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ABSTRACT 

Copy-Move Forgery (CMF) is a common form of image manipulation attack that involves copying and 

pasting a part of an image to another position within the same image. This study proposes a Deep Learning 

(DL) model for detecting CMF, particularly in the presence of various malicious attacks. The proposed 

approach involves several steps, including converting the input image to grayscale, preprocessing the 

image using the Simple Linear Iterative Clustering (SLIC) algorithm to generate superpixel partitions, and 

then extracting keypoint features using the Speeded Up Robust Features (SURF) detector. Finally, a 

Generative Adversarial Network (GAN) is employed for feature description and matching. To assess the 

effectiveness of the approach, the types of features used for copy-move forgery were addressed. The 

proposed approach was examined under rotation, blurring, jpg compression, and scaling attacks. 

Furthermore, experimental results showed that the proposed approach can detect multiple CMFs with 

high accuracy. Finally, the proposed method was compared with recent state-of-the-art methods. 

Keywords-image forgery; SURF keypoints; deep learning; SLIC segmentation 

I. INTRODUCTION  

Every user can share and exchange multimedia through 
social media networks. Multimedia content is exposed to 
several violations, therefore, the concept of multimedia security 
includes several ways of protection [1]. The increasing spread 
of ways to create and modify images, due to the presence of 
many available relative tools and software, has led to an 
increase in manipulated images, which can spread deceptive 
information [2]. Fake news uses multimedia content to mislead 
people based on fake visual content. Fake news often relies on 
sensitive or even incorrect images to elicit outrage or other 
emotional responses from consumers to encourage their spread. 
For this reason, it is necessary to verify the authenticity of these 
images, since the images express a lot of major information in 
many areas such as the field of criminal investigation, 
insurance dealing, financial reports, intelligent processing, 
journalism, and medical imaging. It is also critical to detect 
them because the process of unauthorized image manipulation 
affects the reading of images and changes the results associated 
with them. In light of this, many researchers are trying to 
develop algorithms to detect image forgery [3]. CMF is one of 
the most prominent image manipulations, as shown in Figure 1. 

Digital image forgery is classified into active [4-5] and 
passive [6] approaches. The active approach means that when 
an image is created, some information is included within it to 
achieve the principle of attributing the image to its owner. 

When processing the image and trying to extract this 
information, it becomes clear whether the image has been 
modified or not. The lack of this information when trying to 
extract it means that the image has been modified. The passive 
approach is a blind approach to detect if the image has been 
tampered with or not, based on the characteristics and some 
features in the image itself without a referenced image. 
Regarding the passive approach, the image forgeri methods are 
[7]: 

 Copy-move forgery: falsifying images by copying a portion 
of the image and moving it to another place [8].  

 Image splicing: inserting a piece of one or more imported 
images into the original to deceive the viewer [9]. This is a 
very common image forgery manipulation. 

 Image retouching: applying some enhancement or filtering 
to an image [10].  

 Image resampling: change of geometrical properties in 
some content of the image, such as rotation, flipping, 
reflection, expansion, and skewness [11]. 

 Image morphing: forming a new image that is completely 
different from two previous images. The necessary effects 
are made to harmonize the two images with each other [12]. 

CMF is one of the most important algorithms for detecting 
image forgery, concerned with finding copies of a portion in 



Engineering, Technology & Applied Science Research Vol. 14, No. 1, 2024, 12549-12555 12550  
 

www.etasr.com Uliyan: A Deep Learning Model to Inspect Image Forgery on SURF Keypoints of SLIC Segmented … 

 

the image and moving it to another place within the same 
image. The task of coping part of the image and then pasting it 
to another place is trivial and can be found with the naked eye, 
but many transformations can be also applied, such as scaling, 
blurring, etc., to delude the spectator of the image that it is a 
real image without any manipulation. Figure 2 shows the 
general approach to the CMF process for the copied region P1 
and the moved region P2 in the image itself with translation, 
rotation, or scaling attacks, respectively. 

