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Abstract
Leveraging distant contextual information and self-similarity of natural images in

deep learning-based models is important for high-quality image completion with large
missing regions. Most of the deep generative adversarial network (GAN)-based image
completion methods attempt this via increasing receptive field size of convolutions and
integrating an attention module. However, existing attention mechanisms treat the soft-
ness of the attention for different types of features with the same scale, which may be
inferior since the same softness of the attention may lead attention made on limited spa-
tial locations in feature space. To address this limitation, we design a new two-stage
image completion model and propose an attention mechanism called Adaptive multi-
Temperature Mask-guided Attention (ATMA). The ATMA performs non-local process-
ing and adaptively adjusts the softness of attention by means of multiple learnable tem-
peratures. The proposed model infers a coarse inpainting result via a gated convolution
neural network in the first stage and refines appearance consistency between generated
regions and known regions via ATMA in the second stage. Experiments demonstrate
superior performance compared to state-of-the-art methods on benchmark datasets in-
cluding CelebA-HQ, Paris StreetView and Places2.

1 Introduction
Image completion targets at filling reasonable contents into missing regions of such that the
completion is visually realistic. Research on image completion has often been motivated by
various applications such as image editing, image restoration and object removal. Since it is
impossible to exactly restore the missing regions, image completion is an ill-posed problem.
To address this problem, early image completion approaches like PatchMatch [3] assume
that a source image contains appropriate information of the missing regions, such as similar
structures or patches, and synthesize the missing regions by searching similar patches within
the image and copy-pasting them into the missing regions. These approaches work well for
synthesizing texture-consistent outputs but fail to generate semantically meaningful contents,
especially when missing regions contain complicated scenes like objects and faces.
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The main challenge of image completion is to synthesize both local textured patterns
and global semantics that are coherent with known regions. To address this challenge, re-
cent studies focus on directly learning to infer semantic contents and meaningful hidden
representations using deep neural networks. These approaches can be categorized into two
classes: one-stage approaches and two-stage approaches. One-stage approaches treat image
inpainting as a conditional generation problem and use only one deep generative network to
synthesize new contents, while two-stage approaches consist of a content inference network
for coarse image completion and a refinement network for generating high-quality results.
In order to draw upon information from a sufficiently broad context in deep learning-based
models, most network architectures have been explored to increase the receptive field size
[13, 21, 23]. However, these networks trade off context size for localization accuracy and
may not be able to include the receptive field with the features of interest.

Inspired by traditional image completion algorithms, where non-local patch matching is
performed to increase the receptive field, recent works attempt to refine the visual appearance
by optimizing similarities between generated patches and the matched patches in known re-
gions. Incorporating patch matching into deep neural networks for image completion has
been considered very recently [14, 22]. To improve non-local processing for better image
completion, these methods employed a patch matching process via replacing the filtering of
matched patches with a convolution network, which was designed as an attention mecha-
nism. However, these methods weight the similarity with a constantly scaled softmax to get
attention score for each pixel, making attention on limited spatial locations in feature space.

To tackle the problem mentioned above, we propose an attention mechanism called
Adaptive Multi-temperature Mask-guided Attention (ATMA), which is integrated into a deep
generative adversarial network (GAN)-based model for image completion. Our model con-
sists of two networks: the first one is a gated convolution based coarse image completion
network and the second one is an ATMA-based appearance refinement network. In addition,
we introduce multiple temperature parameters in ATMA, which can be learned by the model.
With these temperature parameters, our model is able to automatically generate multiple sets
of attention scores via tuning the degree of softness, which eventually enriches the feature
representation. Our main contributions are summarized as follows:

• We introduce multiple self-adaptive temperature parameters to control the scale of the
softness of the attention in image completion, learning different attention scores to
extract the related features from different locations in feature space.

• We develop a novel attention layer, called Adaptive Multi-temperature Mask-guided
Attention (ATMA), with multiple learnable temperatures. It attends on matched fea-
ture patches at multiple distant spatial locations and enables end-to-end trainable non-
local patch matching based on the principle of self-similarity.

• Experimental results on three challenge inpainting datasets including CelebA-HQ,
Paris StreetView and Places2 demonstrate that our proposed model achieves higher-
quality image completion than existing state-of-the-arts.

