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Abstract

Sequence-level data offers insights into biological processes through the interaction of two or more genomic features from the same
or different molecular data types. Within motifs, this interaction is often explored via the co-occurrence of feature genomic tracks
using fixed-segments or analytical tests that respectively require window size determination and risk of false positives from over-
simplified models. Moreover, methods for robustly examining the co-localization of genomic features, and thereby understanding their
spatial interaction, have been elusive. We present a new analytical method for examining feature interaction by introducing the notion
of reciprocal co-occurrence, define statistics to estimate it and hypotheses to test for it. Our approach leverages conditional motif
co-occurrence events between features to infer their co-localization. Using reverse conditional probabilities and introducing a novel
simulation approach that retains motif properties (e.g. length, guanine-content), our method further accounts for potential confounders
in testing. As a proof-of-concept, motif co-localization (MoCoLo) confirmed the co-occurrence of histone markers in a breast cancer cell
line. As a novel analysis, MoCoLo identified significant co-localization of oxidative DNA damage within non-B DNA-forming regions
that significantly differed between non-B DNA structures. Altogether, these findings demonstrate the potential utility of MoCoLo for
testing spatial interactions between genomic features via their co-localization.
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INTRODUCTION
The increasing number of genomic datasets produced by high-
throughput sequencing and prediction algorithms has revealed
interactions between genomic features and biological processes
[1–3]. Although these interactions take many forms, their con-
cept, derivation and evaluation remain embedded in the fre-
quency of ‘co-occurrence’. Co-occurrence describes an event in
which two or more features are present, which can be tested for
their appearance together more often than would be expected
by chance [4]. On the other hand, ‘co-localization’ refers to an
event in which two or more features are both present in the
same spatial region/proximity. While co-localization requires co-
occurrence, the latter does not imply the former. Herein, we focus
upon sequence motif interaction by introducing a criterion that
requires the occurrence of a genomic feature within another
feature and vice-versa. We refer to this criterion as reciprocal
sequence co-occurrence and define metrics that enable charac-
terization of co-localization using it.

Historically, for testing the co-occurrence of events two general
approaches are used, one based on a Fisher’s exact test and
another based on Monte-Carlo simulation [4, 5]. Statistical models
rely on strict assumptions that may not always be suitable for
genomic analyses. For example, parametric tests assume an a
priori distribution that is oftentimes based upon independent

events. These testing assumptions would be difficult to address
since they involve finding the optimal model and parameters to
characterize varying lengths of genomic regions that are often
correlated between molecular features. While empirical methods
may overcome strict modeling assumptions, they require simu-
lations that take into account sequence properties (e.g. length,
nucleotide content) to generate meaningful results. This type of
sequence property-informed simulation often comes with the
price of high computational costs and thus, may be difficult to
achieve in the absence of an efficient algorithm.

Herein, we introduce motif co-localization (MoCoLo) as a
framework for direct testing of sequence-level co-localization
using empirical methods coupled with a property-informed
simulation algorithm. A class of hypotheses is constructed
for testing the random occurrence of one feature in another
feature and vice-versa (i.e. reciprocal occurrence). For hypothesis
testing, a simulation method is introduced that incorporates
sequence properties to ensure that the simulated data is
representative of the properties embedded in the observed data
such that differences in occurrence due to confounding factors
are minimized. We demonstrate the method with two case
applications for testing genome-wide co-localization between
sequence-level molecular features of the same data type using
histone modifications, and between different data types using
alternative DNA (i.e. non-B DNA) structure-forming motifs (e.g.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/2/bbae019/7633715 by guest on 27 M

arch 2024

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4646-6936

 16 11050
a 16 11050 a
 
mailto:Jeanne.Kowalski@austin.utexas.edu
mailto:Jeanne.Kowalski@austin.utexas.edu
mailto:Jeanne.Kowalski@austin.utexas.edu
mailto:Jeanne.Kowalski@austin.utexas.edu

 28175 12102 a 28175
12102 a
 
mailto:karen.vasquez@austin.utexas.edu
mailto:karen.vasquez@austin.utexas.edu
mailto:karen.vasquez@austin.utexas.edu
mailto:karen.vasquez@austin.utexas.edu


2 | Xu et al.

Figure 1. Overview of the MoCoLo framework. MoCoLo provides a simulation-based approach to test co-localization of two genomic features, integrating
the processes of testing feature selection, property-informed simulation, and statistical evaluation. (A) Input. For testing co-localization, the input
encompasses the genomic motif regions associated with features F1 and F2. (B) Hypothesis testing. A ‘pivot’ feature is designated for hypothesis testing,
recognizing that differences between the two motif data types can affect testing results (see also E). The co-localization assessment uses the number
of the overlapping pivot features in the other as metrics. (C) Simulation. The motif-property-informed simulations will be performed for each of the
pivot motif group selected (see also F). It takes motif sequence characteristics into consideration to maintain the resemblance between the actual and
the simulation groups. (D) Significance evaluation. MoCoLo determines the significance of co-localization by evaluating the two metrics reciprocally,
incorporating Monte Carlo P-values in its results. If both hypothesis testing shows significant P-value, the two features are evaluated with ‘co-localization
via reciprocal occurrence’. If only one side of tests shows significant P-value not the other, the two features have ‘co-occurrence of one in the other’
but not co-localization. (E) Motif type impact on co-localization testing. Case 1 showcases co-localization when the length distributions of motifs from
two features are alike, often originating from the same data type. Case 2 illustrates a co-localization scenario where motifs from the two features have
contrasting sequence lengths. Here, a motif from one feature might overlap with several motifs from the other feature. The chosen testing hypothesis
and simulation method in such situations can yield different results. (F) Simulation design. The design of the simulation method in MoCoLo emphasizes
a motif-property-informed approach. This includes simulating individual motifs, constructing simulation pools and assembling the simulated motif sets.
Additionally, a ‘dynamic tolerance’ is utilized to enhance computation efficiency and ensure a close resemblance between the actual and simulated data.

