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Abstract

This work presents a hybridized neuro-genetic control solution for R3

workspace application. The solution is based on a Multi-Objective Ge-
netic Algorithm Reference Generator and an Adaptive Predictive Neural
Network Strategy. The trajectory calculation between two points in R3
workspace is a complex optimization problem considering the fact that
there are multiple objectives, restrictions and constraint functions which
can play an important role in the problem and be in competition. We
solve this kind of problem using Genetic Algorithms, in a Multi Objective
Optimization Strategy. Subsequent, we enhace a training algorithm in
order to achieve the best adaptation of the neural network parameters in
the controller which is responsible for generating the control action for a
nonlinear system. As an application of the proposed hybridized control
scheme, a crane tracking control is presented.
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1 Introduction

Nowadays, our aggressive market requires more accurate, reliable, productive,
and competitive industrial solutions. This involves a monumental effort from
the researchers and technicians in order to solve complex, real-world problems.
Among these problems is the industrial kinematic control (where it is necessary
to handle raw materials, semi-finished and finished products), which implies
a wide number of goals to reach [1]. In sequential industrial processes, for the
transportation, handling and machining of materials and products into different
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manufacturing workplaces, it is more essential than ever to obtain automated
and enhanced solutions based on new technologies such as Computational In-
telligence.

This work presents a hybrid intelligent solution that solves tracking and
movement problems in a R3 workspace. It uses a complex calculation of a precise
trajectory. It also solves accuracy and control action issues for precise and
safe tracking operations. Our solution uses different Computational Intelligence
Techniques for solving these problems. We initially implemented one device
for tracing optimal trajectories as the reference to the control system. Later
on, we chose a control scheme based on Adaptive and Predictive Control fields.
Previous control loop approaches have been studied as the presented in [2] where
a 2D crane anti-swing problem is solved.

The first part of our work was involved into designing of a Multi Objec-
tive Genetic Algorithm (MOGA). This MOGA solves a nonlinear and complex
problem for calculating R3 trajectories [3]. This solution takes into account
requirements based on the workspace (restricted areas, points of passage, etc.),
and constraints on the basis of parameter values (max-min) to preserve the life
of actuators and different components. MOGA technique has been used with
success in different works such as [4] and [5].

Furthermore, the tracking operation is made by an Adaptive-Predictive Neu-
ral Network (APNN) control system, which includes some intelligent strategies
to reach the appropriate target. There exist different APNN Control approaches
where the performances of different control loop are tested in [6] and [7].

Our system contains two Recurrent Neural Networks (NNARX): The first
one provides a nonlinear process model to estimate the process output and
derivatives in time, and the second one is involved in the current action calcu-
lation at every sample time.

Next in chapter 2 the different elements of the hybridized neuro-genetic
system will be presented. In chapter 3 the components of the Multi Objective
Genetic Algorithm Reference Generator will be laid out in detail. Then, the
Neural Network Adaptive Predictive Control Strategy that was selected as well
as the specific NN training algorithms designed will be explained. A case of
study with a crane system will be introduced in chapter 5 Finally, the conclusions
obtained and some ideas for future work will be commented.

2 Hybridized Neuro-Genetic Strategy

This work deals with the hybridization of different Computational Intelligence
Techniques for solving non-trivial real tracking problems. The Genetic Al-
gorithms have performed well in optimal solution calculation within multi-
objective problems. In this approach we have designed a MOGA Reference
Generator (MOGA-RG) in order to obtain a trajectory within a R3 workspace.
The MOGA-RG takes into account several objectives and different constraints
of movement and workspace, which creates a more complex problem, the control
of nonlinear systems.
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To develop an appropriate control solution, the Neural Network Paradigm
has been implemented. Different Neural Network Topologies were designed to
perform the identification of the nonlinear system and to generate a nonlinear
controller. An Adaptive Predictive Control Strategy was selected for this work
as a result of certain needs referring to the control strategy and the use of
the NNs as Controllers and Identifiers. This strategy was employed in several
different works like [8][6].

The scheme used (Fig.1) has the following four basic blocks: a MOGA-RG,
a Neural Network Identifier, a Neural Network Based Controller and the Non-
linear System to be controlled. All these elements have their respective training
algorithms. The Identifier can provide an online identified model, which means
the scheme has the capability to learn the system dynamics simultaneously to
the nonlinear system evolution.

Figure 1: Control Scheme

The block Adaptive Predictive Neural Network Controller (APNNC) is re-
sponsible for generating the control action for the nonlinear system calculated in
a predefined prediction horizon (Fig.2) where as the block MOGA-RG calculates
a path to be tracked by the nonlinear system.

