Dynamic Run-Time HW/SW Scheduling Techniques for
Reconfigurable Architectures’

Juanjo Noguera
Research & Development Dept.
Hewlett-Packard InkJet Commercial Division (ICD)

jnoguera@bpo.hp.com

ABSTRACT

Dynamic run-time scheduling in System-on-Chip platforms has
beome recaetly an adive aea of reseach becaise of the
performance ad powver requirements of new applicaions.
Moreover, dynamicdly reconfigurable logic (DRL) architectures
are a1 exciting aternative for embedded systems design.
However, al previous approaches to DRL multi-context
scheduling and HW/SW scheduling for DRL architecures are
based on static scheduling techniques. In this paper, we aldress
this problem and pesent: (1) a dynamic scheduler hardware
architedure, and (2) four dynamic runtime scheduling
algorithms for DRL-based multi-context platforms. The
scheduling algorithms have been integrated in ou codesign
environment, where alarge number of experiments have been
caried ou. Results demonstrate the benefits of our approach.

Keywords

Dynamic run-time scheduling, recorfigurable achitedures.

1. INTRODUCTION

Scheduling the tasks of an embedded system on a “System-On-
Chip (SoC)” platform is one of the main challenges in HW/SW
codesign. A scheduling pdicy is said to be static when tasks are
exeauted in a fixed order determined at compile-time, and
dynamic when the exeaution ader is dedded at run-time. There
is a wide range of approades to static scheduling [2]. However,
recantly there has been a growing interest in the development of
rurrtime scheduling techniques for platform-based designs
[9][14]. Thisinterest is dueto several reasons:

* This work is funded by CICYT-TIC project TIC2001:2476CO03-02
and DURSI project 2001SGR00226 Juanjo Noguera adknowledges the
support of Hewlett-Padkard ICD in the preparation of his PhD thesis.

Rosa M. Badia
Computer Architecture Dept. (DAC)
Technical University of Catalonia (UPC)

rosab@ac.upc.es

= A growing class of embedded systems need to exeaute
multiple applications concurrently [9] rather than just asingle
application. An example is a set-top bo applicaion where
audio, video and graphics applicaions run simultaneously.
Additionaly, these gplicaions may have to be dynamicdly
invoked (i.e. run a stopped at user request) or may have an
intrinsic dynamic behavior (e.g. MPEG4) [14].
= Typicd scheduling algorithms assume that the task’ s exeaution
time is the worst-case exeaution time (WCET) [2]. However,
systems designed using WCET estimates could be highly
uncer-utilized. The eeadtion time of a task is rarely
deterministic. For instance, it could be “data-dependent” (e.g.,
rurtlength encoding of video frames depends on the
information within frames). Moreover, the eeaution time
could depend on the available resources, espedaly when
multiple gplicaions sare asystem.
= Achieving energy-efficient computation is a major challenge
in embedded systems design. Dynamic power management [3]
is a design methoddogy that dynamicadly adapts an embedded
system to provide the requested services and performance
levels with a minimum number of adive comporents. This
methoddogy is based on the idea that not al system
comporents are dways required to be in the adive state, and
pe performanceis only required duing sometime intervals.
Additionally, the importance of having on-chip programmable
logic regions in System-on-Chip patforms is bewmming
increasingly evident. Partitioning an applicaion among software
and pogrammable logic hardware can substantially improve
performance but such partitioning can also improve power
consumption by performing computations more dfedively and
by all owing for longer microprocessor shutdown periods.
In this area of Reconfigurable Computing (RC), Dynamic
Reconfiguration has emerged as a particularly attradive
technique to increae the dfedive use of programmable logic
blocks. Dynamically Reconfigurable Logic (DRL) devices allow
the change of the device @nfiguration on the fly during system
operation. A clea example is the CS2112chip from Chameleon
Systems, Inc [1]. This device integrates a RISC core, embedded
memory, and four run-time reconfigurable logic blocks.
However, this attradive idea of time-multiplexing the needed
device onfiguration dces not come for free The reconfiguration
latency has to be minimized to improve performance There ae
two main approaches to addressthis chall enge.

