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Abstract: - The research addresses the critical anomaly detection problem in Software-Defined Networking (SDN), a domain where 

network integrity and security are paramount. Employing the Isolation Forest algorithm, a machine learning model renowned for its 

efficacy in identifying outliers, the study systematically generates synthetic network traffic data to train and test the model's detection 

capabilities. The methodology encompasses simulating a range of contamination rates to reflect varying degrees of anomalous activities 

within the network. Key findings indicate that while the model exhibits potential in anomaly detection, as reflected by the progressive 

increase in triggered alerts and policy changes, its performance metrics, such as precision, recall, F1-score, and AUC, reveal limitations 

in its current application. The research contributes to the field by providing a detailed analysis of the Isolation Forest algorithm's 

performance in an SDN context and laying the groundwork for future enhancements in machine learning-based security measures 

within these networks.  

Keywords: Anomaly Detection, Software-Defined Networking, Isolation Forest, Synthetic Data Simulation, Network 

Security. 
 

I. INTRODUCTION 

The advent of Software-Defined Networking (SDN) marks a paradigm shift in network management, 

allowing for more agile and centralized control mechanisms [1]. This innovation is critical as networks expand in 

size and complexity, particularly with the advent of cloud computing and the Internet of Things (IoT). SDN's 

ability to dynamically programmatically manage, configure, and optimize network resources underscores its 

significance in modern digital infrastructure [2]. Within this dynamic environment, the role of anomaly detection 

becomes increasingly vital. Anomalies in network traffic can indicate various issues, from system faults to 

cybersecurity threats [3]. 

The capacity to swiftly identify and address these irregularities is central to maintaining network integrity and 

security. As such, anomaly detection is not just a feature of SDN—it is essential for its sustained operation and 

reliability [4]. The complexity of network interactions in SDN environments, coupled with the sheer volume of 

data, necessitates the integration of machine learning [5]. Traditional statistical methods are often inadequate in 

parsing the nuanced patterns that may signal a network anomaly. With their ability to learn from data, machine 

learning algorithms offer a promising solution for enhancing anomaly detection capabilities in SDN [6, 7]. This 

paper aims to evaluate the applicability and efficiency of the Isolation Forest machine learning algorithm in 

detecting network anomalies within an SDN context. By simulating diverse network behaviors and potential 

anomalies, the study seeks to establish a benchmark for the algorithm's performance and identify potential 

improvement areas. 
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This paper aims to evaluate the applicability and efficiency of the Isolation Forest machine learning algorithm in 

detecting network anomalies within an SDN context. By simulating diverse network behaviors and potential 

anomalies, the study seeks to establish a benchmark for the algorithm's performance and identify potential 

improvement areas. 

Key Research Highlights 

• Centralized Network Management: Emphasizes how SDN's centralized control facilitates rapid response and 

adaptation to network changes, a capability that is leveraged by the integration of machine learning for anomaly 

detection. 

• Automated Anomaly Detection: Highlights the transition from manual to automated anomaly detection 

mechanisms, showcasing the potential for machine learning to operate in real-time, thereby enhancing network 

security. 

• Machine Learning Efficacy: Investigates the effectiveness of the Isolation Forest algorithm in identifying 

anomalies, contributing to the body of knowledge on machine learning applications in SDN. 

• Benchmarking Performance: Provides a systematic algorithm evaluation against simulated network scenarios, 

offering insights into its operational strengths and weaknesses. 

• Future-Ready SDN: Aligns the research with the forward trajectory of network technology, identifying how SDN 

can evolve to meet future demands, particularly regarding security and performance. 

The findings and discussions presented herein aim to contribute to the strategic development of SDN 

capabilities, offering a roadmap for integrating advanced machine learning techniques to bolster network anomaly 

detection and, by extension, network security. Concluding the introductory discourse, the paper proceeds with a 

structured exposition. Section 2 delves into the existing literature, situating our work within the broader context of 

network security and machine learning applications. Section 3 articulates the methodology, detailing the synthetic 

data generation process, the Isolation Forest algorithm's implementation, and the simulation-based evaluation 

setup. Section 4 presents a critical analysis of the results, examining the algorithm's performance metrics and their 

implications for SDN anomaly detection. The practical implications of our findings are followed by discussions in 

the same section, reflecting on the integration of machine learning in SDN environments. Finally, Section 6 

concludes the research and proposes future avenues for investigation, ensuring the study's relevance and 

applicability to ongoing advancements in SDN security. This organization guides the reader through a coherent 

narrative, from theoretical underpinnings to practical applications, culminating in a forward-looking perspective 

on the field. 

II. 2. BACKGROUND AND RELATED WORK 

The literature background section provides a comprehensive examination of the existing research on the 

application of machine learning in network security, delving into diverse methodologies and their 

implementations in various contexts. This exploration includes studies on intrusion detection in network traffic, 

security in Industrial IoT networks, communication security in drone swarms, network anomaly detection, and 

mobile malware detection. Each area reflects network security challenges' growing complexity and urgency in an 

increasingly connected world. The review highlights the advancements made and underscores the pivotal role of 

machine learning in enhancing and innovating network security solutions. 

