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Abstract

Neural networks have been successfully applied to various pattern recognition and function
approximation problems. However, the training process remains a time-consuming procedure
that often gets stuck in a local minimum. The optimum network size and topology are usually
unknown. In this paper, we formulate the concept of extrema equivalence for estimating the
complexity of a function. Based on this formulation, the optimal network size and topology can
be selected according to the number of extrema. Mini-max initialization method is then proposed
to select the initial values of the weights for the network that is proven to greatly speed up
training. The superior performance of our method in terms of convergence and generalization
has been substantiated by experimental results.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Since the seminal work of Rumelhart et al. [17], feed-forward neural networks have
been widely applied for pattern recognition, and function approximation. However, the
training of such networks remains a time-consuming procedure. The learning speed
depends on the initial values of the weights and biases, the learning rate, and the
network topology. The optimal values for these parameters are usually unknown a
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priori because they depend on the training data. It has been known that error surfaces
of the BackPropagation algorithm have extensive Eat areas with very little slope and
many local minima, the prime reason for the convergence problem. Thus, initialization
is the Frst critical step.

Several weight initialization methods for feed-forward neural networks have been
proposed. Among which, random weight initialization, proposed by Rumelhart et al.
to break the symmetry [17], is commonly used. The eGciency of this method depends
on the initial weight distribution. It has been found that pure random initialization of-
ten produces dormant neurons (small weight changes cause only negligible changes to
the output) owing to the characteristics of the sigmoidal function. Lee and Kim [13]
proved that the probability of prematurely saturated neurons in multilayer feed-forward
networks increase with the maximum value of weights. Wessels and Barnard [19] pro-
posed two weight initialization methods to avoid false local minima, but they did not
compare the training speeds. Drago and Ridella [6] made the weights uniformly dis-
tributed over the interval [ − a; a], with a= 1:3=(1 + E[x2])−1=2 for the input layer and
a=1:3=(1+0:3din)−1=2 (din is the fan-in number of a neuron) for the output layer, and
restricted the number of neurons with absolute activations greater than 0.9. Kim and
Ra [12] derived a lower bound (�=din)−1=2 for the initial length of the weight vector
of a neuron, where � is the learning rate. According to [7], this weight initialization
scheme is suitable for the BP training. Nguyen and Widrow [15] proposed to initialize
a multilayer network with linear activation functions, without substantialing it analyti-
cally. Besides these random weight initialization methods, Weymaere and Martens [20]
proposed an initialization method which incorporates a clustering procedure, a network
construction algorithm and network optimization stage. Denoeux and Lengelle [5] ini-
tialized a one-hidden-layer network with reference patterns. This method relies on a
transformation of the input patterns to unit-length vectors and cluster analysis. Chen
and Nutter [3] combined a random weight initialization scheme with pseudo-inverse
method to improve the training speed, but the computational cost for matrix inver-
sions is high. Thimm and Fiesler [18] have reviewed the weight initialization methods
and evaluated their performance. They concluded that a Fxed weight variance of 0.2,
which corresponds to a weight range of [−0:77; 0:77], gave the best mean performance
for multilayer perceptrons with one hidden layer. In [11], training data are analyzed
and the notion of the critical point is introduced for determining the initial weights.
The concept of stepwise regression is used in [14] for cascade–correlation learning of
feedforward neural networks.

The approximation capabilities of multilayer neural networks have been investigated
by many investigators [4,8–10,16]. It has been proved that three-layered neural net-
works with sigmoidal activation functions can approximate any continuous function
which is deFned in RN and for which lim|x|→∞ f(x) exists to any desired degree of
accuracy [2]. Almost all of these are in the form of denseness results, essentially say-
ing that if you take enough nodes, you can make an arbitrarily good approximation.
Whether these representations of continuous functions can be learned by the gradient
method is unclear. Using the random weight initialization methods for function ap-
proximation, the training is very likely to get stuck in some local minima and cannot
escape from it. Moreover, there has been no eOective method to determine the size of
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the network for a given function. Atiya and Ji [1] found that, for a uniform random
initialization in the interval [−a; a], there exists an optimal range a leading to the best
generalization.

