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Abstract: In the era of Industry 4.0 to 5.0, the manufacturing industry is dedicated to improving
its production efficiency, control capability and competitiveness with intelligent enhancement. As
a typical discrete manufacturing industry, it is difficult for ocean engineering (OE) manufacturers
to accurately control the entire production process, and the establishment of an integrated system
supported by digital twin (DT) technology is a better solution. This paper proposes a comprehen-
sive set of system architectures for the DT workshop. It focuses on planning, which is the main
line of control, to establish a model based on graph neural networks (GNNs) and suggests five
decision-support approaches associated with the model from a practical application perspective.
The utilization of complete twin data for prediction and visual simulation effectively eliminates the
problem of unexpected factors interfering with scheduling in enterprise production planning and
achieves the goals of rapid processing and just-in-time completion. The planning model is based
on the attention mechanism, which characterizes the disjunctive graph, extracts the input GNN,
and outputs the scheduling decision by constructing the multi-attention network of operations and
machines to deal with the complicated “operation–machine” combination relationship. The proposed
method has been verified in the case of structural assembly and welding workshops, has validity
and reliability, and is superior to the traditional priority scheduling rules and heuristics in terms of
precision rate and rapidity. Furthermore, the DT system completes the production line application,
and its proven reliability supports its full-scale application in future smart factories.

Keywords: digital twin; graph neural network; intelligent workshop modeling; ocean engineering
manufacturing; decision support

1. Introduction

The synchronization of rapid Artificial Intelligence innovation and the transformation
and upgrading of the manufacturing industry is underway. Numerous companies are elim-
inating outdated capacity and creating a new generation of smart factories by introducing
a large number of automated equipment, establishing production process simulations, and
developing manufacturing execution systems. The Digital Twin (DT) workshop is driven
by real-time data [1], is the representative of the subsequent generation of manufacturing
and information technology integration [2] and is steadily evolving into the best intelligent
solution. A DT system can integrate the entire range of production chain components
efficiently in order to better address the management challenges of discrete manufacturing
industries, such as a large amount of production data, high data maintenance workload,
extensive product non-standardization, and reliance on manual experience. The produc-
tivity improvements have been wholly proven for the mainstream DT systems, such as
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Siemens Tecnomatix [3] and Dassault’s 3D Experience [4], piloted in civil engineering,
robotics manufacturing, aerospace, and other fields. Prior to full commercial application, it
is necessary to establish a reliable data processing model for the interaction of simulated
and actual measurement data to achieve iterative optimization of the DT system.

Ocean Engineering (OE) manufacturing, a giant system engineering in discrete man-
ufacturing mode, is developing late in the field of digitalization and has completed the
networking and upgrading work of crucial equipment in recent years, lacking the ability to
process and apply a large amount of production data to guide the optimization of produc-
tion processes, and is in urgent need of a systematic, intelligent control framework for the
whole production process. The OE manufacturing process is complicated and involves the
intersection of multiple disciplinary fields, specifically material pretreatment, cutting, plate
assembly, welding, and assembly, as shown in Figure 1. Considering two modes of the
production process, human–machine collaboration and fully automated operation of equip-
ment, the architecture must be designed according to the actual conditions and process
routes when establishing the DT workshop. In this paper, based on the five-dimensional
model proposed by Tao, Fei, et al. [5], we refine the operational behavior state criterion
and real-time mapping under the finite state mechanism according to the integrated op-
eration mode of structural assembly and welding workshop, and combine the feasible
approaches in practice from several research papers [6–9] to design the architecture of OE
intelligent workshop implementation, covering equipment layer, acquisition layer, data
layer, application layer and presentation layer.
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Compared with the DT system architecture utilized in the conventional manufacturing
industry, this paper considers the data transformation process among multiple systems
and the compatibility of multiple types of equipment due to the lack of production line
flexibility in large-scale construction projects. Independent design for various degrees of
digitization in the production process. For example, in the pre-processing, cutting, and
part of the welding stages of full automation, the DT system is arranged to participate
directly in the production process through the inter-system output instructions to organize
the production, and the production status is presented with direct access to the system. In
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the manual phase, the DT system is responsible for issuing tasks, and each station receives
the request to complete the work via a variety of terminals. The implementation of DT has
had a revolutionary impact on the optimization of process workflows in OE assembly and
construction. The core of DT is full-factor data-driven production process prediction and
optimization to guide the operation execution and collect actual data for operation analysis
to fulfill the timely adjustment in the execution process, not just a simple visualization
display. The work in this paper is geared towards developing companies with large-scale
engineering, where all-around compatibility and utilization of existing resources are the
crucial roles of the proposed DT architecture.

Job planning, as the lifeblood of production control, determines production efficiency
and capacity. The primary emphasis of establishing a DT workshop is to implement a twin
data-driven planning methodology. In this paper, we propose an algorithmic model for
job planning based on Graph Attention Networks (GATs), an improved version of GNN.
Different from the traditional Priority Dispatch Rules (PDRs) and heuristic algorithms, a
GAT extracts features from the disjunctive graph model in the scheduling problem, and
outputs constraint-compliant “operation–machine” combinations from the set of opera-
tions and the set of machines based on the Markov Decision Process (MDP) to form the
decision sequence. Among them, the weight parameters in a GAT are obtained by deep
reinforcement learning (DRL) performing small-sample training. This is one of the latest
mainstream algorithms in recent years, and most studies [10–16] have developed solutions
for standard arithmetic cases, on the basis of which this paper completes customized de-
velopment for the characteristics of the OE workshop and case validation based on actual
production data. Its high performance, excellent computational effect, and ability to adapt
to maintain rapidity computation under a large amount of data input from the DT system
are the main reasons why it is selected instead of PDRs and heuristic algorithms in this
paper, as compared with the traditional algorithms. Moreover, the GAT model enables
effective interfacing between knowledge graphs and expert systems in the future, making
it a superior optional method.

The DT workshop planning model is trialed under the scenario in the standardized
test datasets and the OE manufacturing workshop. The scenario, as the critical node in the
production chain of an OE smart factory, is capable of covering the production elements of
the whole factory. The case validation is centered around ensuring the high availability of
both the DT system and its associated model. There are prerequisites for this industry in
the scenario, and the case validation can give a part of the reference of executable solutions
to the peers.

In general, this paper makes the following contributions:

• We design the DT workshop system architecture in detail, form a targeted five-
dimensional model for OE intelligent manufacturing workshops, and create an inte-
grated discrete operation workshop management model with “virtual-real co-drive”.

• We present a novel model for the DT workshop planning that utilizes GNN. Our
method realizes generating the workshop’s master plan that exhibits good gener-
alization capabilities. This is achieved through node embedding, graph attention
network structure building, and a deep reinforcement learning-based algorithm for
model training.

• Drawing upon the proposed GNN model, our research expands upon the discourse
surrounding five distinct decision support techniques aimed at resolving production-
related issues, with the ultimate objective of augmenting the efficacy of the plan-
ning model.

• The feasibility of the model is verified, and a demand-oriented DT system is created
for workshop job execution. We optimize the limitations of the current production
mode by focusing on the critical development of DT technology and the efficient use
of twin data—not just the simple interaction of visual simulation models.

The remainder of this paper is structured as follows: We detail previous theoretical
literature reviews on DTs and GNNs in Section 2. The architecture of the DT Workshop
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System is briefly defined in Section 3. Section 4 proposes the graph attention network
structure to solve the modeling problem of the DT workshop planning and extends the
discussion of five decision support methods in Section 5. Section 6 summarizes the case
validation results and discussion. Finally, conclusions and future work are presented
in Section 7.

2. Literature Reviews
2.1. Digital Twin

The concept of Digital Twin (DT) was first proposed by Michael Grieves [17] when
discussing the digital representation of physical objects or processes throughout the product
lifecycle management. The theory originated in the aerospace field, where NASA intro-
duced the “flying twin” for flight training and simulating spacecraft status [18]. Subsequent
research further clarified the implementation of multidimensional and multi-attribute simu-
lation models for monitoring and prediction functions by integrating multiple systems and
high-precision sensors [19]. As simulation and Model-based Systems Engineering (MBSE)
continue to develop, the DT field has expanded into industrial production and become
a widely researched hotspot in recent years [20]. Establishing a digital twin workshop is
the most fundamental and important research direction for manufacturing. F. Tao and M.
Zhang [21] proposed a completely new workshop operation model. They summarized five
essential elements of DT workshop composition, focusing on the perception access of hetero-
geneous multi-source data and the fusion ability of “human–machine–thing–environment”,
i.e., all elements. Guo et al. [22] proposed a modular approach to construct a digital twin
of the factory, considering frequent changes in the factory design stage. Designers can
rapidly evaluate different designs and positively identify design defects. In the production
stage, DT can improve the predictability and controllability of the production process.
Zhang et al. [23] designed a control framework based on DT to address the problem of
plan-based decision-making and control mechanisms that are inapplicable to uncertain
production states by introducing optimal state control theory into the virtual layer and
ensuring the production system is in the best state through dynamic matching mechanisms
and hierarchical goal-cascading methods.