2 Related work

2.1 Image Completion

Early traditional diffusion-based or patch-based image completion approaches propagate
pixels from known regions into the missing regions by variational algorithms [2] or patch
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matching [3, 5]. Those approaches produce convincing continuations of the background but
cannot fill in missing regions with novel structure and semantics. Recent breakthroughs in
deep learning enabled significant improvements in image completion. Phatak et al. [17] in-
troduced GANs [6] to image completion, where an encoder-decoder network was trained
using reconstruction and adversarial losses for better recovering semantics. Iizuka et al.
[8] introduced global and local discriminators in GAN-based model to improve local tex-
ture and overall image layout. In [27], a variational auto-encoders [10] (VAE)-based model
with two parallel paths was presented for pluralistic image completion. Partial convolution
[12] was proposed to better handle irregular holes, where the convolution was masked and
re-normalized to utilize valid pixels only.

Our work is more closely related to two-stage approaches which first infer a coarse im-
age and afterwards fill in visually realistic appearance in a second stage. Yang et al. [20]
presented a high resolution image completion approach using multi-scale neural patch syn-
thesis in the second stage. Nazeri et al. [16] proposed a two-stage model EdgeConnet first
predicting salient edges and then generating completion result guided by edges. Zeng et al.
[25] proposed to do coarse image completion using a U-Net based deep generative model in
the first stage and compose novel high-quality outputs by copying high-frequency missing
information from different training exemplars in the second stage. Yu et al. [23] proposed
a generative image completion network with contextual attention, where a GAN was first
used for coarse image completion and a contextual attention module is then integrated into
a refinement network for borrowing features from background in the second stage. Zheng et
al. [28] proposed a transformer-based image completion network to fill reasonable content
into the missing regions in a first phase and designed an attention-aware layer in a second
phase to better exploit long-range context relations.

2.2 Attention Learning
Attention learning has benefited from recent advances in deep learning. Many studies on
deep learning-based image generation have demonstrated that learning attention enables the
generation of more realistic compared to classic GANs. For example, Zhang et al. [26] pro-
posed self-attention GANs to consider non-local relationships in the feature space using a
self-attention mechanism, which produces globally realistic images. Attention learning has
also been explored in GAN-based image completion approaches, where an attention layer
is integrated into an encoder-decoder network to capture distant contextual information and
generate more visually realistic outputs. Yu et al. [22] proposed a contextual attention to
explicitly attend on related features at distant spatial locations. Xie et al. [19] presented a
learnable bidirectional attention map module for image completion. Zheng et al. introduced
an attention-aware layer to better exploit distantly related features in [28]. Our proposed
attention mechanism is inspired by self-attention mechanisms in [22] and [18], but we in-
troduce multiple self-adaptive temperatures to control the softness of the attention, learning
different attention scores for different locations in feature space.

3 Approach
Given a masked image Iin, which is a degraded version of the target image Igt , image com-
pletion aims to estimate a map F : Iin→ Igt from the masked image Iin to the target image
Igt . We design a two-stage framework for image completion. Specifically, we modify the
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Figure 1: An overview of our two-stage image completion framework

image completion architecture in [23] by using the proposed ATMA and WGAN-based ad-
versarial losses in the second stage. An overview of our framework is shown in Figure 1.
The framework consists of a coarse network and a refinement network. In the first stage, an
encoder-decoder network with gated convolution at both ends and dilated gated convolution
in the middle is designed to generate a rough estimation of missing regions. The inputs of
the network is a masked image and a binary mask indicating the hole regions, and the output
Ic is an intermediate image. Ic is then used as the input of the refinement network. Since the
intermediate inpainting result is semantically plausible and coherent with known regions, it
allows the encoder of the refinement network to learn better feature representation for better
appearance consistency. The refinement network is an encoder-decoder network with two
encoders, where the first encoder tries to do non-local feature matching with gated convo-
lution layers and a ATMA layer, and the second one tends to aggregate local information
using gated and dilated gated convolution layers. Later, the features extracted from the two
encoders are concatenated and fed into a single decoder to generate the final output. We
present the architecture details of our model in supplementary material.

3.1 Revisiting Gated Convolution
Gated convolution [23] performs dynamic element-level feature selection in each channel
and each spatial location. It consists of two transformations with convolutions or sets of con-
volutions, and aims to transform an input data X ∈ RH×W×C into an output O ∈ RH ′×W ′×C′ .
The two transformations are Fc : X→ V and Fd : X→G, where V,G ∈ RH ′×W ′×C′ are the
output of transformation Fc and Fd , respectively. The output O ∈ RH ′×W ′×C′ of a gated
convolution is given by

O = σ(Fd(X))�φ(Fc(X)), (1)

where σ is sigmoid function, and � denotes element-wise product. φ can be any activation
function, e.g. ReLU and LeakyReLU. Gated convolution performs dynamic feature selection
between the mask regions and existing regions by applying a soft mask to the feature map.
It gradually fills in missing features and generates high-quality outputs.