G-quadruplex DNA, Z-DNA and mirror repeats) and 8-oxo-dG, an
indicator of oxidative DNA damage.

METHODS
Overview of MoCoLo framework
MoCoLo is an approach to test for global, genome-wide reciprocal
co-occurrence, i.e., co-localization. We describe our method
within the context of two genomic features, feature 1 and
feature 2 (F1, F2) (Figure 1A), each defined by varying lengths and
numbers of motifs (M1, M2). Interest is in addressing the question
of whether these two feature motif libraries are co-localized and if
so, to describe their co-localization by genomic region. This study
provides a simulation-based approach to test co-localization of
two genomic features, integrating the processes of hypothesis
testing metric selection, property-informed simulation and
statistical evaluation.

Reciprocal co-localization assessment
Our approach is designed for genome-wide reciprocal co-
localization assessments (Figure 1A). Existing methods mostly
test co-localization within the same genomic data type. While

examining the notion of co-localization between motifs derived
from different molecular data types, attention must be paid
to the differences in sequence composition that define each
data type (Figure 1E). It is essential to consider the impact of
difference in motif types on co-localization evaluation. In Case
1, similar motif length distributions, typically stemming from
the same data type, might result in comparable counts of co-
occurrence between two features (Figure 1E, top). Conversely, Case
2 depicts a situation where the motif lengths of the two features
differ distinctly, potentially leading to one motif overlapping
with multiple motifs from its counterpart (Figure 1E, bottom).
Depending on the hypothesis and metric selected, these scenarios
might produce varied results.

Duo hypotheses and testing metric
Therefore, we introduce two hypotheses that are both neces-
sary to infer co-localization between F1 and F2 motif libraries
(Figure 1B). The first hypothesis, H01, tests genome-wide, whether
the number of F1 motifs in F2 motifs is greater than expected by
random chance. Likewise, H02, tests genome-wide, whether the
number of F2 motifs in F1 motifs is greater than chance. The two
statistics for testing each hypothesis are based on estimates of
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conditional probabilities. A ‘pivot’ feature needs to be designated
for hypothesis testing, recognizing the differences between the
two motif data types. The co-localization assessment uses the
number of the overlapping pivot features in the other as metrics.

Sequence property-informed simulation
As an empirical method, MoCoLo simulates expected data under
a specified null hypothesis and compare it to the actual observed
data (Figure 1C). It offers a simulation method informed by
sequence properties to closely retain the characteristics of each
motif groups. Unlike typical methods that utilize random re-
positioning of regions, our method includes information on
motif properties such as nucleotide composition in addition to
motif length. The simulation method is developed by introducing
new concepts such as simulation pool construction, motif
sets assembling and dynamic tolerance, together to ensure a
more nuanced simulation while maintaining the computational
efficiency (Figure 1F).

Testing hypotheses
We introduce two hypotheses that are both necessary to infer co-
localization between F1 and F2 motif libraries in MoCoLo. The first
hypothesis, H01, tests genome-wide, whether the number of F1
motifs in F2 motifs is greater than zero. The second hypothesis,
H02, tests genome-wide, whether the number of F2 motifs in F1
motifs is greater than zero. Formally, we introduce the following
two hypotheses:

H01 : p12 = 0 vs. H01a : p12 > 0

H02 : p21 = 0 vs. H02a : p21 > 0

where:

p12 = Pr [F1|F2]

p21 = Pr [F2|F1]

Below, we introduce two metrics for testing each hypothesis:

p̂12 =
∑NF2

i=1

∑NF1

j=1

∑l(F1j)

k=1
I
{
F1ijk ⊆ F2i

}
;

p̂21 =
∑NF1

j=1

∑NF2

i=1

∑l(F2i)

k=1
I
{
F2jik ⊆ F1j

}

where I{·} is an indicator function, NF1 and NF2 are the number
of motif libraries within features F1 and F2, respectively, and l(F1j)
indicates the length of the jth motif from F1 feature with l(F2i) the
length of the ith motif from F2 feature.

