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Abstract

Depth (D) indicates occlusion and is less sensitive to illumination changes, which
make depth attractive modality for Visual Object Tracking (VOT). Depth is used in
RGBD object tracking where the best trackers are deep RGB trackers with additional
heuristic using depth maps. There are two potential reasons for the heuristics: 1) the lack
of large RGBD tracking datasets to train deep RGBD trackers and 2) the long-term evalu-
ation protocol of VOT RGBD that benefits from heuristics such as depth-based occlusion
detection. In this work, we study how far D-only tracking can go if trained with large
amounts of depth data. To compensate the lack of depth data, we generate depth maps
for tracking. We train a "Depth-DiMP" from the scratch with the generated data and fine-
tune it with the available small RGBD tracking datasets. The depth-only DiMP achieves
good accuracy in depth-only tracking and combined with the original RGB DiMP the
end-to-end trained RGBD-DiMP outperforms the recent VOT 2020 RGBD winners.

1 Introduction
The Visual Object Tracking (VOT) Challenge has been running since 2013. In 2019 a new
challenge, VOT-RGBD, and dataset for RGBD tracking were introduced. Interestingly, the
winners of VOT-RGBD 2019 [11] and 2020 [12] are actually RGB-only trackers (MD-
Net [17], ATOM [4] and DiMP [2]) with additional heuristics using the D channel. On
one hand, VOT-RGBD is a long-term tracking challenge that benefits from heuristic full oc-
clusion detection, and on the other hand, the lack of large RGBD tracking datasets makes it
impossible to train RGBD trackers from scratch. It remains unclear to what degree depth is
useful in object tracking.

In this work, we aim to answer the above research question by training a deep depth-
only tracker from scratch using depth tracking data and evaluating it with the previous
VOT-RGBD datasets (CDTB [15] in 2019-2021 and DepthTrack [22] in 2021). This work
provides the following novel contributions: 1) we introduce synthetic depth-only tracking
datasets that are generated from the large RGB datasets using monocular depth estimation;
2) we introduce a depth-only DiMP (Depth-DiMP) and its extension RGBD-DiMP which
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are trained using both generated and real data. With the help of Depth-DiMP, 3) we report
a careful analysis of depth-only tracking and compare the performance of RGB and D-only
trackers on CDTB and DepthTrack datasets. Interestingly, our Depth-DiMP is almost on par
with the best RGB trackers and RGBD-DiMP wins the VOT-RGBD winners on the Depth-
Track test set. Our analysis shows that there are scenes for which depth is an important
complementary cue for object tracking.

2 Related work
Visual object tracking. In recent years, there has been steady progress from conventional
"engineered" trackers toward learning-based deep trackers. Discriminative Correlation Filter
(DCF) [9] is a representative example of the conventional trackers. DCF formulation leads
to optimized detection filters that are used to find the target in the next frame. This principled
idea has inspired the main architecture of the two well-performing deep trackers: ATOM [4]
and DiMP [2]. Their architectures have three processing modules: i) feature extraction, ii)
target classifier and iii) target estimation. For the depth-only D and RGBD trackers in this
work we adopt the DiMP architecture. A DiMP extension, Probabilistic DiMP (PrDiMP) [5],
has been proposed, but we adopted the original DiMP due to its simplicity and stable public
implementation.

RGBD and D Object Tracking. RGBD tracking has been a separate track in the VOT
Challenge since 2019 [11]. The three best trackers in the VOT2020-RGBD challenge [12],
ATCAIS, DDiMP and CLGSD, are RGBD extensions of the deep RGB trackers, ATOM,
DiMP and MDNet [17]. They use depth channel to support the RGB trackers with heuristic
processing. Our work differs substantially from all previous RGBD trackers in the sense that
our tracker is data-driven similar to the original ATOM and DiMP. To the best of authors’
knowledge there are no other works addressing the generic object tracking with depth only.

RGBD tracking datasets. Deep RGBD tracker research suffers from the fact that there
are no high quality and large RGBD tracking datasets. The only available datasets are PTB,
STC and CDTB. PTB [19] was perhaps the first published RGBD tracking benchmark and
contains 100 video sequences, but the groundtruth is not publicly available. STC [21] is more
recent and of better quality, but contains only 36 sequences. The largest publicly available
dataset is CDTB [15] that contains 80 indoor and outdoor sequences captured with multiple
different sensors. CDTB is also used in the VOT-RGBD 2019-2021 evaluations [11, 12, 13].
VOT2021-RGBD provides an additional dataset, DepthTrack [22], from which we use 120
sequences divided to training (70) and test (50) sets. Cross-dataset comparisons are made
between CDTB and DepthTrack.

