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Abstract: Desertification seriously hinders economic development and ecological security, which has
led to increased research on desertification monitoring and control. Remote sensing technology is
widely used in desert research due to its large detection range and ability to obtain target feature
information without touching objects. In order to better monitor and control desertification, the
research methods on desert mobility and dune morphology in mobile deserts were reviewed. Among
them, an important index to distinguish mobile and nonmobile deserts is desert vegetation coverage.
The research progress of desert vegetation coverage based on visual interpretation, the nonlinear
spectral model, normalized vegetation index (NDVI) fitting and plant community classification was
reviewed. The loss of vegetation in the transitional zone of the desert is a contributing factor to
desertification. The new technologies and applications of desert area monitoring, the remote sensing
ecological index, and desert feature information extraction were introduced and analyzed. To combat
desertification more accurately and effectively, the classification methods of moving dunes based
on deep learning were also reviewed. It can be concluded that desertification monitoring methods
are gradually becoming more accurate and adaptive, but they remain insufficient and less mature.
Therefore, exploring how to apply desertification control technology more scientifically and rationally
is an extremely valuable area for research.

Keywords: desert mobility; desertification monitoring; classification of dune types; deep learning;
remote sensing image

1. Introduction

Desertification monitoring and research on desert mobility have emerged as crucial
topics in contemporary society, as they have increasingly significant implications for so-
cial development and human survival. In recent years, the delicate balance of natural
ecosystems has been disrupted due to the combined influence of human activities and
natural factors. Drought and wind are the two primary causes of desert formation, while
deforestation leads to the loss of vegetation cover and the degradation of grasslands [1].
The consequences of desertification pose severe threats to regional biodiversity and the
sustainable development of human populations. The associated socioeconomic and eco-
logical challenges have become pervasive worldwide, thus capturing the attention of
nations across the globe. As sustainable development becomes increasingly imperative,
the accurate and efficient classification of mobile desert areas becomes paramount. This
classification serves as a foundation for monitoring desert mobility, thereby aiding in the
resolution of the deteriorating desertification problem. This review aims to consolidate
the current research status in the academic field by focusing on desert remote sensing
information within the broader context of desert scientific research. By examining the
advancements in this field, we can gain insights into the effective monitoring techniques
and strategies for addressing the challenges posed by desertification.
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Approximately one-quarter of the Earth’s land area is affected by desertification,
and the global extent of desertification is still expanding. Over 20% of the world’s arable
land, 30% of forests, and 10% of grasslands are experiencing degradation [2]. China, in par-
ticular, features the world’s largest desert region and is one of the countries most severely
affected by desertification [3]. Additionally, desertified land is found in various pockets
throughout the country, with the country consequently experiencing severe impacts from
desertification. Given the context of global warming and increasing aridity, the activation
of sand dunes and the expansion of deserts have intensified. Consequently, the task of
protecting and consolidating these regions remains challenging and demanding [4].

Currently, the research on deserts utilizing remote sensing images combined with deep-
learning techniques has yielded a wealth of valuable insights. However, there is a need for a
more comprehensive integration of these approaches. To address this, we have conducted a
thorough summary and comparative analysis. The specific structural framework is shown
in Figure 1. Prior to conducting research, it was necessary to select a desert remote sensing
dataset and perform data preprocessing. After completing these preliminary tasks, due to
the occurrence of desertification in mobile deserts, it was first necessary to monitor and
classify mobile and nonmobile deserts, followed by monitoring the desertification within
mobile deserts. Finally, in order to obtain a more accurate understanding of desertification
conditions, the further classification and monitoring of the morphological types of mobile
deserts were carried out. This review compares and summarizes the research methods in
these areas, thus aiming to provide an overview of the current research status and explore
future research directions.
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Figure 1. Framework of desertification monitoring.

In the realm of remote sensing information for desert research, various types of remote
sensing data are employed, with each possessing distinct observation ranges that are
attributed to their varying resolutions. The availability of diverse and extensive desert
remote sensing datasets serves as a dependable foundation, thus providing a reliable
assurance for conducting desert research. Nevertheless, it is crucial to acknowledge the
indispensability of the preprocessing step when utilizing remote sensing datasets for desert
research. The preprocessing steps include radiometric calibration, as well as atmospheric
and geometric correction, so as to optimize the data set, remove the noise in the image,
avoid the spectral brightness distortion, and reduce the experimental error [5]. The purpose
of radiometric calibration is to eliminate the error of the sensor itself and to determine
the accurate radiation value at the entrance of the sensor. The purpose of atmospheric
correction is to eliminate the error caused by atmospheric scattering, absorption, and
reflection. The purpose of geometric correction is to eliminate the geometric distortion
caused by atmospheric transmission, the sensor itself, the Earth’s curvature, and other
factors. The successful preparation of dataset preprocessing is the basis of desertification
monitoring and desert mobility research.
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The monitoring of desertification is firstly based on the classification of mobile deserts,
and the index to distinguish mobile deserts from nonmobile deserts is vegetation cov-
erage [6]. Zhang et al. [7] realized the visual interpretation of desert vegetation by es-
tablishing interpretation markers. While the visual interpretation method is subjective
and has low accuracy, spectral hybrid analysis can further accurately invert vegetation
coverage. At the same time, plant community differentiation is conducive to desertifica-
tion control through its potential interactions [8,9]. The monitoring methods for desert
vegetation coverage in this review were mainly compared and analyzed, including vi-
sual interpretation, spectral mixture analysis, vegetation estimation models, and plant
community differentiation. Because of their mobility, mobile deserts have the problem of
expanding or intensifying desertification. Early studies were limited to monitoring desert
areas. Firstly, the basic types of deserts and grasslands in the desert were extracted to
monitor the area change. Pi et al. [10] proposed the desert grassland classification network
(DGC) and used three-dimensional convolutional neural network (3D-CNN) models to
identify deserts and grasslands. Moghaddam et al. [11] used multilayer perceptron (MLP)
to classify desert images. The ecological quality in deserts can be assessed by the RSEI.
Xu [12] proposed the RSEI through principal component coupling greenness, dryness,
humidity, and heat, and the author took the first principal component as the RSEI value.
The further development of RSEI has made desertification monitoring more concrete. In or-
der to obtain the desert information, researchers have carried out the research of extracting
the desert feature information. The desert can be classified quickly and accurately from
remote sensing images. Therefore, from the monitoring of desert area change, the desert
remote sensing ecological index (RSEI), and the acquisition of desert feature information,
the research and comparative analysis have been carried out so as to achieve desertification
control. In order to further understand the structure of the desert and to grasp the trend
of the desert, many researchers have carried out studies on the morphology and types
of deserts [13]. Zhao et al. [14] firstly divided the Chinese desert (sandy land) into fixed
dunes, semifixed dunes, and mobile dunes according to the classification method of mo-
bility and then subdivided the categories into barchan dunes and dune chains according
to the morphological method. Li et al. [15] divided the north bank of the Luanhe River in
China into horizontal dunes, barchan dunes, star dunes, and flat sandy land. However,
this classification is mainly limited to the morphology of the dune. This review further
conducted comparative analysis of the research on sand dune morphology, as well as the
extraction and classification of sand ridge lines.