Testing statistics
For gene-level overlap testing between two gene sets, denoted by
G1 and G2, there exists options that are largely based on a Fisher
exact test, with some popular choices being a Jaccard similarity
coefficient and a hypergeometric distribution. If testing is two-
sided, then we have no prior belief about direction and are simply
testing whether the odds of success (‘overlap’) differs from 1 or
not. On the other hand, one may be interested in a one-sided
test of whether the odds of success (‘overlap of G1’) is greater
(or less) in G2. In this context of a one-sided scenario, though
not explicitly stated as such, one gene set is defined as fixed
(i.e. ‘pivot’) that is compared against the other. We propose an
analogous approach within a sequence context by introducing a
feature variable pivot in which to conduct a (‘two-sided’) test of

association, the collection of which, H01: F1 in F2 and H02: F2 in
F1 tests for co-localization association between features and the
separation of which enables a ‘one-sided’ alternative. For pivot
selection: we define ‘pivot selection’ as the choice of reference
feature to derive evaluation metrics. For testing H01, we quantify
the total number of F1 motifs in F2, and thus, F2 is the pivot
feature. Likewise, for testing H02, we quantify the total number
of F2 motifs in F1, and thus, F1 is the pivot feature. Hence, we can
evaluate co-localization by the reciprocal sequence co-occurrence
by exchanging reference and query feature motifs.

Sequence property-informed simulation
Traditional brute force approaches simulate same-length genomic
regions at random genome locations [6]. This step fulfills the
length requirement in simulation. However, the composition
of the motif sequences in these simulated regions needed to
be further checked and only those with similar nucleotide
compositions (e.g. similar %G) are retained to fulfill the com-
position requirement. This can be computationally intensive and
inefficient due to the potential non-existence of same-length
regions with matching composition, which may lead to infinite
loop situations.

To overcome these issues, we devised a novel optimal search
strategy. As opposed to simultaneously simulating all motifs at
once, instead, we simulated motifs individually and constructed
a ‘simulation pool’ that tags traits of interest for matching by
motif length and composition. We then randomly sample a motif
set (as set of simulated motifs with defined traits) from this pool
that can be readily matched as the ‘random’ counterpart of the
actual data motif set. Considering that another region with the
exact same traits as the test region may not exist in the genome,
with this approach, we were able to avoid the infinite loop created
by enabling a ‘dynamic tolerance’ that performs an automatic
adjustment on the simulation tolerance.

Data sources and processes
Histone data
The ChIP-seq data of H4K20me3 and H3K9me3 in the human
MCF-7 breast cancer cell line was downloaded from the NCBI Gene
Expression Omnibus (GSE143653) [7], which included ChIP-seq
data for ChIP_Input_MCF7 (GSM4271438), H4K20me3_BR_MCF7
(GSM4271378) and H3K9me3_BR_MCF7 (GSM4271318).

8-oxo-dG DIP-seq data
The OxiDIP-Seq data were downloaded from the GEO database
(GSE100234) [8]. It contained the genome-wide distribution of
8-oxo-dG accumulation in human non-tumorigenic epithelial
breast cells from the MCF10A human cell line. The processed
peaks data were provided by the author in bed format.

Non-B DNA-forming motifs
Non-B DNA-forming motifs were extracted from the updated
version Non-B DB v2.0 database (https://nonb-abcc.ncifcrf.gov/,
human_hg19) [9]. An update to correct the A-phased repeat motifs
data was received from Frederick National Laboratory for Cancer
Research. It includes 13,966,212 motifs covering seven types of
non-B DNA structures: A-phased repeats (APR), G-quadruplex
DNA (G4 DNA), Z-DNA, direct repeats (DR), inverted repeats (IR),
mirror repeats (MR, also H-DNA) and short tandem repeats (STR).

Function implementation
The functions bedtools_shuffle and bedtools_random from the
valr package [10, 11] are utilized to sample genomic regions. The
‘within’ parameter is used to control whether to perform the
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with-in chromosome simulation or not. The bedtools_coverage is
utilized to quantify the overlapped regions between motifs from
two genomic regions. Only with the length of overlapped region
>0 are the two regions considered co-localized. The visualization
functions are implemented with the ggplot2 package [12] as well
as the ComplexHeatmap package [13]. The significance annota-
tion function in the visualization is from the ggpubr package [14].

Statistical significance
For the evaluation of statistical significance in the co-localization
testing, a Monte-Carlo-based P-value is computed. This is exe-
cuted for each formulated hypothesis. The computation involves
a systematic comparison between metrics derived from both
simulated and observed datasets. Specifically, the assessment
quantifies the proportion wherein the metrics extracted from
the simulated datasets are consistently different from the corre-
sponding metrics derived from the actual observed datasets.

RESULTS
We applied MoCoLo to two case studies that focused on defining
co-localization of different genomic and epigenomic features. In
our first case study, we investigated the co-localization of two
histone markers, H4K20me3 and H3K9me3 (same data type). Case
1 provides a straightforward example of testing co-localization
with direct length-only simulation and underscores the impor-
tance of two hypothesis tests, as a proof-of-concept. The second
case study probed into the co-localization of non-B DNA-forming
sequences with 8-oxo-dG lesion sites (different data type). We
hypothesized that the distribution of 8-oxo-dG and non-B DNA-
forming sequences within the genome differs between motif fea-
tures. Case 2 highlights the need for feature-informed simulation
in the testing framework. Here, both length and percentage of
guanine (%G) of sequences were maintained to be similar and
thus, minimize their differential effect in testing.

