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Multiple myeloma is the second most frequent hematologic malignancy

worldwide with high morbidity and mortality. Although it is considered an

incurable disease, the enhanced understanding of this neoplasm has led to

new treatments, which have improved patients’ life expectancy. Large amounts

of data have been generated through different studies in the settings of clinical

trials, prospective registries, and real-world cohorts, which have incorporated

laboratory tests, flow cytometry, molecular markers, cytogenetics, diagnostic

images, and therapy into routine clinical practice. In this review, we described

how these data can be processed and analyzed using different models of artificial

intelligence, aiming to improve accuracy and translate into clinical benefit, allow

a substantial improvement in early diagnosis and response evaluation, speed up

analyses, reduce labor-intensive process prone to operator bias, and evaluate a

greater number of parameters that provide more precise information.

Furthermore, we identified how artificial intelligence has allowed the

development of integrated models that predict response to therapy and the

probability of achieving undetectable measurable residual disease, progression-

free survival, and overall survival leading to better clinical decisions, with the

potential to inform on personalized therapy, which could improve patients’

outcomes. Overall, artificial intelligence has the potential to revolutionize

multiple myeloma care, being necessary to validate in prospective clinical

cohorts and develop models to incorporate into routine daily clinical practice.
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Introduction

Multiple myeloma (MM) is the second most frequent

hematologic malignancy (1) worldwide with high morbidity and

mortality. It presents with bone lytic lesions, anemia, impaired renal

function, and hypercalcemia. Although there have been significant

advances in the knowledge (2) and treatment (3–5) of this

neoplasm, it is still an incurable disease (6).

Large amounts of data have been generated in clinical trials,

registries, and real-world cohorts, which can be processed and

analyzed using artificial intelligence (AI) algorithms (3). These are

integrative approaches that use individual data from datasets and

can suggest the optimal therapy for a specific patient, as has been

demonstrated in other models of neoplastic (7–9) or non-neoplastic

diseases (10, 11).

In this review, we describe how AI models are changing the

landscape of MM care, with potential applications of AI during

the diagnosis, prognosis, prediction response, and optimal

therapy selection. These applications leverage the different

types of data often already available as part of the standard of

care, such as from laboratory tests, hematopathology [including

flow cytometry (FC)], diagnostic images, genomics, and clinical

data. Overall, AI has the potential to impact the MM field both

directly through improvement in diagnosis or treatment and

indirectly through workflow optimization and potentially lower

cost (12).

However, although AI is a promising evolving field, it is

imperative to ensure that AI applications are effective and have

appropriate validation and implementation in the daily clinical care

of patients with MM, as the use of AI applications is still at an early

stage despite its great potential (12).
General considerations of
artificial intelligence

AI can be systems, tools, or algorithms that can be trained from

data to think, learn, and imitate human intelligence to solve specific

problems and perform functions in the real world (13). AI uses various

algorithms derived frommachine learning (ML) or deep learning (DL).

ML functions by training algorithms on relevant data. It gathers

data, interprets them, and makes decisions based on previous and

present experiences (14). To measure its performance, different

metrics are used, with area under the curve (AUC) being one of the

most common. AUC represents the performance of the model at

separating classes and accuracy under the receiver operating

characteristics (AUROC) related to the model’s overall

correctness (13). There are different learning methods in ML:

supervised (SL), unsupervised (UL), and reinforcement learning

(RL) (Figure 1).

SL learns from data that have been labeled previously, assuming

a correct classification. As part of the training process, the model

compares its prediction to the ground truth and adjusts to increase

the likelihood of a correct prediction in future iterations. Once
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trained, the system can infer labels on similar (unlabeled) input

data. SL includes multi-instance, transductive, active, meta, and

multi-task learning styles where the input data are labeled and

classified, followed by regression and prediction (14) on these

labeled datasets. SL provides more accurate results when used for

classification. SL models are simple to train and test using labeled

datasets (14).

