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Abstract 
Identifying protein–protein interactions (PPIs) is crucial for deciphering biological pathways. Numerous prediction methods have 
been developed as cheap alternatives to biological experiments, reporting surprisingly high accuracy estimates. We systematically 
investigated how much reproducible deep learning models depend on data leakage, sequence similarities and node degree information, 
and compared them with basic machine learning models. We found that overlaps between training and test sets resulting from random 
splitting lead to strongly overestimated performances. In this setting, models learn solely from sequence similarities and node degrees. 
When data leakage is avoided by minimizing sequence similarities between training and test set, performances become random. 
Moreover, baseline models directly leveraging sequence similarity and network topology show good performances at a fraction of the 
computational cost. Thus, we advocate that any improvements should be reported relative to baseline methods in the future. Our find-
ings suggest that predicting PPIs remains an unsolved task for proteins showing little sequence similarity to previously studied proteins, 
highlighting that further experimental research into the ‘dark’ protein interactome and better computational methods are needed. 
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INTRODUCTION 
Proteins carry out essential biological functions, many of which 
require proteins to act jointly or to form complexes. Hence, iden-
tifying all pairwise interactions of proteins is an essential systems 
biology challenge toward understanding biological pathways and 
their dysregulation in diseases. Several technologies (e.g. yeast-
2-hybrid screens, affinity purification mass-spectrometry) have 
been developed to unravel individual protein–protein interactions 
(PPIs), yielding large-scale PPI networks [1]. As it is not feasible to 
study all protein pairs exhaustively, a plethora of computational 
methods have been developed to predict PPIs as a binary classifi-
cation task. Such methods often use only sequence information 
in various machine learning (ML) strategies, ranging from clas-
sical support vector machines (SVMs) to the most complex deep 
learning (DL) architectures currently conceivable [2–21]. These DL 
methods typically report phenomenal prediction accuracies in the 
range of 95–99%. 

Though it was criticized that only a few of these methods 
have source code available and are reproducible [2, 22], it has 
not yet been examined systematically whether and how such 
results are possible. Since proteins interact in 3D space, predict-
ing an interaction should implicitly consider the 3D structure 
of complexes, binding pockets, domains, surface residues and 
binding affinities. However, predicting protein 3D structure from 
sequence is an infamously hard problem area in which only 
recently AlphaFold2 had made a tremendous leap using a very 

complex model architecture and vast resources [23]. Moreover, 
predicting the structure of multi-chain complexes observed in 
PPIs remains an open challenge [24]. In light of this, the observed 
high accuracies for predicting PPIs from sequence information 
alone seem dubious. 

Few studies shed light on the phenomenal accuracies reported 
for deep sequenced-based PPI prediction approaches: Almost all 
PPI datasets used for evaluating such approaches are randomly 
split into train and test sets using cross-validation. Park & Mar-
cotte [25] showed that this causes an inflation of prediction 
performance due to training data leakage [25–27]. Upon random 
splitting, the same proteins occur both in the train and the test 
set, such that these sets are no longer independent [28]. For an 
extensive definition of data leakage, see [29, 30]. To quantify the 
effect of data leakage, Park & Marcotte [25] proposed three classes 
C1 (both proteins in a test pair occur in training), C2 (only one 
protein in a test pair occurs in training), and C3 (no overlap 
between training and test). Prediction accuracies usually drop 
significantly between C1 and C2 as well as between C2 and C3. 
It has also been shown that when datasets contain sequences 
with high pairwise sequence similarities, models overfit and accu-
racies are overestimated, giving a wrong impression of the state 
of the field [22, 26, 27]. Hamp & Rost [26], therefore, extended 
the requirements by demanding that, for C3, no test protein 
should be sequence-similar to a training protein (for C2 only one, 
for C1 both), and obtained similar results as Park & Marcotte.
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Furthermore, Chatterjee et al. [31] have recently shown that DL 
methods for protein–ligand prediction use degree information as 
shortcuts instead of learning from sequence features. A baseline 
model using only topology information performs equally well for 
that task. They reveal that protein hubs have disproportionally 
more positive annotations and that most proteins and ligands 
either have almost no positive or almost no negative annotations, 
which the methods leverage. 

In addition to positive examples, it is crucial to add sufficiently 
realistic negative examples to both train and test sets. These 
can be randomly sampled by choosing protein pairs not reported 
as PPIs in public databases. To avoid using false negatives, it is 
common practice to choose proteins that are not annotated to the 
same cellular compartment and are thus not expected to interact 
in a cell. However, Ben-Hur & Noble [32] have shown that this 
approach makes the learning problem considerably easier than 
it is in reality. Moreover, protein pairs are tested for interaction 
in an artificial system [33] and databases thus frequently include 
interactions of pairs annotated to different cellular locations. 

In this work, we systematically examine three scenarios that 
might explain why sequence-based models correctly predict 
whether two proteins p1 and p2 interact: 

• Explanation 1: The models can detect patterns in the 
sequences of p1 and p2 that are responsible for whether they 
can interact (e.g. matching binding sites, domains, motifs). 

• Explanation 2: The models utilize node degree information 
shortcuts that individually explain whether the protein inter-
acts. Based on these individual tendencies, they predict the 
interactions (e.g. if, in the training fold, p1 only appears in 
interactions and never in the negative set, protein pairs from 
the training fold that involve p1 will likely be predicted as 
interacting). 

• Explanation 3: The models merely check whether p1 and p2 

are similar to protein sequences p′
1 and p′

2 from the training 
set and make a prediction based on the interactions of p′

1 and 
p′

2 (e.g. if p′
1 interacts with p′

2, p1 probably interacts with p2 as 
well). 

While, for many methods, the authors (implicitly) assume 
that their method’s excellent prediction performance can be 
attributed to Explanation 1, we hypothesize that Explanation 
2 and Explanation 3 are the actual drivers of high prediction 
accuracy. To investigate Explanation 2, we randomized the 
positive input network in the training data (but not in the test 
data) via degree-preserving rewiring. Hence, each protein’s node 
degree is preserved, but the edges are no longer biologically 
plausible. If node degree information shortcuts indeed drove 
prediction performance, we would expect only a moderate drop 
in the test accuracy. Additionally, we incorporated two baseline 
methods (harmonic function [34] and local and global consistency 
algorithm [35]) that exclusively utilize network topology to infer 
if two proteins interact. 