The same-data-type co-localization testing of
histone markers in breast cancer (Case 1)
Background
Histone modifications play a significant role in regulating gene
expression and maintaining genome stability. Among these mod-
ifications, H4K20me3 and H3K9me3 are well known for their
roles in the formation of heterochromatin, a condensed form of
chromosomal DNA associated with repression of gene expres-
sion. H4K20me3 plays roles in heterochromatin formation, gene
expression repression [15] and genome stability regulation [16].
Similarly, H3K9me3 is also crucial for heterochromatin formation
[17, 18]. Our primary objective was to ascertain the extent of
co-localization between H4K20me3 and H3K9me3 in the MCF-7
human breast cancer cell line utilizing the MoCoLo method as a
proof-of-concept (Figure 2A).

Co-localization testing
H4K20me3 and H3K9me3 are both histone modification data
generated from CHIP-seq experiments, thus sharing a data
type and displaying comparable peak length distributions
(Figure 2B). For our co-localization analysis, we conducted tests
bi-directionally: one approach simulated H4K20me3 regions
(n = 31,646 regions) to establish the statistical distribution, and
the alternate approach employed H3K9me3 regions (n = 34,095
regions). Same lengths were retained while simulating histone
peak regions (n = 100). We then evaluated the test by using two
metrics in terms of the overlapped H4K20me3 and the overlapped

H3K9me3. Both metrics showed significant differences in the
observed group compared to the expected group, suggesting co-
localization between these two histone markers. The count of
overlapping regions is also assessed based on varying overlapping
coverages (Figure 2C and D). In addition, we evaluated the co-
localization at different genomic locations using the overlapped
H4K20me3 as the evaluation metric. The results showed a higher
number of overlapped regions in the observed group at exon,
intergenic, intron, promoter-TSS (transcription start sites) and
transcription termination sites regions (Figure 2E).

The initial dataset for this case study underwent analysis via
the segment annotation tool, ChromHMM. This tool delineates
genomic regions by highlighting co-occurrence states between
H4K20me3 and H3K9me3 [19]. With MoCoLo we were able
to formally test for co-localization between histone sites.
Both approaches affirm the interaction between H4K20me3
and H3K9me3 sites, either in terms of co-occurrence using
ChromHMM or co-localization using MoCoLo.

The across-data-type co-localization testing of
endogenous and exogeneous features of
genomic instability (Case 2)
Background
Genomic instability is a hallmark of cancer and other genetic
diseases and can result from DNA damage from both exogenous
and endogenous sources. Among the four DNA bases (A, T, C,
G), guanine (G) has the lowest redox potential and thus has the
highest propensity for oxidative damage [20–22]. The oxidative
lesion, 8-oxo-dG, therefore serves as a ubiquitous marker of oxida-
tive stress [23, 24] and is a pre-mutagenic lesion contributing to
genome instability [20, 25–27]. Sequences that can adopt alterna-
tive (i.e. non-B) DNA structures are commonly enriched in gua-
nines [20, 28–30]. Non-B DNA structures have also been shown to
be co-localized with mutation hotspots in human cancer genomes
[31, 32] and can stimulate the formation of DNA double-strand
breaks also jeopardizing genome stability [33–35]. Further, 8-oxo-
dG lesions have been shown to be enriched and/or refractory to
repair in some types of non-B DNA (e.g. G4 DNA and Z-DNA)
[36–41], suggesting that these lesions may accumulate within
such structure-forming sequences. The separate occurrences of
8-oxo-dG and non-B DNA-forming sequences are not uniformly
distributed across the genome. The non-random distribution of 8-
oxo-dG [36] may be due to increased oxidative damage potential
and/or varied repair efficiencies within the local environment. We
examined the genome-wide co-localization of 8-oxo-dG and non-
B DNA-forming regions and whether it differs between non-B DNA
structures (Figure 3A), which include A-phased repeats (APR), G-
quadruplex DNA (G4 DNA), Z-DNA„ direct repeats (DR), inverted
repeats (IR), mirror repeats (MR, also H-DNA) and short tandem
repeats (STR).

Necessity of maintaining G-content in 8-oxo-dG region
simulation
The accurate simulation of 8-oxo-dG regions is intrinsically tied
to preserving the G-content. When randomizing positions of 8-
oxo-dG regions, it is imperative to retain the inherent G-content
since 8-oxo-dG is the oxidized form of guanine.. Omitting this
essential characteristic would lead to a misrepresentation in the
simulation. From this standpoint, it becomes evident that the
preservation of G-content is an important for the simulation step
in this case.
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Figure 2. MoCoLo evaluates the co-localization of two histone markers, H4K20me3 and H3K9me3 (Case 1). (A) The objective is to assess the significance
of co-localization between the H4K20me3 and H3K9me3 histone markers. (B) Peak details for the H4K20me3 and H3K9me3 markers in the MCF-7 breast
cancer cell line. Both markers, from the same data type, display comparable peak length distributions: H4K20me3 has 31,646 peaks, and H3K9me3 has
34,095 peaks. (C) and (D) Genome-wide mapping utilizes H4K20me3 and H3K9me3 as pivots to evaluate two distinct metrics. The count of overlapping
regions is assessed based on varying overlapping coverages (defined by the minimum intersection size). (E) Regional mapping examines the number of
overlapping H4K20me3 peaks in co-localization across various genomic domains, such as exons, intergenic areas, introns, promoter-TSS and TTS. There
are more overlapped peaks in the observed group then the expected group. (top dots: observed; bottom dots: expected).