 

 
Fig. 1.  Classification of security attacks in image forgery detection 
methods. 

 
Fig. 2.  CMF mechanism. 

The main problem is image violation through copy-move 
forgery by trying to copy an object or hide something in the 
image. To solve this issue, a DL model was used to detect 
copy-move forgeries by investigating keypoints in segmented 
regions. The main objectives of this study were: (1) To 
accurately determine copy-move forgery regarding malicious 
attacks, (2) To detect objects or regions regarding primitive 
features using SURF, (3) To develop a robust detection 
algorithm against various transformations, such as rotation, 
scaling, and various jpeg compression factors. The proposed 
model combines two algorithms, SLIC segmentation and 
SURF feature extraction, to achieve both accurate localization 
of the forged regions and effective feature extraction for 
accurate detection of copy-move forgeries. Some advantages of 
using SLIC and SURF together are: 

 Computational efficiency: The SLIC algorithm can 
efficiently reduce the number of pixels in a single image, 
making it easier to compute feature descriptors faster using 
the SURF algorithm. This helps to minimize the 

computational complexity and processing time of digital 
image analysis and processing tasks. 

 Robustness: The SURF algorithm [13] was designed to be 
robust to various image transformations, such as scaling, 
rotation, and affine distortion.  

II. RELATED WORKS 

CMFD methods are classified into three categories [14-15]: 

 Keypoint-based [16] identifies and chooses regions with 
high entropy in the image. The process of selecting 
keypoints starts from the preprocessing step that converts 
the image to grayscale to facilitate the extraction of 
primitive features of regions of interest in the image using 
the local maxima algorithm. Due to the power of the 
keypoint algorithm in detecting primitive features for any 
region manipulated with many geometric transformations, 
such as rotation, resizing, occlusion, and noise, it is widely 
applied to find the origin of images and recognize objects. 

 Block-based [17]: Image regions are divided as overlapping 
square or circular blocks, and then the feature vector is 
calculated to characterize a strong and low-dimensional 
representation of the characteristics of the local image. 
Then, blocks of similar characteristics are matched 
according to the extracted descriptors. There is often a 
Euclidean distance between the descriptors to evaluate the 
similarity between two blocks. 

 Segmentation-based [18-19]: Such methods suggest 
preprocessing the suspected image by dividing it into 
semantically independent regions through a segmentation 
algorithm, where the comparison between them is 
performed to increase the accuracy of matching similar 
regions. 

Some studies used DL-based methods in the field of CMFD 
[20]. In [21], the mask region-based convolution neural 
network was proposed, which is a DL approach to locate and 
segment modified portions of suspicious images. This method 
achieved an average precision of 0.769, however, it was 
insufficient to deal with postprocessing attacks because of its 
low representation of features' capacity. In [22], a customized 
CNN based on the VGG-16 model was proposed that used 
transfer learning to increase CMFD accuracy, but it was 
computationally expensive and took a long time to derive 
results. The training time was 2.8 hr while the inference time of 
an image was 0.0532 s. In [23], deep features, such as deep 
convolution neural networks, were used to perform boundary-
to-pixel direction segmentation using the SD-Net method, 
although it is vulnerable to noise attacks. 

III. PROPOSED METHOD 

Figure 3 shows the framework of the proposed CMFD. It 
consists of several processes, beginning with grayscale 
conversion of the suspicious image and preprocessing it into a 
collection of superpixels using SLIC segmentation. Then, it 
extracts the SURF features from each segment and matches 
them. Finally, GAN is used to filter out the real image. The 
proposed method aims to accurately detect copy-move forgery. 
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Fig. 3.  Framework of the proposed CMFD. 