UL includes self-supervised, constructive, and association rule

learning styles. It works on unlabeled data objects. Anomaly

detection, clustering, density estimation, feature learning,

dimensionality reduction, and association rule discovery are some

of the UL tasks (14). It is used for feature extraction, spotting

important patterns and structures, and matching together related

objects (14).

RL consists of an agent that is trained in a dynamic

environment and learns autonomously by trial and error. The

agent decides what to do to perform a task and assesses the

outcome of such input based on a set endpoint. RL uses no

training dataset, so it learns based on the feedback from its

experiences (output), minimizing inappropriate actions and

maximizing appropriate ones for receiving rewards for expected

returns and punishment for unsuccessful attempts (14). The reward

and punishment are mathematical functions that assign a numerical

value to each state or action of the agent. They measure the

goodness of a particular action in a particular state. The reward

reflects the goal and provides positive feedback that directs the

agent toward the desired outcomes.

The hybrid styles are semi-supervised, feature, and robot

learning. The advanced styles are transfer, federated, self-taught,

multi-view, online, co-learning, few-shot learning, and ensemble

learning (14).

DL is based on the structure and function of the human brain.

It builds algorithms into layers, composed of millions of

computing neurons, to create an artificial neural network

(ANN) (Figure 1). DL uses structured and unstructured data to

train a model and performs pre-processing, feature extraction, and

recognition. It determines the accuracy of a prediction based on its

own ANN (15). It also can exponentially scale up with the rising

amount of data, being useful for solving complicated

computational problems (15). Furthermore, DL is capable of

learning and making intelligent decisions for itself, overtaking

other ML methods.

There are different DL-based techniques, including multi-layer

perceptrons, in which neurons are in sequential layers, leading to

unidirectional movement of information; recurrent neural

networks, which analyze an input sequence one item at a time

while storing all previous components; and convolutional neural

network (CNN), which can learn invariant features to represent

spatial correlations from image date (3).

Some of the DL models are CNN, Visual Geometry Group

Network (VGGNet), Residual Network (ResNet), Fully

Convolutional Networks (FCNs), U-Net, Deep Feed-Forward

Networks, Siamese Neural Networks, and Graph Neural

Networks (13).
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Early diagnosis of multiple myeloma
and artificial intelligence

The major clinical manifestations of MM at diagnosis include

lytic bone disease, presenting with pain and fractures, anemia,

hypercalcemia, renal failure, and an increased risk of infections

(14). MM is often confused with other diseases, delaying its

diagnosis. It has been reported that 49% of MM patients are

diagnosed in emergency services or other secondary care

specialties different from hematology, often leading to diagnostic

and therapeutic delays (15). The timely diagnosis of MM is crucial

for achieving the best patient outcomes and a better quality of life.

It is based on the demonstration of ≥10% clonal bone marrow

(BM) plasma cells or a biopsy-proven plasmacytoma plus

evidence of one or more MM-defining events attributable to the

plasma cell disorder or the presence of biomarkers of

malignancy (16).

However, in routine clinical practice of physicians different

from hematologists, there is no immediate access to BM biopsy,

relying mostly on laboratory and imaging data. There is a large

amount of clinical and readily accessible laboratory data

available that can be processed by AI algorithms to achieve

faster and more accurate diagnosis of MM. Although screening

tests have been reserved for widely prevalent diseases such as
Frontiers in Hematology 03
colon and breast cancers, the possibility of developing highly