2.1. SDN Architectures 

The concept of Software-Defined Networking (SDN) has become a cornerstone in the evolution of network 

architectures. It revolutionizes network management by decoupling the control plane from the data forwarding 

plane, thereby introducing a high degree of programmability in network configurations. The exploration of SDN 

architectures is rich and varied, covering centralized, distributed, and hybrid models incorporating Network 

Functions Virtualization (NFV) [8]. 

• Centralized and Distributed SDN Architectures: Research has thoroughly investigated load balancing within 

SDN architectures, particularly in centralized and distributed frameworks. A pivotal study delineates a 

classification of load-balancing strategies employed in these differing architectures, examining their operational 

mechanisms and efficiencies [9]. 
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• Flat Distributed SDN Architectures: Routing and scalability within flat distributed SDN architectures have also 

been scrutinized. Considering the innate centralized nature of traditional SDN, one study probes the merits of 

distributing control across the network, hence addressing scalability issues. This analysis underscores the balance 

required between control plane routing overhead and inter-controller communications when decentralization is 

introduced [10]. 

• Integrated NFV/SDN Architectures: The synergy of NFV and SDN is another area that has attracted significant 

attention. NFV seeks to virtualize network functions onto generic hardware, while SDN separates control and data 

planes for enhanced network management. Comprehensive reviews have synthesized the current designs and 

pinpointed opportunities for advancement within integrated NFV/SDN architectures, propelling the conversation 

on architectural innovation and optimization [11]. 

• SDN Architectures with Multiple Controllers: To enhance scalability, reliability, and availability, the concept 

of multi-controller architectures in SDN has been examined. Overviews of this subject matter elucidate the 

diversity of multi-controller designs and dissect the trade-offs associated with various implementations, both 

theoretical and practical [12]. SDN architectures present a spectrum of designs, each with its unique approach to 

addressing the challenges of network programmability, scalability, and robustness. These architectures are 

fundamental to the ongoing discourse on network evolution and the pursuit of optimal operational efficacy. 

2.2. Anomaly Detection 

Anomaly detection is a crucial challenge in numerous fields, attracting diverse research methodologies 

tailored to specific application domains. These methodologies extend from specialized domain-centric techniques 

to more universally applicable strategies. Commonly adopted approaches in anomaly detection include the 

application of knowledge distillation, advanced deep learning models like convolutional neural networks (CNN), 

recurrent autoencoders, and innovative deep transformer networks. The utility of these techniques spans various 

sectors, notably including the analysis of IoT and multivariate time series data. Their efficacy is often established 

through rigorous experimentation and comprehensive benchmarking processes [13]. 

An intriguing development in this realm is the application of knowledge distillation for unsupervised anomaly 

detection. A notable study in this area introduced a distinctive teacher-student framework utilizing a reverse 

distillation paradigm. This method enhances the diversity in anomalous data representation, significantly 

advancing anomaly detection methodologies [14]. 

An integrated approach combining CNN and recurrent autoencoder models has been proposed in the IoT time 

series domain. This approach leverages a dual-stage sliding window technique in the data pre-processing phase, 

enhancing the model's ability to capture relevant features. The model's performance, as evidenced by empirical 

results, surpasses traditional models across various classification metrics, offering an effective solution for 

anomaly detection in IoT time series [15]. 

A novel deep transformer network-based model, TranAD, has also been designed for multivariate time-series 

data. TranAD employs attention-based sequence encoders that rapidly infer anomalies using comprehensive 

temporal trends. Incorporating model-agnostic meta-learning (MAML) allows for efficient training with limited 

datasets. Empirical studies demonstrate TranAD's superiority over existing baseline methods, both in detection 

accuracy and diagnostic capabilities, underpinning its effectiveness in handling complex data sets [16]. 

The development of an anomaly detection benchmark, ADBench, has provided a platform for evaluating the 

performance of various algorithms across 57 benchmark datasets. This benchmarking exercise encompasses 

different supervision levels, anomaly types, and noisy or corrupted data scenarios. ADBench offers invaluable 

insights into the influence of supervision and anomaly characteristics on detection algorithms, guiding future 

research in algorithm selection and design [17]. The landscape of anomaly detection is marked by diverse and 

evolving techniques, ranging from knowledge distillation to sophisticated deep-learning models. These methods 

have proven their mettle across various domains, substantiated by extensive experimental validation and 

benchmarking. Such advancements demonstrate the effectiveness of these methods and pave the way for future 

innovations in anomaly detection across different application domains [18]. 
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2.3 Machine Learning in Network Security 

The integration of machine learning in network security has evolved significantly, offering innovative solutions to 

combat various cyber threats. Here is an overview of some notable implementations: 

• Intrusion Detection in Network Traffic: In network security, a groundbreaking approach was introduced with 

the development of a genetic machine learning ensemble model designed explicitly for intrusion detection in 

network traffic. This model, tailored to IoT networks, was crafted to excel beyond traditional Intrusion Detection 

Systems (IDS) capabilities, presenting a more dynamic and efficient method for identifying and mitigating 

intrusions [19]. 

• Security Attacks in Industrial IoT Networks: Addressing security concerns in Industrial IoT networks, a 

pioneering study combined the strengths of Blockchain algorithms with machine learning techniques. This 

composite solution was engineered to identify potential threats and initiate secure information transfer protocols 

while adapting to the unique computational demands of industrial IoT environments [20]. 