3 Methods
In this section, we briefly describe the original DiMP and then introduce its depth-only,
Depth-DiMP, and RGBD variants that differ only in their feature extraction parts.

3.1 DiMP
The ATOM [4] and DiMP [2] trackers share the same overall architecture: 1) a pre-trained
feature extraction module, 2) an offline trained target estimation module and 3) an online
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trained classifier module.

Feature extraction. DiMP employs the ResNet [8] network as its feature extraction mod-
ule. The deeper ResNet-50 provides better performance, but is slower than the lighter
ResNet-18 (43 vs. 57 fps). We use ResNet-50 features extracted from the same layers as in
the original DiMP. ResNet is pre-trained with the ImageNet image categorization dataset [6]
to learn strong semantic features. Ideally, ResNet should be trained with D and RGBD depth
data for the D and RGBD trackers, but since there are no large semantic tasks depth datasets,
we utilize RGB-trained ResNet features as the initial features for both RGB and depth.

Target classifier. The first step in the DiMP processing pipeline is to estimate the target
location in the current frame given its location in the previous frame (reference frame). The
target location is estimated by an online trained target classifier module. The ATOM classi-
fier module is a simple two-layer fully connected regressor network,

f (x;w) = φ2(w2 ∗φ1(w1 ∗ x)) (1)

where w = {w1,w2} are the network weights, ∗ is the multi-channel convolution, φs are
activation functions and x is the ResNet feature map. During tracking negative and positive
examples are generated from the reference frame and the weights are re-optimized over a
small number of iterations using the Gauss-Newton method [18]. It is noteworthy that this
step is similar to the DCF formulation where w2 resembles the discriminative correlation
filters for tracking. DiMP takes this step further by introducing a more complex and powerful
classifier network. DiMP optimization is based on the regularized loss

L( f ) =
1

|Strain|
∑

(x,c)∈Strain

‖ r(x~ f ,c) ‖2 + ‖ λ f ‖2 (2)

where f are the filter weights to be optimized and c denotes the desired output response for
the randomly selected training samples Strain. ~ denotes convolution and λ is a regular-
ization factor. Suitable candidates for c are a Gaussian peaked at the groundtruth location
or a triangular basis function of DiMP. DiMP defines an error residual r(·, ·) that combines
least-squares and the hinge loss and is optimized using the Gauss-Newton method.

Target estimation. The target estimation networks of ATOM and DiMP share the same
structure. Given the position estimated from the classifier module at the maximum score
of the response x~ f and the bounding box width and height from the previous frame 10
bounding box proposals are generated by adding uniform random noise. The target esti-
mation module is applied to each proposal. The final estimate is the average of three best
proposals after the target estimation stage. The target estimation provides Intersection-over-
Union (IoU) score for each proposal B using

IoU(B) = g(c(x0,B0),z(x,B)) (3)

where g is the predictor network. The predictor network is trained offline with the largest
available RGB tracking datasets (e.g. LaSOT [7] and TrackingNet[16]) and with augmented
examples from the diverse set of classes in COCO [14]. c(·, ·) is the feature representation of
the initial region B0 from the feature map x0 of reference image while z(·, ·) is the proposal
representation from the feature map x of the test image.
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Figure 1: The RGBD-DiMP framework. max( frgb, fd) denotes element-wise maximum
pooling that combines the two modalities, RGB and D, before the DiMP predictor and clas-
sifier modules. To illustrate pooling, high response depth features merged with RGB features
are pinpointed with orange boxes. The dashed blue boxes denote the reference branch.

3.2 Depth DiMP
In all experiments we wanted to keep the number of parameters (weights) of the original
DiMP fixed so that we could compare the effect of training data only. For different inputs,
RGB, D and RGBD, this was achieved by altering only the ResNet-50 based feature extrac-
tion module of DiMP. These changes for D and RGBD are briefly explained next.

Depth-DiMP. The input affects only the feature extraction module of DiMP, i.e. ResNet-
50 features extracted from the input. The depth values can be encoded to a single channel, but
to keep the DiMP structures unchanged and the same total number of parameters (weights)
we kept all three channels and experimented with different encoding of the depth. The
two encoding experimented where channel copying and colormap encoding. The channel
copying is simply repeating the same normalized depth map three times and is denoted by
3×D. The colormap encoding is performed by mapping pixels of the normalized depth map
to RGB vectors of a predefined color matrix (JET used in the experiments). This encoding is
denoted by "ColMap". Depth normalization is performed by normalizing all values to [0,1]
and before normalization metric depth values are clipped to the range [0.0,10.0] meters.