specific models for early detection and intervention of MM

patients would be useful for early diagnosis of MM (6).
Laboratory tests

Different laboratory tests are now collected routinely during

clinical practice in most of the patients who present with or without

concern for MM. Therefore, analysis of these readily accessible data

represents an opportunity for early identification of MM. A

retrospective study including a total of 4,187 routine blood and

biochemical tests obtained over 10 years from 1,741 MM and 2,446

non-MM patients (infectious, hepatic, renal, and rheumatic

immune system diseases) examined the use of routine tests in the

diagnosis of MM. Laboratory data included hemoglobin, serum

creatinine, serum calcium, quantitative immunoglobulins (IgA,

IgG, and IgM), serum albumin, total proteins, and albumin/

globulin ratio. The data were analyzed using a Gradient Boosting

Decision Tree (GBDT), Support Vector Machine (SVM), Deep

Neural Network (DNN), and Random Forest (RF), and an early

assistant diagnostic model of MM was created. Among the four ML

algorithms, GBDT yielded the highest precision with AUC of 0.929

and 0.899 for MM and non-MM patients, respectively (17).
FIGURE 1

Schematic representation of the subtypes of machine learning (ML) and deep learning (DL). Supervised ML models rely on labeled data and are
useful for classification problems, as they are relatively easy to train using data labeling. In contrast, unsupervised ML models do not require labeled
data and rely on methods to extract characteristics without requiring direct guidance. Reinforcement ML models rely on a system of reward/
punishment feedback based on a series of inputs and outcomes. Several DL structures exist, and each can be leveraged for different purposes and
rely on different data structures. Figure created in BioRender.com.
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As immunoglobulin assays are not part of the routine

laboratory tests, six variables (hemoglobin, serum creatinine,

serum calcium, albumin, total protein, and albumin/globulin

ratio) were used to train the model. If the immunoglobulins were

considered unavailable, the model would have a 0.79 precision,

0.726 recall, and 0.760 F1 score, which are lower than those of the

nine-variable model fit with immunoglobulin based on the GBDT

model, with the potential of being more extensively applicable.

It is important to note that although these applications rely on

laboratory tests that are routinely part of myeloma assessment, the

analysis of these data is performed in an unbiased approach

(independent of clinical scenario or indication) and does not rely

on dichotomization or pattern approach that may be used by

human interpreters. Furthermore, as these models rely solely on

results, they can analyze large amounts of data without initial

human supervision.

Based on these results, a workflow could be incorporated

depending on the available clinical information. For the patients

where quantitative immunoglobulins are available, the nine-

variable model should be used to achieve higher accuracy. For

health centers where immunoglobulin examination is not

commonly ordered, the six-variable model should be used as a

precautionary measure should indicat ions of further

immunoglobulin investigations appear.
Electrophoresis and immunofixation

Serum protein and serum immunofixation are commonly used

for diagnosis and evaluation of response in MM patients. In some

laboratories, interpretation is performed manually, which is a time-

consuming process that may take up to 3–5 days, delaying decision-

making. These processes would benefit from automatization, and

ML approaches are useful for this analysis. Evaluation of the

presence of M protein and the concentration of albumin, alpha1,

alpha2, beta1, beta2, and gamma regions from the gel strips and

densitometer graphs has been performed using artificial neural

networks, VGG-16, RF, and SVM to automate this process (18).

CNN, specifically VGG-16, exhibited the best performance, with

reasonable processing times, followed by artificial neural networks

and RF, and SVM exhibited the worst performance (18).
Electrocardiograms

Cardiac amyloidosis (CA) arises from the deposition of

misfolded proteins in the cardiac muscle. The major types are

light chain amyloidosis, caused by the accumulation of

immunoglobulin light chains, and transthyretin amyloidosis

among the most common et io log ie s . CA is la rge ly

underdiagnosed, as its clinical manifestations can be subtle and

often difficult to differentiate from changes observed in

hypertension or other cardiovascular diseases, making diagnosis

challenging and often delaying the treatment. One approach to

overcome this difficulty is the use of automated diagnostic

algorithms, which enable the extraction of salient information
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from “raw data” without requiring pre-processing based on the a

priori knowledge of the human operator (15).