• Securing Communications in a Swarm of Drones: Another innovative application involved machine learning in 

conjunction with Software Defined Network (SDN) technologies to bolster the security of communication 

networks within drone swarms. The implemented solution employed a Random Forest Classifier-based machine 

learning model to detect prevalent network attacks, including denial of service, port scanning, and brute force 

attacks, showcasing the versatility of machine learning in diverse network scenarios [21]. 

• Network Anomaly Detection: Focusing on network anomaly detection, a comprehensive study employed 

multilayer feature selection techniques alongside machine learning algorithms. The goal was to refine intrusion 

detection methods, utilizing the Intrusion Detection Evaluation Dataset (CIC-IDS 2017) as a benchmark. This 

research provided an in-depth analysis of intrusion detection techniques, enhancing the understanding of anomaly 

detection in network security [22]. 

• Mobile Malware Detection: A systematic overview of machine learning methods for mobile malware detection 

was conducted in the domain of mobile security. This extensive study analyzed 154 selected articles, critically 

evaluating their methodologies and findings. The aim was to equip researchers with profound insights into the 

field and identify potential directions for future research in mobile malware detection [23]. These diverse 

implementations underscore the breadth of machine learning applications in network security. From enhancing 

intrusion detection systems to safeguarding communication networks and mobile devices, machine learning has 

become integral to developing advanced, resilient cybersecurity solutions. 

2.4. Research Gaps Identified from the Literature Review 

Despite the advancements in machine learning applications within network security, as outlined in the literature 

review, several research gaps remain evident: 

1. Adaptability to Evolving Threats: Current models often lack the dynamic adaptability to keep pace with rapidly 

evolving cyber threats, especially in IoT and Industrial IoT networks. 

2. Scalability and Efficiency in Diverse Environments: Many existing solutions do not adequately address 

scalability and efficiency, particularly in complex network environments like drone swarms and large-scale IoT 

networks. 

3. Integration of Advanced Machine Learning Techniques: While some studies have implemented sophisticated 

machine learning models, there is a gap in the comprehensive integration of newer techniques, such as deep 

learning and ensemble methods, across various network security applications. 

4. Real-World Data Validation: Most research relies on simulated or benchmark datasets. It is necessary to validate 

and test these machine-learning models using real-world data to enhance their practical applicability and 

reliability. 

5. Holistic Security Solutions: Many studies focus on specific aspects of network security, such as intrusion 

detection or malware prevention, without considering a holistic approach encompassing all network security 

facets. 
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2.5. Proposed System 

To address these gaps, the proposed system integrates the Isolation Forest algorithm within a Software-Defined 

Networking (SDN) environment for enhanced anomaly detection. The system utilizes a sophisticated approach to 

generate synthetic network traffic data, simulating various network behaviors and potential anomalies. This setup 

allows for a controlled yet realistic evaluation of the model's performance. 

2.5.1. Key aspects of the proposed system include: 

1. Dynamic Anomaly Detection: Leveraging the Isolation Forest algorithm, the system can dynamically identify 

anomalies in network traffic, catering to the changing patterns of cyber threats. 

2. Scalable Architecture: The integration with SDN ensures scalability, allowing the system to adapt to different 

network sizes and complexities. 

3. Real-time Network Monitoring: The system provides real-time monitoring and rapid response capabilities by 

continuously analyzing network traffic. 

4. Feedback Loop for Continuous Improvement: Incorporating a feedback mechanism, the model is retrained and 

updated based on its performance and new data, ensuring its relevance over time. 

5. Comprehensive Security Approach: The system is designed to detect anomalies and influence SDN policy 

changes, offering a more holistic approach to network security. 

This proposed system aims to bridge the identified gaps in current research, offering an advanced, adaptable, 

and comprehensive solution for network security in the era of complex and evolving cyber threats.The literature 

background underscores the significant strides in integrating machine learning into network security. While these 

studies have laid a solid foundation, they also reveal critical gaps, such as the need for adaptable, scalable, and 

comprehensive security solutions to keep pace with the evolving landscape of cyber threats. The diversity of 

applications, from IoT to industrial systems and mobile networks, highlights the versatility and necessity of 

machine learning in this field. This review sets the stage for the proposed system, which seeks to address these 

gaps by implementing the Isolation Forest algorithm within an SDN framework, offering a novel, dynamic 

approach to anomaly detection and network security management. The insights gleaned from this review inform 

the development of the proposed system and pave the way for future research directions in machine learning-

driven network security. 

III. PROPOSED SYSTEM ARCHITECTURE 

This section delineates the comprehensive mathematical models and algorithms employed in integrating 

anomaly detection within a Software-Defined Networking (SDN) framework using machine learning. 

 

Figure 1: Proposed System Architecture 

3.1 Data Collection / Generation 

This module is responsible for gathering and generating the required data for the anomaly detection process It 

involves the creation of synthetic datasets that mimic normal and anomalous network behaviors. We synthetically 

create the data as we do not have an existing dataset for this research. The creation of synthetic data is pivotal to 

emulating network behaviors and anomalies. The generation process follows a probabilistic model defined by: 
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𝑋normal ∼ 𝒩(𝜇normal , Σnormal )

𝑋anomalous ∼ 𝒩(𝜇anomalous , Σanomalous )
 

 

Where Xnormal  and Xanomalous  represent the feature vectors for normal and anomalous data instances, 

respectively. The parameters μnormal  and Σnormal  are the mean and covariance matrix of the multivariate normal 

distribution for regular network traffic, while μanomalous  and Σanomalous  correspond to the anomalous traffic. The 

contamination rate θ determines the proportion of anomalies introduced into the dataset. 