Testing results
The length of 8-oxo-dG regions from DIP-seq (Figure 3B) and the
length of non-B DNA motif (Figure 3C) show a distinct difference.
Notably, 8-oxo-dG peaks detected from DIP-seq experiments were
overall larger in length (median: ∼500 bases) as compared to non-
B DNA motifs (median: ∼25 bases). This observation underscores
the need of reciprocal hypothesis testing (Figure 1E). Further, the
sequence property-informed simulation method from MoCoLo
was applied to 8-oxo-dG peaks (n = 50,027) for genomic region
simulation (n = 100) that retains guanine contents in addition to
motif lengths.

We observed a significantly higher number of 8-oxo-dG regions
co-localizing with five non-B DNA structures (MR, DR, STR, G4
DNA and APR) in the observed group (Supplementary Table 1).
Conversely, for IR and Z-DNA, the 8-oxo-dG regions did not exhibit
significant co-localization when compared to other random
genomic regions (Figure 3D and Supplementary Figure 1A).
Furthermore, when evaluating using the non-B DNA motif count
as the metric, we identified a significantly higher number of
six types of non-B DNA-forming motifs that co-localized in 8-
oxo-dG regions compared to the simulated group. These motifs
include MR, DR, STR, G4 DNA, Z-DNA and APR (Figure 3E and
Supplementary Figure 1B).

The co-localization of APR-forming regions and 8-oxo-dG peak
regions only indicate that APRs are located in proximity to the
8-oxo-dG region since A-tracts themselves do not contain gua-
nines. This is because the 8-oxo-dG peaks from DIP-seq experi-
ments are ∼500 bp while the A-phased repeats are ∼25 bp. There-
fore, a 25-bp APR motif may co-localize within a 500-bp 8-oxo-dG
region from DIP-seq peaks but does not mean that the one-base-
specific oxidative guanine is located within the A-phased repeats
themselves. The A-phased repeats are defined as three or more
tracts of four to nine adenines or adenines followed by thymines,
with centers separated by 11–12 nucleotides [9]. The difference
in peak sizes between the two data sets reflects a limitation of
the current experimental technology to detect 8-oxo-dG within
relatively smaller peak regions (Supplementary Figure 2). It would
be more fitting if the 8-oxo-dG sites can be detected in a narrower
region or at single-base resolution.

The dual hypothesis testing identified Z-DNA
hotspots within 8-oxo-dG regions
Utilizing both ‘total overlapped 8-oxo-dG motifs’ and ‘total over-
lapped non-B DNA motifs’ as evaluative metrics bring clarity
to the intricacies of feature co-localization, as exemplified by
the Z-DNA case. ‘Total overlapped 8-oxo-dG motifs’ measures
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Figure 3. MoCoLo evaluates the co-localization of 8-oxo-dG and non-B DNA-forming regions (Case 2). (A) The overview of the genome-wide mapping
of 8-oxo-dG peaks and non-B DNA motifs. (B) and (C) The length distribution of 8-oxo-dG peaks (median, ∼500 bases) and non-B DNA-forming motifs
(median, ∼25 bases). (D) The numbers of overlapped 8-oxo-dG regions (the observed) that co-localized with non-B DNA motifs by non-B DNA category.
8-oxo-dG shows significant co-localization with six non-B DNA types except IR and Z-DNA. (E) The numbers of overlapped motifs of each non-B DNA
type that co-localized with 8-oxo-dG regions. Six non-B DNA types show significant co-localization of their structure forming region and 8-oxo-dG
region except IR. (F) While testing the co-localization between Z-DNA and 8-oxo-dG, there is significantly higher frequency of overlapped Z-DNA in the
observed group while there is no significant difference of overlapped 8-oxo-dG. The explanation is that there is a high enrichment of Z-DNA in certain
8-oxo-dG regions. Therefore, while counting Z-DNA, there are higher overlapped Z-DNA (bottom) while the overlapped 8-oxo-dG regions stay the same
(top). The observation highlights the need and benefits of using two-metric evaluation of co-localization and the importance of pivot feature selection.
(G) Comparative analyses of co-localization between different non-B DNA types and 8-oxo-dG. It investigates whether certain non-B DNA types exhibit
higher co-localization with 8-oxo-dG compared to others. The evaluation of co-localization by using the number of overlapped 8-oxo-dG regions as the
metric and the testing result across non-B DNA types.

the total count of 8-oxo-dG regions that overlapped with non-B
DNA, providing insights into the oxidative damage sustained by
these motifs. In contrast, the ‘total overlapped non-B DNA motif’
captures the number of non-B DNA motifs present within 8-oxo-
dG regions, signifying their placement within oxidatively damaged
DNA regions.

For 8-oxo-dG regions that are overlapped with Z-DNA, the total
number of 8-oxo-dG is not significantly higher in the observed
group than random (Figure 3D). However, when we determined
the total overlapped Z-DNA motifs within the 8-oxo-dG peak
regions, the number is significantly higher in the observed group
(P < 0.001) than by random chance (Figure 3E). While these results
may appear conflicting, it indicates a high number of overlapped
Z-DNA-forming regions within each oxidative region and suggests
that Z-DNA may be more frequently affected by oxidative pres-
sures marked by 8-oxo-dG (Figure 3F).

