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Abstract—In this paper, we present the design and implemen-

tation of a systolic RSA cryptosystem based on a modified Mont-

gomery’s algorithm and the Chinese Remainder Theorem (CRT)

technique. The CRT technique improves the throughput rate up

to 4 times in the best case. The processing unit of the systolic

array has 100% utilization because of the proposedblock inter-

leaving technique for multiplication and square operations in the

modular exponentiation algorithm. For 512-bit inputs, the num-

ber of clock cycles needed for a modular exponentiation is about

0.13M to 0.24M. The critical path delay is 6.13ns using a 0.6µm

CMOS technology. With a 150 MHz clock, we can achieve an

encryption/decryption rate of about 328 to 578 Kb/s.

I. I NTRODUCTION

The electronic communication technology has advanced in
a very fast pace during the past few decades, creating new ap-
plications and opportunities along the way. Today we can send
a multimedia message to or receive one from virtually anyone
around the world in seconds through the internet. To protect
the transmitted data from eavesdropping by someone else other
than the desired receiver, we need to disguise the message be-
fore sending it into the insecure communication channel. This
is achieved by a cryptosystem. In 1978, Rivest, Shamir, and
Adleman invented a method to implement the public-key cryp-
tosystem, which is known as the RSA cryptosystem [1]. It
provides high security and is easy to implement, so it quickly
became the most widely used public-key cryptosystem. How-
ever, developing an inexpensive hardware device for real-time
RSA encryption and decryption is still a challenge. Finding
an efficient hardware implementation for RSA is one of the
important tasks remain to be done.

In the RSA cryptosystem, both encryption and decryption
are modular exponentiation, which can be done by a sequence
of modular multiplications. Many modular multipliers have
been proposed in the past [2–4]. One of the most important al-
gorithms was proposed by Montgomery [5]. Montgomery’s al-
gorithm needsn iterations in each modular multiplication and
two additions per iteration, wheren is the word length. Cel-
lular arrays based on Montgomery’s algorithm can be found

in [6–8]. In this algorithm, odd modulus is assumed. It calcu-
lates the modular multiplication without performing division.
Some improved algorithms were later proposed, either by re-
ducing the number of iterations or by removing the final mod-
ular reduction step. A modified Montgomery’s algorithm was
reported in [9], where the multiplication and modular reduc-
tion steps in Montgomery’s algorithm are separated such that
only one addition is required in each iteration. However, the
number of iterations in the modified algorithm is two times
that of Montgomery’s, hence the overall computation time is
not reduced. In [10,11], the algorithm was further modified to
reduce the number of iterations, doubling the speed of mod-
ular multiplication. Another way to reduce the computation
time is to use the Chinese Remainder Theorem (CRT) tech-
nique, since CRT is known to reduce the RSA computation by
a divide-and-conquer method.

In this paper, we present the design and implementation
of a systolic RSA cryptosystem based on a modified Mont-
gomery’s algorithm and the CRT technique. The systolic ar-
ray has a 100% utilization ratio because of a novel interleav-
ing approach. The throughput of the proposed design is much
higher than previous ones. For 512-bit inputs, e.g., the number
of clock cycles needed for a modular exponentiation is about
0.13M to 0.24M. The layout and post-layout simulation of the
512-bit RSA chip has been finished, and the critical path delay
is 6.13ns using a 0.6µm CMOS technology. Under a 150MHz
clock, the decryption rate is about 328 to 578 Kb/s.

II. M ODULAR EXPONENTIATION ALGORITHM

To encrypt a message using the encryption key (E;N), we
first partition the message into a sequence of blocks and con-
sider each blockM as an integer between 0 andN�1. Then,
we encrypt the message by raisingM to theEth power mod-
ulo N, i.e., C = ME modN. Similarly, to decrypt the ci-
phertextC using the decryption key (D;N), we raiseC to the
power ofD moduloN, i.e., M = CD modN. Clearly, modu-
lar exponentiation is the main operation of the RSA algorithm.
For modular exponentiation, a sequence of modular multipli-
cations can be performed instead. If we transform the expo-



nentE into its binary representation(ek�1ek�2 � � �e1e0)2, then
ME = M2k�1ek�1+���+22e2+2e1+e0 = M2k�1ek�1 � � �M22e2 � M2e1 �

Me0. Clearly, this can be done by a sequence of squaring and
multiplication operations, by scanning the bits ofE either from
high-order to low-order bits or in the opposite direction. These
two methods are known as theH-AlgorithmandL-Algorithm,
respectively. Both of them requiren iterations for ann-bit ex-
ponent. Each iteration contains two modular multiplications.

A. Modular Multiplication

Our approach is based on the foundation established in [9–
11]. SupposeN = (nn�1; : : : ;n1;n0) is an n-bit odd integer.
Let A andB be two othern-bit integers, where 0� A;B < N.
We extendA andB to (n+1) bits by appending a leading zero
to the MSB, so 0< A;B;< 2n+1. Let X = A�B, whereX =

(x2n+1; : : : ;x1;x0) is a(2n+2)-bit integer. We can represent it
asX = ∑2n+1

i=0 xi2i = 2n+2XM +XL, whereXM = ∑n�1
i=0 xi+n+22i

andXL = ∑n+1
i=0 xi2i . The modular multiplication algorithm is

as follows.