3.2 Adaptive Multi-Temperature Mask-Guided Attention
The proposed Adaptive Multi-Temperature Mask-Guided Attention (ATMA) module is il-
lustrated in Figure 2. It aims to transform an input feature maps Fin ∈ RH×W×C to a refined
feature maps Fout ∈ RH×W×C. The module first performs two blocks: similarity compari-
son and embedding network, in parallel, and then their outputs are fed into the Temperature
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Figure 2: Illustration of the Adaptive Multi-Temperature Mask-Guided Attention Module

Control Module (TCM). The similarity comparison block aims to match patches in gener-
ated regions to patches in known regions using masked cosine similarity sm ∈RH×W×C. The
embedding network block is performed to learn K temperature parameters t = [t1, t2, · · · , tK ].
The TCM is then used to generate an attention refined feature maps Fout via attending on
the extracted feature cube h with attention scores sm, which are controlled by the learned K
temperatures.

Masked Cosine Similarity Let us consider a problem of matching a query pixel p in
generated regions to pixels in known regions. We first use 1× 1 convolution to convert the
input feature cube Fin with dimension of H×W ×C into embedded feature cube Femb with
dimension of H×W ×C/K. Then, we extract patches (s× s) from Femb and reshape them
to h ∈ RN×s×s×C/K , where N is the number of extracted patches. Next, we extract patches
centered on pixel p from Femb and build a feature cube fp

e with size of s× s×C/K. After
that, we calculate cosine similarity between pixel p and all extracted patches h. Specifically,
the cosine similarity between feature representation of pixel p and the n-th feature cube hn

is given as

sp,n =
fp
e ·hn∥∥fp

e
∥∥‖hn‖

. (2)

In parallel, we convert the input mask matrix 1−M into a vector m ∈ RN×1 with values
0 for missing regions and 1 for elsewhere. After that, the similarity is recalculated based on
the mask vector, that is

sp
m = (sp +λ )�m−λ , (3)

where sp
m ∈ RN×1 denotes the masked cosine similarity of query pixel p and λ (λ ≥ 1) is a

hyper-parameter. The masked cosine similarity tends to reduce the similarity score sp,n to
−λ when n-th feature cube hn is extracted from missing regions.

Embedding Network Similar to the term temperature in softmax function, we use
temperature to change the weight distribution. For our ATMA module, a higher temperature
indicates that the module is more confident to use the most similar neural patch, and may
produce repetitive patches. A lower temperature makes the module utilize a greater num-
ber of neural patches for patch generation. We design an embedding network Fe to learn
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temperatures and adaptively adjusting the softness of the weight distribution. As shown in
Figure 1, the network first uses convolutions for feature embedding. Then, global average
pooling (GAP) and global max pooling (GMP) are used to aggregate global spatial informa-
tion. After that, the outputs of GAP and GMP are concatenated and transformed by a linear
layer and LeakyReLU, generating the final K temperatures, that is t = Fe(Fin).

Temperature Control Module For each temperature tk, we convert sm into a weight
matrix wtk ∈ RH×W×N using channel-wise softmax with temperature parameter tk. Each
element in wtk is given by

wp,n
tk =

exp(tksp,n
m )

∑
n

exp(tksp,n
m )

, (4)

with ∑
N
n=1 wp,n

tk = 1. The refined feature map Ftk can then be calculated by doing transposed
convolution with the weight matrix wtk and kernels h. Finally, all K refined feature maps are
concatenated to get the final attention refined feature cube as Fout = concat([Ft1 ,Ft2 , · · · ,FtK ]).

3.3 Loss Functions

We train our model with a weighted sum of per-pixel reconstruction losses and WGAN
adversarial losses, where the per-pixel reconstruction losses regress the missing regions to
the ground truth and WGAN adversarial losses learn to match potentially real images and
generate visually realistic outputs.

Pixel Reconstruction Losses Given input image with hole Iin, binary mask M, the in-
termediate output Ic of the coarse network Fg and the final output Iout of the refinement net-
work Fr. We define our per-pixel reconstruction losses as Lc =

∥∥M� (Fg(Iin,M)− Igt)
∥∥

1
and Lr =

∥∥M� (Fr(Fg(Iin,M),M)− Igt)
∥∥

1, where Lc and Lr denote the l1 losses on the
intermediate network output Ic and the final network output Iout . The mask M makes the
losses to be computed only on the missing regions.