In this paper, we Frst formulate the concept of extrema equivalence for estimating
the complexity of the function. We then prove that a three-layer neural network with
sigmoidal neurons in the hidden layer can realize any one-dimensional function, and
that a network with localized sigmoidal neurons in the hidden layer can realize any
high dimensional function within the same extrema equivalence class of the objective
function. The optimal network size is thus obtained according to the number of the
extrema. MMI method, an eOective initialization method, is then proposed. In this
method, two approaches, accurate extrema location initialization and random extrema
location initialization, are introduced. Results using the proposed methods on diOerent
function approximation problems are remarkably better than those using traditional
initialization methods.

2. Construction of networks using extrema equivalence

It is known that the optimal network size is dependent on the complexity of the
model to the problem being solved. Too small a network cannot learn the function
well, but too large a size will lead to over-Ftting and poor generalization performance.
Furthermore, excessive computing may be needed. Methods that can determine an
appropriate measure of the complexity of the model are thus highly desirable.

De�nition 2.1. A real-valued function f(x) is said to have an extremum at position
m∈Rn, if f(x)¿f(m) ∀x∈N(m) or f(x)¡f(m) ∀x∈N(m), where N(m) ⊂ Rn

is an open neighborhood of m.

For a continuous function f(x), it is reasonable to assume that the extrema of f(x)
contain valuable information. The set of extrema E={(x1; f(x1)); : : : ; (xn; f(xn))} is a
strong constraint for continuous functions. For a given set E, the class of functions hav-
ing the same E bear strong similarity with the function f(x), leading to the following
deFnition of extrema equivalence.

De�nition 2.2. Two continuous functions f1 :Rn → R and f2 :Rn → R are said to be
extrema equivalent on a compact set C∈Rn, denoted as f1 ./ f2, if they have the
same set of extrema E in C.

Extrema equivalence is transitive, that is, (f1 ./ f2) ∧ (f2 ./ f3) ⇒ f1 ./ f3.
A class of extrema equivalent functions is very possible to have the similar level of
complexity. Based on this conjecture of complexity for continuous functions, we will
show that the optimal size of the network can be estimated (optimal in the sense that
the network with the corresponding size can realize an extrema equivalent function
as the objective function. In the next section, we propose to utilize more information
such as inEection points to accurately estimate the size of a network). For feed-forward
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layered networks using sigmoidal function

�(x) =
1

1 + exp(−x) ; (1)

we can obtain the following result for one-dimensional function:

Theorem 2.1. If f(x) is a continuous function de>ned on the closed interval [a; b],
and f(x) has M extrema (maxima and minima), then for any �¿ 0, there exists a
three-layered neural network with M + 1 sigmoidal neurons in the hidden layer and
a linear output neuron, such that∣∣∣∣∣f(x) −

(
M+1∑
i=1

ci�(wix + �i) + c0

)∣∣∣∣∣¡� ∀x∈EL ∪ [a; b]; (2)

where EL is the set of extrema locations for both f(x) and
∑M+1

i=1 ci�(wix+ �i)+ c0.

Proof. The proof is constructive. We Frst consider the case for M=1 and the extremum
being at x=m. If f(a)¿f(b)¿f(m), since �(:) is monotonically increasing from 0
to 1, for any �¿ 0, we can Fnd w1, w2, �1, �2, such that

�(wia+ �i)¡
�

2|f(m) − f(a)| ; i = 1; 2;

1 − �(w1m+ �1)¡
�

2|f(m) − f(a)| ;

�(w2m+ �2)¡
�

2|f(m) − f(a)| ;

1 − �(wib+ �i)¡
�

2|f(m) − f(a)| ; i = 1; 2: (3)

Let c0 = f(a), c1 = f(m) − f(a), c2 = f(b) − f(m) and

g(x) =
M+1∑
i=1

ci�(wix + �i) + c0: (4)

Then

g(a) =
2∑
i=1

ci�(wia+ �i) + c0

= �(w1a+ �1)(f(m) − f(a)) + �(w2a+ �2)(f(b) − f(m)) + f(a)

= �a1 + �a2 + f(a): (5)

Thus we obtain

|f(a) − g(a)| = |�a1 + �a2 |¡�: (6)
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Fig. 1. Using two sigmoidal neurons to approximate a function with one extremum in the interval [a; b].