RGBD DiMP. To verify that RGBD tracking benefits from learning more realistic deep
depth features, we combined RGB DiMP with Depth-DiMP by adding an additional fea-
ture extraction module for the depth input. Before the other DiMP modules the RGB and
D streams are merged. For merging, we adopt the element-wise maximum pooling. The
RGBD-DiMP framework and merging of the two channels are illustrated in Figure 1.

4 Experiments

4.1 Performance metrics and settings
The major difference between long- and short-term trackers is the re-detection mechanism
and the most common way is just to brute-force search the previous location with an increas-
ing region until the target is found. To focus on how generic object tracking benefits from
depth, we converted the long-term (LT) sequences into short-term (ST) ones by using two
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rules to cut the sequences: i) all frames from the beginning (frame #1) are kept until the tar-
get disappears (frame #D) and re-appears again (frame #D+R-1); and ii) a new ST sequence
is started (frame #D+R+S) when the target size is at least 75% of its size in the frame #1.
This procedure is iterated until the end of each LT clip. However, to report numbers con-
sistently with the previous RGBD works we adopted the LT evaluation protocol of the VOT
challenge. For each frame, the tracker predicts a target confidence score and bounding box.
The bounding box coordinates are used to calculate the tracking precision (Pr) by measuring
the overlap ratio with the groundtruth box. Tracking recall (Re) measures the fraction of the
frames labelled as "target present" and for which the confidence score is above a threshold.
The overall evaluation F-score is the harmonic mean of Pr and Re. For training the default
settings in [2] were used.

4.2 Datasets
RGBD datasets for evaluation. For the depth-only (D) and RGBD experiments we used
the two largest and most recent RGBD datasets: CDTB [15] and DepthTrack [22]. CDTB
was used in the VOT-RGBD challenge from 2019 to 2021 and DepthTrack was introduced
as an additional dataset to the 2021 challenge. Our LT-to-ST procedure produced 152 ST
sequences from the original 80 CDTB LT sequences. Similarly, the DepthTrack 50 LT test
sequences resulted to 124 ST sequences.

The 70 LT training sequences of DepthTrack were used in training as is as the training
part does not differ for LT and ST. For the cross-dataset evaluations we trained with the
DepthTrack training set and tested with CDTB-ST.

Generated depth data for training. The original DiMP was trained with the training sets
of TrackingNet [16], LaSOT [7], GOT10k [10] and COCO [14]. TrackingNet is the largest
of these datasets including 30,000 sequences. The largest existing RGBD datasets are PTB,
STC, CDTB and DepthTrack of which DepthTrack is the largest containing 120 sequences.
Collecting and annotating more RGBD sequences is time consuming and tedious, and there-
fore we decided to convert the RGB datasets to RGBD using monocular depth estimation.
Depth data has much less variation than RGB and therefore we converted the two smaller
datasets, LaSOT [7] (1,500 seqs.) and Got10k [10] (10,000 seqs.). We also used the COCO
images [14] to train the tracker to have a richer set of objects.

To quantitatively evaluate the generated depth sequences we adopted the Ordinal Error
(ORD) from monocular depth literature [3, 20]. Monocular depth methods do not produce
metric depth but values in [0,1], and therefore evaluation is based on whether depth order of
pixels match with groundtruth order. Ordinal error is defined as

ORD =
∑i ωi1(`i,τ 6= `∗i,τ)

∑i ωi
, where `=


+1, p0/p1 ≥ 1+ τ

−1, p0/p1 ≤ 1
1+τ

0, otherwise
(4)

Computation is based on 50,000 randomly selected depth pixel pairs [p0, p1] from groundtruth
and monocular estimated depth maps. If their ratio is greater or smaller than the thresholds
defined by the parameter τ (τ = 0.03 adopted from literature), then positive or negative indi-
cator values ` (groundtruth) and `∗ (monocular estimated) are produced. ORD computes the
proportion of pixel pairs that do not match. ORD 0.0 is the ideal value and 1.0 means that all
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ORD : 0.227 ORD : 0.358 ORD : 0.476 ORD : 0.519