Workshop-oriented digital twin modeling is a systematic implementation of current re-
searchers’ achievements in the DT key technologies and has formed a set of methodologies.
In 2013, Lee [24] designed a coupled model for monitoring machine conditions, performing
predictive analysis based on industrial big data, and improving management transparency.
As a physical product twin for design and manufacturing, B. Schleich et al. [25] provided
a thorough reference model based on the surface model form idea. They described the
conception, representation, implementation, and application of the model throughout
the product’s lifetime. Sun et al. [26] used DT technology to anticipate assembly process
dependability and optimize assembly accuracy by using twin assembly data, the assembly
and debugging full-element model, and iteration between virtual and actual assembly.
Current research has concentrated on data collecting, heterogeneous data conversion, and
model data matching in the data processing layer. There is still a large study area for
data application and service of DT. This paper spotlights the data application modeling of
intelligent services after the completion of data processing in the DT system.

2.2. Graph Neural Network

With the advancement of deep learning in recent years, the Graph Neural Network
(GNN), a novel deep learning model, has drawn more and more attention. The GNN aims
to map nodes and edges on the graph structure to low-dimensional vectors, i.e., output low-
dimensional vectors for both the graph and nodes through artificial neural networks [27].
Unlike traditional deep learning models, such as Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs), GNNs can handle the graph structure’s interac-
tion information of nodes and edges. A GNN usually has a multi-layer structure, and each
layer can calculate different features, thus being adaptable to different application scenar-
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ios [28]. The GNN was first proposed by Gori et al. [29] and was extended using RNN. In
subsequent studies, two branches were developed: spectral domain and spatial domain. To
solve the irregularity of spatial neighborhoods, J. Bruna et al. [30] introduced the Spectral
Graft Theory to decompose the Laplacian matrix of the graph, obtained eigenvalues and
eigenvectors, and then performed convolution operation. This is the starting point of the
spectral-based GNN.

To deal with the high complexity, M. Defferrard et al. [31] proposed the ChebyNet,
which defined the convolution kernel as a polynomial and used Chebyshev expansions
to approximate the convolution kernel for efficiency improvement. Based on this, T.N.
Kipf and M. Welling [32] further simplified the model by using a first-order approximation
convolution kernel, forming the Graph Convolutional Network (GCN). In the spatial-based
GNN, which is a recent research hotspot, there are mainly the Gate Graph Neural Network
(GGNN) [33] that replaces the recursive neural network node update method, the Graph
Attention Network (GAT) [34] that defines graph convolution with attention mechanism,
the GraphSAGE [35] which inductive learning, and the message passing neural network
(MPNN) [36], which unifies the message passing mode. Considering the outstanding
cross-domain properties of graph neural networks and the fact that the current server
computing power has reached the basic requirements based on the generalization ability of
GNNs, introducing GNNs into the data application process of the Digital Twin workshops
can effectively achieve decision support.

3. Architecture of DT Workshop System

An extensive analysis of physical entities, operational behavior, information transfer,
and interaction rules is necessary for the development of the Digital Twin (DT) system for
the Ocean Engineering (OE) manufacturing execution process, which is a complex system
engineering involving many disciplines, resources, and technologies. The current OE
production process generally adopts an integrated construction model, which collects huge
amounts of materials, equipment, personnel, storage, and other elements. On the basis of
satisfying the production line simulation, designing a DT workshop architecture covering
the “Humans–Machines–Materials–Rules–Environments” is the first step of production
data application modeling.

3.1. Intelligent Workshop Integrated Manufacturing Execution Mode

As the basic unit of offshore platform construction, the assembly and welding work-
shop is based on the principle of grouping technology, with the intermediate product as the
guide, and production is organized by area, with the platform deck as the base and outfit-
ting as the core, and the “structure–outfitting–painting” operations are separated in space
and ordered in time to realize the integration of design, production, and management [37].
The integrated operation mode is balanced and continuous, avoiding the traditional mode
of independent and uncoordinated production links, reducing the simultaneous cross-work
of multi-disciplinary construction, and simplifying the work packages interface and the
interference between different types of work.

The integration manufacturing execution mode has extremely strict requirements on
the production data chain. As shown in Figure 2, the five major elements surrounding the
operation of the workshop are associated with dozens of forms. They are intertwined with
design, planning, materials, equipment, storage, quality control, and other professions. In
the intelligent workshop, in addition to cranes, welding torches, material pallets, and other
manually operated equipment, there are automatic plate-cutting machines, gantry-type
welding robots, CNC pipe-cutting machines, automatic plate winders, material conveyors,
uncrewed transportation vehicles, and other automated uncrewed equipment. In general,
more than 60% of the equipment is networked. In the construction process, the operators
adopt the workshop-level plan as the main line. Each workstation completes the processes
of material collection, plate assembly, welding, and inspection according to the work order
and provides progress and quality information in real time. Structural and quality experts
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simultaneously verify the weld quality and global strength properties of completed assem-
blies across multiple stations, in hours, to form production master data under a time series.
With the addition of digital devices, data-aware collection devices, and simulation models
in the smart shop, the conversion and integration of multidimensional heterogeneous data
demand to be realized under a unified and customized architecture. A standardized pro-
duction database relying on the model proposed in Section 4 enables optimizing production
quantities, balancing operational tasks, improving equipment utilization, reducing energy
consumption, etc.
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Environments”.

3.2. Design of DT Workshop Architecture Based on Five-Dimensional Model

Based on the five-dimensional model concept proposed in the literature [5], this paper
designs the ocean engineering manufacturing DT workshop architecture as shown in
Figure 3. The architecture unfolds from the 5D model, including Physical Entities (PE),
Virtual Objects (VO), DT Data (DD), Connections (CN), and Application Services (AS),
whose vector format can be expressed as Equation (1).

MDT_workshop = (PE, VO, DD, CN, AS)T (1)
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In the implementation of the digital twin workshop, five dimensions correspond to
the Equipment Layer, the Data Acquisition Layer, the Service Drive Layer, the Application
Service Layer, and the Digital Twin Display Layer, with each layer corresponding to
handling various complex tasks. The architecture from the bottom up specifically includes:

• Equipment Layer

This is the collection of physical entities. By establishing data tables for all production
elements in the workshop, distinguishing fully automated uncrewed equipment from
manually operated equipment by categories such as equipment, supplies, and buffers,
forming information labels for corresponding entities, establishing fields for equipment
status, operators, supplier information, consumables spare capacity, etc. These allow
real-time mapping with subsequent operational processes to complete DT data input to
equipment operation as well as actual measurement data feedback to DT console. The
vectorized representation of PE is shown in Equations (2)–(5).

PE = (E, M, A, · · · )T (2)

E = (No., EquipmentName, Status, Operator, Supplier, Amount, · · · )T (3)
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M = (No., MaterialName, Amount, Supplier, · · · )T (4)

A = (No., AreaName, Location, Size, · · · )T (5)

where E represents the equipment, M is the material, and A is the area, each containing
their respective detailed properties.

• Data Acquisition Layer

This layer collects or uploads shop operation execution data through sensors, surveil-
lance cameras, QR codes/RFID, etc., and develops heterogeneous data interfaces to link
the equipment layer with the service driver layer. The scope of data collection includes,
but is not limited to, equipment operation data, transportation process awareness, material
information tracking, equipment status feedback, environmental monitoring, etc. The data
interface development workload is enormous and requires one-to-one customization to be
completed based on multiple models, protocols, and standards of the equipment to form a
data chain for real-time transmission. An enormous quantity of basic work is a necessary
component of constructing the DT workshop. The integrity and standardization of the
collected data determine the operational efficiency and calculation accuracy of the service
driver layer. The vectorized representation of the data connection process is exemplified by
Equation (6).

As the central layer of the digital twin system, the service drive layer is responsible for
data reception, conversion, and application. The data is accessed by the equipment layer
feedback and digital twin emulation via interfaces to the Enterprise Services Bus and Data
Warehouse. The data integration component standardizes the multi-source heterogeneous
content in the database and updates the master database based on the information provided
by the real-time mapping. The standardized production data is available to be input into
the GNN-based DT workshop model to obtain the manufacturing execution plan with
workshop schedule and optimal allocation of multiple resources. All data are uniformly
stored in the data warehouse within this layer, and the logical model serves as the control
core to integrate the DT model with the actual data, providing a unified description and
encapsulation of geometric properties, physical properties, operational behaviors, and
simulation rules for each production-related physical entity. When instantiated virtual
objects receive iterative data updates, their information updates can be quickly completed
in the logical model. The service drive layer of DT data support can be expressed as follows:

DD = (DPE, DVO, DAS, DK, D∆)
T (6)

where DPE represents the physical workshop’s actual measurement data, DVO is the virtual
object simulation data, DAS means the application service output data, DK represents the
process knowledge base data, and D∆ represents the data fusion-derived data.