 

Figure 2: Data Collection / Generation Model 

It involves the creation of synthetic datasets that mimic normal and anomalous network behaviors. We 

synthetically create the data as we do not have an existing dataset for this research. The creation of synthetic data 

is pivotal to emulating network behaviors and anomalies. The generation process follows a probabilistic model 

defined by: 

Xnormal ∼ 𝒩(μnormal , Σnormal )

Xanomalous ∼ 𝒩(μanomalous , Σanomalous )
 

Where Xnormal  and Xanomalous  represent the feature vectors for normal and anomalous data instances, 

respectively. The parameters μnormal  and Σnormal  are the mean and covariance matrix of the multivariate normal 

distribution for regular network traffic, while μanomalous  and Σanomalous  correspond to the anomalous traffic. The 

contamination rate θ determines the proportion of anomalies introduced into the dataset. 

3.2 Pre-processing Module 

The pre-processing module standardizes and normalizes the data, preparing it for practical analysis. This 

involves scaling features to a uniform range and potentially applying other data transformation techniques. 

 

Figure 3: Pre-Processing Model 

3.3 Machine Learning Model: Isolation Forest 

In this module, the Isolation Forest algorithm is utilized for anomaly detection. It involves training the model 

on the pre-processed data and adjusting its parameters to optimize performance. 
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Figure 4: Machine Learning Model: Isolation Forest Model 

The Isolation Forest algorithm forms the core of the anomaly detection mechanism. The fundamental 

principle is to isolate anomalies rather than profile standard instances. The isolation measure quantified as path 

length h(x) is shorter for anomalies within the constructed trees. For a forest of t trees, the expected path length 

E(h(x)) and the scoring function s(x, n) are defined as follows: 

E(h(x)) =
1

t
∑  

t

i=1

 hi(x)

s(x, n) = 2
−
E(h(x))
c(n)

 

where hi(x) is the path length of x in the ith tree and c(n) is the normalization term representing the average 

path length in an unsupervised Binary Search Tree (BST) for n instances. 

3.4 Decision Engine 

The decision engine interprets the anomaly detection results to make real-time decisions. This could involve 

triggering alerts or initiating automated responses to detect anomalies. 

 

Figure 5: Decision Engine Model 

The decision engine processes the anomaly scores to determine policy actions within the SDN controller. The 

decision function d(x) is defined as: 

{
1  if s(x, n) < τ
−1  otherwise 

 

Where τ is a threshold set following the contamination rate θ. 

3.5  SDN Controller Integration 

This module integrates the outcomes of the anomaly detection process into the SDN controller. It translates 

the model's predictions into actionable insights and policy updates for network management. 
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Figure 6: SDN Controller Integration 

The SDN controller adopts the decisions d(x) to adjust its policies accordingly. The number of policy 

changes Δ𝒫 is a summation of the policy adjustments required across all instances X in the test set: 

Δ𝒫 =∑  

x∈X

𝕀(d(x) = −1) 

3.6 Alert System Simulation 

The alert system module is responsible for notifying the network administrators of potential threats or 

anomalies detected by the model, enabling timely interventions. 

 

Figure 7: Alert System Model 

The alert system acts upon the decisions rendered by the machine learning model. The total number of alerts 

triggered A is given by: 

A =∑  

x∈X

𝕀(d(x) = −1) 

3.7 Feedback Loop 

This module allows for continuous improvement of the machine learning model based on its performance and 

additional data inputs. It refines the model to enhance accuracy and adapt to evolving network patterns. 
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Figure 8: Feedback Loop Module 

The feedback loop enhances the model by recalibrating it based on the initial decisions. The updated model 

M′ is obtained by retraining with additional labeled instances (X′, Y′) : 

M′ = Train(M, X′, Y′) 

3.8 Performance Evaluation 

Precision, recall, and the area under the Receiver Operating Characteristic (ROC) curve are the performance 

metrics that evaluate the model's efficacy. Precision and recall are derived from the confusion matrix C, and the 

ROC curve is plotted using true favorable rates TPR against false positive rates FPR, defined as: 

TPR =
TP

TP + FN
, FPR =

FP

FP + TN
 

The area under the curve (AUC) provides a scalar value quantifying the overall performance: 

AUC = ∫  
1

0

TPR(FPR−1(u))du 

3.9. Full Flow Algorithm  

Algorithm 1 delineates a structured approach for detecting anomalies within Software-Defined Networking (SDN) 

using the Isolation Forest method. This approach systematically generates synthetic data, processes it, models it, 

and then evaluates the presence of anomalies, catering to the dynamic needs of SDN security frameworks. 

Algorithm 1: Anomaly Detection in Software-Defined Networking Using Isolation Forest 

Inputs: 

• 𝑁 : Total number of samples for synthetic data generation 

• 𝑀 : Number of features in each data sample 

• Θ: Set of contamination rates for different simulations 

• 𝒪 : Output directory for saving results 

Outputs: 

• A collection of results from the anomaly detection process, stored in 𝒪 

Algorithm Procedure: 

Setup Environment: 

• Create necessary directories in 𝒪 for storing results. 