One of these approaches is known as temporal partitioning, in
which the system specification must be partitioned into temporal
exclusive segments (called reconfiguration contexts) [13]. A
different approach is to find an execution order for a set of tasks
that meets system design objectives (e.g. minimize the execution
time), which is usually known as DRL multi-context scheduling
[10][13].

1.1. Contributions of the paper

All existing approaches to DRL multi-context scheduling are
based on static (compile time) scheduling techniques, which
assume that tasks have afixed (deterministic) execution time.

To the best of our knowledge, no previous work has been carried
out in order to define a dynamic run-time HW/SW scheduling
approach for DRL-based multi-context platforms.

In this paper, we address this open problem and present four
dynamic run-time scheduling agorithms for dynamicaly
reconfigurable architectures. Moreover, we present a hardware
architecture for the implementation of the dynamic run-time
scheduler. This hardware implementation is thought to minimize
run-time scheduling overheads.

The paper is organized as follows: Section 2 is an overview of
previous work. Section 3 introduces our HW/SW codesign
methodology, which is based on a dynamic run-time scheduling
strategy. In section 4, we explain the basic architecture of the
dynamic run-time scheduler. Section 5 presents four dynamic
run-time scheduling agorithms. In section 6, we explain the
experiments that we have carried out, and give the obtained
results. Finally, section 7 presents the conclusions of this work.

2. PREVIOUSWORK

Software scheduling for real-time embedded systems have been
widely covered in the literature. Balarin et a. present a survey of
these techniques in [2]. Most of the work related with dynamic
scheduling can be classified as fixed priority or dynamic priority
assignment policies. Rate Monotonic Anaysis (RMA) is an
example of fixed priority dynamic scheduling. Earliest Deadline
First (EDF) is an example of dynamic priority assignment policy.
EDF offers attractive theoretical improvements over RMA,
however EDF is not widely used in embedded systems because
of its costly run-time overhead. To the best of our knowledge
there is not any approach to DRL multi-context scheduling which
uses afixed priority dynamic scheduling technique.

In the other hand, several references can be found addressing
temporal partitioning for reconfiguration latency minimization
[13]. Moreover, configuration prefetching techniques are used to
minimize reconfiguration overhead. They are based on the idea
of loading the next reconfiguration context before it is required,
hence overlapping device reconfiguration and application
execution. Hauck firstly introduced configuration prefetching in
[7], where asingle-context prefetching technique is presented.
DRL multi-context scheduling has been addressed in many
publications [10]. However, al these approaches are based on
static (compile-time) scheduling techniques. Moreover, these
previous approaches do not address HW/SW scheduling.

In [4] an integrated algorithm for HW/SW partitioning and
scheduling, tempora partitioning and context scheduling is
presented. This approach is similar to [5] and [8] which address
HW/SW scheduling for dynamically reconfigurable devices.
However, they are also based on static scheduling agorithms.

3. HW/SW CODESIGN METHODOL OGY

3.1. Definitions

In our approach, we model a single application as a task graph.
Concurrent and multi-function systems are modeled as a set of
several task graphs. A task graph is a directed acyclic graph
where each node represents a task. Each task is associated with a
task type. A task represents a coarse grained computation in an
embedded system (e.g., loops are examples of tasks). An
embedded system may contain more than one task of the same
type (e.g. a DCT task may occur in severa video applications).
Each task has associated a priority of execution. This priority is
calculated and assigned to each task statically (at compile time).
Tasks are connected using directed edges. Edges represent data
dependencies between tasks. Each edge is associated with a
scalar denoting the amount of data that must be transferred
between the tasks it connects. A task may begin execution only
after al itsincoming edges have been executed.

Once atask is ready for execution, this is explicitly indicated by
an event. An event consists of the following information: Taskld,
TaskGraphld®, TaskPriority and TaskType. Events are
sequentially ordered by the TaskPriority field. The list of sorted
eventsis the Event Stream.