Repeating the procedure given in Eq. (5) for x = m and x = b, we obtain

|f(m) − g(m)| = |�m1 + �m2 |¡�;

|f(b) − g(b)| = |�b1 + �b2 |¡�: (7)

If f(m)¿f(b)¿f(a), for any �¿ 0, we can select w1, w2, �1, �2, such that the
condition given in Eq. (3) is satisFed. Let c0=f(a), c1=f(m)−f(a), c2=f(b)−f(m),
the same result as given by Eqs. (6) and (7) can be obtained (see Fig. 1).

For the case that M ¿ 1, let A denote the global maximum and B denote the global
minimum of f(x) on interval [a; b]. Then for any �¿ 0, we can Fnd w1; w2; : : : ; wM+1

and �1; �2; : : : ; �M+1, such that

�(wia+ �i)¡
�

(M + 1)(A− B)
; i = 1; 2; : : : ; M + 1;

1 − �(w1m1 + �1)¡
�

(M + 1)(A− B)
;

�(wim1 + �i)¡
�

(M + 1)(A− B)
; i �= 1;

1 − �(w2m2 + �2)¡
�

(M + 1)(A− B)
;
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�(wim2 + �i)¡
�

(M + 1)(A− B)
; i �= 2;

...

1 − �(wMmM + �M )¡
�

(M + 1)(A− B)
;

�(wimM + �i)¡
�

(M + 1)(A− B)
; i �= M;

1 − �(wib+ �i)¡
�

(M + 1)(A− B)
; i = 1; 2; : : : ; M + 1: (8)

Let c0=f(a); c1=f(m1)−f(a); c2=f(m2)−f(m1); : : : ; cM=f(mM )−f(mM−1); cM+1=
f(b) − f(mM ), then

g(a) =
M+1∑
i=1

ci�(wia+ �i) + c0

=f(a) + �(w1a+ �1)(f(m1) − f(a)) + �(w2a+ �2)(f(m2) − f(m1))

+ · · · + �(wMa+ �M )(f(mM ) − f(mM−1))

+ �(wM+1a+ �M+1)(f(b) − f(mM ))

=f(a) + �a1 + �a2 + · · · + �aM+1 : (9)

Thus we obtain

|f(a) − g(a)| = |�a1 + �a2 + · · · + �aM+1 |¡�: (10)

Repeating the procedure in Eq. (9) to all the local minima and maxima, the same
results can be obtained.

Owing to the characteristics of the sigmoidal function (Eq. (1)), its derivative ap-
proaches 0 as it approaches 1. Considering Eq. (8), if � is small enough, the derivative
of �(w1x+�1) can be thought almost equal to 0 at x=m1 and monotonically decreased
with the increase of x from then on (x¿m1). Thus, it will not inEuence the generation
of extrema when x¿m1. Based on the same reasoning, �(w2x+ �2) will not inEuence
the generation of extrema when x¿m2. Continuing this procedure, only M extrema
are generated within the interval and each of them share the same location and value
as the extrema of f(x). Hence, Theorem 2.1 is proved.

The localized sigmoidal function is used for higher dimensional cases:

�̃(x) =
1

1 + exp(‖x‖2)
: (11)

Theorem 2.2. If f(x) is a continuous function de>ned on a compact set C∈Rn, and
f(x) has M extrema, then for any �¿ 0, there exists a three-layered neural network
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with M localized sigmoidal neurons in the hidden layer and a linear output neuron,
such that∣∣∣∣∣f(x) −

(
M∑
i=1

ci�̃(wix + �i) + c0

)∣∣∣∣∣¡� ∀x∈EL; (12)

where EL ⊂ C is the set of extrema locations for both f(x) and
∑M

i=1 ci�̃(wix +
�i) + c0), wi, �i ∈Rn and wix = (wi1x1; wi2x2; : : : ; winxn)

T.

Proof. Consider the case where the extrema are at m1;m2; : : : ;mM. Let A denote the
global maximum and B denote the global minimum of f(x) on the compact set C.
Then for any �¿ 0, we can Fnd w1;w2; : : : ;wM and �1; �2; : : : ; �M, such that

1
2 − �̃(w1m1 + �1)¡

�
M (A− B)

;

�̃(wim1 + �i)¡
�

M (A− B)
; i �= 1;

1
2 − �̃(w2m2 + �2)¡

�
M (A− B)

;

�̃(wim2 + �i)¡
�

M (A− B)
; i �= 2;

...