A. Preprocessing Stage using SLIC Segmentation 

Simple Linear Iterative Clustering (SLIC) is a method used 
to generate superpixels in an image. Superpixels are defined as 
groups of intensities that share common features, such as color 
palettes. The goal of SLIC segmentation is to divide an image 
into multiple regions with similar superpixels, making it more 
significant and easier to investigate. SLIC has various practical 
applications, including object detection and recognition tasks 
[24]. The SLIC algorithm works by merging pixels based on 
similar features such as colors. It operates in a five-dimensional 
color and image plane space, where the combined color and 
spatial information is used to effectively produce condensed 
and almost homogeneous superpixels. The algorithm is simple 
to use, with a lone parameter specifying the intended number of 
superpixels. Its performance in producing superpixels at a 
reduced computational cost has been demonstrated to be 
equivalent to or higher in quality than currently available state-
of-the-art methods. Here is how the SLIC segmentation 
algorithm works: 

1. Initialization: The algorithm starts by evenly distributing a 
set of cluster centers throughout the image plane. The 
number of cluster centers is determined by the desired 
number of superpixels. 

2. Assignment: Each pixel is then assigned to the nearest 
cluster center based on its color palettes and spatial 
closure. The color similarity is measured in a 5-
dimensional space, which combines the pixel's color 
information and its spatial location in the image. 

3. Update: After the initial assignment, the cluster centers are 
updated by taking the mean color and position of all the 
pixels assigned to them. 

4. Convergence: Steps 2 and 3 are repeated until the cluster 
centers no longer move significantly or a maximum 
number of iterations is reached. This ensures that the 
algorithm converges to a stable solution. 

5. Postprocessing: Once the algorithm has converged, the 
final superpixel segmentation is obtained by labeling each 
pixel with the index of its corresponding cluster center. 

The advantages of using the SLIC algorithm for image 
segmentation are: 

 Speed: SLIC is a fast algorithm that can efficiently process 
large colored images, making it suitable for real-time 
applications and preprocessing tasks. 

 Boundary adherence: SLIC has good boundary adherence, 
which means that the generated superpixels are closely 
aligned with the edges and contours of objects in the image. 

This can be beneficial for the copy-move forgery detection 
task that requires accurate object localization and boundary 
detection. SLIC algorithm, as k-means [25], takes an intended 
number of regions K as input. The approximate size of each 
region in an image with N pixels is N/K pixels. Every grid 

interval � =  ��/�  would have a region center C for 
approximately equal-sized regions. The region center Ck is 
represented as a five-dimensional vector [Rk, Gk, Bk, xk, yk] for  
k = 1, 2, …, K. 

The first phase involves routinely sampling K region 
centers Ck on the image plane (x, y) at RGB channels Rk, Gk, Bk 

and moving them to the places corresponding to the lowest 
gradient position in a 3×3 neighborhood computed by: 

�	
, � =  | |�	
 +  1, � −  �	
 −  1, �| |� +  

| |�	
, � +  1 −  �	
, � −  1| |�  (1) 

where I(x, y) is the image corresponding to pixel x, y and ||.|| is 
the L2 norm. This is done to avoid setting the center on an edge 
and to decrease the possibility of selecting a noisy pixel. 
Following that, each picture pixel is given to one of the 
segments based on distance, i.e. the distance between a pixel i 
and all the region centers is computed, and the pixel is assigned 
to the segment whose center has the shortest distance to i. The 
SLIC algorithm assumes that pixels associated with a region 
are located on the x, y plane inside a 2S×2S radius around the 
region's center. This step narrows the search area. The distance 
measure D is defined as the sum of the color space dRGB and 
spatial space dx,y distances normalized by the grid interval S. 
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� � =  ����  +   
!
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Therefore, the color and spatial distances in (4) are 
balanced using the variable m = 10. A higher number of 
superpixels will result in smaller superpixels and a more 
detailed segmentation, while a lower number of superpixels 
will result in larger superpixels and a more coarse 
segmentation, as shown in Figure 4.  