A Functional Unit is a physical component (i.e. DRL device or
SW processor) that executes tasks. A DRL device has an active
reconfiguration context, which in our methodology, is associated
to atask type. If it is required to process a new task, which has a
different task type from the currently loaded in the DRL device, a
reconfiguration will be needed.

During the processing of a task, a functional unit can be in
several states (e.g., execution, reconfiguration, etc.). We aso
define the functional unit active set to include the following
information: functional unit state, Taskld, TaskType and
TaskGraph, of the task being processed in the functional unit.

3.2. Codesign Methodology

The proposed methodology [11][12] is divided into three stages:
Application Stage, Static Stage and Dynamic Stage. The
application stage is focused on the system specification.

The satic stage includes: (1) extraction, (2) estimation, (3)
HW/SW partitioning, and (4) HW and SW synthesis. The
extraction phase has two main objectives: (1) obtain the task
graph representation from the system specification and assign to
each task a priority of execution, and (2) obtain a list of
independent task types found in the task graph(s). The estimation
phase can use typical estimators (e.g., delay and area) that can be
obtained using high-level synthesis and profiling tools. The
HW/SW partitioning phase decides which task types will be
executed in reconfigurable HW and which in SW.

HW/SW partitioning has been demonstrated to be a critical point
when targeting DRL architectures [12]. The dynamic scheduling
results highly depend on the quality of the HW/SW partitioning,
which helps to reduce the run-time reconfiguration overhead.
The dynamic stage includes HW/SW Scheduling and DRL Mullti-
Context Scheduling. Both of them run in parallel and base their
functionality on events present in the event stream. To better
understand how this works, let us explain the target architecture.

! TaskGraphld identifies the task graph to which the task belongs

DRL-based Hard

Co-processor Archi e

’ RAM Bank, | RAM Bank,

’ RAM Bank,,

- v w Memory Crossbar w g
« 'y 3 S L
v v v
’ DRL, ‘ ’ DRL, ‘ . ’ bRL, |
A A A A DRLATay A A
L Py Py 3| DRL Context
Context Bus A d RAM
p-| Event Stream
Event Bus i RAM
y

HW/SW & DRL
Multi-Context
Scheduler

f

System Bus ‘

!]

cpPU System RAM

Interyupts

Figure 1. Target Architecture.

The target architecure is depicted in fig. 1. It is a heterogeneous
architedure, which comprises a software processor, a DRL-based
hardware achitedure axd shared memory resources. The CPU is
auniprocessng system and it can exeaute only onetask at atime.
The HW/SW and DRL Multi-Context Scheduler are mapped to
hardware using a centralized control scheme. DRL contexts are
stored in the DRL Context memory. The Event Stream is gored
in the Event Stream memory.

Events are exeauted in the DRL Array or in the CPU. The data
that must be transferred between tasks exeauted in the DRL
Array is dored in the RAM banks. A concrete DRL may access
any RAM bank using the Memory Crosshar. Several memory
accesss to dfferent banks are possble cncurrently. A read and
write operation are posshle cncurrently in asingle bank.

The HW/SW and DRL schedulers co-operate and runin parall el
during application runtime exeaution, in order to med system
constraints. Their functiondlity is based on the use of a look-
aheal strategy into the event strean memory. Event Window
(EW) isthe number of eventsthat are observed in advance

At run-time, the HW/SW scheduler assgns events to functional
units and deddes the exeaution ader of the events gored in the
event windov. The DRL multi-context scheduler is used to
minimize recorfiguration overhead. The objedive of the DRL
multi-context scheduler is to dedde: (1) which DRL must be
reconfigured, and (2) which reconfiguration context (task type)
must be loaded in the DRL. This sheduler tries to minimizethis
reconfiguration overhead by overlapping the exeaution o events
with DRL reconfigurations.

4. A SCHEDULER ARCHITECTURE FOR
RECONFIGURABLE PLATFORMS

4.1. Dynamic Scheduler Architecture

In this ®dion, we will explain the internal architedure of the
centralized scheduler (HW/SW and DRL multi-context). This
architedure is $rown in figure 2. The propcsed architedure is
divided in three main parts. (1) The Dynamic Scheduling
Algorithm, (2) The Graph Dependence Check Logic, and (3) The
Event Sream Memory Interface Logic.