• Application Service Layer

This layer supports the operation and maintenance of digital twin system applications.
Based on the twin data and service drive layer, it is oriented to the workshop planning, work
time, progress, resources, quality, storage, and energy control needs, extracting critical data
in the logic model and supporting the realization of decision support functions. Intelligent
workshop managers and workers can access application services through multiple clients.
Taking the specific business of the welding workshop as an example, the application
service provides block assembly and welding scheduling optimization, welding work
time forecasting, steel resource demand analysis, sub-section quality traceability, storage
availability analysis, logistics consolidation and distribution, energy consumption analysis,
and other intelligent algorithm solutions. In the future, functions such as the welding
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process knowledge base and high-precision control of workshop equipment can be further
expanded. The application services can be expressed as follows:

AS = (SScheduling, SWorkhours, SResources, · · · )T (7)

where S∗ means the data set corresponding to each service.

• Digital Twin Display Layer

Visualization of system functions is the significant feature of this layer, which is
the only layer that the users of the digital twin system visualize. The application module
proceeds from the simulation model of the virtual workshop and enters the business module
by selecting the workshop components. The business module displays the functional
indicators of the workshop and the product information based on the data analysis results
of the application service layer, specifically including the decision board, data analysis
reports, the product DT simulation, workshop monitoring, etc. The functionalities of the
digital twin display layer are realized entirely based on the integrity data of the virtual
objects, whose vectorized form is:

VO = (GVO, PVO, BVO, RVO)
T (8)

where GVO corresponds to the geometric model, PVO is the set of physical attributes, BVO
means the quantitative representation of the operational behavior, and RVO represents the
rule model.

In a nutshell, the demand-oriented digital twin workshop architecture is based on
the theory of the five-dimensional model, which is theoretically feasible and practically
usable and sufficiently satisfies all elements of workshop production control. It realizes
the comprehensive digital in the whole cycle of assembly and welding operation. With the
logical model as the core and all production elements interlinked, the five-layer architecture
materializes the iterative cycle of “DT data simulation guidance—actual measurement data
optimization” based on the data chain.

3.3. Transfer Rules for Manufacturing Execution Behaviors under Finite State Mechanism

In contrast to a traditional workshop, the DT workshop enables the synchronization
of the presentation of dynamic executions on virtual objects. The various types of platform
assembly and welding operation behaviors require uniform quantitative transfer rules to
complete the abstraction of production actions. In accordance with prior research [38,39]
on Finite State Machines (FSM), which can guarantee the integrity of operational behaviors
and state transfer in the workshop, the behaviors of workers and machines during assembly
and welding operations could be categorized into a finite set of states.

In the instance of welding operations, there are standby, operational, and shutdown
states for a single welding robot. The standby state is usually at the beginning or end of the
task, as in Figure 4, S0 and S1, which are transient states, while the continuous processes of
operation and shutdown states are expressed as Srun and Sshutdown. The transition of the
state depends on the trigger event a, which returns the event response information r after
the completion of the state transition. Specifically, when the workstation receives a work
order, it first confirms that the welder is in the S0 available state. The DT system issues
a welding start command to the instantiated object according to the task trigger a, enters
the Srun welding operation state, and confirms the receipt of r. After the task is completed,
the equipment enters the S1 completion state. If there is equipment downtime, insufficient
material and other termination conditions, enter Sshutdown until the repair is complete to
restore the equipment to S0.
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The states and commands of the equipment at each workstation in the workshop are
integrated into the database in the form of a time series, enabling simultaneous simulation
at the data twin display layer and direct issuance of commands to the machine at the
equipment layer. Behavioral information is transmitted between the device layer and
the digital twin model in order of task priority, and the “First-In-First-Out” principle
is adopted when the same level is available. When conflicting data occurs, operation
instructions are suspended on the equipment side, and simulation data are backed up
and pushed to the system operator for confirmation. Transmission rules are the standard
for interaction between the equipment layer and the digital twin model. Simplistic rules
decrease the frequency of conflicts and provide robustness for the system’s daily operation,
but standardized operation training for system participants is required to reduce the risk of
interaction errors.

3.4. Real-Time Mapping of Workshop Processes

Multidimensional data fusion is the cornerstone of ensuring the reliability of virtual
objects. The authenticity of the production process simulation relies on the comprehensive
description of the actual environment. The multidimensional dynamic data is associated
with physical entity properties via real-time mapping to support the operation of the
service drive layer. Real-time mapping subjects are predominantly workpieces, equip-
ment, workers, production environment, and production knowledge. At the physical
entity side, multiple types of unstructured data (e.g., contracts, drawings, notifications,
etc.), multi-device collection data, multi-resource structured forms, and existing systems
(e.g., MES/ERP/WMS, etc.) are blended in each production stage, which standardization
data based on association mapping algorithms is critical.

The mapping logic utilizes tagging. The workpiece/intermediate product forms a
set of virtual tags, including product size, processing information, work order informa-
tion, processing worker information, and other collections based on their self-encoding.
During the work execution, operation behavior information and state transfer data are
recorded synchronously to provide a process traceability interface. According to the rules
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of operation behavior transfer, the real-time mapping of equipment is stored with each
piece of equipment corresponding to an independent database, and the digital twin system
enables the virtual processing process to be launched according to the data so as to monitor
the production quality. Workshop operations-oriented environment-aware data take the
form of setting sensitive parameter thresholds in the mapping process due to the excessive
amount of data and only convert and store records of environmental change periods. The
knowledge data are scattered in the existing systems of the enterprise, where interfaces
are established with the digital twin system for labeling transformation and storage by
process category.

The real-time mapping process consists of three phases. Firstly, the initialization is
completed, the corresponding interface is launched, the form information is verified, and
the information on virtual workshop equipment, environment, and workers is adjusted to
be consistent with the physical entity. Subsequently, the real-time mapping operates, and
the background activates data mapping transmission monitoring to promptly adjust and
make up the data for the interfaces with package loss. Finally, completing the data handling
and the massive production data are used as the input of the service drive layer and
application service layer to support production decision-making, scheduling optimization,
abnormality warning, etc., which are specifically researched in Sections 4 and 5. The
schematic diagram of the real-time mapping of workshop operations is shown in Figure 5.
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The manufacturing execution behavior transfer rules and the workshop process real-
time mapping are the fundamental operations in the DT system development, which are
indispensable links to support the simulation operation and provide feasibility guarantees
for the introduction of subsequent mathematical models and the application of decision
support methods.

4. DT Workshop Planning Modeling Based on GNN

This section proposes a DT workshop Planning model based on a Graph Neural Net-
work, which aims to address the problem of twin data-based master production schedule
generation and dynamic optimization. Planning is the pivotal segment of offshore plat-
forms from design to fabrication, with the primary task being calculating the critical path of
the assembly and welding process by combining the real-time multidimensional attribute
data provided by the DT system, which obtains the full job duration and forms a schedule
Gantt chart. Considering the high performance of GNNs in processing graph structure
data, it is capable of solving the NP-hard problem effectively in the face of flexible process
route mesh diagrams with plan, equipment, and resource integration.
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4.1. Traditional Mathematical Model

Traditional planning methods perform mathematical modeling based on business
requirements, integrating optimization objectives and constraints that are solved using,
for example, heuristic algorithms. Considering that GNN models are trained to adapt the
network parameters to the strategy of the target, the purpose of traditional mathematical
modeling is to provide a planning reference benchmark to the neural network. The oper-
ational task of the Ocean Engineering manufacturing workshop is mainly the assembly
and welding of blocks. The operational processes are material pre-treatment, cutting, coil-
ing, plate assembly, welding, and others, which correspond to multiple networked pieces
of equipment with different functions but capable of participating in multiple processes.
Considering that the workshop has the characteristics of process flexibility and equipment
flexibility, as well as the requirements for efficiency and energy cost, the planning of assem-
bly and welding operations should be defined as an optimization problem for the flexible
job shop.

Specifically, shop floor operations can be summarized as a process plan of size N ×M,
where N is the number of workpieces and M is the number of machines. There are multiple
process routes for each part being machined, and the critical path needs to be solved to
meet the makespan optimal objective, that is, to minimize the maximum completion time.
The mathematical model containing the objective function is shown in Equation (9).