MM(A;B;N)
f

A�B= X = XM �2n+2+XL;
S[0] = 0;
for (i = 0;i < n+2;i ++)f

qi = (Si +xi) (mod 2);
Si+1 = (Si +xi +qiN)=2;g

R= Sn+2+XM;
returnR;

g

The advantage of Procedure MM() is that the partial prod-
ucts are always in the range(0;2n+1), which is the same with
the input range. Hence, the modular reduction is removed.
Based on MM() and the L-algorithm, we obtain the modu-
lar exponentiation algorithm MLA() as shown below. Note
that by lettingR= 2n+2 andC= R2 (mod N), the finial result
Pk+1 will be equal toME (mod N), i.e., we letM0 = M�2n+2

(mod N) andP0 = 2n+2 initially to guarantee that the finial re-
sult isME (mod N).

MLA( M;E;N;C)
f

M0 = MM(C;M;N); //Initialization
P0 = MM(C;1;N);
for(i = 0;i < k; i ++)f

Mi+1 = MM(Mi ;Mi ;N) //Square
if(ei = 1)

Pi+1 = MM(Mi ;Pi ;N); //Multiplication
else

Pi+1 = Pi ;g
Pk+1 = MM(1;Pk;N); //Post-process
returnPk+1;

g

B. RSA Computation Using CRT

The Chinese Remainder Theorem (CRT) can be stated as
follows.

Theorem 1 (Chinese Remainder Theorem)
Let m0;m2; :::;mn�1 be pairwise relatively prime positive in-
tegers and letx0;x1; :::;xn�1 be any integers which satisfy the
linear congruence system in one variable given by

8>>><
>>>:

X � x0 (mod m0)
X � x1 (mod m1)

...
X � xn�1 (mod mn�1)

has a unique solution modulom0 �m1 � � �mn�1.

The RSA decryption and signature operation can be speeded
up by using the CRT, where the factors of the modulusN (i.e.,
P andQ) are assumed to be known. By CRT, the computation
of M =CD (mod N) can be partitioned into two parts:

MP =CP
DP (mod P);

MQ =CQ
DQ (mod Q); (1)

where

CP =C (mod P), DP = D (mod P�1),
CQ =C (mod Q), DQ = D (mod Q�1).

This reduces computation time sinceDP;DQ <D andCP;CQ <

C. In fact, their sizes are about half the original sizes. In the
ideal case, we can have a speedup of about 4 times. Finally,
we computeM by CRT as follows:

M = [MP(Q
�1 (mod P))Q

+MQ(P
�1 (mod Q))P] (mod N): (2)

III. H ARDWARE IMPLEMENTATION

Our design consists of a modular multiplier and some logic
to control the data interleaving and scheduling mechanism. We
follow the standard systolic array design flow [12] to obtain the
systolic RSA cryptosystem according to theMM() andMLA()
algorithms. After that, we add some partitioning circuit for
our systolic RSA architecture to get two individual modular
multipliers which can be used forMP = CDP

P (mod P) and

MQ =C
DQ
Q (mod Q) simultaneously. The details follow.

A. Multiplier

The dependence graph (DG), the hyperplanes, and the
schedule vector [12] of the multiplier are shown in Fig. 1. The
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Fig. 1. The DG and SFG of a 4-bit multiplier.

utilization rate of this multiplier is only 50%. However, this
can be doubled by a novel block interleaving technique [13],
processing two sets of data in the multiplier during each itera-
tion cycle, i.e.,MM(Mi ;Mi ;N) andMM(Mi ;Pi ;N).

B. Modular Reduction Unit

In the modular reduction operation, the valueqi is generated
by XORing the LSB ofSi andxi . We use ann-bit addition and
right shifts to accomplish the modular operation. Fig. 2 shows
the DG, hyperplanes, schedule vector, cell structures, and SFG
of the modular reduction unit [13]. Note that the Z cell is the
combination of X and Y cells, so we need extra control logic
to realize the cell function. This circuit can also be interleaved
by two sets of data in a similar way as the multiplier discussed
above. We combine the systolic array multiplier and modular
reduction unit to form a modular multiplier, which is shown in
Fig. 3(a).
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Fig. 2. The DG and SFG of a 4-bit modular reduction unit.

C. Composite Modular Multiplier

By the CRT technique, we partition the modular multi-
plier into two smaller ones according to the lengths ofP and

Q. Then, we computeMP = CDP
P (mod P) and MQ = C

DQ
Q

(mod Q) using two independent modular multipliers concur-
rently. This apparently reduces the computation time. Note
that the partition is done on-line according to the lengths ofP
andQ, so each cell in the array must be able to read the data
from the primary inputs directly, and be able to propagate the
data to the primary outputs directly to finish the finial step of
the modular multiplication. Therefore, we use some switches,
MUXes, and a control signal to achieve the goals. The multi-
plier is called the composite modular multiplier (CMM), and
is shown in Fig. 3(b).
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Fig. 3. (a) Systolic array modular multiplier. (b) The composite modular
multiplier.