This dynamic scheduler architedure can be seen astwo processes
that run concurrently and interad using a shared memory. There

is a producer process (the Graph Dependence Check Logic) and
a mnsumer process (the Dynamic Scheduling Algorithms). Both
proceses produce and consume events, which are stored in the
event strean memory (Event Stream Memory Interface Logic).
The Graph Dependence Check Logic knows the functional unit
adive set (functional wunit state, Taskld, TaskType and
TaskGraph) of al DRL’s and CPU. It aso recaves the interrupts
signalsindicding that a mncrete exeaution hes finished.

In case, a oncrete DRL or CPU has finished the exeaution d a
task, new tasks may beome ready for exeaution if al its
dependences have been completed. This is the main function o
the Graph Dependence Check Logic block. This modue
internally has the required data structures to ched task
dependences. In the next sedion, this modue will be explained
in more detail. If new tasks bemme ready for exeaiution this
modue generates new events, which are inserted in the event
stream memory using Event Sream Memory Interface Logic.

The event stream consists of a sorted list of events. Events are
sorted by the TaskPriority field of the event. This TaskPriority
field is asdgned to eath task at compile time. Severa priority
functions can be used for this objedive (e.g., number of output
edges of the task, critical path analysis, etc.).

The event window block consumes events from the event stream
memory. This will occur a the end d the exeaution d an event,
when a @ncrete functional unit is available to process a new
event. The event with the highest priority within the event strean
will be inserted in the event window. Within the event window,
there ae events being processed and events waiting for
exeadtion. All events waiting for exeaution within the event
window are candidates for exeaution. From all these events, the
dynamic scheduling algorithm must seled a mncrete event for
exeadtion. This sledion pocess changes depending on the
scheduling agorithm, which may depend on severa
charaderistics of the events (e.g., priority, task type, etc.).

The Dynamic Scheduling Algorithm block implements the
dynamic runtime HW/SW and DRL multi-context scheduling
agorithms. It asdgns events to functional units (DRL’s or CPU)
and spedfies the exeaution ader of events present in the event
window. In order to implement this functionality it knows the
current functiona units active sets. The scheduling policy
depends on the event window size (i.e. number of events which
are inpu to the dynamic scheduling algorithm). In sedion 5
several dynamic scheduling algorithms are explained.

Interrupts

v

Insert

| Graphs Dependence
Check Logic Event(s) In

Event Stream
Memory
Interface Logic

Event Window

Active Set(s) Information

Event(s) Out
—— |
DRL,
*

DRL, Dynamic Scheduling
Active Set|[| Algorithm
Event Bus
CPU el
Active Set

Context Bus

f

System Bus

Figure 2. Dynamic Scheduler Architecture

Interrupts

SET Matrix EST Matrix

SCBCR
sCh (.5 @)

W
SuCHCE)

SUCC List(s)

SETws TESTws

T[]

Active set(s) | _
Inforfation

B

Event Insert

Figure 3. Graph Dependence Check L ogic

4.2. Graph Dependence Check Logic

As previoudly introduced, the main goal of this block is to
generate new events, which are inserted in the event stream.
These new events are generated at the end o the exeaution d a
task. The achitecture of thisblock is shown in figure 3.

In this architedure, there ae three main comporents. (1) the
Successors List (SUCC lists), (2) the SET Matrix, and (3) the
TEST Matrix. These three @mponrents must be replicaed for
ead task graph. The successors list maintains for ead task alist
of dl its siccesor tasks with their associated information
(TaskType and TaskPriority). The SET matrix stores, for eat
task, which ores of its predecesor tasks have finished its
exeadution. Findly, the TEST matrix stores for ead task which
tasks must be previoudy exeauted. This matrix shoud be
initiali zed before the gplicaion keginsits exeaution.