• Initialize an empty list 𝑅 for ROC curve data. 

• Perform Simulations: 

• For each 𝜽 in 𝚯 do: 
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o Data Generation: 

▪ 𝑋, 𝑦 ← 'GenerateSyntheticData (N, M, Itheta) ' 

o Pre-processing: 

▪ 𝑋′ ← 'StandardizeData (X) ' 

o Model Training: 

▪ Split 𝑋′ into 𝑋train , 𝑋test  

▪ ℳ ← 'TrainIsolationForest(X_{train}, Itheta) 

o Anomaly Detection: 

▪ Predictions, scores ← 'ApplyDecisionEngine (∖ mathcal {𝑀}, 𝑋−{test })′ 

o SDN Integration and Alert Simulation: 

▪ Simulate policy updates and alerts in the SDN environment. 

o Feedback Loop: 

▪ Update ℳ based on system feedback. 

o Save Results: 

▪ Store results of the simulation in 𝒪. 

             End for 

 

The execution of Algorithm 1 facilitates a robust anomaly detection process, yielding an array of evaluative 

results that are systematically archived for analysis. This algorithm efficiently orchestrates simulation, detection, 

and feedback mechanisms that are foundational for reinforcing the security posture of SDN environments. 

IV. RESULTS & DISCUSSION 

This section delves into the comprehensive analysis of the results obtained from the simulations conducted to 

evaluate the efficacy of the Isolation Forest model in network anomaly detection. It encompasses a detailed 

examination of various metrics such as classification accuracy, precision, recall, F1-score, AUC-ROC, AUC-PR, 

and the impact of detected anomalies on SDN policy changes, providing a holistic view of the model's 

performance across different simulated environments. 

4.1 Overview of Synthetic Data 

The synthetic dataset comprises several key network traffic features, each representing a dimension of the 

underlying network behavior: 

• packet_rate and byte_rate describe the frequency and volume of data packets transferred across the network, 

respectively, providing insight into the overall network traffic load. 

• session_duration captures the temporal aspect of network connections, allowing for analyzing long-standing 

versus transient communication patterns. 

Table 1: Summary of Synthetic Data 

Features 

Simul

ation 

1 

Simul

ation 

1 

Simul

ation 

1 

Simul

ation 

1 

Simul

ation 

2 

Simul

ation 

2 

Simul

ation 

2 

Simul

ation 

2 

Simul

ation 

3 

Simul

ation 

3 

Simul

ation 

3 

Simul

ation 

3 

 mean std min max mean std min max mean std min max 

packet_r

ate 

0.049

094 

1.042

932 

-

1.717

13 

3.472

813 

-

0.020

63 

1.082

283 

-

1.757

83 

2.645

359 

0.006

661 

0.977

062 

-

1.575

98 

2.356

41 

byte_rate 0.039 0.969 - 3.547 0.051 1.045 - 2.844 - 0.993 - 2.054
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146 361 1.782

33 

412 605 63 1.439

84 

426 0.050

93 

63 1.553

05 

805 

session_

duration 

0.007

393 

1.034

251 

-

1.874

37 

3.306

325 

0.026

113 

0.955

127 

-

1.178

2 

3.139

47 

-

0.049

94 

1.002

011 

-

1.974

35 

2.795

502 

error_rat

e 

0.019

281 

1.040

226 

-

1.802

25 

3.967

443 

0.047

696 

0.997

336 

-

1.604

59 

2.528

878 

-

0.078

16 

0.981

879 

-

2.185

01 

2.325

842 

packet_s

ize_avg 

0.000

638 

0.982

103 

-

1.954

08 

3.583

781 

0.055

238 

1.024

431 

-

1.435

95 

2.432

533 

-

0.015

12 

0.994

021 

-

2.047

88 

2.047

103 

traffic_v

olume 

0.020

951 

0.967

489 

-

1.755

69 

3.042

338 

0.066

992 

1.087

694 

-

1.748

79 

2.915

375 

-

0.002

12 

0.952

327 

-

2.258

52 

2.246

914 

port_usa

ge_rate 

-

0.015

92 

0.947

257 

-

1.643

72 

3.102

819 

0.016

264 

1.048

595 

-

2.124

73 

2.641

14 

-

0.043

03 

0.955

542 

-

1.723

07 

2.168

273 

protocol

_type 

-

0.024

05 

0.947

361 

-

1.866

79 

3.509

376 

0.038

866 

1.012

228 

-

1.548

35 

2.646

2 

-

0.015

46 

0.984

516 

-

1.642

99 

2.344

399 

traffic_e

ntropy 

-

0.016

35 

1.023

647 

-

1.607

17 

3.816

236 

-

0.002

42 

1.036

696 

-

1.451

31 

2.749

156 

-

0.058

64 

1.025

515 

-

1.778

69 

2.354

7 

signal_st

rength 

-

0.030

16 

1.024

642 

-

2.369

91 

4.084

417 

0.006

03 

1.015

41 

-

1.857

07 

2.718

774 

-

0.022

57 

0.957

965 

-

1.527

62 

2.477

996 

label 0.105 
0.307

323 
0 1 0.22 

0.415

286 
0 1 0.285 

0.452

547 
0 1 

• error_rate offers a measure of transmission integrity, with higher rates potentially indicative of network issues or 

malicious activity. 