To investigate Explanation 3, we carried out a 2-fold strat-
egy: On the one hand, we compared deep sequenced-based PPI 
prediction approaches against SPRINT [36]—an algorithmic PPI 
prediction approach based on local sequence alignment—as well 
as against simple baseline ML models which, by design, have 
access only to sequence similarity information. If sequence sim-
ilarity indeed were a main driver of prediction performance, we 
would expect our baselines to achieve similar performances as the 
state-of-the-art DL methods. On the other hand, we partitioned 
the proteome into two blocks such that inter-block sequence 
similarities are minimized and selected PPIs for train and test sets 
from different blocks of the partition. This ensures that sequence 

similarity patterns learned during training cannot be leveraged 
at test time. If Explanation 3 were valid, we would expect a 
significant drop in prediction performance. 

We conducted our analyses for six deep sequence-based PPI 
prediction methods [2, 4, 13, 20, 21], which we trained and 
tested on the same seven publicly available and commonly used 
datasets (two datasets with yeast PPIs [12, 37] and  five  with  
human PPIs [2, 11, 20, 38]). Our results show that training data 
leakage can fully explain the excellent accuracies reported in the 
literature. More specifically, if pairwise sequence similarities are 
minimized between disjoint training and test sets, performance is 
random, proving that sequence similarity and node degree are the 
only relevant features in current sequence-based PPI prediction 
methods. Finally, we generated a gold standard dataset to enable 
data-leakage-free validation of future PPI prediction methods. 

RESULTS 
Overview 
We reviewed the literature for PPI prediction methods and their 
underlying datasets (Supplemental Table S1). For most of the 32 
methods we found, extraordinary prediction performances are 
reported. However, source code is available only for 12 of them, 
emphasizing the reproducibility crisis in ML-based science [29]. 
Since we focused on understanding how sequence information 
contributes to DL-based PPI prediction, we selected methods that 
we managed to reproduce with reasonable effort and which rely 
exclusively on sequence information. This reduced the number of 
DL methods to Richoux-FC, Richoux-LSTM [2], DeepFE [13], PIPR 
[4], D-SCRIPT [20] and Topsy-Turvy [21]. 

For testing how much can be predicted from topology alone, 
we incorporated two node classification algorithms (harmonic 
function [34], local and global consistency [35]), which operate 
on the line graphs of the input networks. Additionally, we 
tested SPRINT [36], a fast algorithmic method that uses only 
sequence similarities of protein pairs to predict PPIs. We also 
included two baseline ML models (Random Forest, SVM) that used 
dimensionality-reduced (Principal Component Analysis (PCA), 
Multidimensional Scaling (MDS), node2vec) sequence similarity 
vectors as input for each protein. These baseline methods allowed 
us to assess the benefit of DL and to test the hypothesis that 
sequence similarity alone is already sufficient to achieve good 
prediction performance. Pairwise sequence similarities were pre-
computed by SIMAP2 [39]. Although sequence similarities were 
the only input feature, we note that the methods could learn node 
degrees implicitly during training. Supplemental Figure S1 depicts 
a schematic overview of the methods’ principles. 

We tested the methods on popular yeast and human datasets, 
the dataset used to validate the D-SCRIPT method (D-SCRIPT 
UNBALANCED) [20], and the two datasets by Richoux et al. [2] (see  
Table 1 for an overview). The latter two datasets were included 
because of their size and the unique generation of the strict test 
dataset, which was designed to be free from hub biases. D-SCRIPT 
UNBALANCED was included because it is deliberately unbalanced 
(1 to 10 positive versus negative annotations) to better reflect 
the underlying label distribution. The two Richoux datasets were 
created from a larger dataset consisting of PPIs annotated in 
Uniprot, which we later used for the partitioning task and refer to 
as RICHOUX-UNIPROT. All datasets were cleaned from duplicates 
and balanced except for D-SCRIPT UNBALANCED). Because of 
GPU restrictions, we created length-restricted datasets for D-
SCRIPT and Topsy-Turvy, in which each protein had between 50 
and 1000 amino acids. The original datasets were split 80/20 into
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Table 1: Overview of datasets. n denotes the overall number of samples in the datasets (after balancing and removal of duplicates), i.e. 
the number of PPIs plus the number of randomly sampled non-edges. nrestr. is size of the length-restricted datasets where both proteins 
of each (non-)interaction have between 50 and 1000 amino acids. These datasets were used for D-SCRIPT and Topsy-Turvy. nmethod is 
number of methods found in our literature review that were tested on the respective datasets. MRA denotes the median reported 
accuracy of the nmethod methods tested on the respective datasets. D-SCRIPT and Topsy-Turvy only reported auPR and AUC on their 
dataset. 

Dataset Organism n nrestr. nmethod MRA (in %) 

HUANG[40] Human 6690 4758 4 98.43 
GUO[37] Yeast 11 162 8760 14 94.75 
DU[12] Yeast 34 512 27 356 5 92.50 
PAN[38] Human 62 962 44 920 5 96.82 
RICHOUX-REGULAR[2] Human 79 868 67 724 2 88.10 
RICHOUX-STRICT[2] Human 68 664 78 776 2 77.29 
D-SCRIPT UNBALANCED Human 42 6492 426 283 2 0.5605 (auPR) 

training/test except for RICHOUX-REGULAR, RICHOUX-STRICT 
and D-SCRIPT UNBALANCED, which were already split into train-
ing/(validation/) test. Since we only used default hyperparame-
ters, we did not need a validation set and added the validation 
to training for these two datasets. We chose the random 80/20 
split since most reviewed methods report the mean accuracy of 
5-fold cross-validation [4–8, 11, 18, 38, 41, 42] or a random hold-
out test set [2, 3, 12, 13, 37, 43–46]. To confirm that the composition 
of the resulting training and test set does not significantly impact 
the results, we split the original and rewired GUO and HUANG 
datasets 10 times with different seeds (see Supplementary Figures 
S30, S31, and Supplementary Tables S8, S9). As many datasets 
are rather small, those models which were developed for larger 
datasets (e.g. D-SCRIPT and Topsy-Turvy) could be prone to over-
fitting. We therefore also tested how early stopping influences the 
results of all DL methods. For picking the best model from the 
epochs, we randomly took 10% of the training set as validation 
set in this setting. 

Figure 1 provides an overview of our analyses. We first consider 
a random split into train and test set, which we expect to intro-
duce data leakage (see Methods for details). To test how much 
the models learn from node degree only (Explanation 2), we next 
rewired the positive PPIs (edges in PPI networks) in all training 
folds. For this, we randomly re-assigned all edges but preserved 
the expected node degree for each protein, rendering the new 
positive PPI networks biologically meaningless. Finally, we used 
the KaHIP [47] method with length-normalized, pre-computed 
SIMAP2 [39] bitscores as input to partition the human and yeast 
proteomes into two blocks, P0 and P1, such that pairs of protein 
sequences from different blocks are dissimilar. Then, for each 
dataset, all PPIs (p1, p2) were assigned to three blocks INTRA0, 
INTRA1 and INTER, depending, respectively, on whether p1 and p2 

are both contained in P0, whether they are both contained in P1 

or whether they are contained in different blocks of the partition 
{P0, P1}. If Explanations 2 and 3 apply, we expect a significant drop 
in accuracy if we train on the PPIs contained in INTRA0 and test on 
the ones contained in INTRA1, since there is no direct data leakage 
(P0 ∩P1 = ∅) and a minimized amount of indirect data leakage due 
to sequence similarity. If we train on INTER and test on INTRA0 

or INTRA1, we expect a smaller drop in accuracy since there is 
data leakage. 