This architedure suppats svera tasks finishing at the same
time. Thus, a seledor block deddes which finished adive set is
procesxd first. The finished task (FT;) identifier is used asinpu
to the successors list block. These successor tasks are the output
of this block, and they are processed sequentialy. The foll owing
processis repeded for ead successor task (sl :

= The successor task id. is used to addressthe SET matrix in
order to know the predecesor tasks that have been exeauted.

= The real data from the SET matrix is used to updie the
completed dependences of the task, performing a bit-wise OR
function with the deaoded finished task identifier.

= Thisupdated information o task’s completed dependencesis
compared with the value read from the TEST matrix. In addition,
the SET matrix is updated.

= Findly, if the values read from both matrices are equa, a
new event is generated and the insert signa is aserted,
indicaing that the event must be inserted in the event stream.

5. SCHEDULING ALGORITHMS

5.1. Single In-Order Dynamic Scheduling

The first dynamic scheduling algorithms (HW/SW and DRL
multi -context scheduling) were presented in [11].

In this approach, asingle event is being exeauted ona functional
unit (DRL or CPU) at the same time. In addition, it is in-order
because the scheduling agorithm processes events following the
order in which they are cnsumed from the event stream.

Hardwar e/Softwar e Scheduling

This agorithm follows a First-In-First-Out policy for the
scheduling of the events within the event window.

A seoond objedive of the HW/SW scheduler is to manage the

functional units adive sets (i.e., functiona unit state, Taskid,
TaskType and TaskGraph). It is important to explain the states
required to processan event (seefigure 4).

In the figure 4.a., the HW/SW scheduler assgns one event to be
procesed in a DRL that is in the idle state. Depending on the
adive reconfiguration contexts, a DRL reconfiguration may be
initiated. In addition, it is always mandatory to change the adive
Taskld (task switch state). Finaly, it is posdble that a DRL
finishes reconfiguration and task switch, but the event cannat be
exeauted because the previous events in the event window have
not finished. In this case, the DRL entersinto the wait state.
Figure 4.b., has a similar functiondlity for the CPU. The major
changes are related with the HW/SW communication. In order to
minimize @mmunicaions overheals, it is posdble to start the
CPU communicaion process while an event is being exeauted in
the DRL array. Asin the cae of DRL, the CPU has await state.

DRL Multi-Context Scheduling

However, in order to minimize reconfiguration overheals to the
HW/SW scheduler, it is posshle to use areconfiguration pre-
fetching scheme, which overlaps the reconfiguration o a DRL
with the event exeaution in another DRL. From the
reconfiguration contexts that are loaded in the DRL array, and
the task types which are required within the event window, the
DRL multi-context scheduler deddes: (1) which reconfiguration
context must be loaded, and (2) in which DRL it will be loaded.
This agorithm is exeauted at the end o the exeaution o a
concrete event. At that time, a new event starts its exeaution and
a new event enters in the event window. This insertion probably
means that a new reconfiguration context will be required.

The basis of the proposed DRL multi-context scheduling
agorithm is to oltain an array that represents the required
reconfiguration contexts within the event window. This array is
obtained from the aurrent state of the DRL’s and from the event
window. Afterwards, the dgorithm obtains from this array the
number of DRL contexts that are not required within the event
window. If there is not any DRL available for reconfiguration,
the dgorithm seleds (to reconfigure) the DRL that has an adive
reconfiguration context that will be required latest (remember
that events are procesed using a FIFO padlicy). Note that thisis
not a typicd LRU replacanent pdlicy. Finaly, the first
reconfiguration context foundin the event window, which is not
loaded within the DRL array will be loaded.

5.2. Single Out-of-Order Dynamic Scheduling

As in the previous algorithm, a single event is exeaited on a
functional unit a the same time. The main dfference of this
agorithm with the previous one is that events are exeauted out-
of-order. That is, events may be exeauted in a different order
from the one in which they enter in the event window.

Har dwar e/Softwar e Scheduling
The key point of this approac is the seledion (within the event

\ / e

b) (
Figure 4. Smgle Event Execution: DRL and CPU states.

window) of the next event to be exeauted. In the previous case,
the dgorithm follows a First-In-First-Out palicy. However, the
previous approach hastwo main drawbads:

= |t may occur that the next event to be scheduled canna be
exealted because it has nat finished the DRL reconfiguration
and/or task switch. In this case, no wseful computation is caried
out in any functional unit.