 

   

 
(a) 

 
(b) 

 
(c) 

Fig. 4.  Segmentation in low and high superpixel factors: (a) Original 
image, (b) low superpixel factor, and (c) high superpixel factor. 
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The output of the SLIC segmentation stage is a set of 
labeled subregions Sb in image I and the center ci of each Sb in 
the i-th region are saved in feature C = [c1, c2, …, ci], where i is 
the total number of segmented regions and depends on the pixel 
factor parameter. 

The compactness factor controls the trade-off between the 
spatial distance and the color distance when assigning pixels to 
superpixels. As shown in Figure 5, from left to right, a lower 
compactness factor results in superpixels with more irregular 
subregions, while a larger compactness factor will result in 
superpixels with regular subregions, making it easier to locate 
the center of each subregion. 

 

   

 

(a) 
 

(b) 
 

(c) 

Fig. 5.  SLIC segmentation in variant compactness factor: (a) Image, (b) 
compactness factor = 20, and (c) compactness factor = 60. 

B. Keypoints Detection using SURF 

Speeded-Up Robust Features (SURF) [13] detects and 
describes features in an image plane and is widely used in the 
field of computer vision applications, such as object 
recognition, image registration, and classification. It is an 
upgraded version of the SIFT algorithm [26] with improved 
speed. The algorithm produces 64 or 128 features by working 
in 4 steps: (1) Scale-space extrema detection, (2) keypoint 
localization, (3) orientation assignment, and (4) keypoint 
descriptor. The SURF algorithm has two parts, the detector and 
the descriptor. In the detector part, a Hessian matrix is used 
because of its detection performance strength, since it does not 
consume a lot of power for computation and produces accurate 
results. Given a point p = (x, y) in an image I, the Hessian 
matrix H(p, σ) at the point p and scale σ is defined as: 

#	$, % � &'

	$, % '
�	$, %
'�
	$, % '��	$, %(  (5) 

where Lxx(p, σ), Lxy(p, σ), Lyx(p, σ), and Lyy(p, σ) are the 
second-order Gaussian derivatives of image I at point p and 
scale σ. SURF additionally selects the scale using the Hessian 
determinant. The prevailing orientation is estimated by adding 
all responses within a 60° sliding orientation frame. The 
Laplacian is replaced by the Difference of Gaussian (DoG) to 
reduce the cost of computation. The image is then converted to 
an integral image to improve the speed of executing the box 
filter. For the descriptor part, SURF uses wavelet response, 
since it is invariant to lighting variables. The feature descriptor 
is based on the sum of the Haar wavelet response around the 
point of interest. A 20s×20s neighborhood is drawn around the 
keypoint, where s is the size, and it is divided into four 
quadrants. Horizontal and vertical wavelet responses are 
obtained for each subregion, and a vector is constructed as: 

) = 	∑ �
 , ∑ �� , ∑  |�
| , ∑  |�
|  (6) 

The wavelet response can be easily determined using an 
integral image at any scale σ, and is also invariant to the scale 
variable by converting the descriptor into a unit vector. Figures 
6 and 7 show how features are extracted using the SURF 
algorithm and identify similar regions in the image itself. The 
result of this stage is to determine the keypoints of the 
segmented regions Sb that start from the center ci of each Sb. 

 

Fig. 6.  Detection of SURF keypoint features. 

Fig. 7.  Locate similar keypoints and matching between image regions. 

C. Deep Learning Model using GAN 

The Generative Adversarial Network (GAN) [27] is one of 
the most significant recent advancements in the field of 
unsupervised deep generative models. Figure 8 depicts the 
architecture of a typical GAN, which consists of two main 
neural networks motivated by the two-player min-max game: a 
generator and a discriminator. The generator attempts to create 
genuine images to trick the discriminator, while the 
discriminator attempts to discern between authentic and fake 
images. The matched regions created by SURF were used as 
input to the GAN to determine which region was copied (Real) 
and which was moved (Fake). The copied regions obtained 
from the discriminator are considered authentic images, while 
the forged regions obtained from the generator are considered 
forged. The generator can learn the pattern distribution of the 
training images, and the discriminator can extract the feature to 
characterize the image as real or fake. The training process of a 
GAN can be described as a two-player min-max game, where 
the generator tries to maximize the probability that the 
discriminator makes a mistake, while the discriminator tries to 
minimize its error rate. This adversarial relationship between 
the generator and the discriminator is what gives GAN its 
name. During training, the generator and discriminator are 
updated iteratively using back propagation. The generator's 
weights are updated based on the feedback from the 
discriminator, while the discriminator's weights are updated 
based on its performance in classifying real and fake images. 
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Fig. 8.  Steps of GAN to classify real or fake images. 