Results on randomly split original benchmark 
datasets 
Figure 2 shows our results upon randomly splitting the origi-
nal benchmark datasets into 80% train / 20% test. Since all 

published methods except for D-SCRIPT and Topsy-Turvy were 
reported to show close to perfect performances, we expected 
roughly comparable results across methods within each dataset. 
As larger data sets are more prone to data leakage, we fur-
ther expected accuracy to increase with dataset size for random 
splitting. 

Comparing the results for all datasets except for the RICHOUX-
STRICT dataset, we can see that the area under the precision-
recall curve (AUPR) values of SPRINT rise with the number of 
unique proteins in the dataset (Supplemental Table S2). SPRINT’s 
AUPRs match the balanced accuracies of the DL models on large 
datasets, which shows that finding similar subsequences to pre-
dict PPIs is already sufficient to reach excellent performance 
measures when proteins between the train and test set are shared. 

For almost all methods, performances are exceptionally 
high on the HUANG and PAN datasets. This phenomenon can 
be explained by looking at the node degree distributions of 
the positive and negative datasets (Figure 2(b)). While both 
distributions follow the power law for the other datasets 
(Supplemental Figure S3), the negative examples were sampled 
uniformly for the HUANG and PAN datasets. Methods can thus 
primarily distinguish between positive and negative examples by 
node degree alone. 

We further secure this finding by closer inspection of the 
degree ratios. Supplemental Figure S6a shows that most proteins 
in HUANG and PAN have either exclusively positive or negative 
interactions annotated (degree ratios are mainly 1 or 0). Because 
of the substantial data leakage (Figure 2(c), Supplemental Table 
S2), the proportion of training proteins with a high or low degree 
ratio in the positive or negative parts of the test sets is very high 
for HUANG (87% and 86%) and PAN (92% and 90%, Supplemen-
tal Figure S7a). Suppose an algorithm correctly predicts all of 
these interactions because of the degree information shortcut and 
assigns a random label for the remaining test interactions. In that 
case, we expect an accuracy of 93.25% and 95.5%, respectively. 
This estimate is close to the prediction of most methods, including 
but not limited to the topology methods. 

D-SCRIPT and Topsy-Turvy perform poorly due to overfitting 
(Supplemental Figures S8, S9). While training loss decreases and 
training accuracy increases, validation loss stays constant or 
increases, and validation accuracy decreases for all datasets. 
The only datasets where some learning is visible are HUANG 
and GUO, which is also reflected by the final reported balanced 
accuracy. While D-SCRIPT’s final prediction performance on the 
PAN dataset is far above random, inspecting the loss and accu-
racy patterns over the 10 epochs reveals an overfitting pattern.
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Figure 1. Overview of analyses. Seven publicly available datasets were used for testing seven published methods and eight basic ML models that use 
sequence similarities or topology as only input. We performed three tests to explain the phenomenal accuracies reported for DL methods: (1) We split 
the original data randomly into 80% train / 20% test, introducing data leakage through overlap of train and test proteins. Methods could learn from node 
degree biases and sequence similarities. This yielded inflated performance estimates and interchangeably high accuracies for DL and basic models on 
large enough datasets. (2) We rewired the positive train PPIs such that models could only learn from node degrees. Nevertheless, performance estimates 
only decreased slightly. (3) We partitioned the human and yeast proteomes into two blocks P0 and P1 such that proteins from different blocks have 
pairwise dissimilar sequences and assigned PPIs (p1, p2) to blocks INTRA0, INTRA1 and INTER, depending on whether p1 and p2 are both contained in P0 
or P1, or fall into different blocks of the partition. When trained on INTRA0 and tested on INTRA1 (no overlap between train and test data, models could 
neither learn from sequence similarity nor from node degrees), all tested models predicted PPIs randomly. 

Both models mostly predict test candidates to be non-interacting 
(specificity ≈ 1.0, see Supplemental Figure S20). 

Early stopping leads to a strong improvement of D-SCRIPT 
and Topsy-Turvy on almost all datasets (Supplemental Figure 
S15). The other methods, however, mostly lose performance. Many 
models already reach their best performances on the validation 
dataset in early epochs (Supplemental Figures S8, S9), indicating 
that the respective datasets might not be suitable for learning as 
they lead to immediate overfitting. 

Except for SVM-based methods, the performance of the base-
line ML methods is virtually interchangeable and roughly equal 
to the DL methods on the larger datasets, excluding D-SCRIPT 
and Topsy-Turvy. The random forest-based models seem to be a 
powerful alternative to the DL models. 

As expected, the performance of all methods drops signifi-
cantly on RICHOUX-STRICT. As shown in Figure 2(c), all datasets 
except for RICHOUX-STRICT include the vast majority of the 
proteins in both the train and test set. Consequently, RICHOUX-
STRICT is less prone to training data leakage, explaining 
the observed results. In the presence of data leakage, robust 
predictions can be made based on node degree and sequence 
similarity, even with basic ML models. RICHOUX-STRICT’s overlap 

is still almost 50%, but it is free from hub biases. However, 
40% of the positive and 51% of the negative test interactions 
still involve a protein with mainly positive or mainly negative 
annotations in the training set, respectively (Supplemental Figure 
S7). Applying the same logic as above, we expect an accuracy 
of 72.75%, which is the performance of most methods. SPRINT 
does not use node degrees for its predictions, so the number 
of protein pairs seen in training seems to be large enough for 
SPRINT to find similar subsequences for the RICHOUX-STRICT 
test set. 

Due to memory restrictions, the harmonic function algorithm 
could not be run on the D-SCRIPT UNBALANCED dataset. SPRINT, 
both Richoux models, DeepFE, PIPR and the random forest-based 
methods could handle the 1 to 10 imbalance, while the other 
models performed close to random (balanced accuracy around 
0.5). DeepFE and PIPR held up the good performance under early 
stopping and D-SCRIPT and Topsy-Turvy profited strongly, show-
ing that when overfitting is prevented and the training set is large 
enough, models can generalize to the test set. 