1
2 − �̃(wMmM + �M)¡

�
M (A− B)

;

�̃(wimM + �i)¡
�

M (A− B)
; i �= M: (13)

Let c0 = 0; c1 = 2f(m1); c2 = 2f(m2); : : : ; cM = 2f(mM). Then

g(m1) =
M∑
i=1

ci�̃(wim1 + �i) + c0

= 0 + �̃(w1m1 + �1) ∗ 2f(m1) + �̃(w2m1 + �2) ∗ 2f(m2)

+ · · · + �̃(wMm1 + �M) ∗ 2f(mM)

=f(m1) + �m1 + �m2 + · · · + �mM+1 : (14)

Thus we obtain

|f(m1) − g(m1)| = |�m1 + �m2 + · · · + �mM+1 |¡�: (15)

Repeating the procedure in Eq. (14) to all the extrema and based on the same reasoning
as the proof of Theorem 2.1, Theorem 2.2 is proved.
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It is observed that if the constructive method described in Theorems 2.1 and 2.2
is used to build the network, the output of the network will be very smooth and no
inEection points exist. Some real world functions, however, may have some inEection
points between the extrema. For this situation, the three-layered neural network with
M+1 sigmoidal neurons cannot approximate the function accurately. To overcome this
deFciency, we consider each inEection point as a new extrema. So for the case when
the function has M extrema and N inEection points, the number of the hidden neurons
is selected to be M + N + 1.

3. Mini-max weight initialization

As discussed in Section 1, though considerable amount of research work has been
done on weight initialization, the results are still far away from being satisfactory. We
have experimented with several random initialization methods mentioned in Section 1
for function approximation. It is found that when the number of extrema of the function
increases, the training time escalates exponentially. For functions with more than 10
extrema, it becomes almost impossible to converge to a satisfactory result using random
initialization and the BP algorithm, even though the number of the hidden neurons are
increased. Consider a neural network with a given �¿ 0, the promising area of the
network is the set of initial weights such that the error (the sum of squares of the
diOerences between the neural network outputs and the desired outputs) is less than �
after learning.

For most problems, the promising area is only a fraction of the weight space, espe-
cially for higher dimensional weight spaces. If we select the starting point randomly in
the weight space, the probability of this point lied in the promising area will be very
small. Fig. 2 shows the initial network output with diOerent number of hidden neurons
using random weight initialization. It is obvious that these can hardly capture the shape
(feature) of a function with many extrema. On the other hand, clustering methods are
based on the probability distribution of patterns in the feature space. The clusters only
reEect the distribution of sample data points that may not resemble the function to
be approximated. For example, consider a function with data points being distributed
uniformly on the interval [a; b]; the clusters may also be uniformly distributed. There-
fore, an eOective initialization method must be found to initialize weights closer to the
promising area.

According to the discussion in Section 2, the extrema equivalent functions have the
same set of extrema. Since the extrema are valuable information of the corresponding
functions, it is conjectured the promising area of these functions have a common part.
To obtain the initial weights, the construction method in the proof in Section 2 is used.
Any set of weights that satisfy the condition in the proof can be chosen as the initial
weights.

3.1. Matched extrema location initialization (MELI)

We have developed a constructive algorithm based on Theorems 2.1 and 2.2 to
calculate the initial weights from the input to the hidden layer and from the hidden
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Fig. 2. Network output corresponding to the random initialization: (a) w∈ [ − 1; 1], (b) w∈ [ − 3; 3].

layer to the output layer as follows:

Step 1: Find the extrema and inEection points of the function. For the given sample
data points (x1; f(x1)), (x2; f(x2)); : : : ; (xn; f(xn)), the following heuristics
are adopted to locate the extrema for one-dimensional function:
• Data point xi is considered to be an extremum if

f(xi)¿max(f(xi−1); f(xi+1)) + � (16)

or

f(xi)¡min(f(xi−1); f(xi+1)) − �; (17)

where � is a small positive number.
• If∣∣∣∣f(xi+1) − f(xi)

xi+1 − xi

∣∣∣∣¡min
(∣∣∣∣f(xi) − f(xi−1)

xi − xi−1

∣∣∣∣ ;
∣∣∣∣f(xi+2) − f(xi+1)

xi+2 − xi+1

∣∣∣∣
)