F = min{cmax} (9)

where cmax represents the makespan. It is the time difference between the start and comple-
tion of all processes, with each process’s completion time being non-negative, illustrated in
Equations (10) and (11).

cmax = max
16i6N

{ci,j=Pil ,k} k ∈ [1, M] (10)

ci,0 = 0, ci,j > 0 ∀i, j (11)

the constraints include:
∑l Xil = 1 ∀i ∈ [1, N] (12)

∑M
k=1 Zijlk = 1 ∀i ∈ [1, N], ∀j ∈ [1, Pil ], ∀l ∈ [1, Gi] (13)

(Xil × Zi(j′)lk)si(j′)lk > (Xil × Zijlk)(sijlk + tijlk) (14)

(Xil × Zi(j+1)l(k′))si(j+1)l(k′) > (Xil × Zijlk)(sijlk + tijlk) (15)

where Equation (12) represents the multi-flexible process routes of a workpiece that is
uniquely selectable, Equation (13) restricts a process to allow only one selectable device to
be selected, Equation (14) indicates a machine constraint that only one process is performed
at a time and Equation (15) acts as a process constraint, expressing that multiple process
operations cannot be completed on the same workpiece at the same time. The definitions
and descriptions of the symbols are listed in Table 1.

Prior to solving the model, the following assumptions are required to ensure that:

1. One machine operates only one process of one workpiece at the same time;
2. All the equipment is available at the starting moment;
3. The locations of the segments in the workshop are close to each other without consid-

ering the transfer time between different processes;
4. The equipment is available at all times, regardless of breakdowns;
5. The process has no other influence to interrupt the processing.
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Table 1. The definitions and descriptions of the symbols in the mathematical models.

Symbols Definition Description

N Total number of workpieces {1, 2, · · · , i, · · · , N}
i Workpiece number i ∈ [1, N]
j Process number j ∈ [1, Pil ]
k Equipment number k ∈ [1, M]
M Total number of equipment {m1, m2, · · · , mk, · · ·mM}
Gi Number of all process routes for i Gi = {O, C, M}
l Flexible process route number l ∈ [1, Gi]

Pil
Total number of processes planning for

the process plan l of i Pil ∈ Gi

oijl The operation j of the process plan l for i oijl ∈ Pil
sijlk Workpiece manufacturing start time Time
ci Workpiece delivery time Time
c′ i Workpiece completion time Time

tijlk Workpiece processing time tijkl =
[
sijlk, c′ i

]
Xil Process route selection decision variable Xil =

{
1 if i select process plan l
0 else

Zijlk Equipment selection decision variable Zijlk =

{
1 if oijl select equipment k
0 else

4.2. Graph Neural Network Structure

Recently, there has been a significant surge in scholarly inquiry regarding the utiliza-
tion of Graph Neural Networks (GNNs) in conjunction with Deep Reinforcement Learning
(DRL) for the purpose of resolving workshop job scheduling problems [10–16,40]. This
approach is regarded as one of the most efficient computational methods for optimizing
scheduling. In contrast to traditional heuristic rules and metaheuristic algorithms, which
require computation under the objective function and constraints of the previous section,
the priority scheduling rules (PDRs)-based sequential decision problem is turned into
a Markov decision process (MDP) by training GNN parameters through DRL. This ap-
proach incorporates the optimization objectives and constraints into the reward mechanism,
thereby achieving the generalization of the scheduler. This methodology can effectively
decrease the computational burden of each scheduling computation while maintaining
solution precision and enabling the repeated utilization of GNNs with stability subsequent
to a solitary training iteration. Consequently, this methodology has the potential to signifi-
cantly mitigate the substantial burden on the computing capacity of the planners’ personal
computers during the plant’s planning phase and delegate the computationally intensive
tasks to the server for execution. Furthermore, a server-side interface might be devised to
retrieve real-time progress and work time information from jobs gathered in the DT system
and incorporate it into the training sets. These can serve as an effective foundation for
updating status or action values in subsequent rounds of training.

Combining the DT workshop foundation and job planning requirements, this paper
proposes a planning framework based on a graph attention network (GAT) and DRL, as
shown in Figure 6.
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4.2.1. Disjunctive Graph

The use of a disjunctive graph is an intuitive method for describing workshop plan-
ning, which expresses the operations and machine attributes in a flexible job shop using
graph-structured data. For a workshop scheduling environment with m machines and n
workpieces, the disjunctive graph is represented as G = (O,C,D), and where G represents
the directed graph, and O =

{
Oij
∣∣∀i, j

}
∪ {S, T} denotes the set of nodes corresponding

to the operation time and the start/end time points of each job. C is a subset of n edges,
indicated by solid lines representing the processing path from S to T for all operations. D is
composed of multiple undirected disjunctive arcs, representing that a certain process can be
completed on a certain machine. Under the flexible feature, an operation can be completed
by any available machine. The plan-solving process involves determining a disjunction arc
at each node, fixing the direction, and forming the workpiece processing sequence for a
certain machine. After the scheduling calculation is completed, the disjunctive graph is
converted into a directed acyclic graph, and the scheduling target is to select the least total
operation time among multiple directed acyclic graphs.

4.2.2. Markov Decision Process

The MDP is a method that transforms the conventional workshop scheduling process
into a five-tuple 〈S,A, P(s′|s, a), r, γ〉 to describe it. The five elements within the tuple
correspond to the state, action, state transfer function, reward, and discount factor of the
scheduling calculation, which are important parameters for the realization of the DRL-based
scheduling decision process. The decision-making process is performed by discerning
whether there is a combination of process oij that needs to be scheduled and idle machine
mk at each time point t within the planning time Tp. The

(
oij, mk

)
is transformed into

A(t) input to the agent and obtains the reward r(t) from the environment at the current
S(t), which based on the makespan value. Finally, a complete plan scheme with the
total operation time is obtained after several iterations. The detailed MDP definition is as
follows.

(1) State. State definition is the pivotal aspect of solving scheduling problems by graph
representation learning, and it is also the crucial step for feature extraction in a large-scale
schedule optimization problem. The scheduling process state encompasses three types:
completed operation, operation in progress and operation to be scheduled. Let the opera-
tion, device and action correspond toO(t), M(t) and A(t), respectively, and determine S(t)
according to the decision step t together with the scheduling environment. By extracting
the feature values of each element, the state S(t) forms a set of multidimensional feature
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vectors, including but not limited to operation features hoij ∈ R8, oij ∈ O(t), machine
features hmk ∈ R5, mk ∈M(t), and action features h(oij ,mk)

∈ R, (oij, mk) ∈ A(t).
To be specific, the operation features consist of eight-dimensional parameters, which

are the operation status label (Whether to complete scheduling, 0—no, 1—yes), process
time pk

ij (the value of an unscheduled operation is the average of the completion times

of that operation on all available machines, i.e., pk
ij = ∑mk∈Mij(t) pk

ij/
∣∣Mij(t)

∣∣), start time
stij(t) (the start time is stij(t) = stil + pilk when the preorder operation has been scheduled,
otherwise it is estimated recursively according to stij(t) = stil(t) + pilk), remaining process
time (Unscheduled operation is 0), completion time, latest deadline, operation waiting
time and the number of remaining operations Ji. The 5-dimensional machine features
contain machine status (Available or not, 0—no, 1—yes), machine operating time, number
of operations to be processed, waiting time and remaining processing time. The action
feature corresponds to the operation–machine combination feature, taking the value of the
process time pk

ij for selecting machine k for the oij. S(t) integrates the static and dynamic
attributes of the scheduling process, which can be updated in a timely manner by the data
acquired by the DT system, enabling a genuine realization of adaptive scheduling in the
actual business of the workshop.

(2) Action. The action space A(t), which is in a dynamic change process at each decision
time, contains all feasible combinations of

(
oij, mk

)
. Each action execution process first

selects an eligible action oij for which the predecessor operation has been scheduled, and
then randomly picks a set of compatible combinations with available machines under this
operation. During the candidate action set confirming action a(t), the

(
oij, mk

)
search space

is narrowed down according to the operations priority and machine capacity constraints
in conjunction with the invalid action masking [10] technique to achieve a more efficient
output.

(3) State transition. At the time of Tp(t), when the agent executes the action at, it
determines

(
oij, mk

)
as well as completes sampling, updating the state st+1 ← st based on

the scheduling environment. During the state transition, the disjunctive arc ascertains the
direction depending on the selected machine mk; meanwhile, the feature values of O(t),
M(t) and A(t) are updated. The decision-making time moves to Tp(t + 1), which is the
moment when the operation is concluded.

(4) Reward. The setting of the reward value rt depends on the scheduling objective,
i.e., makespan denoted by cmax, and takes the value of the difference between the com-
pletion time of the current state st and the next state st+1 in Equation (16). As shown in
Equation (17), maximizing the cumulative reward when γ = 1 is equivalent to minimizing
the completion time.

rt = cmax(st)− cmax(st+1) (16)

∑|O|−1
t=0 rt = cmax(s0)− cmax

(
s|O|
)

(17)

where cmax(s0) is a constant when t = 0.
In the case of t > 0, the scheduled oij is available to calculate the reward value based

on the completion time cij, while the unscheduled operation replaces cij approximately by
calculating the sum of the completion time of the previous process and the work hours of
the current process according to the method proposed in the literature [40], as shown in
Equations (18) and (19).