The signalsplit, which is shifted into the register formed by
chaining the D-FFs in all blocks, indicates the partition loca-
tion. The partition circuit is shown in Fig. 4(a). We extend
the prime numberQ to ann-bit integer with leading zeros and
shift it into then-bit shift register QReg initially, wheren is
the length of the modulusN, i.e., n = dlog2Ne. The clock
signalCLK is disabled until the MSB of QReg is high. The
two shift registers, QReg and SplitReg, perform the left-shift
function. Finally, the information in the SplitReg indicates
the partition location. Note that there is only a single bit that
is high in the SplitReg. Thus, we have two smaller modular
multipliers that can operate concurrently to perform the orig-
inal modular multiplication. It reduces the execution time for
the RSA decryption and signature operations. In a typical RSA
cryptosystem, once the keys are generated, they are fixed until
the new keys are generated, i.e.,P andQ are fixed after key
generation. Therefore, the partition ofN into P andQ needs to
be done only once, before the RSA computation starts.
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D. CRT-Based RSA Cryptosystem

We have presented the systolic-array modular multiplier
based on the CRT technique. We can add some control logic to
accomplish the modular exponentiation operation. The circuit
for the entire RSA computation that incorporates the CRT tech-
nique is shown in Fig. 5. The details of the CONREG block is
shown in Fig. 4(b), where the partition scheme is the same as
CMM. The control signals are supposed to come from the host
controller, so they are considered as primary inputs in the core
circuit design. The four inputsin1p, in2p, in1q, andin2q are
used only for initialization and post-process steps. The control
logic is responsible for timing management, data interleaving,
iteration handling, etc.

As depicted in Fig. 6, the time complexity of the CRT-based
RSA computation is highly dependent on the lengths ofP and
Q. The best case occurs whenjPj= jQj= jNj=2. SupposeN is
ann-bit integer, and the lengths ofP andQ arep bits and(n�
p+1) bits, respectively. The numbers of clock cycles required
to finish a modular exponentiation using the original and the
CRT-based approaches are listed, respectively, in Table I.

TABLE I
COMPLEXITY COMPARISON FOR MODULAR EXPONENTIATION.

Original Modular CRT-Based Modular
Exponentiation Exponentiation

Operation ME (mod N) M
EP
P (mod P) M

EQ
Q (mod Q)

Length N: n-bit P: p-bit Q: (n� p+1)-bit
Clock cycles (2n+8)(n+2) (2p+8)(p+2) (2n�2p+10)(n� p+3)
Initial setup Unnecessary n+ p

From the table, ifP andQ have equal length, i.e.,n=2, the
number of clock cycles required will be the smallest. Although
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Fig. 6. Time complexity of the RSA circuit.



this is not likely to occur in practice (sinceP andQ are prime
andP 6= Q), their lengths should be as close as possible to en-
sure security. In the worst case, it is assumed that the maxi-
mum length ofP or Q is 2n=3 (and the minimum isn=3).

The circuit has been implemented with a 0:6µm CMOS
standard-cell library. The post-layout simulation result shows
that the critical path delay is about 6.13 ns, i.e., we expect the
core to operate at a 150MHz clock rate. For a 512-bit RSA
cryptosystem, e.g., the best case needs 0.13M clock cycles,
while the worst case requires 0.24M cycles to finish an RSA
operation. Under a 150MHz clock, the baud rate is 578K in
the best case and 328K in the worst case. Fig. 7 shows the
layout of the 512-bit CRT-based RSA cryptosystem. The core
area is about 7653µm�7486µmwith about 109K gate count.

Fig. 7. Layout of the 512-bit CRT-based RSA cryptosystem.

TABLE II
PERFORMANCE AND AREA COMPARISON.

# of Clk BaudYear Gate
Clk

Tech.
(Hz) Rate

[14] 1994 75K 0.125M 1 25M 100K
[11] 1996 77K 1.05M 0:8 50M 24.3K

0.39M 164k[10] 1998 74K
0.54M

0:6 125M
118k

[13] 1999 77K 0.53M 0:6 250M 241K
0.13M 578kOurs 2000 109K
0.24M

0:6 150M
328K

IV. CONCLUSIONS

In this paper, we have presented a systolic RSA cryptosys-
tem design, based on an improved Montgomery’s modular
multiplication algorithm [13] and the CRT technique. The

design is suitable for decryption and digital signature. The
implementation of a 512-bit RSA cryptosystem with a 0:6µm
CMOS standard-cell library has been done. The comparison
of our implementation with other designs is summarized in Ta-
ble II, which shows clear advantage of our approach in terms
of speed. The number of clock cycles is 0.13M in the best case
(when jPj = jQj = n=2) and 0.24M in the worst case (when
jjPj� jQjj = n=3). Therefore, the throughput of our design is
the highest among all the designs, but with about 50% higher
hardware cost. The circuit is easily extendible for large moduli
due to the systolic-array design.
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