The APNNC performs a simulation of the entire loop and employs a replica
of the nonlinear system provided by the NN Identifier in order to do so. This
replica provides not only the nonlinear system output estimation (ŷ) but also

the estimation of the identified system derivatives (∂ŷk+1

∂uk
,∂ŷk+1

∂yk
,..). Those es-

timations are integrated in the training algorithm to be presented in section
(4.1). Once the training algorithm finalizes its work, the NN Controller weight
and bias are tuned to generate a control action that will be the output of the
block. In figure 3, the different stages in the training process are presented.

One of the advantages that the Adaptive Predictive Control has is the ca-
pability to change the controller behavior. This is positive when the nonlinear
system to be controlled suffers a modification (e.g. deterioration, wear, use of
slightly different parts, etc.) and the nonlinear system model changes to a new
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Figure 2: Control Scheme

operating regime, causing the Controller change too.

3 MOGA Reference Generator

The trajectory calculation between two points in R3 workspace is a complex
optimization problem considering the fact that there are multiple objectives,
restrictions and constraint functions which can play an important role in the
problem. The following are some important aspects that have to be considered
for an appropriate trajectory reference calculation: minimization of the time
employed to travel from the initial to the final point, minimization of the trav-
elled distance between these two points avoiding obstacles and restricted areas,
minimum oscillation according to previous acceleration reference calculations,
and minimization of mechanical elements wear in movement transition. Con-
sequently, the problem formulation is not trivial especially taking into account
that some objectives are not differentiable, so gradient or higher derivatives in-
formation are not available when searching for an optimal solution. This kind
of problem can be solved using the Genetic Algorithm (GA) [9], in a Multi
Objective Optimization Strategy, as previously introduced in Valera et al [3].

Thereby, a possible trajectory reference r(t) between two points inR3 workspace
is given by equation 1.

r(t) = [x(t), y(t), z(t)] (1)

In industrial processes theR3 workspace usually has some restricted workspaces,
as shown in equation 2.
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Figure 3: Flowchart of adapting parameters and predicting errors

0 ≤ x(t) ≤ Xlim

0 ≤ y(t) ≤ Ylim (2)

0 ≤ z(t) ≤ Zlim

Furthermore, this optimization problem has two main objectives to reach:
minimize the r(t) length or distance travelled, and minimize the required path
time to travel from one point to the other. In addition, the trajectory has to
satisfy the following constraints and restriction functions:

• Electromechanical component related constraints [10]: Speed v(k) and Ac-
celeration a(k) on each axis or movement must not exceed the thresholds
determined by the device manufacturers.

• Mechanical transmission elements and the useful life of the system: The
Acceleration or Torque Gradient j(k) of each movement must not exceed a
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certain value to avoid so-called “impact torques” in the mechanical trans-
mission elements which cause jerky movements and vibrations, reducing
their useful life.

• Constraints related to avoid obstacles in the workspace: Any point of
this trajectory cannot be included in the space defined by the constrained
limited surface: z = f1(x; y), y = f2(x), and zp = f3(x; y).

In our work, a Multi Objective Reference Generator based on Genetic Al-
gorithms (MOGA) has been developed in order to satisfy all the objectives and
constraints presented above. Figure 4 schematically represents the different
components that perform the R3 optimal trajectory within the MOGA Refer-
ence Generator.
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Figure 4: MOGA Reference Generator

The MOGA core is the solver that generates the values of the optimal tra-
jectory r(k), in each sample time. For this calculation, the solver takes into
account the constraints related to the working restricted areas and the move-
ment constraints [v(k), a(k), j(k)], and try to minimize the travelled time and
the trajectory length as objectives.

In order to have a smooth trajectory, a bounded acceleration reference and
a bounded acceleration gradient [11], we divided the positioning time into six
intervals taking into account the speed reference shown in Valera et al. [3].

To find three smooth position references (x(k), y(k), and z(k)), we used
a nonlinear search method based on the Multi Objective Genetic Algorithm
(MOGA) presented before, resulting in aR3 combined trajectory (R3 workspace)
that simultaneously minimizes the distance travelled, the time used, and the fi-
nal position error. The formulated objectives for MOGA execution can also be
found in Valera et al. [3].