For all benchmark datasets, however, the overall number of 
proteins is far from the real number of proteins (Supplemen-
tal Table S2). It can hence be expected that the models overfit
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Figure 2. Results obtained on randomly split original benchmark datasets. (a) AUPRs on test sets for SPRINT, balanced accuracies for all other methods. 
Y-axis labels correspond to the dataset; the numbers of samples in the training data (all/restricted length) are shown in parentheses. AUPR values of 
SPRINT rise with the number of proteins in the dataset. Performances are exceptionally high on the HUANG and PAN dataset. For five out of eight 
baseline ML models, performances are comparable with the performances of the DL models. All performances drop significantly on RICHOUX-STRICT. 
(b) Node degree distributions of the positive and negative PPI datasets for HUANG and PAN. Only the node degrees of the positive PPIs follow a power law 
distribution. (c) Overlap of proteins occurring in the original training and test sets (proteins from positive and negative samples, separate visualization 
in Supplementary Figure S32). 

extremely on a specific subset and will not generalize when 
presented with unknown proteins. 

Rewiring tests 
We investigated how node degree-preserving rewiring of the pos-
itive training set affects the methods in general (Explanation 2). 
The differences to the results on the original datasets are shown 
in Figure 3(a). As edges are no longer biologically meaningful, 
the methods can only utilize degree information shortcuts to 
make correct predictions in the unperturbed test sets. Suppose, 
in the training split, protein p is only involved in positive (or 
negative) interactions. Any PPI involving p in the test split will 
likely be predicted as positive (or negative). Sequence similarities 
can only help when p′ is, e.g. similar to a hub protein. Then, 
p′ is more likely to be a hub protein (e.g. because of a shared 
promiscuous domain). However, sequence similarities hinting at 
binding sites or interacting domains cannot be used for prediction 
because of the rewired training data. While a slight drop in 
accuracy compared with the original performance would support 
the validity of Explanation 2, a significant drop would indicate 
that the models do not learn from node degrees alone. The 
extent of data leakage and the distribution of node degree ratios 

remain comparable with the original datasets (Figures 3(b), S6b  
and S7b). 

Indeed, the performances fell slightly compared with the 
results on the original datasets for all methods. Very high 
accuracies can still be reached on the datasets HUANG and 
PAN (Supplemental Figure S14). This is in accordance with our 
observations from Figure 2(b) and our findings on the original 
datasets. For these two datasets, the node degree distribution of 
the positive PPIs (power law) is not equal to that of the negative 
PPIs (uniform). Additionally, the proportion of training proteins 
with a high or low degree ratio in the positive and negative part 
of the test fold is again very high (81% and 91% for HUANG and 
90% and 88% for PAN, Supplemental Figure S7b). Therefore, the 
models can fully leverage the degree information shortcut to 
predict the unrewired test sets. This explanation also concurs with 
the observation that the sequence similarity-based baseline ML 
models lose more performance than the topology-based baseline 
methods on these datasets. In contrast to the topology-based 
baseline methods, sequence similarity-based baseline methods 
must implicitly infer the degree information shortcut. 

Remarkably, D-SCRIPT gains some performance on the HUANG 
dataset and the loss and accuracy curves indicate some learning. 
Richoux-LSTM has the largest gain in performance on the PAN
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Figure 3. Differences between the results obtained on the original datasets and results obtained on datasets with randomly rewired positive PPIs in the 
train sets. (a) AUPR values on unmodified test sets for SPRINT, balanced accuracies for all other methods. Y-axis labels correspond to the dataset; the 
numbers of samples in the training data (all/restricted length) are shown in parentheses. Performances fell only slightly compared with the results on 
the original datasets. Very high accuracies can still be reached for HUANG and PAN. For larger datasets, basic ML models perform approximately as well 
as the DL models. SPRINT performs almost randomly on small datasets but still reaches accuracies around 80% on the PAN and RICHOUX datasets. (b) 
Overlap of proteins occurring in the rewired training and test sets (proteins from positive and negative samples, separate visualization in Supplementary 
Figure S32). 

dataset but here, no learning can be seen and in the early stopping 
setting, the model from epoch 1 was taken. Generally, the random 
forest-based baseline models lose more accuracy points than 
the DL models, except on RICHOUX-REGULAR and RICHOUX-
STRICT, where the performance is similar. It is possible that the DL 
methods are better at recognizing node degree biases compared 
with basic models, which need larger datasets to achieve this. 
This trend is best visible in the unbalanced D-SCRIPT dataset 
(Supplemental Figure S14). 

SPRINT shows comparably poor performance on the smaller 
datasets but achieves an AUPR of up to 84% on large datasets. We 
cannot fully explain these high AUPR values. SPRINT searches for 
sequence similarities in potentially interacting protein pairs and 
does thus not benefit from node degree information. While we 
see a significant drop in the magnitude of the scores compared 
with the original datasets (Supplemental Figure S5), scores of 
interacting proteins are still higher than those of non-interacting 
proteins. 

Overall, we can confirm that the methods are biased by node 
degree information: Balanced accuracies up to 97% can still be 
reached despite the rewiring of the training data. 

Partitioning tests 
Running the baseline methods on the original datasets was a 
positive test for Explanations 2 and 3, as we expected similar per-
formance for DL and basic ML models. Indeed, our results confirm 

these expectations (see Figure 2(a)). The partitioning tests served 
as a negative test for Explanations 2 and 3. If the explanations 
were valid, we would expect the performances to drop signifi-
cantly when the models are trained on INTRA0 and tested on 
INTRA1. We expected this for both the DL and baseline ML models. 

The results of the partitioning tests are shown in Figure 4. 
Notably, all training dataset sizes were approximately halved 
because of the partitioning strategy. While INTER and INTRA0 are 
approximately equal in size, INTRA1 is considerably smaller (see 
Methods for details). 

Indeed, we observed random or near-to-random performances 
for all methods trained on INTRA0 and tested on INTRA1. The  
results show that when the test sets do not suffer from data 
leakage, the methods do not learn any higher level features 
during training that they can apply to unseen data. Instead, 
models overfit on the interaction patterns of the training proteins. 
Predictions become random when the test set does not contain 
these proteins (or highly similar proteins). The topology-based 
baseline methods predict all candidates to interact, except for 
the unbalanced dataset, where all are predicted not to interact 
(see recall and specificity, Supplemental Figures S18, S20). D-
SCRIPT and Topsy-Turvy profit from early stopping on the large 
datasets (Supplementary Figure S15). However, for both PAN and 
D-SCRIPT UNBALANCED, the model from the first epoch had the 
best performance on the validation set (Supplementary Figures 
S12, S13).
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Figure 4. Results of partitioning tests. (a) AUPR values for SPRINT, accuracies for all other methods. X-axis labels correspond to the dataset; the numbers 
of samples in the training data are shown in parentheses. Performances drop to random for all methods when trained on INTRA0 and tested on INTRA1. 
Performances obtained from training on INTER are still excellent, especially when tested on the INTRA0 blocks of HUANG and PAN. (b) Overlap of proteins 
occurring in the different blocks of the partitions of the benchmark datasets (proteins from positive and negative samples, proteins from positive and 
negative samples, separate visualization in Supplementary Figure S32). 