−�; (18)

then the point

x∗ = 1
2(xi + xi+1) and f(x∗) = f( 1

2 (xi + xi+1)) (19)

is considered as a new extrema for weight initialization, but is not used as a
training point.
For higher dimensional functions, we use the following heuristics to locate
the extrema:
• Data point xi is considered to be an extremum if

f(xi)¿max{f(xk1 ); f(xk2 ); : : : ; f(xkm)} + � (20)
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or

f(xi)¡min{f(xk1 ); f(xk2 ); : : : ; f(xkm)} − � (21)

where � is a small positive number, {xk1 ; : : : ; xkm} is the set of points that
can form a polyhedron encircling xi, such that xi is the only point within this
polyhedron.
• If along every axis, the criteria in Eq. (18) are met. Then the point

x∗ = 1
2(xi + xi+1) and f(x∗) = f( 1

2 (xi + xi+1)) (22)

is considered as a new extremum for weight initialization, but is not used as
a training point.

Step 2: Find the upper bound A and lower bound B of f(x) on a compact set C, then
use
wi

2
(xmi + xmi−1 ) + �i = 0 (23)

and Eq. (8) to initialize the connections w1; w2; : : : ; wM+1 and �1; �2; : : : ; �M+1

between the input and hidden layer for networks with sigmoidal neurons,
where m0 = a; mM+N+1 = b. Use Eq. (13) to initialize the connections for
networks with localized sigmoidal neurons.

Step 3: Apply c0 = f(a); c1 = f(m1) − f(a); c2 = f(m2) − f(m1); : : : ; cM = f(mM ) −
f(mM−1); cM+1 = f(b) − f(mM ) to initialize the connections between hid-
den layer and output for networks with sigmoidal neurons. Use c0 = 0; c1 =
2f(m1); c2=2f(m2); : : : ; cM =f(mM) to initialize the connections between the
hidden layer and output layer for networks with localized sigmoidal neurons.

In Eqs. (16)–(18) and (20) and (21), a small positive number � is introduced. It is
a threshold to reduce the inEuence of noise and the inaccuracy of measurement. If � is
big, the initialization is robust against the noise. However, some real extrema are possi-
bly neglected. On the other hand, a small � is possible to lead to over-Ftting and worse
generalization capability. In our approach, the sequence is Frstly normalized. Then �
is determined as follows: (a) If f(xi−1)¿f(xi−2) and f(xi+1)¿f(xi+2), �= 0:05 in
Eq. (16); else � = 0:2 in Eq. (16); (b) If f(xi−1)¡f(xi−2) and f(xi+1)¡f(xi+2),
�=0:05 in Eq. (17); else �=0:2 in Eq. (17); (c) �=0:1 in Eqs. (18) and (20) and (21).

The conditions given in Eqs. (8) and (13) are rather tight. If the value of � is
small enough, the network with the initial weights can approximate the extrema of
a function very accurately. This may, however, require negatively large wi and �i,
implying that the hidden neurons can only be activated within a small region during
the training. In other words, the training based on gradient descent will be slow since
in most cases the derivatives of the activation functions are near zero. Moreover, the
global characteristics of the sigmoidal function are not fully utilized. To overcome this
deFciency, the condition in Eqs. (8) and (13) is relaxed. Through numerous simulations,
the following condition is empirically found to be eOective:

0:086
�

(M + 1)(A− B)
6 0:2:
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Fig. 3. Network output corresponding to random extrema location initialization.

3.2. Random extrema location initialization (RELI)

Computational complexity and dependence on the given function are the drawbacks
of the MELI method. Two of the most important reasons that pure random initialization
methods are still widely used are their independence on the given data set and their
low computational complexity. A method that can exploit the advantages of both of
the above initialization methods will be very desirable.

The MELI method proposed in the last section is used to initialize the network
with the smallest architecture. If we increase the size of the architecture, the promis-
ing area may be enlarged correspondingly, thus providing more Eexibility. Based on
these heuristics, we propose a random extrema location initialization method. Instead
of initializing the network with the same extrema locations and values as the func-
tion to be approximated, the network is initialized with extrema distributed randomly
within the approximation interval. The only requirement is that the extrema density
corresponding to the initialization should be higher than the extrema density of the
function to be approximated. This method is illustrated in Fig. 3. Since the extrema
are distributed randomly, we do not need to approximate the value of the extrema,
and thus the computational complexity of this method is almost the same as the pure
random initialization method. In addition, locations of the extrema provide a strong
guide to the training, resulting in faster and more accurate convergence.