For comparison, we initially employed a simpler strategy that
did not consider G-content, resulting in significant findings that
suggested an overrepresentation of 8-oxo-dG regions overlapping

with Z-DNA. However, the result is potentially misleading due to
the lack of differential G-content consideration, which is likely
reflected in the result. By considering G-content, our testing
showed that the occurrence of 8-oxo-dG regions overlapping with
Z-DNA was not significantly higher than in control groups with
similar G-content. This suggests that regions rich in G-content,
which include Z-DNA, are not exclusively associated with 8-oxo-
dG regions. This finding aligns with biological expectations and
reflects a more accurate representation of the biological system
under study. Thus, the MoCoLo framework helps to determine the
validity of co-localization, supporting the rejection of one or both
hypotheses when not substantiated.

The post-testing comparison after co-localization
testing
Comparing the co-localization of 8-oxo-dG and various non-B
DNA types, MoCoLo provides additional statistical tests. The goal
is to test the co-localization across genomic features. In this case,
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the example is the non-B DNA motif, which is stratified into dif-
ferent types. This method is used to investigate whether a specific
type of non-B DNA motif demonstrates a more pronounced co-
localization with the 8-oxo-dG feature than its counterparts.

To evaluate the co-localization between each pair of non-B DNA
types, we employ a permutation analysis (n = 100). This involves
reshuffling the non-B DNA motif regions across the paired non-B
DNA types and conducting a subsequent co-localization analysis
for each iteration to establish the null model. The count of over-
lapping 8-oxo-dG regions is utilized as the metric to compare co-
localizations with oxidative regions across the seven non-B DNA
categories. These counts of overlapped regions are then normal-
ized (by dividing by the total count of 8-oxo-dG regions or the
respective non-B DNA motif library sizes) to ensure comparability.

In terms of the overlapped 8-oxo-dG regions (Figure 3G), we
observed significantly higher proportion of 8-oxo-dG regions to
co-localize with MR (60.0%) than with DR (52.6%) and Z-DNA
(8.8%). The co-localization of 8-oxo-dG and with STR (61.6%) and
G4 (25.3%) are significantly higher than with the Z-DNA forming
sequences. It also shows significantly higher frequency in DR than
in G4 DNA and Z-DNA.

The testing extension provides an alternative perspective to
subgroups of genomic regions inherent to a singular genomic fea-
ture. Additionally, this approach melds both permutation (resam-
pling within paired non-B DNA types) and bootstrap (simulation of
the 8-oxo-dG region) methodologies. This provides more insights
in the co-localization and helps us understand how endogenous
damage in the DNA and its structures are linked.

Property-informed simulation ensures G-content
retention in 8-oxo-dG simulations
Simulation design
A straightforward way to simulate genomic regions is to randomly
place all regions independently. While this satisfies length
considerations, ensuring compositional accuracy, like matching
nucleotide compositions, becomes challenging. The simulation
here is not simply simulating the sequence. It uses a genome-
wide search to find genomic regions with similar sequence
properties to the actual motif (Figure 4A). Currently there is not a
computation-effective workflow existing to simulate genomic
regions with both length and G-content. To counter these
inefficiencies, we introduced a new search strategy for simulation
in MoCoLo (Figure 1F). Instead of a collective simulation of all
motifs, motifs are simulated individually, populating a ‘simulation
pool’ tagged by motif traits such as length and composition.
Within each analysis where multiple simulations are needed,
those simulated regions that meet requirements are stored in
memory to form a simulation pool. From this pool, we then select
a motif set that mirrors our actual dataset. A built-in ‘dynamic
tolerance’ mechanism ensures efficient matching, preventing
infinite loops by automatically adjusting the simulation tolerance,
especially when an exact genome match is elusive.

G-content variability
For 8-oxo-dG regions, the G-content distribution presents two
distinct peaks, approximately at 12.5% and 30.0%. A comparative
analysis between simulations—with and without G-content
restrictions—demonstrates the necessity of retain %G while
simulating 8-oxo-dG regions. The property-informed simulation
method in MoCoLo successfully preserves the dual-peak distri-
bution, along with maintaining an identical length distribution
(Figure 4B, left). In contrast, neglecting G-content in simulation
retains only length distribution (Figure 4B, right).

Simulation parameters
The selection of parameters plays a pivotal role in simulation. We
can observe a minor shift in the G-content distribution, which
reflects the simulation tolerance (Figure 4B, left-top). Property-
informed simulation in MoCoLo features ‘dynamic tolerance’. It
is mainly regulated by two parameters: ‘starting tolerance (start)’
and ‘incremental step (step).’ Using the %G simulation as an
example, the starting tolerance can vary from zero, indicating
that the simulated motif should precisely reflect the %G of the
actual motif, to one, which suggests no %G restrictions. In sce-
narios where the starting tolerance is excessively restrictive, the
algorithm autonomously increases the tolerance in pre-defined
increments determined by the ‘incremental step.’ The specific
values assigned to ‘starting tolerance’ and ‘incremental step’
dictate the characteristics of the simulated groups, subsequently
affecting their resemblance to the actual data (Figure 4C). While
using restrictive parameters ideally improves similarity, it might
inversely affect computational efficiency, resulting in extended
running time. Thus, users need to balance between efficiency and
precision.