GAN is a learning method that maps an image with a 
random noise denoted z to an authentic image denoted y by 
G:{x, z}→ . It trains the generator to produce outputs that 
cannot be distinguished from "real" images by an adversarial 
discriminator D which is trained to recognize fakes as well as 
possible. GAN can be expressed by: 

'�+, 	�, � � -�,�  .log �	
, �2 � -�,3 .log41 � �4
, �	
, 567 (7) 

where G attempts to reduce the expectation value and D 
attempts to achieve it as follows: 

�∗ �  89:;<=>  ;@AB  	ℒ�+,	�, �  (8) 

Combining the GAN expectation value with a more typical 
loss, such as the L2 distance, the discriminator's function 
persists, but the generator has been assigned to be close to the 
real output in an L2 manner. In addition, the possibility of using 
the L1 distance denoted by ∥ ∥E  rather than the L2 was 
investigated, because L1 encourages less distortion. 

ℒFE	� � -�,�,3.∥ � � �	
, 5 ∥E2  (9) 

The final G was formulated as: 

�∗ � 89:;<= �  ;@A G 
  ℒ�+,	�, � � HℒFE	� (10) 

The network may still learn how to map from x to y without 
z, but it would give predictable outputs and consequently refuse 
to identify any pattern other than a λ value. 

IV. RESULTS AND DISCUSSION 

The functionality of the proposed method was investigated 
using two benchmarking databases: CoMoFoD [28] and MICC 
F220 [29]. The CoMoFoD database was used to detect copy-
move forgery by analyzing 260 forged JPG or PNG image sets 
categorized by manipulation and postprocessing methods, 
including rotation, scaling, JPEG compression, and blurring. 
Furthermore, the MICC F220 dataset consists of 220 images, 
110 of which are forged and 110 are originals. 

A. SLIC Segmentation with SURF Keypoints 

Superpixels in an image have perceptual meaning when 
pixels in the same region share similar visual features. These 
are joined together to provide a compacted depiction of the 
objects, which is highly beneficial for detecting copy-move 
forgeries. This SLIC segmentation technique generates 
superpixels by grouping pixels based on color and spatial 
closeness at the image level. It was assumed that the copied and 
moved regions in the forged image share the same color 
properties, texture attributes, and shape primitives. To address 
this issue, SLIC was used to address the color and texture 
aspects of the suspected regions. The SURF method was used 
to locate primitive features. Figure 9 shows the extracted SLIC 

with SURF features to observe a copy-move forgery. Figure 
9(d) shows how duplicated portions with the same keypoints 
could be helpful in the detection of copy-move forgeries. 

 

  
(a) 

  
(b) 

  

  
(c) 

  
(d) 

  

Fig. 9.  Detection results of CMF using SLIC+SURF: (a) Original image, 
(b) forged image, and (c), (d) SLIC+SURF. 

B. Matching Keypoints Between Copy-Move Regions using 
SURF 

The green rectangle in Figure 10(a) depicts the object in the 
original image, whereas the red rectangles in Figure 10(b) 
represent the copy-move forgeries. SURF features in yellow 
are appropriately connected between duplicated regions. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 10.  SURF features from image: (a) Original image, (b) forged image, 
and (c) SURF keypoints. 