= |t may aso ocaur that the DRL array suffers an excessve
number of reconfigurations, which indeed means that it spends
more time reconfiguring than performing useful computations.
This d$ngle out-of-order scheduling algorithm tries to overcome
these limitations. This is achieved changing the seledion criteria
of the next event to be exeauted. In this new approad, the next
event seleaed for exeaution will be such that:

(1) There is an adive reconfiguration context within the DRL
array ready for the exeaution o an event.

(2) From al the events within the event window that med the
previous condtion, seled the event with the highest priority.
This sledion criteria has as main goal to process conseautively
(in the same DRL) events which require the same reconfiguration
context. Thus, reconfiguration overhead can be reduced.

In this approad, the used finite state machines for the functional
units (fig. 4) and the DRL multi-context scheduler algorithm are
the same & the ones described in the previous sedion.

5.3. Concurrent Dynamic Scheduling

Our target architedure is a multi-processor architedure (fig. 1).
Exeauting a single event at the same time prevents the
architeaure of achieving high throughpu or utili zation. This new
approach schedules a new event while multiple events can be
exeauting concurrently.

Har dwar e/Softwar e Scheduling

In this approadh, it is important to nde that the severa states
required to processan event have changed. This functionality can
be observed in figure 5. The mgjor difference between figures 4
and 5is that the wait state has disappeaed. Having a functional
unit in the wait state limits the ancurrent exeaution cgpability.
This algorithm is exeauted at the end o the exeaution d an event
or when a DRL finishes its recmnfiguration gocess In this
approad, the next event seleded for exeaution will be such that:
(1) There is an adive reconfiguration context within the DRL
array ready for the exeaution o an event.

(2) From dl the events within the event window that mee the
previous condtion, seled the event with the highest priority.

DRL Multi-Context Scheduling

This algorithm is exeauted at the end d the eeaution d a
concrete event, if anew event canna be scheduled for exeaution
by the HW/SW scheduler.

At that time, a new event will enter in the event window, and
probably, a new rewnfiguration context will be required. This
neeaded reconfiguration context will be loaded in the DRL which

./ \../ \
S e

(a) b) (
Figure 5. Concurrent Event Execution: DRL and CPU states.

is in the idle state. It is important to nae that no replacement
pdlicy is needed in this new approach, becaise whenever the
DRL multi-context scheduler is exeauted always there will be a
DRL avail able for reconfiguration.

The dgorithm also seleds a reconfiguration context to be loaded.
The reconfiguration context (which is not currently loaded in the
DRL array) asociated to the highest priority event foundin the
event window will be seleded to be loaded.

5.4. Dynamic Scheduling with Replication

Due to the previous DRL multi-context scheduler pdlicy, all
events being exeauted use a different reconfiguration context.
Thus, in the DRL array there ae not two DRL’s, which have
loaded the same reconfiguration context.

It is posdble to find an applicaion in which multiple tasks
requiring the same reconfiguration context could be exeauted
concurrently. In ou approach, this stuation is sown when
multiple events, which require the same reconfiguration context,
are foundin the event window.

Exeauting this stuation using the mncurrent dynamic scheduling
agorithm has a main drawbadk: al events requiring the same
reconfiguration context will be proceseed sequentialy in the
same DRL, while other DRL’s may be in theidle state.

It is posdble to improve the performance of the previous
scheduling algorithm by having the same recnfiguration context
loaded in several DRL’s. This is the objedive of the concurrent
dynamic scheduling algorithm with replication.

In this new approach, the HW/SW scheduler has the same
functionality as the one presented in the previous sibsedion. The
DRL multi-context scheduler has been modified (in the seledion
of the next reconfiguration context to be loaded) to alow the
same recnfiguration context to be loaded in several DRL’s.