Different AI models have been shown to facilitate the detection

of rare diseases such as CA (15). Considering that CA patients are

likely to present to non-experts with their initial symptoms, and the

extensive availability of electrocardiograms in general medicine

settings, an AI model was constructed to facilitate the detection of

CA, which was evaluated in different medical centers (18). The

approach exhibited good predictive accuracy as measured by C-

statistics of 0.85–0.91 (95% CI 0.90–0.93), followed by analyses of

echocardiograms (ECGs), which exhibited C-statistics of 0.89–1.00,

highlighting the necessity of a second set of confirmatory diagnostic

testing such as free light chain test, scintigraphy, and possibly tissue

biopsy. Other AI algorithms for evaluating magnetic resonance,

echocardiography, and mass spectrometry have also been used for

the diagnosis of CA (15).
Bone marrow analyses

Aspirate

BM aspirate differential cell counts are critical for diagnosis and

evaluation of complete response after treatment. Manual counting

is the gold standard but has significant limitations, including using a

small number of counted cells and being labor-intensive and time-

consuming, with high inter- and intra-observer variability (19). In

peripheral blood (PB), automated cell analyses are well-established

and extensively used. However, few reliable automated counters of

BM have been developed because of the complexity of these

samples. Diversity in cell morphologies and the high density of

touching cells in BM smears hinder the segmentation of single cells,

which is required for image processing.

ML approaches have emerged as the principal model for

analyzing histology images. Digital pathology imaging coupled

with ML had been used to detect and classify BM aspirate cells.

ML algorithms that use neural networks are adaptive and can learn

from data in an unbiased manner. They exhibit superior

performance in detection and classification, and they can require

thousands of labeled examples for training algorithms to recognize

variations in staining and morphology and to reach diagnostically

meaningful accuracy.

ML digital pathology systems that allow differential cell counts

of normal BM by analyzing the whole slide have been described

(19–22), and one of them included a small set of MM (19). This

software achieved a high degree of accuracy in cell detection (0.98

precision-recall AUC) and classification (0.97 ROC AUC) for MM

using a two-stage system based on CNN. These algorithms

represent an important initial step for MM diagnosis and require

validation in larger clinical cohorts.
Flow cytometry

FC is used in clinical practice to quickly confirm an accurate

diagnosis of MM, characterizing, quantifying, and demonstrating
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the presence of clonal plasma cells in BM or any tissue. Next-

generation FC (23) paired with AI algorithms and clinical

databases automatically identifies cell populations and

significantly reduces the variability of analysis compared with

manual approaches, as demonstrated by the FlowCAP (Flow

Cytometry: Critical Assessment of Population Identification

Methods) competition. Next-generation FC evaluates, with high

sensitivity and specificity, the response of treatment and detects

measurable residual disease (MRD), becoming the most important

prognostic factor of MM patients (24) independent of cytogenetic

risk in recent years and is currently being explored as a potential

guide to indicate intensification or de-escalation of therapy

(25, 26).

Currently, newer instruments can measure 40 or more

parameters, enhancing the ability of FC to profile patients with

cancer, making FC one of the most important high-throughput

tools for single-cell analysis. High-dimensional data visualization

requires multiple biaxial plots, which increase quadratically with the

number of measured parameters (phenomena described as

dimensionality explosion). Therefore, the interpretation of this

large amount of data is challenging. It is not easy to identify

reproducibly relevant subpopulations or perform large-scale

immune monitoring that could be a useful marker of treatment

response, particularly to immunotherapies. Furthermore, it depends

highly on the operator’s knowledge, adding potential bias and

variability of results (27).

AI is an attractive approach to solving these problems. Different

types of AI algorithms are being applied to clinical FC data.

Supervised and unsupervised clustering algorithms for cell

population identification, various dimensionality reduction and

ML pipelines, and SL approaches for classifying entire cytometry

samples improve diagnostic sensitivity and accuracy as well as

prognostic scores (28, 29).

Many programs have been used to accomplish this goal. These

are relatively simple workspaces to process, analyze, and visualize

large datasets. It includes pre-processing, normalization, multiple

dimensionality reduction techniques, automated clustering, and

predictive modeling tools, using several ML algorithms to build

predictive models of survival or to learn classification rules. Using

FlowCT (30), the T-cell compartment has been compared in BM

with PB from smoldering MM patients identifying immune

biomarkers of progression from smoldering to active MM in a

minimally invasive approach, as well as prognostic T-cell subsets in

BM of active MM after treatment intensification.