Cij = Ci(j−1) + min
k∈M(t)

pk
ij (18)

Ci0 = 0 (19)

(5) Policy. The policy of the scheduling agent belongs to the category of stochastic
policy, and the policy π(at|st) is the probability distribution of the scheduling action set
A(t), derived by the actor-critic network before the training process of policy parameters
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π for achieving optimal cumulative rewards, which later in this section, guiding the
probability of the agent to choose at ∈ A(t) in a certain state st.

4.2.3. Graph Attention Network

The core of a GNN in solving scheduling problems is to embed operations and machine
features, fix undirected arcs in the disjunction graph to form a job decision sequence, and
ultimately obtain the maximum completion time. As shown in Table 2, current mainstream
network structures mainly include traditional multi-layer GNNs, graph isomorphism
networks (GINs), and heterogeneous graph neural networks (HGNNs), each of which has
been adapted and innovated for the specific scheduling environment. Considering that the
OE workshop requires dynamic adjustment of the number of operations and machines in
each scheduling cycle based on the resource and machine information fed back from the
DT system, the GAT eliminates the concern for multiple graph structures compared to GIN
& HGNN, has simple data structures, and has the redundancy to handle large amounts of
input data, adopting a GAT can effectively avoid the situation that the neural network is
misaligned by the training parameters due to the non-uniform scheduling scale.

Table 2. Comparison of the Graph Neural Network structures.

Network Structure GNN [12] GIN [10] HGNN [11] GAT

Characteristics

The GNN is
constructed by stacking

k embedding layers,
and the embedding

graph with node
features and its domain
is computed from the

input graph after k
embedding iterations.

By encoding the
dis-junction graph using
GIN with discriminative

ability, the preprocessing of
receiving data is

performed, and utilizing
“add arc scheme” which

ignores the un-directed arc
to reduce the

computational complexity.

Adopting a
heterogeneous graph
structure, preserving
the traditional set of

operation node set and
conjunctive arcs,

adding machine nodes,
and replacing the

disjunction arc set with
the

“operation–machine”
arc set.

Based on the attention
mechanism, neighbor
node aggregation is

implemented to select
high-priority

“operation–machine”
combinations based on

adaptive weights to
solve FJSP instances of

different scales.

Contributions

By learning general JSP
properties, the GNN

scheduler delivers
better computational
performance in the
arbitrary instances.

Defining strategies to
predict the probability

distributions of operations
and machines through the

encoder-decoder
component.

Efficient integration of
operational and

machine information
with superior graph

density and
computational

efficiency.

Explicit exploration of
operation scheduling

and machine
competition

relationships in
disjunction graphs is

attempted.

Training method Proximal Policy Optimization (PPO)

A GAT aggregate neighboring node is featured through the attention mechanism, and
performs weight updates for each node and its first-order neighbor weight information.
Where, the Graph Attention Layer (GAL) aggregates the graph containing the node feature
vectors H = {hi ∈ Rd|i ∈ [1, N]} and outputs the new feature vectors h′ i for each
node [34]. The correlation between neighboring nodes, as a scalar, can be obtained using a
fully connected layer with an activation function of LeakyReLU, as shown in Equation (20).

eij = LeakyReLU(aT[Whi ‖Whj
]
) (20)

where the weight parameter is a ∈ R2d(l+1)
, W ∈ Rd(l+1)×d(l) represents the weight parameter

of the node feature transformation in the layer and · ‖ · is the splicing operation. The
correlation of node vi and all first-order neighbor nodes N(vi) are normalized based on
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Softmax function as shown in Equation (21), meanwhile, the new node feature vector h′ i is
derived from Equation (22).

αij = softmaxj(eij
)

=
exp(eij)

∑vk∈N(vi)
exp(eij)

=
exp(LeakyReLU(aT[Whi‖Whj]))

∑vk∈N(vi)
exp(LeakyReLU(aT[Whi‖Whj]))

(21)

h′ i = σ

 ∑
vj∈N(vi)

αijWhj

 (22)

From the perspective of avoiding model performance degradation associated with
different scheduling scales during the OE workshop planning, as well as efficiently selecting
the appropriate machine among the multi-competitive relationships, this paper adopts a
similar scheme as in [40], as shown in the GAT section of Figure 6, to construct a multi-head
operation attention network and a multi-head machine attention network, respectively.
The operation network receives inputs of operation features and outputs a new feature
sequence of operations to be scheduled based on finite constraints. The machine network
assigns available devices to each operation based on each machine’s operating status and
process requirements with sufficient consideration of priority relationships. Collectively,
the two networks form a complete GAT, and the output operation and machine features
are stacked and pooled in L-layers to generate global features for the entire scheduling
instance. The following describes in detail the computational process of the single-layer
network at decision step t.

(1) Operation Node Embedding. In the same job, the operations are restricted by the
existence of pre/post constraints on the process requirements, and the determination of the
execution time for each operation depends on the node as well as the inherent attributes of
the neighboring nodes, such as the priority level. Based on the aforementioned attention
coefficient calculation method, for each operation oij, it is necessary to analyze their attribute
values for both the pre operation oi,j−1 and the post-operation oi,j+1 in the operation
attention network to obtain the attention coefficients for that operation. Taking the current
operation oij with its post-operation oi,j+1 as an example, the coefficient ei,j,j+1 calculation
process is shown in Equation (23). Over the entire job, which usually has start/end nodes as
well as some operations with no pre- or post-operation, a dynamic mask is used uniformly
to cover their attention coefficient. As in Equation (21), the attention weights are obtained
by normalizing all coefficients utilizing the Softmax function. Eventually, by the weighted
linear combination of the input features Whoil as well as the feed-forward updating of
some weights and following the computation of the nonlinear activation function σ, the
feature vector h′oij of operation oij is obtained as shown in Equation (24).

ei,j,j+1 = LeakyReLU(aT
[
Whoij ‖Whoi,j+1

]
) (23)

h′oij = σ
(
∑j+1

l=j−1 αi,j,lWhoil

)
(24)

where l denotes the neighboring process of process j, and |l − j|6 1 .
Leveraging the data interaction between the multilayer networks, the operation oij

related parameters transferable to each related operation in this job.
(2) Machine Node Embedding. Machine node embedding is more complicated than

operation nodes, considering that one operation can correspond to multiple machine
executions. In the case of unscheduled operations ∀oij ∈ Nt(mk) (Nt(mk) denotes the
set of operations that can be processed by the idle machine mk); the first step is to filter
the machines based on their status, operation processing time, etc. to acquire a unique
“operation–machine” combination. Hence, prior to computing the attention coefficients of
each machine, the original feature vectors with their associated operations and “operation–
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machine” combination are expanded to obtain vijk =
[
hoij

∣∣∣∣∣∣h(oij ,mk)

]
∈ R9 and the linear

transformations WM ∈ Rd×5 and WO ∈ Rd×9 are set up in synchronization. It can be
concluded that for a machine mk attention coefficient is calculated as Equation (25).

eijk = LeakyReLU(bT
[
WMhmk ‖WOvijk

]
) (25)

For each machine, the effect of the self-attention coefficient additionally be considered
before computing its new feature vectors, i.e., Equation (26).

ekk = LeakyReLU(bT[WMhmk ‖WMhmk

]
) (26)

Eventually, the attention weights αijk and αkk are obtained by normalizing eijk and
ekk based on the Softmax function and the feature vectors of the machine are successively
solved, as shown in Equation (27).

h′mk = σ

(
αkkWMhmk + ∑oij∈Nt(mk)

αijkW
O
vijk

)
(27)

(3) Multi-head Attention Mechanism. The multi-head attention mechanism provides
an effective enhancement of the feature representation as well as the model self-learning
capability of operation and machine attention networks. In this paper, this method is
invoked in GAT, which is part of the procedure to realize the superior generalization ability
of GNNs for different scale scheduling problems, and its computational principle is shown
in Figure 7.
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Specifically, by passing operation or machine features to the query, key and value, K
attention heads are set up to individually form attention blocks with different parameters,
which are able to compute the attention coefficients in parallel. The output is fed back to the
aggregation operator for splicing, as shown in Equation (28). The averaging operator with
σ activation is executed after the last layer of network computation completes to obtain
efficient feature expression results. The method ensures that localization is preserved
without affecting the global features.

h′oij =‖
K
k=1 σ

(
∑oij∈O

αoij Whoij

)
(28)

(4) Pooling. The mentioned GAT exports a set of features h(l)
oij and h

(l)
mk at each single

layer. When l = 1, the operation and machine feature are determined by the original
feature values. In addition, the “operation–machine” combination is consistently input
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to the original features during calculating in each layer. After stacking the L layers, the
ultimate outputs h(L)

oij and h
(L)
mk are used in the subsequent decision network. The whole

scheduling features are spliced based on the mean pool of operation and machine features
as in Equation (29).

h
(L)
Total = [

∑oij∈O h
,(L)
oij

|O| ‖
∑mk∈M h

,(L)
mk

|M| ] (29)

(5) Decision Making: Actor-Critic Algorithm. Following the acquisition of the graph
representation, policy network development is the culminating step in the fulfillment of the
decision support. The main purpose of the policy network is to emit a feasible action a(t)
and obtain the reward value rt of that action to form an optimal sequence of actions. The
actor-critic algorithm is compatible with variable-size attention models and is a superior
method for achieving scheduling decisions. While the actor network and the critic network
each correspond to a Multi-Layer Perceptron (MLP), the former task is interacting with the
scheduling environment to generate a priority index µ(at| st) in the first step, and in the
second step, to randomize the policies πθ(at| st) based on the expectation distribution
solved by the Softmax function, described in Equations (30) and (31). For the action
at =

(
oij, mk

)
operation features, machine features, global features, and “operation–

machine” combination feature information have been fused.