Overall, the performances obtained after training on INTER 
were excellent, especially when the methods were tested on 
the INTRA0 blocks of HUANG and PAN. Looking at the degree 
ratio proportions (Supplementary Figure S7), the proportion of 
INTER proteins with a low degree ratio in the negative part of 
the INTRA0 block is remarkably high compared with the INTRA1 

block. Consequently, the models can leverage node degree infor-
mation exceptionally well for the non-interactions, reflected in 
the high specificity achieved in this setting (Supplementary Figure 
S12.) Richoux-LSTM yielded random predictions for the small 

datasets due to overfitting, which was foreseeable when running 
100 epochs on less than 4000 data points. D-SCRIPT and Topsy-
Turvy also show overfitting patterns despite their objectively good 
performance on PAN and RICHOUX-UNIPROT (Topsy-Turvy, train-
ing on INTER, testing on INTRA1), and DU AND PAN (D-SCRIPT, 
training on INTER, testing on INTRA0, Supplementary Figures S12, 
S13). 

Data leakage is highest for the D-SCRIPT UNBALANCED 
dataset, where all proteins of INTRA1 are contained in INTER1. This 
explains why all models perform better on the INTRA1 block than
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8 | Bernett et al.

Figure 5. Overall runtime for training and testing on the original datasets. The label for RICHOUX-REGULAR is missing from the x-axis because it would 
overlap with the RICHOUX-STRICT label. Most runtimes increase linearly with size of the training dataset. D-SCRIPT and Topsy-Torvy have by far the 
highest runtime, while the Random Forest Methods have the lowest. 

on the INTRA0 block. Looking at the performance developments 
in the early stopping setting, we can hypothesize that the 
models find the degree shortcut in the process of overfitting 
to the training set. Overall, the results obtained show that the 
effect of the resulting data leakage is considerable even when 
only one of the proteins of each training PPI occurs in the test 
set. 

Runtime 
Runtime typically grows linearly with the size of the training 
dataset (Figure 5). An exception is SPRINT which always loads 
the preprocessed proteome before reading in the positive training 
PPIs. As these data contain the computed similar sub-sequences, 
the file is much more extensive for the human proteome 
compared to yeast; therefore, SPRINT takes longer on human 
compared with yeast datasets. Also, the topology-based baseline 
methods have almost constant runtime. However, the harmonic 
function required more than 350 Gb of memory for the D-SCRIPT 
UNBALANCED dataset. D-SCRIPT and Topsy-Turvy have by far the 
highest runtime. Our baseline ML models are the fastest methods. 
The fastest DL method is Richoux-FC, which only runs for 25 
epochs instead of 100, like Richoux-LSTM. 

Combined with the results from the previous sections, it is 
evident that an enormous amount of resources can be saved using 
simple methods to predict PPIs like scoring algorithms, Random 
Forests or multilayer perceptrons with few layers. These methods 
achieve similar results as the costly deep neural networks and can 
confidently predict PPIs using sequence similarities and learned 
interaction patterns for known proteins. 

All DL models were trained using a single NVIDIA A40 GPU (48 
GB). All baseline models were run using standard parameters on a 
single CPU (Intel ® 

Xeon ® 
Gold 6148) except for the Random Forest 

baselines (n_jobs = 6). 

Gold standard dataset 
We showed that existing DL models fail to extract more complex 
sequence features for predicting PPIs. For the design of more 
advanced ML strategies, we provide a leakage-free human gold 
standard data set for training, validation and testing (available 

at https://doi.org/10.6084/m9.figshare.21591618.v3) [48]. The pos-
itive dataset was created using data from HIPPIEv2.3 [49]. Nega-
tive PPIs were sampled randomly, but such that individual node 
degrees are preserved in expectation (Supplemental Figure S3). 
This dataset was split using our partitioning strategy with KaHIP, 
i.e. there are no overlaps between the three sets and sequence 
similarity is minimal. Both training and validation datasets are 
large enough to allow DL methods to avoid overfitting. Addition-
ally, the sets are redundancy-reduced w.r.t. pairwise sequence 
similarity using CD-HIT at a 40% threshold [50]. As a result, 
proteins are also pairwise dissimilar within their set, such that 
models have to extract features beyond sequence similarity to 
achieve good performance. 

To confirm that our gold standard data set shows the expected 
behavior, we evaluated all methods on it. Because SPRINT and 
our baseline models do not have any tunable parameters, we 
collapsed the training and validation set for their training. The 
same was done for D-SCRIPT and Topsy-Turvy because they only 
update their weights using the training dataset. All methods were 
evaluated on the test set. Indeed, performances were random 
for all methods (Supplemental Table S5). None of the methods 
could extract any higher-level features during training that could 
be applied to predict the test set. Topsy-Turvy was the best-
performing method at an accuracy of 56%. 

In the early stopping setting, we did not collapse the training 
and validation set but used the validation dataset to determine 
the best model. However, no significant changes in performance 
could be seen. Here, the best-performing method was D-SCRIPT 
with an accuracy of 55%. 

DISCUSSION 
We have conclusively shown that the problem of binary PPI pre-
diction is not solved but wide open. Numerous publications report 
accuracy values between 90% and 100% and fuel a feedback loop 
of over-optimism. We have shown that their prediction estimates 
can be solely attributed to data leakage caused by random split-
ting into train and test sets. The datasets used in the literature 
cause the models to overfit based on protein homology and node
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degree information. More complex sequence features represent-
ing binding pockets, protein domains or similar motifs are not 
extracted. Instead, methods depend on global sequence similarity 
and node degree. 

We have reached our conclusion using three experimental set-
tings: Firstly, we have shown that after random 80/20 splitting of 
the datasets, DL and baseline ML methods yield interchangeably 
high results on all datasets. SPRINT, the most straightforward 
method, performs excellent on large datasets, which shows that 
finding similar subsequences to predict PPIs is already sufficient 
to reach exceptional performance measures. When the methods 
cannot use information about hub proteins (RICHOUX-STRICT 
test set), performance drops for all methods. 

Secondly, we have demonstrated that biologically meaningless 
edges which preserve the expected node degree do not lead to ran-
dom predictions. While, for all methods, performance measures 
fall compared with the original datasets, accuracies up to 97% 
can still be reached for the DL methods and 89% for the baseline 
methods. Hence, the models can confidently predict PPIs from 
node degree information shortcuts only. 