One interesting question is whether this weight initialization method for function
approximation can be used for classiFcation problems. In fact, a classiFcation problem
can be considered as a special case of function approximation. In this case, the target
function value is 1 for sample points belonging to one class, and 0 for sample points
belonging to the other. Then, the same methods for function approximation can be used
to solve the classiFcation problem. Based on the RELI method, we have developed a
chessboard initialization method (CIM). In this method, the weights are initialized such
that the extrema are distributed uniformly over the input area (Fig. 6). Experiments
in Section 4 show remarkable improvements in convergence time over the random
initialization method.
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4. Experimental results

To evaluate the eOectiveness of the proposed initialization methods, several exper-
iments of function approximation have been carried out. The performance of our ap-
proach is compared to the previous state-of-the-art method.

Experiment 1. The proposed initialization methods are compared to the random ini-
tialization method on approximating the Hermite polynomial:

f(x) = 1:1(1 − x + 2x2)exp(− 1
2 x

2): (24)

A random sampling on the interval [ − 4; 4] is used to obtain 30 sample data for the
training set. Note that three extrema (two maxima and one minimum) exist within this
interval. Thus, four hidden neurons are needed to approximate the Hermite polynomial
within the interval [ − 4; 4]. We Frst use the sample points to identify approximate
positions of the extrema, then the initialization weights are selected according to the
procedure described in Section 3.1.

As shown in Fig. 4, the proposed MMI method converges much faster than the
random initialization method. This Hermite polynomial problem has been studied in
[21] to train the radial basis function neural network. The best results they could

Fig. 4. Approximating the Hermite polynomial: (a) approximation results using the mini-max initialization,
(b) training speeds of MMI and random initialization.
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Fig. 5. Approximating f(x)=(1−0:5x) sin(2�x)+(1+0:4x) cos(�x)+(1+0:1x) sin(3�x): (a) approximation
result using random initialization, (b) approximation results using MMI, (c) training speeds of MMI and
random initialization.

obtain were to use seven hidden units. Note that our method can construct the network
with the smaller architecture (only four hidden neurons).

Experiment 2. Approximate the continuous function

f(x) = (1 − 0:5x) sin(2�x) + (1 + 0:4x) cos(�x) + (1 + 0:1x) sin(3�x) (25)

in the interval [0; 5]. Sixty uniformly sampled data are used as the training points
in this experiment. From the sampled data, it is found that 15 extrema exist in this
interval, and thus 16 hidden neurons are needed to approximate this function within
interval [0; 5].

As shown in Fig. 5, the network with weights randomly initialized cannot approx-
imate this complicated function accurately. The training is stuck in a local minimum
and cannot escape from it, even with more than 10 00 000 epoches. On the other hand,
the network is able to approximate the function accurately in only several thousands
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Fig. 6. Chess board initialization for classiFcation.

Fig. 7. Performance of the chess board initialization and random initialization on the two-spiral problem.

epoches using the proposed MMI method. The local minima are obviously avoided by
the proposed method.

Experiment 3. The two-spiral problem is known to be a diGcult classiFcation bench-
mark that requires discrimination between two sets of points lying on two distinct
spirals in the plane. Using the radial distance between two spirals as the distance
between the extrema, we then obtain the extrema density in this case. According to
Theorem 2.1, 20 sigmoidal hidden neurons are selected. Among the hidden neurons,
10 of them are mainly used to initialize the weights corresponding to input 1 (X in-
put) and the others are mainly used to initialize the weights corresponding to input 2
(Y input), resulting in the initialization shown in Fig. 6. As expected, CIM converges
much faster than the random initialization method, as shown in Fig. 7.

Experiment 4. In order to test the eOectiveness of random extrema location method on
functions with biased extrema locations, the following function is used:

f(x) = sin(4�x1=2) + (1 + 0:4x) cos(�x): (26)
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Fig. 8. Performance of the random extrema location initialization and random initialization on the function
with biased extrema locations: (a) random extrema location initialization, (b) training speeds of RELI and
random initialization.