Biomarkers to personalize treatment are continually searched to

improve MM outcomes. Currently, undetectable MRD is

considered a new endpoint of MM therapy, an intermediate

surrogate of prolonged survival (31). Treatment individualization

based on the probability of an individual patient attaining

undetectable MRD with a singular regimen and confirmation of

predicted MRD outcomes represent a new concept of personalized

treatment. The classical prognostic factors have a limited ability to

predict MRD outcomes when used individually. By contrast, an ML

model (32) including tumor burden, cytogenetic (del(17p13) and/or
Frontiers in Hematology 05
t(4;14)), and immune-related biomarkers predict MRD outcomes

in up to 72% of newly diagnosed MM (NDMM) patients treated

with different regimens and who have different survival rates,

with significant accuracy. This model is available online

(www.MRDpredictor.com) (32).
Desorption/ionization time-of-flight
mass spectrometry

BM biopsies have a single-site bias. Thus, new diagnostic tests

and early detection strategies are required in MM. Matrix-

assisted laser desorption/ionization time-of-flight mass

spectrometry (MALDI-TOF MS) coupled to artificial neural

networks can analyze non-linear data and predict and classify

variables in multidimensional datasets. PB plasma evaluated

using MALDI-TOF MS from MM patients and healthy donors

had generated patterns in mass spectra that had served as inputs

for artificial neural networks that specifically predicted MM

samples with high sensitivity (100%), specificity (95%), and

accuracy (98%) (33).
Diagnostic images

Because of the limitations of conventional diagnostic

approaches, such as BM biopsy with inadequate representation of

tumor due to the patchy BM or extramedullary infiltration of MM

(34) and being an invasive procedure, other methods of diagnosis

and prognosis are of significant interest. In this setting, 18F-

fluorodeoxyglucose (FDG) positron emission tomography (PET)/

computed tomography (CT) plays a crucial role. This diagnostic

imaging method has reached a significant level of evidence for

clinical decision-making and for establishing prognosis and

treatment response. Currently, there is an increased interest in

using multimodal applications of ML coupled to PET/CT, as this

method facilitates examination of the entire intra-patient

heterogeneity of tumor involvement, rather than using limited

information obtained from unimodal images (35). In addition, its

capacity to predict patient prognosis based on radiomics signatures

(36) could have great potential in stratifying MM patients as either

low- or high-risk, which is a promising application of AI in

this scenario.

Image data of PET, CT, and clinical parameters were analyzed

using machine learning algorithms [linear gradient boosting models

based on Cox’s partial likelihood (GB-Cox), Cox model by

likelihood-based boosting (CoxBoost), generalized boosted

regression modeling (GBM), RF for survival model (RSF), and

support vector regression for censored data model (SVCR)]. Then, a

prognostic model was constructed, which included five PET-based

features, four CT-based features, and six clinical data that were

significantly related to progression-free survival. Among the

algorithms, RSF and GBM had the greatest prognostic

accuracy (36).
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Prognosis

During the last few years, different prognostic models have been

used to stratify NDMM patients, among which the International

Staging System (ISS) (37) and Revised-ISS (R-ISS) (38) are the most

common. Both prognostic indexes were derived from clinical trials,

and these have been validated in real-world MM cohorts treated

with different drug combinations. However, there are knowledge

gaps, as most patients are categorized into low or intermediate

groups. Furthermore, some patients who are classified as low risk

have a short survival, and the majority of patients stratified by R2-

ISS have very heterogeneous outcomes. Recently, the R2-ISS (39)

staging system has been recommended, which added the presence

of 1q21 gain/amplification (1q21) to the R-ISS and allowed a better

stratification within the intermediate-risk NDMM. New prognostic

models based on genetic factors using high-throughput genomic

analysis could be very useful, but these are not easily applicable in

real life because of cost and technological complexity.