µ(at| st) = MLPθ

[
h

(L)
oij ‖ h

(L)
mk ‖ h

(L)
Total ‖ h(oij ,mk)

]
(30)

πθ(at| st) =
exp(µ(at| st))

∑bt∈A(t) exp(µ(bt| st))
(31)

The latter network objective aims to collect the value function νφ(st) during the actor
network’s interaction with the environment to recognize the action’s merits and demerits.
The actor-critic advances the state transition process through the continuous execution of
actions by the agents until the total operation scheduling has been completed, with the
objective function and the total loss function for each agent as in Equations (32) and (33).

LCILP
t (θ) = Êt

[
min

(
Rt(θ)Ât, clip(Rt(θ), 1− ε, 1 + ε)Ât

)]
(32)

Lt(θ, φ) = cpLCILP
t (θ) + ceLE

t (θ)− cvLV
t (θ) (33)

where Rt(θ) = πθ(at| st)/πθold(at| st) stands for the ratio of the probability distributions
between the old and new policy, Ât represents the dominance estimation function, and ε
denotes the amount of fluctuation control. The total loss function is the weighted sum of
the objective function with its entropy and mean square error, cp, ce, cv represent the loss
coefficients, respectively.

4.3. Model Training

The proposed model employs the MLP to implement both state representation learning
and strategy learning. In order to better the GAT fit the optimal solution with superior
generalization, the training process is completed using the Proximal Policy Optimization
(PPO) [41] algorithm based on the actor-critic structure to achieve network parameter
updates. PPO, as an easy-to-implement policy gradient algorithm, is the current solution to
similar problems in the mainstream approach. The fast convergence and output strategy
stability compared to other deep reinforcement learning algorithms is proven in [41],
adopting the easy-to-implement PPO algorithm is far more suitable for other algorithms.

The pseudo-code of the training algorithm is illustrated in Algorithm 1. Both the
actor network and the critic network adopt MLPs, which represent policies and states,
respectively. νφ is obtained by inputting state embedding values passed to GAT. Training
operations are executed after I iterations, in which the loss function is solved and the model
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parameters are updated in PPO update steps K. In addition, a set of policy validations is
fulfilled every ten iterations in the test sets.

Algorithm 1: The PPO-based training procedure
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5. DT Workshop Planning Model-Based Decision Support Methodology

In a broad sense, the workshop Master Production Schedule (MPS) management
includes the production forecast and execution decision of the next stage of the workshop.
On the basis of the GNN-based planning model, this section expands data availability and
supports dynamic decision-making of the whole production process by combining the
large amount of time series data formed by the DT workshop. Specifically, in the planning
aspect, the job schedule is dynamically optimized according to the real-time progress of the
DT system, and in the resource aspect, the job bill of materials (BOMs) is associated with
the enterprise resource plan, and the resource procurement, storage, and distribution plan
is optimized in the reverse direction from the workstation demand, to realize the workshop
operations’ work time accuracy and resource equalization.

5.1. Work Hours Forecasting

The colossal assembly and welding workloads are determined by the intricate design of
OE platforms. The operators’ estimation of their working hours is inaccurate due to the twin
effects of the learning effect, including operation proficiency, and the deterioration effect,
including fatigue degree. The errors’ cumulative effect severely hampers the execution rate
of the workshop plan. Hence, it is essential to anticipate labor hours using DT.

Based on the previous study [42], the measured data access and the forecasted data
output are additional elements in the work hours forecasting framework, as shown in
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Figure 8. The measured data from the data acquisition layer of the DT framework is
input to the work hours quota database and the process route database, and K-means-
based clustering analysis of welding processes is performed according to the operational
characteristics to evaluate the work hours quotas according to the classification of different
types of welding processes with various difficulties. The evaluation method uses a slack-
based measure model in data envelopment analysis to update the time quota OPi for the
process type i according to the planned data and execution data and to evaluate the validity.
Finally, according to the same type of process over time iteration of work time rules, the
formation of dynamic standard work time allows MPS to achieve highly reliable data input.
Equation (34) shows the prediction model WHFM(POTi, f ti) for work hours of welding
operations with welding characteristics as the independent variable.

WHFM(POTi, f ti) = f (OPi) (34)

subject to:
min( f ti) ∀i ∈ [1, N] (35)

min(POTi + f ti − AOTi) ∀i ∈ [1, N] (36)

min
N

∑
i=1

(POTi + f ti − AOTi) (37)

where POTi is planned operating time, AOTi represents actual operating time, and f ti
stands for floating time. f (OPi) is a recursive equation based on Graph Long Short-Term
Memory (Graph LSTM):

f (OPi) = σ
(

W f op(t)i + U f
m(i,k)h

(t−1)
ik + b f

)
(38)

where W stands for the weights, U for the weight matrix to be trained, m(i, k) indicates the
relationship type label between nodes, h for the hidden vector, and b for the training bias.
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5.2. Resource Demand Forecasting

With the granularity refinement of the DT system, the resource demand forecast
originates from the demand side of the operators, and the workshop resource plan and
the enterprise resource plan are backed up in time with the progress of each workstation’s
assembly and welding operations. In contrast to the traditional resource supply mode,
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in which the top level conducts the whole resource plan and breaks down BOMs to the
basic operation units, the real-time demand and buffer capacity of each workstation will be
dynamically adjusted along with the manufacturing execution status to ensure the quantity
and period of material supply, such as plate, steel, and welding material. The limitation of
demand forecasting is the uncertainty of manufacturing progress and the uncoordinated
procurement/storage plan with the workshop schedule.

There are two stages of demand forecasting from the operation execution side: material
demand clustering and quantity forecasting. Firstly, the material demand clustering is
based on the steel, welding material and equipment necessary for each workstation in the
process of job execution to establish the attribute class rules to complete the clustering
analysis. Given that R = {r1, r2, · · · , ri, · · · , rn} is the set of material resource demand, and
k attributes exist under each material, the material attribute matrix is obtained as follows:

(ri)n×k =


r11 r12 · · · r1k
r21 r22 · · · r2k
...

...
. . .

...
rn1 rn2 · · · rnk

 (39)

c′ = c−min(c)
max(c)−min(c)

× 100% (40)

S(ci, cj) = dist(ci, cj) =

√√√√ k

∑
l=1

(cil − cjl)2 (41)

To reduce the impact brought by different quantiles, the material attribute matrix is
normalized by Equation (40) and then solved for the similarity of demand at different
workstations. As in Equation (41), the higher the similarity, the smaller the Euclidean
distance value, representing the high demand for certain types of resources at certain
workstations and the need to increase the advanced procurement and supply of this type
of resource.

The second step is quantity forecasting based on the work orders and BOMs of each
workstation to count the demand of each type of resource combined with the real-time
capacity of the material buffer monitored by the DT system. In addition, the material
ratio must be outputted according to the clustering results of the dependence of each
workstation on different materials, and the relevant information must be adjusted in MPS
and Enterprise Resource Planning (ERP) in time.

5.3. Resource Bottleneck Identification

Resource bottlenecks are an important factor affecting the continuity of operations.
Dynamic resource bottleneck identification methods and optimization of manufacturing
resources [43] have been explored in many studies, and the feasibility and practicality of
bottleneck identification analysis are further enhanced with the support of the Digital Twin.
In the event that the sensor identifies fluctuations in the amount of material in the operation
area or buffer, the bottleneck identification method timely pushes the operation blocking
node to the DT system and triggers the rapid adjustment of MPS and ERP.

The bottleneck identification calculation mainly includes resource state, device state,
and buffer state characteristics. In addition, further consideration is given to the interac-
tions between operational links. The real-time bottleneck calculation methodology can be
summarized as follows:

RBI(i) = ω fres(i) + µ feq(i) + λ fbu f f er(i) (42)

f (i) =
νmeasure

max{ν(1)measure, ν
(2)
measure, · · · , ν

(t)
measure}

(43)
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ω + µ + λ = 1 (44)

where i is the workstation number, fres(i) is the resource state function, feq(i) represents
the device state function, and the buffer state function is fbu f f er(i). The state calculation
function is shown specifically in Equation (43) as the ratio of the real-time measured value
to the maximum value in time t. ω, µ, and λ are the weight coefficients, whose sum is 1 as
shown in Equation (44).