Finally, we proved that excluding training proteins from the 
test set and minimizing pairwise sequence similarities between 
training and test sets strips all methods of their predictive power. 
Taken together, our results show that DL methods do not learn any 
higher level structural features. Conversely, we observe strongly 
elevated performance scores after training the methods on a data 
set with shared proteins. 

This study has several limitations. Firstly, we focused exclu-
sively on sequence-based methods. In future work, it would be 
interesting to see if our findings translate to methods predicting 
PPIs from 3D structures. Since proteins interact in a folded state, 
methods using this information might extract the actual underly-
ing patterns and find matching sites and domains. There are also 
algorithmic methods[51, 52] and ML models[5, 18, 41, 53] explicitly 
relying on phylogeny and co-evolution, whose additional value 
could be interesting to explore. 

Secondly, PPI networks neglect differences in the interactions 
of protein isoforms [54], where, for instance, the absence of a 
binding domain will limit a protein’s set of interaction part-
ners. Moreover, most proteins work in larger complexes, i.e. they 
form long-lasting interactions between two or more proteins. 
These complexes might then perform their functions by inter-
acting transiently with other proteins or protein complexes. If 
we want to predict and understand the underlying mechanisms 
of PPIs, we have to consider non-binary interactions and the 
difference between transient interactions and protein complex 
formation. 

Regarding future directions, we can say that binary PPI predic-
tions are already very accurate for proteins seen during training 
or for proteins that share similar (sub-)sequences. Hence, we 
appeal to the community to first try simple methods that cost 
fewer resources before moving on to complex and deep model 
architectures. Not only are these models prone to overfitting, but 
they also waste an unnecessary amount of time, memory, energy 
and CO2. Training data for species other than yeast or human are 
currently scarce. Thus, we also see potential in transfer learning 
approaches as in D-SCRIPT and Topsy-Turvy. 

However, the methods we have tested here are not equipped for 
predicting interactions in the ‘dark protein–protein interactome’ 
[55], i.e. currently understudied proteins for which no similar 
sequences are found in existing PPI networks. Our baseline models 
fail as they cannot use the similarity shortcut or exploit the 
network topology resulting from the study bias. We hypothesize 

that the tested DL models are too simple to learn these complex 
mechanisms and require significantly more data. The dataset 
must also be designed to push the models toward learning bio-
logical principles instead of shortcuts. We expect that methods 
leveraging structural information will help to close this gap in 
the future. As impressively shown by AlphaFold2, DL models have 
tremendous potential. Similarly to AlphaFold1, D-SCRIPT predicts 
a contact-map as an intermediate step to predicting interactions. 
Nevertheless, we observe poor performance for D-SCRIPT and the 
related Topsy-Turvy, which is only partially improved by early 
stopping. 

We speculate that extensive training data leakage has con-
cealed the full scope of the binary PPI prediction challenge. For 
future ML efforts, we thus provide a large gold standard training, 
validation, and test set that is free from data leakage and has 
minimized pairwise sequence similarities. With this, we hope to 
kindle renewed interest in this ML challenge and motivate further 
progress in the refinement of existing PPI prediction networks. 

METHODS 
Datasets 
We tested on the seven datasets summarized in Table 1. The yeast 
dataset GUO [37] contains 5594 positive PPIs from DIP with less 
than 40% pairwise sequence identity and 5594 negative PPIs gen-
erated from pairs of proteins appearing in the positive set, which, 
according to Swiss-Prot annotations, are expressed in different 
subcellular locations. The yeast dataset DU [12] was generated 
similarly and contains 17 257 positive and 48 594 negative PPIs. 
The human dataset HUANG [40] contains 3899 positive experi-
mentally verified PPIs from HPRD with less than 25% pairwise 
sequence identity and 4262 negative PPIs, which were generated 
like the ones of the datasets GUO and DU. The human dataset 
PAN [38] contains 36 630 positive PPIs from HPRD and 36 480 neg-
ative PPIs generated by combining protein pairs obtained via the 
approach described above with non-interacting pairs contained 
in the Negatome [56]. The human dataset RICHOUX-REGULAR 
contains positive PPIs retrieved from UniProt and negative PPIs 
generated by randomly pairing proteins from the positive set. 
Sequences were filtered to be at most 1166 amino acids long, 
mirror copies were added (for each PPI (p1, p2), add  (p2, p1)), and 
the resulting dataset was split into a training (ntrain = 85 104), 
a validation (nval = 12 822), and a test fold (ntest = 12 822). The 
human dataset RICHOUX-STRICT [2] was constructed from the 
RICHOUX-UNIPROT dataset as follows: PPIs whose involved pro-
teins appear less than 3 times were assigned to the test fold. The 
remainder was redistributed among the training and validation 
datasets. The resulting sizes of the training, validation, and test 
folds are, respectively, ntrain = 91 036, nval = 12 506, and  ntest = 720. 
The D-SCRIPT UNBALANCED [20] dataset contains 43 128 positive 
and 431 379 negative PPIs, split into training (38 344 positives / 
383 448 negatives) and test set (4794 positives / 47 931 negatives). 
The positive PPIs are experimentally verified interactions down-
loaded from STRING, with lengths between 50 and 800 amino 
acids. Highly redundant sequences (≥ 40% pairwise sequence 
identity) were removed. Negative PPIs were generated from the 
positive set at a one to ten ratio to reflect that there are much 
more non-interacting proteins than interacting proteins. 

The seven datasets were cleaned from duplicates and checked 
for overlaps. The training and validation folds in RICHOUX-
REGULAR and RICHOUX-STRICT were joined for all analyses. All 
datasets except RICHOUX-REGULAR, RICHOUX-STRICT and D-
SCRIPT UNBALANCED were randomly split into a train (80%) and
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Table 2: State of the benchmark datasets after cleaning and balancing: n denotes the overall number of samples in the datasets, i.e. the 
number of PPIs plus the number of randomly sampled non-edges. ntrain and ntest are defined analogously for the train and test sets. The 
modifications were done to clean and balance the original benchmark datasets, i.e. to ensure that the number of positive PPIs (edges) 
equals the number of negative PPIs (non-edges) in the train and test splits of all datasets. 