Several studies have shown how AI can significantly improve risk

stratification. Using clinical, biochemical, and cytogenetic variables

from three different trials of NDMM patients aged 65 years and older

and UL clusterization (40), two novel subgroups of patients with

significantly different survival were identified. The prognostic

precision of this clusterization was superior to that of ISS and R-

ISS scores and appeared to be particularly useful in improving risk

stratification among R2-ISS patients. The model re-classified the R2-

ISS score into clusters with significantly divergent overall survival

(OS). Of note, all patients with high lactate dehydrogenase (LDH) or

high-risk cytogenetics were assigned to the high-risk cluster. The

model retained its predictive power independent of induction type,

transplant, conditioning, and the different maintenance schemes.

Despite that the model shares some variables with ISS or R-ISS, it

provides additional discriminative value to the former two.

Another model used ML, creating a 50-variable RF (IAC-50) that

included clinical (patient age and ISS stage), biochemical (serum

beta-2 microglobulin), and RNA-seq (expression of 46 genes) data

collected by the CoMMpass consortium. The model predicted OS

with high concordance between both training and validation sets (C-

indexes, 0.818 and 0.780, respectively) (41). Survival predictions for

each patient considering the first line of treatment verified that those

individuals treated with the best-predicted drug combination had

significantly lower mortality rates than patients treated with other

schemes. This was particularly important in patients treated with a

triple combination therapy including bortezomib, an

immunomodulator, and dexamethasone. Notably, the model

exhibited a trend of retaining its predictive value in patients with

high-risk cytogenetics.

Another model has been developed for OS prediction. Four

algorithms were used (Cox proportional hazards, DeepSurv,

DeepHit, and RSF), and 30 parameters were incorporated

(baseline data, genetic abnormalities, and treatment options) of

patients older than 65 years. The RSF model yielded the best score,

and OS predictions were largely affected by the maintenance

schema variable with the immunomodulator group having the

best survival rate (42).
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Selection of target therapy

Over the last 15 years, there have been a considerable number of

newmedications approved for treating MM, with more than 15 new

Food and Drug Administration (FDA)-approved medications over

the last 10 years. Furthermore, these therapies are often combined

with preexisting medications, with the current standard of care

including four- or three-drug combinations. Although approval of

medications is largely driven by randomized clinical trials (RCTs),

where a new medication or combination is compared with a

standard of care, the large number of newly approved treatments

leads to a lack of head-to-head comparison of interventions.

Moreover, although RCTs are fundamental for the assessment of

the efficacy of new interventions, clinical trials may not be

representative of a specific patient characteristic. In addition,

RCTs are often under-represented in patients with high-risk MM

(defined by staging classification, clinical features such as

extramedullary disease, or genomic/cytogenetic characteristics).

AI represents an attractive approach to leverage the large volume

of clinical data that exist in MM, for both patients included in clinical

trials and those included in registries or other real-world cohorts.

Baseline characteristics including clinical presentation, genomic

characteristics, and other variables could be incorporated to either

stratify the patients’ prognosis as indicated previously or suggest

optimal therapy or combination therapies.

Early examples of this include the model IAC-50, which was

created and validated based on the aforementioned CoMMpass

registry. This model evaluated the combination and number of

agents used in the first line and identified that only 41% of cases

received the optimal first-line regimen. Although many of the

suggestions would be consistent with our current understanding

of MM treatment, such as higher activity, progression-free survival,

and OS, with three- vs. two-agent combinations, the IAC-50 model

may inform of optimal agents within a therapeutic class, which can

identify patients who may benefit from using bortezomib instead of

carfilzomib and vice versa. Furthermore, the IAC-50 also informs

on the specific triple combinations of different classes of therapy,

with patients receiving “optimal” therapy according to the IAC-50

and retaining the predictive value regardless of age (>65 years older

at diagnosis), autologous stem cell transplant consolidation, or

maintenance use (41).