DISCUSSION
We introduce MoCoLo, a testing framework for genomic co-
localization, which has several key innovations and advantages.
First, MoCoLo employs a unique approach to co-localization
testing that directly probes for genomic co-localization with
duo-hypotheses testing. This means that MoCoLo can deliver
more detailed and nuanced insights into the interplay between
different genomic features. Second, MoCoLo features a novel
method for informed genomic simulation, taking into account
intrinsic sequence properties such as length and guanine-content.
This simulation method enables us to identify genome-wide co-
localization of 8-oxo-dG sites and non-B DNA-forming regions,
providing a deeper understanding of the interactions between
these genomic elements.

Biological significance
When applied to real-world data, MoCoLo revealed the signifi-
cant co-localization of H4K20me3 and H3K9me3, vital for hete-
rochromatin formation, in the MCF-7 breast cancer cell line. This
aligns with recent findings that underscore the role of histone
modifications in regulating gene expression and chromatin struc-
ture, which are particularly critical in cancer genomics. Studies
have shown that histone modifications can serve as markers for
transcriptional repression or activation and are often altered in
cancer cells, affecting gene expression patterns crucial for tumor
progression and metastasis [42, 43]. The MoCoLo framework, by
highlighting the interaction between these modifications, pro-
vides a novel angle from which to view chromatin dynamics
and their implications in cancer biology. In addition, histone
epigenetic marks have been shown to predict somatic mutations,
suggesting a complex interplay between chromatin organization
and genomic stability. Extending this, it would be intriguing to
investigate whether the interplay between non-B DNA motifs and
histone marks could influence somatic mutagenesis [44–46].

In addition, we were able to perform a genomic mapping
between non-B DNA-forming regions and oxidatively damaged
(8-oxo-dG) regions. Our results show significant co-localization of
five types of non-B DNA-forming sequences within regions of 8-
oxo-dG lesions. Our findings regarding G4 DNA is also consistent
with a previous report showing significant enrichment of
potential G4 DNA structures within 8-oxo-dG peaks compared to
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Figure 4. Property-informed simulation with dynamic tolerance maintains G-content of motif sequence. (A) The examples of property-informed
simulation that retain the properties of motif sequence in terms of length and G-content. (B) The distribution of G-content of 8-oxo-dG region includes
two G-content peaks for 8-oxo-dG regions occur ∼12.5% and 30.0%. In the figure legend, ‘Obs. (0)’ denotes the data observed from experimental results.
‘Exp. (>1)’ refers to the expected distributions from multiple simulations, with each number from ‘1’ to ‘5’ representing a distinct simulation iteration.
G-content focused simulations underline the significance of %G for 8-oxo-dG. Overlooking G-content captures only length variation, whereas MoCoLo
maintains both dual-peak G-content and length distribution, with a minor G-content shift hinting at the simulation’s tolerance. In the figure legend, 0
represents the actual data and 1–5 represent the simulation group. (C) The flexibility of the simulation is primarily influenced by two hyper-parameters:
‘starting tolerance (start)’ and ‘incremental step (step).’ The range for starting tolerance spans from zero—denoting an exact match to the %G of the
original motif—to one, indicating no constraints on %G. If the starting tolerance is too stringent, the algorithm automatically adjusts the tolerance using
defined increments set by the ‘incremental step.’ The chosen values for ‘starting tolerance’ and ‘incremental step’ shape the attributes of the simulated
groups, influencing their similarity to the real data. Top-left: An absence of %G constraint results in notable differences between simulated and actual
groups; Bottom-right: Low start/step values result in heightened congruence between simulation and actual data, at the price of longer simulation time.

randomly distributed regions in the human genome, as predicted
by sequence-based G4 DNA models [8]. Our observations about
the high density of Z-DNA in 8-oxo-dG-containing regions
complement the growing body of literature that indicates the
involvement of non-canonical DNA structures in the regulation
of gene expression and the maintenance of genome integrity
[47]. By leveraging MoCoLo’s capabilities to compare the co-
localization status of different non-B DNA types, we contribute
to a more nuanced understanding of how these structures
interact with oxidative lesions. The differences in co-localization
between the non-B DNA types further underscore the complexity
of the genomic architecture and its implications for cellular
processes [48]. Future investigations across various cancer cell
lines could expand upon these insights and validate the generality
of our findings in the broader context of cancer genomics and
epigenetics.

Potential applications
The potential applications of MoCoLo are wide-ranging due to its
fundamental role in mapping the complex network of genomic
regulation. For example, it can elucidate the concerted actions
of transcription factors and histone modifications, which are
pivotal in gene expression regulation [49]. This interaction is
especially relevant when considering the modulation of gene
expression across various cell lines and pathological states.
MoCoLo’s ability to analyze genomic sequence motifs further aids
in determining transcription factor binding preferences, which are
often influenced by sequences like AT- or GC-rich promoters and
CpG islands, and how these features contribute to transcription

initiation and silencing based on methylation patterns [50].
By enabling the analysis of reciprocal co-occurrence, MoCoLo
provides a robust framework for researchers to investigate the co-
localization of diverse genomic motifs—ranging from TF binding
sites [51] and CpG islands [52] to splice sites and miRNA binding
sites [53]. The implications of this analysis extend from predicting
TF binding events to deciphering the mechanisms of gene network
regulation, exploring the evolution of gene expression control
and identifying biomarkers for various diseases. The sequence-
informed simulation aspect of MoCoLo, in particular, offers a
refined approach to studying the co-localization of sequence-
specific motifs, thereby enriching our understanding of the
genomic architecture.