Dataset n ntrain ntest Modifications 

GUO 11 162 8966 2196 24duplicates, sampled 35 negatives for training, dropped 37 negatives for testing 
DU 34 512 27 514 6998 2511 duplicates, dropped 23 157 negatives for training and 5680 for testing 
HUANG 6690 5316 1374 0 duplicates, dropped 619 negatives for training and 110 for testing 
PAN 62 962 50 414 12 548 55 duplicates, dropped 1678 negatives for training and 476 for testing 
RICHOUX-REGULAR 79 868 67 404 12 464 5047 duplicates, dropped 25 475 negatives for training and 342 for testing 
RICHOUX-STRICT 68 664 68 144 520 5341 duplicates, dropped 30 057 negatives for training and 200 for testing 
D-SCRIPT UNBAL. 426 492 379 247 47 245 57 duplicates, sampled 14 081 negatives for training, sampled 1660 negatives for testing 

Table 3: State of the benchmark datasets after rewiring the positive training PPIs and balancing the datasets. n denotes the overall 
number of samples in the datasets, i.e. the number of PPIs plus the number of randomly sampled non-edges. ntrain and ntest are defined 
analogously for the train and test sets. 

Dataset n ntrain ntest Modifications 

GUO 11 256 8966 2290 24duplicates, dropped 12 negatives for training, sampled 57 negatives for testing 
DU 34 416 27 458 6958 2511 duplicates, dropped 23086 negatives for training and 5711 for testing 
HUANG 6722 5356 1366 0 duplicates, dropped 595 negatives for training and 118 for testing 
PAN 62 974 50 392 12 582 55 duplicates, dropped 1706 negatives for training and 442 for testing 
RICHOUX-REGULAR 80 056 67 592 12464 5047 duplicates, dropped 25 382 negatives for training and 342 for testing 
RICHOUX-STRICT 68 788 68 268 520 5341 duplicates, dropped 29 996 negatives for training and 200 for testing 
D-SCRIPT UNBAL. 427 009 379 764 47245 57 duplicates, sampled 14 832 negatives for training and 1660 for testing 

test ( 20%) set. A validation set was not needed since we omitted 
hyperparameter optimization. For the early stopping setting, we 
used 10% of the train set and a patience of 5. This set was used to 
determine the model with the best validation accuracy (precision 
for DeepFE since the method was optimized for that in the original 
publication), which was later used to predict the test set. After 
splitting, the datasets were balanced either by randomly dropping 
negatives or by sampling new negatives such that both proteins 
are already part of the dataset and that the interaction is not 
part of the existing positive or negative interactions (Table 2). 
The imbalance of the D-SCRIPT UNBALANCED dataset was 
maintained to test its influence on method performance. 

Because of GPU restrictions, we created length-restricted ver-
sions for all datasets for D-SCRIPT and Topsy-Turvy, where each 
protein’s length was restricted to lie between 50 and 1000 amino 
acids (Table 1). 

Rewiring tests 
In order to test how much the models learn from node degree 
only, we rewired the positive PPIs of all described training 
datasets such that all proteins keep their original degree in 
expectation (see Figure 6). However, the edges are newly assigned, 
rendering them biologically meaningless. For this, we used the 
expected_degree_graph() function of the NetworkX 2.8 Python 
package. Given the list (w0, w1, . . . , wm−1) of node degrees in the 
original network (positive PPIs in training fold), the function 
constructs a graph with m nodes and assigns an edge between 
node u and node v with probability puv = wuwv∑

k wk 
. Again, all datasets 

were checked for duplicates and overlaps and were balanced after 
splitting, resulting in the counts summarized in Table 3. 

A significant drop in accuracy compared with the performance 
on the original dataset could indicate that the models learn from 
the sequence features. However, a small drop would indicate 
that the models mostly memorize node degrees and assign their 

predictions based on whether or not the protein is overall likely to 
interact (Explanation 2). 

Partitioning tests 
To explore Explanations 2 and 3, which hypothesize that the 
models mostly learn from node degree information shortcuts and 
sequence similarities (see Introduction), we partitioned the yeast 
and human proteomes into two disjoint subsets P0 and P1 such 
that proteins from different subsets are pairwise unsimilar. For 
this, we first exported the yeast and human similarity networks by 
SIMAP2 as METIS files with length-normalized bitscore weights: 

wp1,p2 = n−1 · 
n∑

i=1 

length(pi) · bitscore(p1, p2) 
min{length(p1), length(p2)} (1) 

This resulted in weighted similarity networks with, respec-
tively, 6718 nodes and 92 409 edges (for the yeast proteome) and 
20 353 nodes and 1900 490 edges (for the human proteome). In the 
similarity networks, bitscore edge weights increase with increas-
ing pairwise sequence similarity. 

These similarity networks were then given to the KaHIP KaFFPa 
algorithm (desired output partitions: 2, pre-configuration: strong), 
which (heuristically) solves the following problem: Given a graph 
G = (V, E, ω) with non-negative edge weights ω : E → R≥0, it  
partitions V into blocks P0 and P1 such that, for all i ∈ {0, 1}, it  
holds that |Pi| ≤  (1 + ε)

⌈ |V| 
2

⌉
(partition is almost balanced) and the 

total cut size ω(P0, P1) = ∑
u∈P0

∑
v∈P1 

ω(uv) · [uv ∈ E] is minimized 
(the hyperparameter ε was left at the default ε = 0.03). For both 
the yeast and the human proteome, we hence obtained two dis-
joint subsets of proteins such that the overall pairwise sequence 
similarity between the subsets (sum of normalized bitscores along 
the cut) is minimized. 

For the yeast proteome, this resulted in |P0| =  3458 and |P1| =  
3260; for the human proteome, we obtained |P0| =  10481 and
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Figure 6. Concept of the rewiring and partitioning strategies. When the original network (a) is rewired, all node degrees stay the same in expectation 
but the edges are no longer meaningful (b). For the partitioning tests (c), the proteome is partitioned into two blocks (pink and green nodes) such that 
pairwise inter-block sequence similarity is minimized. Then, the PPIs from the original network (a) are partitioned based on which block the involved 
proteins are contained in (INTRA0: both proteins contained in green block, INTRA1: both proteins in contained pink block, INTER: proteins contained in 
different blocks). 

|P1| =  9872. Based on the partition {P0, P1} of the human and yeast 
proteomes, we then partitioned each PPI dataset into three blocks 
INTRA0, INTRA1, and  INTER. Each PPI (p1, p2) was assigned to one 
of these blocks as follows: 

• We assigned (p1, p2) to the block INTRA0 if p1, p2 ∈ P0. 
• We assigned (p1, p2) to the block INTRA1 if p1, p2 ∈ P1. 
• We assigned (p1, p2) to the block INTER if p1 ∈ P0 ∧ p2 ∈ P1 or 

p1 ∈ P1 ∧ p2 ∈ P0. 