• packet_size_avg reflects the average payload capacity used in network transmissions, which may vary according 

to the nature of the traffic, whether it be bulk data transfers or regular browsing activities. 

• traffic_volume quantifies the total communication over the network, which is essential for understanding network 

capacity usage. 

• port_usage_rate provides information on the distribution of traffic across different service ports, a feature that 

can be crucial for identifying unusual traffic patterns often associated with security breaches. 

• protocol_type indicates the communication protocols in use, a vital determinant of the network's operational 

profile. 

• traffic_entropy measures the randomness in network traffic, where higher entropy can signal complex and 

possibly suspicious traffic patterns. 

• signal_strength is relevant in scenarios where wireless communications are involved, affecting the reliability and 

quality of the network service. 

The label serves as the ground truth, differentiating between standard (0) and anomalous (1) traffic, which is 

essential for supervised learning. 

The Isolation Forest algorithm's performance can be dissected through the lens of the generated features. The 

packet_rate and byte_rate directly influence the model's ability to discern patterns in the data flow intensity, while 

session_duration offers contextual clues about the persistence of traffic, which may be pivotal in detecting slow 

and stealthy data exfiltration attempts. Anomalies in error_rate and packet_size_avg might suggest packet 

corruption or manipulation, often associated with network attacks. Traffic_volume and port_usage_rate are 

instrumental in identifying volumetric anomalies and port-scanning activities. The variance in protocol_type aids 
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in understanding the model's sensitivity to using different protocols, which attackers might exploit to bypass 

traditional detection mechanisms. traffic_entropy is particularly telling, as anomalies often manifest as deviations 

from established traffic patterns. Finally, signal-strength fluctuations in a wireless network scenario could unveil 

interference or jamming attempts, which are critical for maintaining network integrity. The synthetic data, with its 

rich set of features, provides a comprehensive playground for the Isolation Forest model to learn and identify 

network anomalies, with the potential to highlight the strengths and weaknesses of the anomaly detection 

approach in various simulated network environments. The results from this simulation study could inform the 

development of more robust network anomaly detection systems and guide the implementation of adequate 

security measures. 

4.2 Model Hyperparameters 

The hyperparameters for the Isolation Forest model, as summarized in Table 2, are critical to its performance and 

effectiveness in anomaly detection within the network traffic data. The choice and tuning of these 

hyperparameters are driven by the underlying assumptions of the model and the characteristics of the data being 

analyzed. Here is a detailed discussion of the rationale behind the chosen hyperparameters: 

Table 2: Model Hyperparameters Summary 

Parameters Simulation 1 Simulation 2 Simulation 3 

n_estimators 100 100 100 

contamination 0.1 0.2 0.3 

The impact of these hyperparameters on the model's performance can be multifold: 

• The constant n_estimators across simulations ensure that any changes in the model's detection ability are 

primarily due to variations in the contamination parameter rather than differences in the number of trees. 

• Increasing the contamination rate is expected to lower the threshold for detecting anomalies, which could result 

in a higher actual positive rate and potentially increase the false positive rate. 

• The performance trade-off for different contamination levels is likely to be evident in the precision-recall 

characteristics of the model. For instance, a lower contamination rate may lead to higher precision (fewer false 

positives), while a higher contamination rate may improve recall (fewer false negatives) at the expense of 

precision. 

4.3 Anomaly Detection Performance 

We evaluate the performance of the Isolation Forest anomaly detection algorithm across different simulated 

network environments. The analysis focuses on the algorithm's ability to identify anomalous traffic patterns 

accurately, considering varying levels of presumed anomaly prevalence as dictated by the contamination 

hyperparameter. This section interprets the results to discern the efficacy and robustness of the model in detecting 

network anomalies, which is critical for ensuring network security and integrity. 

4.3.1 Classification Metrics 

The classification metrics presented in Table 3 reveal a distinct progression in the performance of the Isolation 

Forest algorithm across the simulations as the contamination rate increases. Here is a concise analysis: 

• Precision (Class 1): Precision is the proportion of actual positive results among all cases labeled as positive by 

the model. The extremely low precision in Simulation 1 suggests that the model did not correctly identify any true 

anomalies, which is corroborated by the zero values for precision, recall, and F1-score. As the contamination rate 

increases in Simulations 2 and 3, there is a slight improvement in precision, indicating that while the model begins 

to identify anomalies, it still struggles with a high rate of false positives. 

• Recall (Class 1): Recall measures the proportion of actual positives correctly identified by the model. The 

increasing recall values from Simulation 1 to Simulation 3 suggest that the model becomes better at detecting true 

anomalies as the contamination rate increases, but this also comes with a higher number of false positives. 

• F1-Score (Class 1): The F1-score is the harmonic mean of precision and recall, balancing the two metrics. The 

low F1 scores indicate that the model performs poorly regarding precision and recall balance across all 
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simulations. Even in Simulation 3, where the F1-score is highest, it remains low, indicating that the model's ability 

to detect anomalies accurately is limited. 