6. EXPERIMENTSAND RESULTS

We have implemented the four explained dynamic run-time
scheduling algorithmsin our HW/SW codesign framework [11].
Our HW/SW co-simulation tool accepts task graphs generated by
TGFF [6]. In these eperiments, we used the HW/SW
partitioning algorithms proposed in [12]. In order to test the
presented scheduling agorithms, we have performed a large
number of experiments (more than 3000simulations).

Important parameters to study and its effed on the scheduling
agorithms are: the number of DRL’S, its reconfiguration time
(and itsrelation to the tasks average exeaution time), the size of
the event window (EW) and the used priority function.

With the ideato cover a wide range of applicaions, we have
generated syntheticdly task graphs using TGFF. We have
generated four different test-benches. Each ore of these test-
benches has threetask graphs, and ead task graph hesin average
25 tasks. The number of task types (in eat ore of the test-
benches) is5, 10, 15 and 2Q respedively.

The number of DRL’s used in the experimentsis 2, 4 and 8 The
reconfiguration time of the DRL’s is a value, which isrelative to
the tasks average exeaution time. Thus, the used recmnfiguration
times are 4x, 2x, 1x, ¥ and ¥ the tasks average exeaution
timein a DRL. The event window size is ancther parameter we
have tested. It has been tested for sizes between 1 and 16
Finaly, we have used two functions to asdgn the TaskPriority
field of the events. These two functions are: (1) criticd path
analysis (cp), and (2) number of output edges (oe) of the task.

6.1. Obtained Results

Samples of the obtained results are shown in figure 6. The
pictures dow performance when the event windon (EW)
increases. The EW size has been found to be one of the key
parameters of the dynamic scheduling algorithms. A trade-off
must be performed when seleding the EW size Scheduling
algorithms need big EW sizes to perform a better scheduling. As
events are inserted in order in the event stream but no in the EW,
smaller EW sizes all ow to maintain more sorted the event stream.
We caana compare our techniques to any other approad, since
previous approaches to HW/SW scheduling for DRL-based
architedures and DRL multi-context scheduling are based on
static scheduling techniques.

Figures 6.a. shows the exeaution time when two DRL’ s with a 4x
reconfiguration time ae used. It is possbleto observe the results
obtained when using both single exeaution schedulers (vl and v2
respedively) and the concurrent exeaution scheduler (v3) without
replicaion. Moreover, the results of using bath priority functions
are shown. From figure 6.a., it may be mncluded that when few
DRL’swith slow reconfiguration time (4x) are used, then:

(1) There is a grea impad of the priority function in all
schedulers. The number of output edges (oe) priority function
obtains better results than using a aitica path analysis function.
(2) The out-of-order and concurrent dynamic schedulers require
eventswindows of large sizein order to improve performance.
However, the benefits of the out-of order scheduler compared to
the in-order scheduler may be reduced when: (1) the number of
DRL increases, or (2) DRL’s with afast reconfiguration time ae
used. These both condtions mean a perfed overlapping of
exeadution and reconfiguration when using the in-order scheduler.
The results for the mncurrent dynamic scheduler are presented in

7. CONCLUSIONS

Dynamic run-time scheduling for SoC platforms has become an
important field of reseach. However, no previous work has been
caried ou in dynamic DRL multi-context scheduling and
dynamic HW/SW scheduling for DRL-based architedures. We
have aldressed this open problem and we have presented: (1) a
dynamic scheduler hardware achitedure, and (2) four dynamic
scheduling algorithms for DRL multi-context platforms. These
agorithms cover a wide range of designs. Out-of-order dynamic
scheduling can be gplied to low-power designs (idle and wait
states can represent low-power states). Concurrent dynamic
scheduling shoud be gplied to designs where both pover and
performance ae aiticd. Finally, concurrent dynamic scheduling
with replication can be used in high-performance designs.

An exhaustive study of these scheduling algorithms has been
performed, and the dfed of the dgorithms parameters has been
studied. Results demonstrate the benefits of our approach.