C. Detection of CMF under JPEG Compression 

JPEG compression with a Quality Factor (QF) of 20 and 80 
for a copy-move region deforms the forged image. A region 
was copied and pasted into a non-overlapping region at random 
spatial locations. Figure 11 shows how the proposed method 
can detect duplicated regions with the maximum True Positive 
Rate (TPR) and the lowest False Negative Rate (FNR) for all 
QFs. For a JPEG QF of 20, TPR was 96% and FNR was 3% 
for the worst case. For a JPEG QF of 80, TPR was 98% and 
FNR was 2%. 

D. Detection of Multiple CMF under Scaling, Blurring, and 
Rotation 

The proposed method was evaluated in terms of 
postprocessing attacks such as scaling, blur, and rotation. As 
shown in Figure 12, GAN reduces false matches and 
significantly improves the visual detection result in both types 
of postprocessing-based attacks. 
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(a) 

 
(b) 

  

 
(c) 

 
(d) 

Fig. 11.  CMFD results based on high and low QF in JPEG compression: (a) 
Original image, (b) forged image (QF = 80), (c) detection results with QF = 
80, and (d) detection results with QF = 30. 

E. Performance Evaluation and Discussion  

Table I shows the evaluation results of the proposed method 
and Table II shows a comparison with three recent state-of-the-
art methods: (1) segmentation-based [30-31], (2) deep learning-
based [32], and (3) keypoint-based [16]. All implementations 
were carried out in MATLAB using the image processing 
toolbox. Its performance was measured in terms of Precision 
(P), Recall (R), and F1-score (F1), as specified below: 

P =
IJ

IKLMK
× 100%    (11) 

R =
IJ

IKLMQ
× 100%    (12) 

RE-score = 2 × P×R

PLR
× 100%   (13) 

V. CONCLUSION 

This study presented a segmentation concept that exhibits 
higher discriminative powers compared to a single key point, 
using SLIC segmentation as a preprocessing technique in 

image analysis. Additionally, a SURF key point-based method 
was implemented for each segmented region in the image. This 
approach is known for its resilience to translation and post-
processing attacks. In addition, a GAN framework was used to 
reduce the number of false positives. The experimental results 
confirmed that the proposed method exhibited resilience to 
rotation, blurring, scaling, and jpg compression, and 
demonstrated its effectiveness compared to current state-of-the-
art approaches. 

 

(a) 

   

(b) 

   

(c) 

   

(d) 

   

Fig. 12.  Visual detection of multiple CMF under scaling, blurring, and 
rotation attacks: (a) multiple CMF and 0.6 scaling up factor, (b) multiple CMF 
and 0.3 scaling down factor, (c) multiple CMF and bluring σ = 0.2, and (d) 
multiple CMF and rotation θ = 45°. 

TABLE I.  THE PROPOSED METHOD'S PERFORMANCE IN DETECTING CMF IN FORGED IMAGES. 

Database 
SLIC and SURF without GAN SLIC+SURF with GAN 

P (%) R (%) F1 (%) P (%) R (%) F1 (%) 

CoMoFoD [28] 91.41 92.88 91.52 95.51 93.21 94.34 
MICC F220 [29] 90.21 90.11 90.42 94.12 93.12 93.62 

TABLE II.  PERFORMANCE COMPARISON WITH OTHER METHODS 

Method Database Preprocessing step Descriptor model Accuracy Time (sec) 

[30] CoMoFoD SLIC segmentation GLCM 
TPR= 93.75 
FPR= 7.25 
F1=93.75 

32.76 

[31] CoMoFoD 
DenseNet-41 
Segmentation 

Mask-RCNN 
P=98.12 
R= 95.85 
F1=96.97 

45 

[16] CoMoFoD SIFT keypoints Agglomerative Hierarchical Clustering 
TPR = 97.65 
FPR = 9.02 

6120 

[32] CoMoFoD CNN features VGG16 & Buster Net DNN 
P= 78.22 
R= 73.89 
F1=75.98 

NA 

Proposed Method CoMoFoD SLIC +SURF GAN 
P=95.51 
R=93.21 
F1=94.34 

40 
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