Demand forecasting and bottleneck identification are the two most significant aspects
of workshop resource management, which are intimately related to the planning model.
Based on the real-time update of resource information by the DT system, managers are able
to analyze the operation plan and resource plan collaboratively and construct an effective
“Plan-Resource” management framework, as shown in Figure 9.
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5.4. Dynamic Job Shop Scheduling

The dynamic environment-oriented planning method has been proposed in the plan-
ning model study in Section 4. However, during the execution of the plan, if there are
uncertain events, such as equipment malfunction, production insertion order, material
blockage, etc., it will greatly interfere with the plan and cause the manufacturing tasks
to be unable to be completed within the scheduled time. Accordingly, it is essential to
design a dynamic scheduling strategy for uncertain events and to reduce the impact of
unexpected occurrences on job execution by making small-scale process start time adjust-
ments. Meanwhile, multiple optimization objectives to obtain optimal or non-dominated
solutions require consideration in the dynamic adjustment process.

In the previous studies [44,45], focusing on the multi-objective optimization strategy
of dynamic scheduling problems in the presence of uncertain events and proposing op-
timization algorithms for the makespan and optimal energy consumption, the ability to
deal with event occurrences was theoretically developed. However, the prior algorithm
research is based on definite assumptions, and the uncertain events appear randomly with
probability, which is still partially deviated from the actual working conditions. Based
on the real-time monitoring of progress, materials, equipment, and other attributes of
the DT system to achieve effective identification of uncertain events, which completely
responds to the actual situation of the workshop, there is a higher requirement for dynamic
scheduling algorithm triggering and rapid calculation. By constructing a hybrid cycle and
event-driven strategy, the workshop problem node production plan is optimized in time
for different types of events, and the adjustment of the total plan is minimized. As shown
in Figure 10, after an uncertain event such as equipment damage at workstation 2, the
remaining workload of the current work order is first recalculated, then the three affected
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subsequent tasks with floating time are statistically counted, and finally, the fine-tuning
of the plan is accomplished. The dynamic scheduling process is shown in Figure 11. The
efficiency of the dynamic scheduling trigger and plan iteration process based on the DT
system is significantly improved compared with the traditional manual adjustment, with a
saving of about 17.1% or more according to statistics. The dynamic scheduling model that
makespan and minimizes energy consumption for production can be expressed as follows:

minF(x) = [ f1, f2] (45)

f1 = min(Cmax) (46)

f2 = min(E) (47)

where F(x) denotes the target vector, F = ( f1, f2) ∈ Y, Y is the target space formed by
multiple target vectors, x is the decision vector, C is the completion time, E is the energy
consumption parameter, f1 represents the makespan, and f2 is the minimum production
energy consumption. The constraints are the same as in Equations (12)–(15).
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5.5. Multi-Station Collaborative Distribution

The delivery of materials and intermediate products within the workshop has been a
relatively neglected part of production planning. In contrast to the high priority given to
supply chain and in-factory logistics distribution, the scheduling of logistics distribution
between workstations is autonomously done by operators, which easily causes blockages in
the flow between processes. Based on the digital twin workshop planning model, expand-
ing the multi-station collaborative distribution method enables the effective improvement
of the inter-operational material and intermediate product turnover efficiency. Starting
from the assignment plan of each workstation, based on the work sequential relationship
between multiple workstations, the distribution requests are received and associated with
BOMs to transport the target objects in the form of pallets to the specified workstations or
buffer zones, and the idle vehicles and optimal paths within the effective turnaround time
are calculated, and the distribution plan is output, as shown in Figure 12. The collaborative
distribution model with the minimum empty time of transportation equipment as the
optimization objective is:



Appl. Sci. 2023, 13, 10134 25 of 32Appl. Sci. 2023, 13, x FOR PEER REVIEW 25 of 33 
 

 
Figure 11. Rescheduling process. 

5.5. Multi-Station Collaborative Distribution 
The delivery of materials and intermediate products within the workshop has been 

a relatively neglected part of production planning. In contrast to the high priority given 
to supply chain and in-factory logistics distribution, the scheduling of logistics distribu-
tion between workstations is autonomously done by operators, which easily causes block-
ages in the flow between processes. Based on the digital twin workshop planning model, 
expanding the multi-station collaborative distribution method enables the effective im-
provement of the inter-operational material and intermediate product turnover efficiency. 
Starting from the assignment plan of each workstation, based on the work sequential re-
lationship between multiple workstations, the distribution requests are received and as-
sociated with BOMs to transport the target objects in the form of pallets to the specified 
workstations or buffer zones, and the idle vehicles and optimal paths within the effective 
turnaround time are calculated, and the distribution plan is output, as shown in Figure 
12. The collaborative distribution model with the minimum empty time of transportation 
equipment as the optimization objective is: 

𝑓 = ෍ ෍ ෍ 𝑦௜௠௝ ∙௡
௜ୀଵ

௡
௝ୀଵ,௝ஷ௜

ெ
௠ୀଵ 𝑁𝑡௜௝ + ෍ ෍ 𝑦଴௠௝ ∙௡

௝ୀଵ
ெ

௠ୀଵ 𝑁𝑡଴௝ + ෍ ෍ 𝑦௜௠଴ ∙௡
௜ୀଵ

ெ
௠ୀଵ 𝑁𝑡௜଴ (48) 

𝑦௜௠௝ = ቄ1 Vehicle 𝑚 transport task 𝑖 after transport task 𝑗0 else  (49) 

the constraints include: 𝑅𝑡௜ − 𝑅𝑡௝ + 𝑈𝑡௜ + 𝐿𝑇௜ + 𝑦௜௠௝ ∙ 𝑁𝑡௜௝ ⩽ 𝑅 ∙ (1 − ෍ 𝑦௜௠௝௠∈ெ )  ∀𝑖, 𝑚, 𝑗 (50) 

𝑦଴௠௝ = 1 (51) 𝑆𝑡௜ ⩽ 𝑅𝑡௜ ⩽ 𝐸𝑡௜ (52) 

Figure 11. Rescheduling process.

f =
M

∑
m=1

n

∑
j=1,j 6=i

n

∑
i=1

yimj·Ntij +
M

∑
m=1

n

∑
j=1

y0mj·Nt0j +
M

∑
m=1

n

∑
i=1

yim0·Nti0 (48)

yimj =

{
1 Vehicle m transport task i after transport task j
0 else

(49)

the constraints include:

Rti − Rtj + Uti + LTi + yimj·Ntij 6 R·(1− ∑
m∈M

yimj)∀i, m, j (50)

y0mj = 1 (51)

Sti 6 Rti 6 Eti (52)

n

∑
i∈n,i 6=j

yimj+y0mj = xjm ∀m, j (53)

n

∑
j∈n,j 6=i

yimj+yim0 = xim ∀i, m (54)

n

∑
j∈n,j 6=i

yimj 6 xjm ∀i, m (55)

xim =

{
1 task i is transported by vehicle m
0 else

(56)

where i and j are task numbers, m represents the vehicle number, xim and yimj are decision
variables for task assignment, Sti, Rti, Eti denote the earliest start time, actual start time and
latest end time respectively, LTi is the load run time, and Ntij represents the no-load time.
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In summary, the five decision support methods proposed in this section are all appli-
cation services tightly associated with the DT workshop planning model, which enrich the
practicality of the DT architecture and enormously enhance the value of utilization and
service-driven importance of the GNN-based planning model. This section maintains im-
mense significance as it is dedicated to studying the feasibility of expanding the application
of the DT service-driven layer. According to the development trend of intelligent work-
shops, the existing quality management and traceability methods [46], as well as inspection,
safety, green production, and other workshop control businesses, may be explored in the
future to integrate into the intelligent management solutions of “virtual-real co-drive” to
assist enterprises achieve full digital coverage.

6. Case Validation and Discussion

This section concentrates on validating the effectiveness of the aforementioned GNN-
based planning model and the application of the digital twin system by ocean engineering
enterprises. We analyze the proposed model in terms of the computational effect and
generalization ability under the attention mechanism, as well as discuss the feasibility and
practicability of the DT system for actual execution in enterprises.