REFERENCES

[1] http://www.chameleonsystems.com/

[2] F. Baarin, et al., “Scheduling for Embedded Real-Time Systems”,
IEEE Design and Test, Jan-March, 1998

[3] L. Benini, A. Bodiolo, G. De Michdi, “A Survey of Design

Techniques for System-Level Dynamic Power Management”. |IEEE

Transadionson VLS| Systems. Vol. 8. Isaue 3. June 200Q

K. Chatta, R. Vemuri, “Hardware-Software Codesign for

Dynamicdly Reconfigurable Architectures’. Proc. of FPL’99.

R. P. Dick, N. K. Jha, “CORDS: Hardware-Software Co-Synthesis

of Reconfigurable Real-Time Distributed Embedded Systems’.

Proc. of ICCAD’98.

R. P. Dick, D.L. Rhodes, W. Wolf, “TGFF: Task Graphs For Fre€',

in Proc. Int. Workshop Hardware/Software Codesign, Mar. 1998

(4
(5]

(6]

Execution Time (ms)

. . . [71 S. Hauck, “Configuration Prefetch for Single Context
flgurfe 6.h. we can ohserve'the re_ﬁults'obta ned when using four Reconfigurable Coproceswors’, ACM Int. Symp. on FPGA, 1998
DRL'’s. Results for reconfiguration times 4x, lx and v, are [8] B. Jeong et al., “Hardware-Software Cosynthesis for Run-Time
presented and compared to an al HW solution, where no Incrementally Reconfigurable FPGAS’. Proc. ASRDAC' 2000
reconfiguration overheads exits (i.e. lower bound. The optimal [9] A. Kalavade et al., " Software Environment for a Multiprocessor
EW size dso depends on the DRL remnfiguration time. When DSP'. Proc. of Design Automation Conference (DAC), 1999
using DRL’s with slow reconfigurationtime, bigger EW sizes are [10] R. Meaestre et al, “Kerne Scheduling in Reconfigurable
required. However, if DRL’s with fast reconfiguration times are Computing”, Proc. of DATE'99. _ _
used, the EW size may be reduced. [11 J._ Noguera, R. M. Badia, _RunTlme I—_lW/S\N Codeggn for
Finally, figure 6.c. compares the @ncurrent dynamic scheduling Discrete Event Systems using Dynamicaly Reconfigurable
. . . . L Architectures’, Proc. of 1SSS200Q
(v3) gnd _the dynamic scheduling algorithm with r(_epllcatlon'(v4). [12] J. Noguera, R. M. Badia, “A HW/SW Partitioning Algorithm for
In this picture, the results correspondto an architedure with 8 Dynamically Reconfigurable Architectures’, Proc. of DATE 2001
DRL’s with dfferent reconfiguration times (4x and %a). The [13] K. Purna, D. Bhatia, " Temporal Partitioning and Scheduling Data
replicdion strategy obtains better results if DRL’'s with fast Flow Graphs for Re-configurable Computers', IEEE Trans. on
reconfiguration time ae used. In case that DRL’s with slow Computers, vol. 48, No. 6. June 1999
reconfiguration time ae used, the scheduler with replicaion [14] C. Wong et al, “Task Concurrency Management Methodology to
obtains worst results than the concurrent scheduler. Schedule the MPEG4 IM1 Player on a Highly Parallel Processor
Platform”. Proc. CODES 01
Dynamic Scheduling Performance Evaluation Dynamic Scheduling Performance Evaluation Dynamic Scheduling Performance Evaluation
” KN

TN xo\

Ea \\ %3"” . X

MIEAN

e 5Eve:|W|:|duwe(EV¢;JS|zj: romowomw rroe s SEven71\Mr:]cmwg(swl)usz;1 7w e e SEve:\lWl:dowg(EV\:;]Slzlel rorEw

—8—vlioe ——v2oe —8—\30e -® vicp -4-V2cp - @ V3cp

[—=—vecprax —— vaoprix —e—vacpriux - -

lower_bound -4~ V3 oe 1/4x —A—v4 oe 1/4x - ®- V3 oe 4x —E—v4_oe dx

@ (b)

©

Figure 6. Obtained Results.

	Main Page
	CODES'02
	Front Matter
	Table of Contents
	Author Index