Similarly, data from several large clinical registries and

prospective trials with available whole genome sequencing were

pooled. A neural Cox with non-proportional hazards (NCNPH)-

based model was created and trained in a discovery cohort of 1,933

patients followed by validation in a cohort of 256 patients

originating from the same cohort. The model, named

Individualized Risk Model Myeloma (IRMMa), was constructed

following a multistate architecture that allowed controlling for

time-dependent covariates such as autologous stem cell transplant

(ASCT) and maintenance, with a total of two phases: phase 1,

induction; and phase 2, post-induction (43).

IRMMa incorporated demographic, clinical, therapeutic, and

genomic characteristics to evaluate the prognosis of each patient,

with an overall higher C-index for event-free survival (0.69) and OS
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(0.73) compared with clinical staging systems such as ISS, R-ISS,

and R2-ISS. Furthermore, genomic data improved the performance

of the model with well-described high-risk alterations such as t

(4;14) and deletion 17p; other alterations such as elevated APOBEC

mutational signatures were also identified as prognostic.

Lack of access to genomic information is typical during routine

clinical practice, which limits the applicability of models that

incorporate these types of data. Approaches to inhibit this include

the creation of flexible models that can accommodate missing

information. IRMMa allows for missing data, and even in the

absence of genomic data, it still outperforms ISS, R-ISS, and R2-

ISS. Of note, the model also allowed the identification of patients

who may benefit from specific interventions, such as ASCT (43).

Park et al. developed a prognostic MLmodel based on data available

as part of the current standard of care, using baseline demographic,

laboratory, and cytogenetic information for patients treated with

lenalidomide and dexamethasone (Rd) or bortezomib, melphalan,

and prednisone (VMP), and based on the individual expected OS, a

decision on the most appropriate regimen could be informed (44).

Importantly, different variables were predictive for outcomes of

VMP or Rd treatment, and data on early response were

incorporated to further guide potential optimal therapy.

Both IAC-50 and IRMMa are examples of the use of artificial

intelligence to leverage existing clinical data, both originating from

clinical trials and registries, and they highlight the utility of these

models to incorporate many variables to identify potential

candidates for a specific intervention. However, with a large

number of new therapy options and combinations, longitudinal

integration of data will be paramount, as the models would only be

able to suggest combinations for interventions included in their

training cohorts.
Potential applications of artificial
intelligence in myeloma: where is the
line between science fiction and
feasible use?

Although some AI applications that once seemed like science

fiction are now used in routine clinical medicine, such as

interpreting ECG and identifying white blood cell subsets, AI has

inherent limitations that need to be acknowledged.

First, as mentioned previously, AI models rely on preexisting

data, which leads to an inherent bias for recent/novel interventions,

such as a new medication or new diagnostic procedure. It is not

likely, therefore, that preexisting AI models could predict the

outcomes or response to a novel therapy, especially if they rely on

an alternative mechanism of action. For example, in the recently

introduced bispecific T-cell engagers in MM, AI will not replace

prospective clinical trials and first-in-human drug development.

However, AI can enhance drug development through the

identification of complex protein–protein interactions or targets,

which are applications already being developed. Furthermore, AI

could enhance the creation of synthetic controls for RCTs of

uncommon disease subgroups, an approach that was already
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incorporated by the OPTIMUMM trial (reference) using previous

trials. However, the impact of this approach would need to be

validated, as it may introduce inherent bias.

Second, although not specific to MM, the development of

generative AI platforms that can output text, summaries, or other

information sets based on unstructured data (such as reports,

imaging data, or encounters with patients) may ultimately

enhance patient care, limiting the toll on clinicians, reducing

hospital costs, and contributing to accurate representation in the

electronic medical record and/or trial data generation.

Although there are several limitations mentioned previously,

the capability of AI to integrate a large number of variables

surpasses the capacity of any human, representing a new

approach that otherwise would not be accessible without this

technology. With the large amount of data generated in routine

clinical practice, exploiting the use of these results, even before

considering newer and more expensive techniques (e.g., generalized

whole genome/exome sequencing), is a logical next step.