Method comparison
There exist several strategies to indicate associations and co-
occurrences in genomic studies (Table 1): Monte-Carlo-Based
Approaches. The design of MoCoLo relies on the principles of
Monte-Carlo tests, which are non-parametric models that offer
wide test statistics and randomization strategies. These tests,
while affording flexibility, come with the inherent challenge of
being computationally intensive, demanding precise customiza-
tion. The degree to which data characteristics are preserved in
a null model can significantly influence the conclusions drawn
from Monte-Carlo simulations. In an endeavor to perfect these
simulations, MoCoLo employs a property-informed simulation
technique to uphold sequence properties. An innovative feature
introduced is the ‘dynamic tolerance’ in simulations, which
modulates the tolerance level of sequence property differences
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Table 1: Overview of method comparison across different testing strategies

Strategy Bin-based Analytical Empirical

Method ChromHMM Bedtools MoCoLo
Testing Co-occurrence Association Co-localization
Aspect of analysis Genomic annotation Genomic Association Genomic Co-localization
Statistical method Hidden Markov model

(Bernoulli distribution)
Fisher’s Exact test (Binomial) Probability-based

Data resolution 200 bp (user-defined bins) Dynamic Dynamic
Pros - Scalable to multiple features

- Designed for chromatin state inference
and annotation

- Embedded within Bedtools suite.
- Computationally efficient

- Property-informed simulation:
Retains sequence properties in
simulations for testing.
- Dynamic tolerance: Efficient
computational cost.

Cons - Bin size bias for differing feature
lengths.
- Limited output without direct
association testing or P-values.

- Background estimation can affect
results.
- Assumptions may oversimplify
complex systems.

- Require computation resources as
an empirical method

between the observed and the simulated groups. The art of
formulating a research question in Monte Carlo testing methods
plays a pivotal role, as it directly corresponds to the chosen test
statistic. A case in point would be the analysis of co-localization
of two genomic features, F1 and F2. The query might revolve
around whether F1 appears within F2 more than what random
chance would suggest. Interestingly, such a proposition can also
be viewed from an asymmetric perspective, mandating a diverse
test statistic. In order to address both perspectives in a unified
framework, MoCoLo introduces dual hypotheses for infer co-
localization between F1 and F2 motifs and offers two distinct
metrics to test each hypothesis.

Approaches based on fixed-window segmentation. A preva-
lent approach in analyzing the co-occurrence of genomic ele-
ments involves segmenting them into multiple pre-defined win-
dow sizes, allowing for the calculation of statistics at the window
level. Chromatin annotation tools such as ChromHMM, can be
used to indicate the co-occurrence of two genomic features (the
emission probability of a chromatin state). However, using a single
fixed resolution during analysis may not be intuitive to decide
resolutions especially when the two features in the testing have
distinct length distribution. These tools, despite the output (in
terms of chromatin state annotations), can certainly be used as a
foundation to study the co-localization of two genomic features.
There are challenges existing such as (i) setting up bin-sizes, (ii)
restricted by statistical models, (iii) no direct testing significant
P-value provided in the output, as the primary objective of seg-
mentation tools is not to test co-localization but to infer the co-
occurrence in chromatin states.

Analytical test-based approaches. Basic analytical tests often
rely on a straightforward null model, like that of Fisher’s exact
test. When utilizing these tests, it’s crucial to assess if the data
aligns with the null model and to understand the test’s resilience
against any misalignments. Adopting an overly simplistic null
model can lead to decreased P-values, heightening the chances
of false positives. One implementation, Bedtools [35] provides an
implementation that can calculate the number of overlaps and
the number of intervals unique to each feature. But it requires
to infer the number that are not present in each feature as
the universal background. Constructing the control set demands
meticulous attention when using analytical tests rooted in a
universe of regions. Any disparities between the case and control

data sets in attributes such as genomic variability and aggregation
could compromise the test’s assumptions, potentially resulting in
false positives. Recent methods that mine enriched n-wise com-
binations of genomic features have emerged to explore genomic
overlaps by discerning patterns of intersection across multiple
genomic datasets [54]. By expanding MoCoLo to include such
n-wise overlap strategies, a deeper, more granular analysis of
genomic feature co-localization may be explored as a future
direction.

In summary, the main advantages of MoCoLo lie in its ability
to handle dynamic and sequence-property-informed inputs, its
reciprocal hypotheses testing, flexible simulation and its compre-
hensive output that allows for a more precise understanding of
genomic feature co-localization.

Key Points

• MoCoLo framework provides a novel method for analyz-
ing spatial interactions of genomic features at sequence-
level using reciprocal co-occurrence.

• Property-informed simulation in MoCoLo minimizes
confounding factors, enabling robust genome-wide co-
localization assessments.

• Through case studies, MoCoLo demonstrated its utility
in unveiling significant co-localizations, aiding in deeper
molecular understanding.
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