the DRL which

is in the idle state. It is important to note that no replacement
policy is needed in this new approach, because whenever the
DRL multi -context scheduler is executed always there wil l be a
DRL available for reconfiguration.
The algorithm also selects a reconfiguration context to be loaded.
The reconfiguration context (which is not currently loaded in the
DRL array) associated to the highest priority event found in the
event window wil l be selected to be loaded.

5.4. Dynamic Scheduling with Replication
Due to the previous DRL multi -context scheduler policy, all
events being executed use a different reconfiguration context.
Thus, in the DRL array there are not two DRL’s, which have
loaded the same reconfiguration context.
It is possible to find an application in which multiple tasks
requiring the same reconfiguration context could be executed
concurrently. In our approach, this situation is shown when
multiple events, which require the same reconfiguration context,
are found in the event window.
Executing this situation using the concurrent dynamic scheduling
algorithm has a main drawback: all events requiring the same
reconfiguration context will be processed sequentially in the
same DRL, while other DRL’s may be in the idle state.
It is possible to improve the performance of the previous
scheduling algorithm by having the same reconfiguration context
loaded in several DRL’s. This is the objective of the concurrent
dynamic scheduling algorithm with replication.
In this new approach, the HW/SW scheduler has the same
functionality as the one presented in the previous subsection. The
DRL multi -context scheduler has been modified (in the selection
of the next reconfiguration context to be loaded) to allow the
same reconfiguration context to be loaded in several DRL’s.

6. EXPERIMENTS AND RESULTS
We have implemented the four explained dynamic run-time
scheduling algorithms in our HW/SW codesign framework [11].
Our HW/SW co-simulation tool accepts task graphs generated by
TGFF [6]. In these experiments, we used the HW/SW
partitioning algorithms proposed in [12]. In order to test the
presented scheduling algorithms, we have performed a large
number of experiments (more than 3000 simulations).
Important parameters to study and its effect on the scheduling
algorithms are: the number of DRL’s, its reconfiguration time
(and its relation to the tasks’ average execution time), the size of
the event window (EW) and the used priority function.
With the idea to cover a wide range of applications, we have
generated synthetically task graphs using TGFF. We have
generated four different test-benches. Each one of these test-
benches has three task graphs, and each task graph has in average
25 tasks. The number of task types (in each one of the test-
benches) is 5, 10, 15 and 20, respectively.
The number of DRL’s used in the experiments is 2, 4 and 8. The
reconfiguration time of the DRL’s is a value, which is relative to
the tasks average execution time. Thus, the used reconfiguration
times are 4x, 2x, 1x, ½x and ¼x the tasks’ average execution
time in a DRL. The event window size is another parameter we
have tested. It has been tested for sizes between 1 and 16.
Finally, we have used two functions to assign the TaskPriority
field of the events. These two functions are: (1) criti cal path
analysis (cp), and (2) number of output edges (oe) of the task.

RECONF.

TASK
SWITCHIDLE

(A)
(B)

(C)

(D)

HW/SW COMM.

TASK
SWITCH

IDLE

(A)

(C)(D)

(B)

RECONF.

TASK
SWITCH

EXEC.

IDLEIDLE

(A)
(B)

(C)

(E)

HW/SW COMM.HW/SW COMM.

TASK
SWITCH

TASK
SWITCH

EXEC.

RECONF.

TASK
SWITCHIDLEIDLE

(A)
(B)

(C)

(D)

HW/SW COMM.HW/SW COMM.

TASK
SWITCH

TASK
SWITCH

IDLEIDLE

(A)

(C)(D)

(B)

RECONF.RECONF.

TASK
SWITCH

EXEC.EXEC.

IDLEIDLE

(A)
(B)

(C)

(E)

HW/SW COMM.HW/SW COMM.

TASK
SWITCH

TASK
SWITCH

EXEC.

 (a) (b)

Figure 5. Concurrent Event Execution: DRL and CPU states.

6.1. Obtained Results
Samples of the obtained results are shown in figure 6. The
pictures show performance when the event window (EW)
increases. The EW size has been found to be one of the key
parameters of the dynamic scheduling algorithms. A trade-off
must be performed when selecting the EW size. Scheduling
algorithms need big EW sizes to perform a better scheduling. As
events are inserted in order in the event stream but no in the EW,
smaller EW sizes allow to maintain more sorted the event stream.
We cannot compare our techniques to any other approach, since
previous approaches to HW/SW scheduling for DRL-based
architectures and DRL multi -context scheduling are based on
static scheduling techniques.
Figures 6.a. shows the execution time when two DRL’s with a 4x
reconfiguration time are used. It is possible to observe the results
obtained when using both single execution schedulers (v1 and v2
respectively) and the concurrent execution scheduler (v3) without
replication. Moreover, the results of using both priority functions
are shown. From figure 6.a., it may be concluded that when few
DRL’s with slow reconfiguration time (4x) are used, then:
(1) There is a great impact of the priority function in all
schedulers. The number of output edges (oe) priority function
obtains better results than using a criti cal path analysis function.
(2) The out-of-order and concurrent dynamic schedulers require
events windows of large size in order to improve performance.
However, the benefits of the out-of order scheduler compared to
the in-order scheduler may be reduced when: (1) the number of
DRL increases, or (2) DRL’s with a fast reconfiguration time are
used. These both conditions mean a perfect overlapping of
execution and reconfiguration when using the in-order scheduler.
The results for the concurrent dynamic scheduler are presented in
figure 6.b. We can observe the results obtained when using four
DRL’s. Results for reconfiguration times 4x, 1x and ¼x, are
presented and compared to an all HW solution, where no
reconfiguration overheads exits (i.e. lower bound). The optimal
EW size also depends on the DRL reconfiguration time. When
using DRL’s with slow reconfiguration time, bigger EW sizes are
required. However, if DRL’s with fast reconfiguration times are
used, the EW size may be reduced.
Finally, figure 6.c. compares the concurrent dynamic scheduling
(v3) and the dynamic scheduling algorithm with replication (v4).
In this picture, the results correspond to an architecture with 8
DRL’s with different reconfiguration times (4x and ¼x). The
replication strategy obtains better results if DRL’s with fast
reconfiguration time are used. In case that DRL’s with slow
reconfiguration time are used, the scheduler with replication
obtains worst results than the concurrent scheduler.