• Accuracy: Accuracy is the proportion of actual results (both true positives and negatives) among the total number 

of cases examined. The low accuracy across all simulations indicates that the model is ineffective in correctly 

classifying normal and anomalous instances. This is particularly problematic in anomaly detection scenarios 

where the cost of misclassification can be significant. 

Table 3: Classification Metrics Comparison 

Simulation 

Precision 

(Class 1) 

Recall 

(Class 1) 

F1-Score 

(Class 1) Accuracy 

Simulation 1 0 0 0 0 

Simulation 2 0.006667 0.022727 0.010309 0.005 

Simulation 3 0.072993 0.175439 0.103093 0.05 

 

 

 
Figure 9: Classification Matrics 

The classification metrics suggest that the model's performance is not optimal for the task at hand, with a 

particularly pronounced issue in correctly classifying anomalies. The metrics indicate a model that is currently 
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ineffective, likely requiring further tuning, more representative training data, or a re-evaluation of the model's 

suitability for this specific anomaly detection application. 

4.3.2 Confusion Matrix Analysis 

Confusion matrices were employed as a critical tool for assessing the performance of the Isolation Forest 

algorithm in anomaly detection within SDN environments. These matrices provided crucial insights into the 

accuracy of the model's classifications, revealing the proportion of true positives, true negatives, false positives, 

and false negatives, thereby clearly depicting the model's efficacy in distinguishing between normal and 

anomalous network traffic. 

Table 4: Summary of Confusion Matrices 

Simulation True Positives + True Negatives 

Simulation 1 0 

Simulation 2 1 

Simulation 3 10 

 

 

 

Figure 10: Confusion Matrices 

4.4 Receiver Operating Characteristic (ROC) Curves 

The ROC Curve Summary table quantifies the model's discriminative performance through the AUC-ROC 

values for each simulation. The AUC-ROC is a critical statistic in assessing classification models, encapsulating 

the likelihood that the model will correctly rank a random positive instance higher than a random negative one. 

• Simulation 1 registers an AUC-ROC score of 0, indicating a complete lack of discrimination between normal and 

anomalous instances within the data. This score implies the model has no predictive power in distinguishing 

between the two classes. 
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• The slight increase in AUC-ROC to 0.005682 in Simulation 2 remains negligible, suggesting the model's 

predictive accuracy is virtually indistinguishable from a random decision. 

• The AUC-ROC value for Simulation 3 improves to 0.073733, reflecting a small but insufficient ability to 

differentiate between normal and anomalous network traffic. Although there is a relative increase, an AUC-ROC 

near this low end of the spectrum denotes a model not adequately capturing the underlying patterns necessary for 

adequate classification. 

Table: ROC Curve Summary 

Simulation AUC-ROC 

Simulation 1 0 

Simulation 2 0.005682 

Simulation 3 0.073733 

 

Figure 11: Comparative ROC Curve 

These AUC-ROC values reflect a model that has not effectively learned from the data features provided to it. 

Further refinement of the model parameters, augmentation of the training data, or reconsidering the model's 

complexity may be required to achieve a level of performance that would be considered acceptable for operational 

purposes[24][25]. 

4.5 Precision-Recall (PR) Curve Analysis 

The PR Curve Summary table provides the AUC-PR (Area Under the Precision-Recall Curve) values for the three 

simulations, offering a nuanced view of the model's classification ability, especially when dealing with 

imbalanced datasets. 

• In Simulation 1, the AUC-PR is 0.054436, which, despite being low, suggests that when the model predicts an 

instance to be anomalous, it is correct approximately 5.44% of the time. However, the low value also indicates 

many false positives—for instance, the model incorrectly labeled anomalous. 

• Simulation 2 shows an AUC-PR of 0.119189, doubling the value from Simulation 1. This suggests an 

improvement in the balance between precision and recall—the model is becoming more accurate in its predictions 

and missing fewer actual anomalies. 

• Simulation 3 sees further improvement in the AUC-PR to 0.164389. This progression indicates that, as the model 

is exposed to a higher contamination rate, it is better at distinguishing the positive class (anomalies) from the 

negative, although the value still indicates room for significant improvement. 

Table: PR Curve Summary 

Simulation AUC-PR 

Simulation 1 0.054436 

Simulation 2 0.119189 

Simulation 3 0.164389 
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Figure 12: PR- Curves 

The Precision-Recall (PR) curve is a valuable tool for understanding the trade-off between precision (the 

accuracy of the optimistic predictions) and recall (the model's ability to find all the positive instances). Generally, 

precision tends to decrease as recall increases since expanding the threshold to capture more positives increases 

the chance of including negatives. In this context, the AUC-PR provides an aggregate performance measure across 

this trade-off. The observed incremental improvements suggest that the model's ability to identify true anomalies 

increases with each simulation. However, it is not yet at a level that can be considered adequate for reliable 

classification, especially in scenarios where the cost of false positives or false negatives is high. 

4.6 SDN Policy Changes Analysis 

The SDN Policy Changes Summary table enumerates the number of policy alterations necessitated by the model's 

anomaly detection outcomes across three simulation scenarios. 

• Simulation 1 led to 21 policy changes. This indicates that the model’s predictions triggered a moderate number of 

updates to the network policies, potentially reflecting a conservative threshold for anomaly detection or lower 

overall detection sensitivity. 