GT GT GT GT

Figure 2: CDTB RGB frames (top), groundtruth depth maps (middle) and DenseDepth esti-
mated depth maps (bottom) with their ordinal error (ORD) values.
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0.376
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Figure 3: ORD histogram of 80 CDTB sequences. Lower ORD is better. Minimum, maxi-
mum and median values are marked. Mean ORD is 0.386.

pixels are in opposite order (for ωi = 1). We tested a number of monocular depth estimation
methods and found the DenseDepth [1] to produce the best results. Generated depth maps
are shown in Figure 2 for various ORD values and the ORD value histogram of all CDTB
sequences are shown in Figure 3. It should be noted that depth values are missing from large
parts of the groundtruth images, but otherwise the median/average ORD values 0.376/0.386
indicate sufficient quality. Moreover, the generated RGBD sequences were manually verified
and about 800 sequences were removed.

4.3 Cross-dataset evaluation
In the first experiment we investigated the contributions of depth-only training and depth-
only fine-tuning of DiMP. To further emphasize the limitation that ResNet-50 is pretrained
with RGB from ImageNet we denote it as "ResNet50-RGB". The RGB DiMP is the original
DiMP from its authors. Depth variants of DiMP were trained with the generated depth data
of LaSOT, GOT10k and COCO. For sanity check we report results also for DiMP trained
with different color channels of the same datasets.

CDTB-ST. The results are summarized in Table 1 and provide the following findings: 1)
off-the-shelf RGB DiMP is superior to single color channels (R/G/B) and depth as expected;
2) fine-tuning with the DepthTrack training set sequences systematically improves the results
of all trackers and, in particular, depth tracking results are substantially improved (F-score
jumps +20% from 0.421 to 0.508); 3) training DiMP from the scratch using channel specific
training data further improves the results of all trackers - G channel obtains better accuracy
than the original RGB (F-score increases from 0.665 to 0.701) and the depth-only F-score
further improves +9% from 0.508 to 0.556.
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Pr Re F Backbone Pre-trained Fine-tuned Input Coding

0.659 0.671 0.665 ResNet50-RGB RGB RGB RGB
0.681 0.689 0.685 ResNet50-RGB RGB DepthTrack-RGB RGB RGB

Off-the-shelf RGB DiMP
0.625 0.624 0.625 ResNet50-RGB RGB R 3×R
0.640 0.637 0.638 ResNet50-RGB RGB G 3×G
0.624 0.622 0.623 ResNet50-RGB RGB B 3×B
0.443 0.402 0.421 ResNet50-RGB RGB D 3×D
0.476 0.431 0.452 ResNet50-RGB RGB D ColMap

+ fine-tuning with real depth data
0.663 0.680 0.672 ResNet50-RGB RGB DepthTrack-G G 3×G
0.510 0.506 0.508 ResNet50-RGB RGB DepthTrack-D D 3×D
0.502 0.513 0.507 ResNet50-RGB RGB DepthTrack-D D ColMap
0.444 0.410 0.426 ResNet50-RGB RGB DepthTrack-D† D 3×D
0.455 0.412 0.433 ResNet50-RGB RGB DepthTrack-D† D ColMap

Depth-only DiMP trained w/ generated depth
0.701 0.701 0.701 ResNet50-RGB G DepthTrack-G G 3×G
0.698 0.703 0.700 ResNet50-RGB G DepthTrack-G G ColMap
0.487 0.375 0.424 ResNet50-RGB G DepthTrack-D D 3×D
0.549 0.563 0.556 ResNet50-RGB D† DepthTrack-D D 3×D
0.520 0.529 0.525 ResNet50-RGB D† DepthTrack-D D ColMap

Table 1: Depth-only tracking results for the CDTB-ST (ST: short-term) dataset. The results
are cross-dataset where CDTB was only used in testing. D† denotes DenseDepth generated
depth data. The best depth-only ( D ) F-score is bolded and the second best underlined.