7. CONCLUSIONS
Dynamic run-time scheduling for SoC platforms has become an
important field of research. However, no previous work has been
carried out in dynamic DRL multi -context scheduling and
dynamic HW/SW scheduling for DRL-based architectures. We
have addressed this open problem and we have presented: (1) a
dynamic scheduler hardware architecture, and (2) four dynamic
scheduling algorithms for DRL multi -context platforms. These
algorithms cover a wide range of designs. Out-of-order dynamic
scheduling can be applied to low-power designs (idle and wait
states can represent low-power states). Concurrent dynamic
scheduling should be applied to designs where both power and
performance are criti cal. Finally, concurrent dynamic scheduling
with replication can be used in high-performance designs.
An exhaustive study of these scheduling algorithms has been
performed, and the effect of the algorithms parameters has been
studied. Results demonstrate the benefits of our approach.

REFERENCES
[1] http://www.chameleonsystems.com/
[2] F. Balarin, et al., “Scheduling for Embedded Real-Time Systems” ,

IEEE Design and Test, Jan-March, 1998.
[3] L. Benini, A. Bogliolo, G. De Micheli, “A Survey of Design

Techniques for System-Level Dynamic Power Management” . IEEE
Transactions on VLSI Systems. Vol. 8. Issue 3. June 2000.

[4] K. Chatta, R. Vemuri, “Hardware-Software Codesign for
Dynamically Reconfigurable Architectures” . Proc. of FPL’99.

[5] R. P. Dick, N. K. Jha, “CORDS: Hardware-Software Co-Synthesis
of Reconfigurable Real-Time Distributed Embedded Systems” .
Proc. of ICCAD’98.

[6] R. P. Dick, D.L. Rhodes, W. Wolf, “TGFF: Task Graphs For Free” ,
in Proc. Int. Workshop Hardware/Software Codesign, Mar. 1998.

[7] S. Hauck, “Configuration Prefetch for Single Context
Reconfigurable Coprocessors” , ACM Int. Symp. on FPGA, 1998.

[8] B. Jeong et al., “Hardware-Software Cosynthesis for Run-Time
Incrementally Reconfigurable FPGAs” . Proc. ASP-DAC' 2000.

[9] A. Kalavade et al., ”Software Environment for a Multiprocessor
DSP” . Proc. of Design Automation Conference (DAC), 1999.

[10] R. Maestre et al, “Kernel Scheduling in Reconfigurable
Computing” , Proc. of DATE’99.

[11] J. Noguera, R. M. Badia, “Run-Time HW/SW Codesign for
Discrete Event Systems using Dynamically Reconfigurable
Architectures” , Proc. of ISSS’2000.

[12] J. Noguera, R. M. Badia, “A HW/SW Partitioning Algorithm for
Dynamically Reconfigurable Architectures” , Proc. of DATE’2001

[13] K. Purna, D. Bhatia, " Temporal Partitioning and Scheduling Data
Flow Graphs for Re-configurable Computers", IEEE Trans. on
Computers, vol. 48, No. 6. June 1999.

[14] C. Wong et al, “Task Concurrency Management Methodology to
Schedule the MPEG4 IM1 Player on a Highly Parallel Processor
Platform” . Proc. CODES’01.

(a)

Dynamic Scheduling Performance Evaluation

200

250

300

350

400

450

500

550

600

650

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Event Window (EW) Size

E
xe

cu
ti

o
n

 T
im

e
(m

s)

 v1_oe v2_oe v3_oe v1_cp v2_cp v3_cp

(a)

Dynamic Scheduling Performance Evaluation

200

250

300

350

400

450

500

550

600

650

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Event Window (EW) Size

E
xe

cu
ti

o
n

 T
im

e
(m

s)

 v1_oe v2_oe v3_oe v1_cp v2_cp v3_cp

 (b)

Dynamic Scheduling Performance Evaluation

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Event Window (EW) Size

E
xe

cu
ti

o
n

 T
im

es
 (

m
s)

 v3_cp_rt_4x v3_cp_rt_1x v3_cp_rt_1/4x lower_bound

(b)

Dynamic Scheduling Performance Evaluation

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Event Window (EW) Size

E
xe

cu
ti

o
n

 T
im

es
 (

m
s)

 v3_cp_rt_4x v3_cp_rt_1x v3_cp_rt_1/4x lower_bound

 (c)

Dynamic Scheduling Performance Evaluation

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Event Window (EW) Size

E
xe

cu
ti

o
n

 T
im

e
(m

s)

 v3_oe_1/4x v4_oe_1/4x v3_oe_4x v4_oe_4x

(c)

Dynamic Scheduling Performance Evaluation

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Event Window (EW) Size

E
xe

cu
ti

o
n

 T
im

e
(m

s)

 v3_oe_1/4x v4_oe_1/4x v3_oe_4x v4_oe_4x

Figure 6. Obtained Results.

	Main Page
	CODES'02
	Front Matter
	Table of Contents
	Author Index