Consequently, although there are innumerable applications for

AI, prospective validation of the efficacy of these interventions is

paramount and should be treated in the same pragmatic approach

as any new intervention in the field, ensuring there is a new benefit

for patients or the system.

Lastly, the question of whether AI will replace physicians

naturally arises. However, although the capability of AI to

support clinicians in decision-making is promising, AI will likely

represent a tool to facilitate and enhance the role of physicians in

patient care, with longitudinal interactions and patient–physician

interactions, and the resulting relationships are invaluable for

patients. As both AI and humans aim for the same endpoint,

which is to provide the best care and outcomes for multiple

myeloma patients, AI represents another improvement to our

toolbox, such as the use of fluorescence in situ hybridization

(FISH) cytogenetics, therapeutic developments, and advances in

imaging. Finally, it is important to note that all the applications of

AI described are likely to be beneficial in parallel and not a

substitute for human input.
Discussion

The prognosis of MM patients has changed radically over the

last 20 years owing to therapeutic developments, which have

enhanced our understanding of plasma cell biology and have

resulted in the incorporation of cytogenetic data in clinical and

laboratory data with refinements in prognostic models used in

clinical practice. Despite this, MM is still a heterogeneous disease,

with the current clinical staging system classifying approximately

one-third of patients in the intermediate-risk stage, often with

heterogeneous clinical outcomes within the same risk stratification.

AI has the potential to revolutionize MM care at all stages, from

screening large populations with widely available clinical laboratories

(such as hemoglobin, renal function, and albumin) to expediting

diagnosis, potentially preventing MM-related complications caused

by therapeutic delays. Furthermore, automatization in the processing

of different diagnostic methodologies, such as the analysis of serum
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protein electrophoresis and FC, still relies heavily on human input

and represents an area where AI applications could allow

automatization, resulting in lower variability and time to result. In

addition, with the large volume of data produced by multiplex

methods, such as next-generation flow (NGF) and next-generation

sequencing, AI applications represent the most attractive approach to

facilitate the application of these results to clinical practice, as human

analysis is often limited and results in high interpersonal variability.

Similarly, the use of AI in facilitating the diagnosis of

amyloidosis represents an attractive approach, as pre-defined

clinical criteria based on imaging or ECG are not sensitive

enough to identify these patients. However, given the extensive

access to ECG and other imaging modalities such as

echocardiogram, an AI application that takes the raw data from

these modalities could alert non-hematologist healthcare providers

regarding the potential diagnosis of amyloidosis, potentially

facilitating timely referral and diagnosis.

Although the management of MM has relied heavily on

prospective data from clinical trials, the large number of

therapeutic options, combined with the paradigm of combination

therapy, results in many possible multi-agent regimens. As the

direct comparison of these regimens is often not practical and

would require many patient follow-ups, leveraging existing clinical

and genomic data from randomized trials, registries, and real-world

cohorts represented with AI models represents an attractive option

that could inform on the optimal therapeutic approach. As

mentioned previously, the success of this application relies on the

integration of AI models with clinical practice, as predictive models

will be required to be relevant and accessible. Longitudinal updates

of these models are imperative given the rapid emergence of new

therapeutic options, in addition to being flexible enough to work

with only clinically available data and also potentially use genomic

data that may be available in some scenarios.

To conclude, AI has many applications in the MM space

amenable to scalable and systematic implementation in clinical

practice. However, although it represents a promising field,

validation of the effect of these applications on the intended

outcome (time to diagnosis, efficacy, accuracy, prognosis, or

therapeutic effect) is required to ensure that AI provides

significant improvements to patient care or the system.
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Furthermore, given the importance of the integration of newly

available data in AI models, new challenges arise, such as the

longitudinal integration of data, which need to be considered to

ensure that AI models are representative, updated, and clinically

relevant for daily patient care. In addition, the use of AI as a tool to

enhance both clinician and patient experience will likely be part of

MM care and medicine in general, and critical use of these emerging

tools is required to ensure a meaningful application.
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