Pr Re F Backbone Pre-trained Fine-tuned Input Coding

0.534 0.483 0.507 ResNet50-RGB RGB RGB RGB
0.542 0.488 0.513 ResNet50-RGB RGB CDTB-RGB RGB RGB

Off-the-shelf RGB DiMP
0.461 0.387 0.420 ResNet50-RGB RGB G 3×G
0.350 0.246 0.288 ResNet50-RGB RGB D 3×D
0.362 0.267 0.307 ResNet50-RGB RGB D ColMap

+ fine-tuning with real depth data
0.463 0.413 0.437 ResNet50-RGB RGB CDTB-G G 3×G
0.412 0.335 0.370 ResNet50-RGB RGB CDTB-D D 3×D
0.381 0.350 0.364 ResNet50-RGB RGB CDTB-D D ColMap
0.386 0.306 0.341 ResNet50-RGB RGB CDTB-D† D 3×D
0.390 0.328 0.356 ResNet50-RGB RGB CDTB-D† D ColMap

Depth-only DiMP trained w/ generated depth
0.419 0.307 0.355 ResNet50-RGB D† CDTB-D D 3×D
0.418 0.325 0.366 ResNet50-RGB D† CDTB-D D ColMap

Table 2: Cross-dataset results for the DepthTrack-ST test set.

These results verify that by training and fine-tuning DiMP with depth data - even with
synthetic - improves the results substantially. The best color channel (Green) F-score im-
proved from 0.638 to 0.701 (+10%) and the depth (D) from 0.421 to 0.556 (+32%). Overall,
after these optimizations the Depth-DiMP is only 16% behind the original RGB DiMP.

DepthTrack-ST. To validate the above findings the datasets were swapped and DepthTrack-
ST test set was used in testing and CDTB in fine-tuning. The results are summarized in Ta-
ble 2. For DepthTrack the sequences are selected to particularly challenge RGB tracking and
this is evident from the results. Fine-tuning again improves the results 28% (F-score from
0.288 to 0.370), but in this case generated data does not provide additional benefit (0.366) as
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F-score
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Figure 4: The plot of F-scores (Y-axis) and the ratios (X-axis) between the RGB DiMP
tracker (red) and the Depth-DiMP tracker (D†-DepthTrack-3×D) (blue) for each sequence
in CDTB-ST. Ratios < 1.0 represent RGB dominance (RGB performs better) and > 1.0 D
dominance. 0.5 means that the RGB F-score is twice better than the corresponding D F-score
and 2.0 means that the depth is twice better.

Overall

aspect change

background clutter

dark scene

deformable

depth change

fast motion

full occlusion
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similar objects
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0.0 0.2 0.4 0.6 0.8 1.0

Figure 5: Visual attribute specific F-scores for RGB, D and RGBD (D†-CDTB-ColMap)
DiMP variants on the DepthTrack-ST test set.

the sequences are very different from test data. However, it should be noted that if there is
no fine-tuning data available the generated depth still improves the results.

4.4 Sequence level analysis

The results in Table 1 show that the best depth-only DiMP obtains F-score only 0.1 points
behind the state-of-the-art RGB DiMP (0.556 vs. 0.665). Since the results of RGB DiMP do
not substantially improve after fine-tuning (0.701 vs. 0.665) it is intriguing to find whether
there are sequences particularly suitable or unsuitable for depth-only tracking.

To investigate the complementary properties of RGB and D we computed the graph in
Figure 4 where all CDTB-ST sequences are sorted from left to right so that for the leftmost
images RGB is more dominant and for the rightmost D is more dominant. In the middle
are sequences for which color and depth perform comparably. In Figure 4 for most of the
sequences RGB is better than D (ratio < 1.0), but, on the other hand, in 20% of the sequences
(36 out of 152) the depth is better than RGB (> 1.0) and in half of them depth is clearly better.

Example sequences. The 10 best and worst sequences for the depth-only tracking are
listed in Table 3 and Figure 6 shows two example sequences in which target shares similar
texture and color with distractors (a person in these examples) and 3D rotates to change its
2D shape quickly. These changes finally lock the RGB tracker to wrong object. On the other
hand, the distinct depth of the targets make their depth-only tracking easy.
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#01 - 23

#01 - 70

#01 - 95

#02 - 46

#02 - 77

 #02 - 102

Figure 6: CDTB-ST example sequences where the Depth-DiMP tracker (D†-DepthTrack-
3×D) (blue boxes) is clearly superior to the RGB DiMP tracker (red boxes). Green boxes
denote the groundtruth bounding boxes. #S-N denotes the N-th frame of S-th Seq. in Table 3.

#13 - 02

#13 - 25

#13 - 56

#16 - 29

#16 - 59

#16 - 80

Figure 7: CDTB-ST example sequences where the RGB DiMP tracker (red boxes) is clearly
superior to the Depth-DiMP tracker (D†-DepthTrack-3×D) (blue boxes).

Scenes for which depth-only fails are illustrated in Figure 7. Two reasons can be ob-
served: the target and distractor share the same depth, but have different texture, or the target
is too far and the depth sensor fails to get measurements.