6.1. Effectiveness of GNN-Based Planning Model

The model proposed in this paper for solving the workshop planning problem is a
combination of Graph Attention Networks and Deep Reinforcement Learning, i.e., GAT-
DRL. In order to validate the computational effectiveness of the planning model in the actual
scheduling environment, a synthetic dataset consisting of standard arithmetic examples
and workshop planning samples are employed as the GNN training, validation and testing
dataset. The training dataset has a total of four scales corresponding to the number of jobs
n = {15, 20, 30} and machines m = {15, 20}, where each operation oij contains available
machine |M| and workhour values pk

ij sampled integrally from the set of machines U(1, m)

and the set of workhours U(1, 99), respectively.
The PPO hyperparameters of the model, in accordance with the optimal scheme of

comparable research [10–16,40], are configured with the total number of iterations I = 1000,
the instance batch size (training environment) B = 4, the step size of each iteration of
policy update K = 10, the learning rate lr = 3× 10−4, the discount rate γ = 0.98, and the
clipping parameter ε = 0.2. The policy loss coefficients, the entropy coefficients as well as
the critics’ loss coefficients correlate to 2, 0.01, and 1. Regarding the GAT itself, the number
of attention layers L = 2, and the operation attention network and the machine attention
network are both set up with four attention heads per layer each, while ELU is used as the
activation function σ. The sizes of the MLPs involved are uniformly 64. The model with its
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parameter settings has been applied in practical engineering deployed in the server of the
OE manufacturing enterprise with the DT system, which has been packaged as a module
and constitutes one of the crucial functions in the application service layer. The entire test
is done in a test computer with an Intel i9-12900H CPU and NVIDIA RTX 3070Ti GPU to
verify that the model has efficient computational performance and generalizability under
the initial conditions, ignoring the influence of the parameters that have been trained in the
actual project.

The benchmark analyzes the gap in the optimal solution, stability, and speed against
GAT-DRL, with simultaneous PDRs [11] and Genetic Algorithms (GA) [45] solving the
makespan of scheduling instances as well as the computation time. In particular, the PDRs
are evaluated against four rules, namely, First-in-First-out (FIFO), Shortest Processing Time
First (SPT), Longest Processing Time First (LPT), and Most Work Remaining (MWKR),
which have the best overall performance. The mathematical model of the comparison
algorithm is subject to Section 4.1.

The training curves of GAT-DRL on 15× 15, 20× 15, 20× 20 and 30× 20 instances
are illustrated in Figure 13, which reveals that the model accommodates different sizes
of datasets and converges rapidly, verifying it acclimates to varying sizes of scheduling
problems and obtains high-quality solutions. In addition, with the support of IAM, the
converged mean validated makespan is stable with minor fluctuations.
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For the trained GAT-DRL model, multiscale performance tests have been conducted
in this paper based on the TA dataset and a set of synthetic datasets with equivalent actual
computational sizes in the workshop. The tests are executed for a total of eight sizes,
corresponding to solving small-scale (15× 15 & 20× 15), medium-scale (30× 15, 20× 20
& 30 × 20), and large-scale (50 × 20, 100 × 20 & 100 × 12) scheduling problems. Each
algorithm in each scale carries out 100 group tests, records the makespan minimum in each
group, and statistics the average computation time along with the error fluctuation gap
∆ =

(
cmax/c*

max − 1
)
× 100%.

Table 3 shows that GAT-DRL has excellent solving ability and the optimal or sub-
optimal solution obtained in each size, which indicates that the model trained based on
small and medium-sized datasets has superior generalization ability to adaptively deal
with complex actual working conditions, whereby the model outputs the optimal results
when the number of jobs and the number of machines change dynamically. In comparison
with the proposed method in this paper, the four PDRs have the best computational speed,
which is more than 50%, yet the solution results are not satisfactory, and the randomness of
acquiring the minimum value is considerable. In terms of stability of results, the genetic
algorithm, as a representative of heuristic algorithms, has prominent performance in the
process of calculating workshop scale instances (100× 12). Nevertheless, restricted by
the high requirements of GA on data size, the performance has enormous constraints in
calculating the standard test dataset, which demands targeted improvement. In addition,
the computation time of GA is substantially higher than that of GAT-DRL and PDRs, thus
it is suitable for pursuing a highly customized scheduling system with great reliability.
Overall, GAT-DRL is the optimal generalized scheduling solution with high accuracy, high
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performance, and high reliability suitable for DT systems. It should be supplemented that
the action selection in this model takes a random sampling approach, and the convergence
speed may be further improved by switching to a greedy strategy with a fixed number of
machines. The gap analysis graph for the eight sets of comparative computation results is
shown in Figure 14.

Table 3. Comparison of models’ performance in different scale data.

Size
(n×m) GAT-DRL FIFO SPT LPT MWKR GA

cmax
15× 15

1448 1513 1546 1547 1489 1433
Time 1.11 0.60 0.74 0.71 0.71 46.17
Gap 3.14% 5.58% 7.89% 7.98% 4.31% 0.56%

cmax
20× 15

1646 1778 1814 1775 1677 1702
Time 1.46 0.81 0.99 0.93 0.96 60.66
Gap 2.52% 8.00% 10.31% 7.82% 3.55% 3.37%

cmax
30× 15

2189 2330 2419 2379 2216 2275
Time 2.31 1.48 1.87 1.79 1.78 96.20
Gap 3.60% 7.55% 10.83% 9.12% 3.69% 3.91%

cmax
20× 20

1933 2065 2067 2128 2005 2012
Time 1.98 1.09 1.31 1.18 1.26 82.29
Gap 2.17% 6.80% 6.93% 10.09% 3.94% 4.06%

cmax
30× 20

2403 2549 2619 2604 2479 2580
Time 3.57 1.97 2.46 2.31 2.34 148.80
Gap 3.70% 6.09% 8.99% 8.36% 4.61% 7.34%

cmax
50× 20

3338 3504 3571 3501 3368 3754
Time 9.09 3.14 4.23 3.86 3.89 378.77
Gap 4.58% 6.32% 7.02% 5.25% 4.00% 12.46%

cmax
100× 20

5845 6052 6139 6093 5840 6374
Time 43.42 13.20 21.14 19.14 19.97 1808.81
Gap 3.04% 4.81% 5.12% 4.82% 2.95% 9.14%

cmax
100× 12

6782 6934 7117 7004 6811 6845
Time 25.76 7.93 12.66 11.52 12.04 1073.09
Gap 6.75% 7.72% 9.20% 6.09% 5.88% 1.56%

6.2. Application of the Digital Twin System in Workshop

For testing and validation, the proposed digital twin system architecture in this paper
is implemented at a Chinese ocean engineering manufacturer. Each business module in the
system may function both independently and efficiently together to assist in the fulfillment
of the digital twin service via the system’s adoption of a micro-service architecture. The
service middleware and management backend use Java and Oracle, the system front-end
uses Vue.js technology, and the visualization board is finished using Unity 3, and other open-
source board technology. As indicated in Figure 15, it completes the creation of 5 modules
and 33 functions. The system function module is designed to complete data management in
phases of the ocean engineering construction process, integrate corresponding business data
according to design, manufacturing, and basic data, provide prediction and optimization
services, and eventually provide a visualization board to fulfill decision support.
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By contrasting the DT system with the in-service MES in the block assembly and
welding workshop, system validation of multiple project construction scheduling has been
carried out. The test results are listed in Table 4. According to the findings, the DT system’s
scheduling function compared to the MES can be completed in 5.08% less time for the total
duration, and calculation speed can be increased by 16.30%. The visual interface of this
system not only makes it convenient to monitor the job plan and progress in the workshop,



Appl. Sci. 2023, 13, 10134 30 of 32

but it also emphasizes the optimization of the data-driven job execution process and makes
use of the five-dimensional logic model in production management.

Table 4. Comparison of the DT system performance with the existing MES.

Project
Total Project Duration (Days) Calculation Time (s)

DT MES DT MES

A 246 261 783.28 905.45
B 242 254 780.10 903.89
C 239 251 757.61 967.77

Data collection in the system export results. Commercially sensitive information is not shown, and only system-
exported test data are provided.

7. Conclusions and Future Work

This study proposes a five-dimensional architecture of the digital twin system for the
ocean engineering intelligent workshop and concentrates on introducing a graph neural
network in the service-driven layer to transform the workshop disjunctive graph model
into multi-dimensional data, and relying on the attention mechanism, analyze the operation
and equipment information to complete node embedding and realize feature extraction.
The PPO algorithm training is performed to establish an end-to-end learning framework
for solving FJSP, and the GAT network parameters are optimized so that the planning
model has excellent generalization after the training of small-sized data, which resolves the
problems of long computation time and poor optimization effect in the current workshop
planning management practice. With the support of the DT system, a large amount of data
input ensures that the model is adequately trained and systematically robust in the face
of complex conditions in the shop floor scheduling environment. The numerical results
show that the model proposed in this paper can complete the output of workshop planning,
and the output results and computation time are significantly better than the traditional
heuristic methods.

In future research work, the DT system must fulfill the functional iterations following
the continuous upgrading of the intelligent workshop and transform itself from the current
“real-time status feedback and decision optimization in parallel” mode to the “prediction
data-based virtual-real co-drive” mode to materialize the workshop production process
that enables pre-awareness, advance decision-making, and rapid optimization. In addi-
tion, the GNN-based planning model is capable of handling production conflicts quickly,
i.e., optimizing the model response speed in the dynamic scheduling procedure, further
exploring offline reinforcement learning methods, reducing training costs, and improving
the generalization ability of the model for online applications.
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