WGAN Adversarial Objective Adversarial loss [6] has been widely used in image
generation to improve the visual fidelity of generated outputs. Our adversarial loss is based
on Wasserstein Generative Adversarial Network (WGAN-GP) [1, 7], which has better train-
ing stability than GAN and works well for image generation tasks. To further enhance
the global and local consistency of the generated outputs, we design two discriminators for
global and local perception similar to [22]. Our adversarial objective is formulated as

Ladv = min
G

max
D

EIgt∼pdata(Igt ) [D(Igt)]−EIout∼pdata(Iout ) [D(Iout)]

+β EÎ∼pdata(Î)
[
(
∥∥∇ÎD(Î)

∥∥
2−1)2] , (5)

where D denotes the global and local discriminators, and G = Fr(Fg(·)) denotes the image
completion model. Î is randomly sampled from Igt and Iout with Î = Iout +α(Igt − Iout),
where α ∼U(0,1) is a random value. We set β = 10 in our experiments.

Model objective The objective function of our model is defined as L= λcLc +λrLr +
λadvLadv, where λc, λr and λadv are scales. We set λc = 1.2, λr = 1 and λadv = 0.001 in
our implementations. Similar to the model in [23], our model can also be used for free-form
with different inputs and loss functions. For image inpainting of irregular holes at arbitrary
locations, we use Lc =

∥∥Fg(Iin,M)− Igt
∥∥

1 in our loss functions.
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4 Experiments
We evaluate the proposed framework on three datasets including CelebA-HQ [11], Paris
StreetView [4] and Places2 [29]. This section conducts three experiments to analyze the
inpainting performance of our approach. First, we study the effect of a different number of
learnable temperature parameters on inpainting outputs. Later, we compare our model with a
baseline model. After that, we compare our approach with previous state-of-the-art methods:
i.e., PatchMatch [3], DeepFillv1 [22], ParConv [12], PENNET [24], MEDFE [15] and Deep-
Fillv2 [23]. All the masks and images for training and testing are with the size of 256×256.
For a fair evaluation on model generalization abilities, we conduct experiments on filling
center holes and irregular holes on the input images. The center hole is a fixed center mask
with the size of 128× 128. We generate irregular masks using the method in [23]. We use
Content-Aware Fill function from Photoshop for producing results of PatchMatch, and use
the provided models to generate results of DeepFillv1, PENNET, MEDFE and DeepFillv2.
We train ParConv on the same training set and report its results on the same validation set.

The proposed model is implemented using PyTorch v1.8. We train our model on a single
NVIDIA Geforce RTX 3090 GPU (24GB) with a batch size of 16, and use the Adam [9] with
β1 = 0.5 and β2 = 0.9 for optimization. The learning rate is 0.0001. The hyperparameter λ

is 2. The training process is terminated when the validation loss converges. It takes around 5
days for training the CelebA-HQ model, 3 days for training the Paris StreetView model and
5 days for training the Places2 model.

4.1 Ablation study
Single-temperature vs Multi-temperature Figure 3 shows the inpainting results of the
proposed model with different numbers of learnable temperature parameters, which are K =
1, K = 2 and K = 4. Compared to the results of the model with 1 temperature, the model
with 2 temperatures provides outputs with fewer artifacts. In addition, the model with 4
temperatures generates more blurring results than the models with K = 1 and K = 2. This can
be explained that we consider the trade-off between similarity comparison and information
loss in our attention module. Similarity comparison in high dimension is inevitably affected
by the curse of dimensionality. Our attention module uses a 1× 1 convolution to reduce
channel dimension to 1/K times. This can alleviate the dimensional problem in similarity
comparison, but will cause information loss. The larger amount of temperatures, the fewer
output channels, and the more information loss, which eventually causes the degeneration of
the inpainting results. In addition, the channel dimension reduction can significantly reduce
memory and computation cost in experiments.

K=2 K=4Input K=1 K=2 K=4Input K=1

Figure 3: Image completion using different numbers of learnable temperatures. The outputs
of the model with 1 temperature are sharper than the models with 2 and 4 temperatures, but
are not well coherent. The outputs of the model with 4 temperatures are smoother than the
models with 1 and 2 temperatures but details are still blurry (e.g., eyes).
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4.2 Comparison to baseline model

To investigate the effectiveness of the proposed ATMA, we compare our model with a base-
line model. The baseline model is a modified version of our model, where the ATMA module
is replaced by the contextual attention module proposed in [22]. The comparison results are
shown in Figure 4. We observe that the generated outputs of the proposed model are more
natural than those of the baseline model. This can be explained that ATMA attention using
multiple temperatures can control the softness of the attention and effectively capture long-
range context information, which helps to produce high-quality image completion results.