Visual attributes. To provide more insights about scenes in which depth is an important
cue, we computed attribute specific F-scores for the DepthTrack-ST (Figure 5). The scores
verify that there are scene types where depth outperforms RGB: background clutter, dark,
depth change and reflective scenes. RGB is better than D for the other scene types (at-
tributes), but together RGB and D are clearly superior in all of them.

4.5 RGBD tracking

We combined the optimized Depth-DiMP and RGB DiMP to RGBD-DiMP and compared
its performance to the VOT2020-RGBD winners with the novel DepthTrack-ST test set.
The results in Table 4 show that the 2020 second, DDiMP, now wins the last year winner,
ATCAIS, but our end-to-end trained RGBD-DiMP obtains the best results with 16% higher
F-score than DDiMP. It should be noted that the short-term setting in these experiments is
different from the long-term setting used in the VOT-RGBD challenge.
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D DiMP RGB DiMP
id Seq. name Pr Re F Ratio Pr Re F
01 box_room_noocc_3_1 0.689 0.689 0.689 ← 5.1 0.135 0.135 0.135
02 XMG_outside_2 0.771 0.771 0.771 ← 3.4 0.229 0.229 0.229
03 boxes_office_occ_1_2 0.621 0.621 0.621 ← 2.6 0.235 0.235 0.235
04 box_darkroom_noocc_9_1 0.643 0.643 0.643 ← 2.3 0.278 0.278 0.278
05 boxes_room_occ_1_1 0.669 0.693 0.681 ← 1.9 0.354 0.360 0.357
06 box_darkroom_noocc_5_1 0.677 0.679 0.678 ← 1.8 0.385 0.387 0.386
07 box_room_occ_1_1 0.595 0.688 0.638 ← 1.7 0.346 0.403 0.372
08 bag_outside_3 0.741 0.741 0.741 ← 1.7 0.444 0.444 0.444
09 box_room_noocc_2_1 0.417 0.417 0.417 ← 1.6 0.262 0.262 0.262
10 toy_office_occ_1_2 0.642 0.708 0.673 ← 1.5 0.541 0.367 0.437

11 trophy_room_occ_1_2 0.083 0.103 0.092 7.7→ 0.653 0.770 0.706
12 two_mugs_5 0.108 0.106 0.107 6.3→ 0.707 0.640 0.672
13 thermos_office_occ_1_2 0.091 0.112 0.100 4.5→ 0.416 0.494 0.452
14 box_room_noocc_8_1 0.220 0.220 0.220 3.7→ 0.804 0.804 0.804
15 humans_corridor_occ_2_B_4 0.246 0.298 0.270 3.3→ 0.882 0.882 0.882
16 humans_corridor_occ_2_B_1 0.160 0.372 0.224 2.9→ 0.538 0.825 0.651
17 jug_3 0.259 0.259 0.259 2.8→ 0.718 0.718 0.718
18 bottle_box_2 0.232 0.434 0.303 2.7→ 0.846 0.808 0.827
19 trashcan_room_occ_1_6 0.333 0.342 0.337 2.6→ 0.882 0.868 0.875
20 bottle_room_occ_1_2 0.558 0.209 0.304 2.6→ 0.787 0.787 0.787

Table 3: 10 best CDTB-ST sequences for D and RGB DiMP trackers respectively. Ratios are
converted to indicate how many times better the other modality is as denoted by the arrow.

Tracker Pr Re F Input

ATCAIS 0.566 0.444 0.498 RGB+D
DDiMP 0.607 0.478 0.535 RGB+D
CLGS_D 0.710 0.367 0.484 RGB+D
Siam_LTD 0.433 0.389 0.410 RGB+D

DiMP-RGBD 0.639 0.611 0.625 RGB+ColMap
DiMP-RGBD 0.610 0.567 0.588 RGB+3×D

Table 4: Comparison of the four best VOT2020-RGBD trackers [12] and the RGBD data
trained RGBD-DiMP with the DepthTrack-ST test set.

5 Conclusion

We experimentally verified that there are tracking scenes for which depth provides dominant
cue and where depth-only trackers are superior to state-of-the-art RGB trackers. Moreover,
we showed that the end-to-end trained RGBD-DiMP using generated and real depth and
RGB data is clearly superior to state-of-the-art RGBD trackers and does not need additional
heuristics. Our data and code will be published to facilitate fair comparisons and more work
on depth-only object tracking.
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