• In Simulation 2, the number of policy changes increased to 50. The rise in adjustments suggests that the model 

identified more behavior as anomalous, possibly due to the higher contamination rate influencing the model's 

detection threshold. 

• Simulation 3 increased to 63 policy changes, the highest among the simulations. This indicates an even more 

aggressive response to detected anomalies, aligning with the highest contamination rate set for this simulation, 

which implies a more liberal anomaly detection strategy. 

Table 5: SDN Policy Changes Summary 

Simulation 

Number of Policy 

Changes 

Simulation 1 21 

Simulation 2 50 

Simulation 3 63 
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Figure 13: SND Policies 

The implications of these policy changes are multifaceted. On the one hand, more policy changes can indicate 

a more dynamic and responsive approach to network security, potentially leading to a more secure environment by 

quickly adapting to detected threats. On the other hand, frequent changes can also lead to instability and 

unpredictability in the network's behavior, disrupting users and systems relying on consistent network policies. 

Excessive policy changes may also reflect a high rate of false positives in anomaly detection, which can lead to 

unnecessary policy updates and could erode trust in the automated system. Network administrators must balance 

the sensitivity of the anomaly detection system to maintain an optimal level of security without overburdening the 

network with excessive modifications. 

4.6.1 Alert Triggers 

The bar chart illustrates the total number of alerts triggered in the three simulations. The chart shows a clear 

increasing trend in alerts from Simulation 1 to Simulation 3. Specifically, Simulation 1 has the lowest number of 

triggered alerts, represented by the blue bar. Simulation 2, denoted by the orange bar, shows a substantial increase 

in alerts compared to Simulation 1. Simulation 3, indicated by the green bar, records the highest number of alerts, 

surpassing the counts of both prior simulations. This pattern suggests a correlation between the simulation 

parameters—potentially the increasing contamination rates—and the frequency of alert triggers, indicating a more 

sensitive or responsive system detecting anomalies as the simulation number increases. 

 

Figure 14: Alert Trigger Analysis 

In conclusion, the results and discussions presented in this paper highlight the nuanced performance of the 

Isolation Forest algorithm in detecting network anomalies. While the model shows incremental improvements in 

specific metrics across simulations, the overall effectiveness remains limited, as evidenced by low precision, 

recall, F1 scores, and AUC values. Additionally, the increasing trend in SDN policy changes with higher 

contamination rates underscores the delicate balance between maintaining network security and operational 

stability. These findings offer critical insights for further refining anomaly detection approaches in network 

environments and underscore the importance of continuous evaluation and adaptation of such systems. 
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V. CONCLUSION AND FUTURE WORK 

This research primarily contributed to exploring machine learning integration, explicitly using the Isolation 

Forest algorithm in a Software-Defined Networking (SDN) environment for anomaly detection. The study 

involved generating synthetic data to simulate various network traffic scenarios and then applying the Isolation 

Forest model to detect anomalies within this data. The model's performance was meticulously evaluated across 

three simulations with varying contamination rates, providing a comprehensive analysis of its effectiveness. The 

results revealed that while the model showed some capability in identifying anomalies, as evidenced by the 

incremental improvements in classification metrics and AUC scores from Simulation 1 through Simulation 3, its 

overall effectiveness was limited. Precision and recall values remained low across all simulations, with F1 scores 

and accuracy metrics reinforcing this observation. Although showing slight improvements in later simulations, the 

AUC-ROC and AUC-PR values were not at levels indicative of a robust anomaly detection system. Furthermore, 

the increasing number of policy changes in the simulated SDN environment, correlating with higher 

contamination rates, highlighted the model's responsiveness and raised concerns regarding potential over-

sensitivity and operational stability. 

5.1 Machine Learning Integration in SDN for Anomaly Detection 

The findings of this study suggest that while machine learning, notably the Isolation Forest algorithm, holds 

promise for anomaly detection in SDN environments, significant challenges must be addressed to enhance its 

effectiveness. The current integration approach demonstrates potential but requires further refinement to achieve 

the accuracy and reliability needed for practical deployment in network security. 

5.2 Future Work 

Given the findings, future research could take several directions: 

• Model Refinement and Optimization: Investigating alternative machine learning models or more advanced 

versions of ensemble methods could yield better results. Additionally, fine-tuning the existing model by 

experimenting with different hyperparameters and feature engineering techniques might improve its 

performance. 

• More Representative Datasets: Utilizing real-world network traffic data, possibly augmented with synthetic 

anomalies, could provide a more realistic training and testing environment for the model. This would help in 

understanding the model's applicability in real-world scenarios. 

• Adaptive Learning Mechanisms: Implementing adaptive learning where the model continually updates itself 

based on new data and feedback loops could improve its accuracy and adapt to evolving network behaviors. 

• Hybrid Approaches: Combining machine learning models with rule-based systems or other traditional 

anomaly detection techniques could offer a more robust solution. 

• Evaluation of Operational Impact: Further research should also focus on the operational impacts of 

integrating such models into SDN, particularly the balance between security and network stability and the 

practicality of frequent policy updates. 

In conclusion, this research underscores the potential of machine learning integration in SDN to enhance network 

security through anomaly detection while highlighting the areas that require further exploration and improvement. 
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