Ground Truth Ours (K=2) Ours (K=2)Baseline BaselineInput InputGround Truth

Figure 4: Visual comparison between our model and the baseline model on CelebA-HQ.

4.3 Comparison to existing work

Qualitative Comparison Figure 5 and Figure 6 shows the comparison results of central
hole completion on CelebA-HQ and Paris StreetView, respectively. We observe that Patch-
Match without learning from training images fails to recover complex structures and tex-
tures, and all deep learning-based models can generate plausible content. DeepFillv1 with
vanilla convolution generates obvious visual artifacts. ParConv without GAN adversarial
loss can effectively generate plausible semantics and structures but many areas (e.g., eyes and
mouths) are still blurry, which leads to the details in the generated regions are not as delicate
as the background. PENNET produces obvious edge responses surrounding holes. MEDFE
can generate more natural results, but it still generates outputs with visible color and structure
inconsistency. DeepFillv2 with gated convolution and contextual attention produces better
results but still exhibits observable unpleasant boundaries and artifacts. Our model with
ATMA produces more visually pleasant results with fine details, since the proposed ATMA
attention with multiple learnable temperatures allows the model to autonomously regulate

PatchMatch ParConv OursGround Truth Input DeepFillv2PENNETDeepFillv1

Figure 5: Qualitative comparison of central hole completion on CelebA-HQ. Zoom-in to see
differences between methods (e.g., details of eyes, noses and mouth).
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PatchMatch ParConv OursGround Truth Input DeepFillv2 MEDFE

Figure 6: Comparison results of central hole completion on Paris StreetView.

the attention softness, conducting effective distant contextual correlations and resulting in
high-quality inpainting results.

Figure 7 and Figure 8 shows the visual comparison results of irregular holes image in-
painting on CelebA-HQ, Paris StreetView and Places2. We observe that our model can
leverage distant high-quality contextual information and consequently generates results with
higher-quality textures than the other inpainting approaches.

Ground Truth DeepFillv2 OursInput ParConvPatchMatch

Figure 7: Comparison samples of irregular holes inpainting on CelebA-HQ and Paris
StreetView.

PatchMatch OursGround Truth Input DeepFillv2 MEDFE

Figure 8: Qualitative comparisons of irregular holes image inpainting on Places2.
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Quantitative Comparison We report our quantitative comparison results in Table 1
in terms of mean l1 loss, mean l2 loss, peak signal-to-noise ratio (PSNR) and structural
similarity index measure (SSIM) on the validation set on CelebA-HQ. Numerical results in
Table 1 show that learning models perform much better than PatchMatch, and our approach
outperforms all the other approaches.

Failure cases Although our model can generate high-quality inpainting results, it gen-
erally fails when a heavily structured objects is partially masked, see Figure 9.

Ground Truth Ground TruthInput Output Input Output

Figure 9: Failure cases of our method when a person or an animal is partially masked.

Table 1: Results of mean l1, mean l2, PSNR and SSIM on validation set on CelebA-HQ.

mean l1 ↓ mean l2 ↓ PSNR (dB) ↑ SSIM ↑
PatchMatch 4.50 % 1.53% 18.8 82.8 %
DeepFillv1 2.29 % 0.43% 24.2 87.7 %
ParConv 1.86 % 0.30% 25.9 89.5 %
PENNET 1.93 % 0.31% 25.7 89.2 %
DeepFillv2 1.91 % 0.33% 25.7 89.0 %
ours (K = 2) 1.68 % 0.29 % 26.1 89.9 %

5 Conclusion
We proposed a novel Adaptive Multi-temperature Mask-guided Attention (ATMA) mecha-
nism to learn distant contextual correlations, which performs non-local matching based on
the principle of self-similarity. In addition, we integrated it into a new two-stage model
for high-quality image completion with large missing regions. Experiment results demon-
strated that the outputs of our model are more natural than a baseline model with contextual
attention. Furthermore, qualitative results and quantitative comparisons showed that the pro-
posed image completion model with ATMA performs favorably against state-of-the-arts in
generating more visually pleasant results.
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