Again, all datasets were cleaned from duplicates and balanced 
after partitioning. If additional negatives had to be sampled, they 
were sampled from the proteins of the respective block. This 
yielded the number of samples shown in Table 4. Methods were 
then either trained on block INTRA0 and tested on block INTRA1 

or trained on block INTER and tested on the blocks INTRA0 and 
INTRA1. Following Explanations 2 and 3, we expected the most 
significant drop in accuracy compared with the original perfor-
mance when training on INTRA0 and testing INTRA1. We  expected  
a smaller drop in performance when training block INTER and 
testing on INTRA0 and INTRA1, since then, for approximately half 
of the test PPIs, sequence similarity information and node degrees 
from training are available at test time. Note that, from the three 
datasets published by Richoux et al. [2], we partitioned the dataset 
RICHOUX-UNIPROT as it contains the largest number of unique 
proteins. 

Construction of gold standard dataset 
The whole human proteome was split into three parts by run-
ning KaHIP on the all-against-all sequence similarity matrix from 
SIMAP2 with length-normalized bitscores. When configured to 
output a three-way partition, KaHIP partitions the node set V of 
an edge-weighted graph G = (V, E, ω) into blocks P0, P1 and P2 such 
that the cut size 

ω(P0, P1, P2) =
∑

{i,j}∈({0,1,2} 
2 )

∑

u∈Pi

∑

v∈Pj 

ω(uv) · [uv ∈ E] (2)  

is minimized and |Pi| ≤  (1 + ε)
⌈ |V| 

3

⌉
holds for all i ∈ {0, 1, 2}. This 

resulted in 6987 proteins in P0, 6987 proteins in in P1 and 6379 
proteins in P2. 

A total of 831 933 positive PPIs were downloaded from the 
HIPPIE database [49] (version 2.3). Mapping all 18 909 unique IDs 
to UniProt IDs using the UniProt mapping tool resulted in 17 269 
unique proteins and 689 735 PPIs. The positive dataset was sorted 
into blocks INTRA0 (56 747 PPIs), INTRA1 (164 416 PPIs) and INTRA2 

(52 560 PPIs), where uv ∈ INTRAi if and only if u ∈ Pi and v ∈ 
Pi. Negative PPIs were sampled randomly to match the number 
of positives. To exclude the possibility of learning from node 
degrees alone, we approximately preserved the node degrees of 
the proteins from the positive networks INTRAi in the negative
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Table 4: Number of samples contained in each block after splitting the benchmark datasets according to the partitioning assignments. 
n0, n1 and nINTER denote the numbers of positive and negative PPIs in the blocks INTRA0, INTRA1 and INTER. All blocks are balanced 
(50% interactions, 50% non-interactions). 

Dataset n0 n1 nINTER Modifications 

GUO 4640 1722 4604 INTRA0: 218 additional negatives; INTRA1: 86 deleted negatives; INTER: 307 deleted negatives 
DU 14 468 4842 15 202 INTRA0: 9686 deleted negatives; INTRA1: 4707 deleted negatives; INTER: 14 357 deleted negatives 
HUANG 2410 1426 2850 INTRA0: 245 additional negatives; INTRA1: 66 deleted negatives; INTER: 544 deleted negatives 
PAN 31 212 9150 22 596 INTRA0: 180 additional negatives; INTRA1: 1422 additional negatives; INTER: 3601 deleted negatives 
RICHOUX-UNIPROT 39 634 10 334 28 866 INTRA0: 9323 additional negatives; INTRA1: 4997 deleted negatives; INTER: 6124 deleted negatives 
D-SCRIPT UNBAL. 149 314 93 137 183 414 INTRA0: 50 730 additional negatives; INTRA1: 15929 deleted negatives; INTER: 18 772 deleted 

negatives 

networks. This was achieved by randomly sampling two distinct 
proteins at a time from the multiset 

Mi = {{ p1, . . . p1︸ ︷︷ ︸
degi(p1) times 

, . . . , pk, . . .  pk︸ ︷︷ ︸
degi(pk) times 

, . . .  | pk ∈ Pi}}, (3)  

where the number of occurences of each protein pk ∈ Pi equals its 
degree degi(pk) in INTRAi. 

Afterward, the sequences of the individual proteins in the 
blocks were fed to CD-HIT at a similarity threshold of 40%. 
Within INTRA0, CD-HIT identified 1512 redundant sequences, 
within INTRA1 1680, and within INTRA2 1465. Between INTRA0 and 
INTRA1, CD-HIT 2D found three redundant sequences, between 
INTRA0 and INTRA2 20 and between INTRA1 and INTRA2 24. These  
sequences were filtered out of the blocks to form redundancy-
reduced datasets. The blocks were then balanced again, resulting 
in 59 260 PPIs in INTRA0, 163 192 PPIs in INTRA1 and 52 048 PPIs 
in INTRA2. Finally, we labeled the block INTRA1 as the training 
dataset, the block INTRA0 as the validation dataset and the block 
INTRA2 as the test dataset. 

Tested methods 
The results of an extensive literature screening for high-
performing PPI prediction methods can be found in Supplemental 
Table S1. Only 12 of 32 reviewed publications made their code 
available (13 methods; Richoux et al. [2] proposed two).  We  
excluded the methods that did not only use sequences as input 
and focused on DL methods with high reported accuracies, which 
we managed to reproduce with reasonable effort. Additionally, 
we included the SPRINT method as a baseline comparison 
since it only relies on sequence similarity for its predictions. 
Further details about the tested methods can be found in the 
Supplementary Material. 

We further included simple baseline ML methods, which we 
designed such that they can only learn from sequence similarity. 
For this, we encoded amino acid sequences as vectors of sequence 
similarities to all other proteins in the human or yeast proteome. 
We reduced the dimensionality of the similarity-based encod-
ings using PCA, MDS and node2vec, and then trained random 
forests and SVMs on the dimensionality-reduced encodings. We 
also included two classical node label classification algorithms 
(harmonic function [34], global and local consistency [57]), which 
we ran on the line graphs of the PPI networks. Conversely to the 
similarity-based baselines, these methods do not use sequence 
information at all but predict interactions only based on the 
topology of the network induced by the positive and negative PPIs 
in the training data. Note that we did not include these baselines 
in order to test if simple methods are sufficient for PPI prediction 

but in order to quantify possible data leakage to due sequence 
similarity or network topology (good performance of the baselines 
is indicative of data leakage). In order to minimize the risk of 
confirmation bias, we therefore consciously decided not to carry 
out hyper-parameter optimization and to use classical methods 
that are implemented in very popular software packages (scikit-
learn for random forests and SVMs and NetworkX for harmonic 
function and global and local consistency). 

In the main figures, we report balanced accuracy for all meth-
ods except for SPRINT and include other performance measures 
in the Supplement. SPRINT calculates similarity scores and sorts 
the output decreasingly by the scores where a higher score rep-
resents a higher probability for interaction. Rather than choosing 
an arbitrary threshold to calculate accuracies, we calculated the 
AUC and auPR for SPRINT. 
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