The trajectory generation is a non-trivial problem, due to some objectives
are in competition. It has therefore been necessary to select the optimal solution
by using the Pareto set optimal solutions technique. As seen in figure 5, the
MOGA calculates a set of non inferior solutions that we represented in the
Pareto front. By analyzing these solutions, we are able to find a solution that
optimizes the R3 movement depending on the actual working point and the
objectives priorities previously defined. In figure 5, the time required for the
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trajectory (objective 1) is represented on the x axis, the error of travelling
near the point [xp, yp, zp] (objective 2) is represented on z axis, and the total
distance (objective 3) is represented on y axis. In future works this selection will
be solved by Computational Intelligence Techniques, as a fuzzy system recording
the actions of an experienced operator.
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Figure 5: Set of non inferior solutions. Pareto frontier

4 Neural Network Adaptive Predictive Control

In this section the one dimensional Adaptive Predictive Control will be intro-
duced. Using this strategy, the two NNs employed are MultiLayer Perceptrons
(MLP). The MLP are known as Universal Approximators because of their capac-
ity to approximate any function of interest (both linear and nonlinear) as well as
its derivatives [12]. The latter one is of great importance in the implementation
of the Identifier, since the derivatives that it provides will be integrated into the
training algorithm. The topology of the NN Controller and the NN Identifier
are correspondingly presented in figure 6 and figure 7.

The NN Controller (Fig.6) is a NN AutoRegressive with eXogenous input
(NNARX) that gives output feedback (control action).
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Figure 6: NN Controller.

The NN Identifier (Fig.7) obtains the nonlinear system model based on the
system input/output relation. Once the model is obtained, it can be used to
emulate the nonlinear system behaviour and extract its derivatives. Both the
NN Controller and the NN Identifier can be trained online or offline.

Figure 7: NN Identifier.

4.1 Neural Network Training

The NN Controller is trained in the ”Adaptive Predictive Neural Controller”
block that can be seen in figure 1. As previously mentioned, inside this block
a simulation of the control loop is performed. This simulation creates the pos-
sibility to simulate the control loop evolution for a prediction horizon, and to
simulate it for different control actions. The NN Controller needs to know, or
estimate, the error produced on its output in order to be trained. As the desired
control action (u) is unknown, the error produced during the output of the NN
Controller is also unknown. The only known error is the one produced on the
output of the nonlinear system (y(k) − r(k) in Fig.1), which can be related to
the NN Controller Weight and Bias through the NN System Model. This way,
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the equation 3 [13] can be used to train the NN Controller in a K prediction
horizon.

K∑
k=1

∂Ek

∂wlij
=

K∑
k=1

k∑
k′=1

k′−1∑
k′′=0

∂Ek

∂yk′
· ∂yk′

∂uk′′
· ∂uk′′

∂wlij
(3)

Equation 3 is made up of three terms. The first one relates the error com-
mitted in the control loop output with the nonlinear system output. The second
one relates the nonlinear system output to the control action. Finally, the third
term relates the control action to the NN Controller weights and biases. The
first and the third terms are known terms. The first is the one that depends on
the error function used and the third is the one that can be calculated by back-
propagation. The second term represents the model of the nonlinear system to
be controlled. A general representation of a nonlinear system can be expressed
by using the following equation 4.

y(k′) = M [y(k′ − 1), ..., y(k′ − n), u(k′ − 1), ..., u(k′ −m)] (4)

where n is the nonlinear system order that must satisfy m ≤ n. Deriving y(k′)

from u(k′′) the unknown term ( ∂yk′
∂uk′′

) can be obtained. This term can in turn

be broken down in the following equation 5 [13].

∂+yk′

∂uk′′
=

n∑
i=1

∂yk′

∂yk′−i
· ∂

+yk′−i

∂uk′′
+

m∑
j=1

∂yk′

∂uk′−j
· ∂

+uk′−j

∂uk′′
(5)

Previous work [14][13] has shown that the reduction of the computational

times can be achieved by neglecting some of these terms ( (
∂uk′−j

∂uk′′
= 0 when

k′ − j ̸= k′′). By neglecting these terms, the second term of the equation 5
results in the following equation 6.

∂+yk′

∂uk′′
=

n∑
i=1

∂yk′

∂yk′−i
· ∂

+yk′−i

∂uk′′
+

∂yk′

∂uk′′
(6)

Now the three terms of equation 5 can be found. These three terms are
known on the basis of “NN System Model” input/output relations. The “Uni-
versal Approximator” property has been applied in [15] to obtain the derivatives
of the identified system using the equations 7,8,9 to do so, being the NN repre-
sented in figure 7.

∂ŷ(k + 1)

∂u(k)
=

n∑
j=1

w1joj(1− oj)wj1 (7)

∂ŷ(k + 1)

∂y(k)
=

n∑
j=1

w2joj(1− oj)wj1 (8)
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∂ŷ(k + 1)

∂y(k − 1)
=

n∑
j=1

w3joj(1− oj)wj1 (9)

where w1j represents the weight that links input 1 with the neuron j of the
hidden layer, wj1 represents the weight that links the output of the neuron j
of the hidden layer to the neuron of the output layer, oj represents the output
of the neuron j of the hidden layer and the n of the summation represents the
number of neurons in the hidden layer.