One hundred uniformly sampled data are used as the training points within the interval
[0; 5] in this experiment. Note that 9 extrema exist in this interval and locations of the
extrema are biased. According to our discussion in Section 3.2, the extrema density of
the initialization output should be greater than that of the function to be approximated.
Hence, a network with 16 sigmoidal neurons is initialized. Fig. 8 shows that our
proposed method converges signiFcantly faster than the random initialization method.
That is, our method is eOective even in approximating functions with biased extrema
locations.

Experiment 5. The network is trained to approximate a two-dimensional continuous
function:

f(x1; x2) = cos(2�x1) cos(2�x2) exp − (x2
1 + x2

2) (27)

on the square {(x1; x2) : −16 x16 1 and − 16 x26 1}. Four hundred uniformly
sampled data are used as training points in this experiment. The localized sigmoidal
function is used as the activation function of the hidden neurons. It is found that
25 extrema exist within this interval. Thus, 25 hidden neurons are needed. Using the
criteria in Eq. (13) to initialize the weights, the network is constructed to approximate
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Fig. 9. Surface for the function of f(x1; x2) = cos(2�x1) cos(2�x2) e−(x21+x22).

Fig. 10. Approximating f(x1; x2) = cos(2�x1) cos(2�x2) e−(x21+x22).

the function f(x1; x2) shown in Fig. 9. Again, as shown in Fig. 10, the function is
approximated successfully using our method while random initialization is stuck at a
local minimum.

Table 1 summarizes the performance comparison between MMI and the random
initialization method in terms of mean square error (MSE) at diOerent epoches. For
the Fve experiments simulated above, it demonstrates that MMI has outperformed the
random initialization method in all experiments.

Experiment 6. To test the performance of the proposed method on non-analytic prob-
lems, two real-life data sets are considered. Both of them are obtained from MPEG-4
compressed video bitstreams; each point of a data set represents the distortion of a
frame between the decoded video and the original video sequence. In this experiment,
two diOerent groups of frames are selected from the Coastguard sequence to approx-
imate the distortion curve, and 36 hidden neurons are used. The initialization method
which has been tested optimal in [18] (variance of 0.2, which corresponds to a weight
range of [ − 0:77; 0:77]) is selected to compare with our method. Figs. 11 and 12
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Table 1
Comparison of the training results obtained by the MMI and random initialization method for Fve problems
at diOerent epoches

Experiment MSE

MMI Random initialization

500 1000 3000 10 000 500 1000 3000 10 000

1 0.031 0.012 0.009 0.008 0.310 0.127 0.045 0.011
2 0.167 0.103 0.049 0.024 3.681 3.469 3.107 2.652
3 0.056 0.042 0.034 0.026 0.107 0.103 0.100 0.091
4 0.175 0.102 0.021 0.008 2.753 2.696 2.691 2.615
5 0.065 0.050 0.029 0.020 0.479 0.473 0.465 0.351

Fig. 11. Approximation results of two initialization methods on the coastguard sequence (Frst 50 frames):
Mini-max initialization (curve I); initialization with variance of 0.2 corresponding to a weight range of
[ − 0:77; 0:77] (curve II).

Fig. 12. Approximation results of two initialization methods on the coastguard sequence (second 50 frames):
Mini-max initialization (curve I); Initialization with variance of 0.2 corresponding to a weight range of
[ − 0:77; 0:77] (curve II).
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show the approximation results using our proposed method and the method in [18] on
both data sets, respectively. The results demonstrate the eOectiveness of our method in
tackling non-analytic problems. On the other hand, the learning by initialization with a
variance of 0.2 corresponding to the weight range of [ − 0:77; 0:77] is stuck at a local
minimum.

5. Conclusions

A novel initialization method, referred to as the MMI method, has been proposed to
eGciently approximate functions. MMI is based on the extrema equivalence concept:
we can thus use the number of extrema to estimate the complexity of the function,
and construct the network with the most compact size which guarantee the approxi-
mation in the extrema points. In order to initialize points located within the promis-
ing area, we have proposed the MELI and random extrema location Initialization to
start the training. The main advantage of MMI is that it can construct the network
with the optimal size with the initial point located very likely within the promis-
ing area. Thus, local minima are avoided, and fast convergence can be achieved.
Experimental results demonstrate that the proposed MMI method is very eOective
for function approximation. MMI is also applicable to and eOective in solving the
classiFcation problem such as the two-spiral problem; some good results have been
obtained.
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