4.2 NN Controller Training algorithm modification

The LM algorithm calculates the updated term for the weights and biases on the
basis of the equation ∆W in [16]. The modification proposed, which includes
the dynamics of the nonlinear system, affects the term on the output layer to
be backpropagated (∆M presented in [16]).

∆M = −ḞM (nM ) · ∂yk′

∂uk′′
(10)

Applying this formula and following the development presented in [16] the
dynamics of the nonlinear system and the ones of the NN Controller are back-
propagated. Therefore all the Jacobian terms are calculated so the weight adap-
tation term (∆W ) can be obtained. Finally we emphasize the different meaning
of the term e′(w) in equation 11 for this work. If the original work represented
e(w) as the error committed in the NN output, this work uses e′(w) as the error
committed in the output of the control loop.

∆W =
[
JT (w) · J(w) + µ · I

]−1 · J(w) · e′(w) (11)

This equation is used in the same manner as the traditional LM algorithm in
[16]. J(w) is the Jacobian Matrix which is composed of the partial derivatives
of the errors in the NN output (e(w)) on the weights (w)(12).

J(w) =


∂e1(w)
∂w1

∂e1(w)
∂w2

. . . ∂e1(w)
∂wN

∂e2(w)
∂w1

∂e2(w)
∂w2

. . . ∂e2(w)
∂wN

...
...

. . .
...

∂eK(w)
∂w1

∂eK(w)
∂w2

. . . ∂eK(w)
∂wN

 (12)

To calculate the Jacobian Matrix [16], the term (∂
+yk′
∂uk′′

) of equation (6) is

backpropagated through the layers of the NN controller.

5 Application to Crane Position Control

The Adaptive Predictive Control Strategy is applied in the control of a travelling
crane. The load trajectory calculation in the R3 workspace is a complex opti-
mization problem considering the multiple objectives, restrictions and constraint
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functions. The nonlinear problem of the swinging angle control is considered
as a good exercise for the proposed NN control system. The crane model used
consists of a Matlab/ Simulink block provided by the company Inteco with a
real model of the crane (Fig.8). See [1] for the mathematical model.

Figure 8: Crane model.

The following information pertains to the trajectory of the MOGA; Initial
Pos. (0, 0, 0), Final Pos.(30, 80, 10) with Crossing Point (50, 50, 50)cm. The
constraints that the MOGA must respect on these 3 axes are; Max. Acceleration
5cm/s2, Max. Speed 10cm/s and Max. Jerk 0.5cm/s3. The objectives applied
to the MOGA are: to pass through the specified crossing point (error < 0.5cm),
the minimization of the travel time required and minimization of the distance
travelled. The resultant trajectory is shown in figure 9.

The x-axis control behavior has been observed in a preliminary test. The
main objective of the test has been to control the crane position while minimizing
the swing of the load. Offline identification of the crane was performed to
extract the model to be used in the control loop. The identification was carried
out applying random entries (both positive and negative steps inside the work
range) to the NN identifier. The training has been performed with the following
parameters: Training Vector Length = 4001, Validation Vector Length = 1000,
number of epochs = 1000, Initial Weights randomly generated within an interval
calculated as in the work [17]. The identification results for the training stage
and validation stage are presented in figure 10.

Figure 11 shows the control of the x-axis position, being the dotted line the
path generated by the MOGA and the solid line the tracking performed by the
controller. The other lines represent the smooth control action and the low
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Figure 9: R3 Trajectory.

swinging of the load.

6 Conclusions

This work tackles the problem of R3 Multiobjective reference generation and the
system control under these circumstances. With an intelligent search algorithm
based on MOGA the solution is stable, robust and it is a fast way to find
optimal solutions when real-time requirements are not needed and when the
problem involves many objectives.

Moreover, the present paper shows the use of NNs in an Adaptive Predictive
Control Strategy. The simulation results show a correct online adaptation of
the NN controller and the validity of the modification made to the LM Training
Algorithm. This modification allows the integration of the nonlinear system
dynamics into the training algorithm, thus being able to train the NN Controller
despite not knowing the nonlinear system. The NN Identifier estimates the
dynamics of the nonlinear. The use of restrictions to control action has been
tested on various works such as [18], where first order training algorithms are
used. These restrictions may be of interest when implementing a Controller
Training that penalizes abrupt changes in the control action. We will also take
into account hierachical issues [19].
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