Hence, the study of desertification holds immense significance. However, despite
the advances in estimating vegetation coverage through linear spectral mixing models,
which have made some progress in the context of desert flow monitoring, there still exist
issues with inaccurate estimation. Furthermore, there is a need to enhance the accuracy
and stability of remote sensing estimation models. Challenges remain in the monitoring of
desert areas and the classification of desert types, as misclassification issues persist, and the
available characteristic information remains limited. In the evaluation of desert ecological
environment quality, the utilization of remote sensing ecological indices aims to explore
more efficient index combinations and algorithms. Additionally, the extraction of dune
types and sand ridge lines calls for the development of more lightweight and high-precision
networks to ensure improved accuracy.

2. Desert Remote Sensing Image Preprocessing

Preprocessing serves as the crucial initial step in remote sensing applications, and the
current technology in this domain has reached a high level of maturity. While the raw
dataset may contain unprocessed information, image preprocessing is necessary to elimi-
nate irrelevant image data and restore meaningful and actionable image data. This process
enables the detection of more relevant information within the images, thereby consequently
reducing the overall data requirements. By enhancing the reliability of feature extraction,
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image segmentation, matching, and recognition, the quality and accuracy of the subsequent
analysis can be improved.

2.1. Dataset Status

To facilitate desertification monitoring and desert mobility research, the availability of
suitable desert remote sensing datasets is paramount. Currently, a variety of datasets are
utilized for research involving desert remote sensing images. Table 1 provides a summary
of the commonly used remote sensing datasets in desert research. These datasets play
a crucial role in providing the necessary data foundation for conducting comprehensive
analyses and investigations in the field of desert research.

Table 1. Satellite datasets details.

Satellite Dataset Nation Spatial Resolution (m) Launch Time Characteristics

ALOS1 Japan 2.5/10/100 2006 Facilitates convenient stereo mapping; large-scale coarse-
resolution data; and small-scale fine-resolution data.

ALOS2 Japan 1/10/100 2014 High-speed and large-capacity data processing; precise
satellite positioning and attitude control.

SPOT5 France 2.5/10 2002 Front-to-back mode; good performance in data compres-
sion, storage, and transmission.

SPOT6 France 1.5/6 2012 High resolution.
SPOT7 France 1.5/6 2014 Includes a variety of imaging modes, including long

strips, large areas, multipoint targets, dual-image stereo,
and triple-image stereo, etc.

MODIS America 250/500/1000 1999 It is the only onboard instrument on the satellite that
broadcasts to feature real-time observation data directly
to the world through the X-band.

Gaofen1 China 2/8/16 2013 High spatial solution; multispectral; wide coverage.
Gaofen2 China 0.8/3.2 2014 Submeter spatial resolution; high positioning accuracy;

fast attitude maneuverability.
Gaofen6 China 2/8/16 2018 The time resolution of remote sensing data acquisition is

shortened from 4 days to 2 days.
Landsat7 America 15/30/60 1999 “The most stable and best-performing Earth observation

instrument ever built.”
Landsat8 America 15/30/100 2013 Long time in orbit; many bands
Landsat9 America 15/30/100 2021 Greater radiometric precision; slightly improves the

overall signalto-noise ratio.
Sentinel2 European

Space
Agency

10/20/60 2015 It is primarily used for global high-resolution and high-
revisit capability land observation; features mapping
of biophysical changes, monitoring coastal zones, and
inland water bodies, as well as disaster mapping.

World-View3 America 0.31/1.24 2014 Multiple payloads; hyperspectral; high resolution.
NOAA America 1.1 1994 Its main application is in large-scale regions.

The SPOT series of satellites, which wasdeveloped by the French Centre for Space Re-
search (CNES), serves as an Earth observation satellite system. The satellites offer varying
spatial resolutions of 5 m, 10 m, and 20 m. On the other hand, the ALOS satellite is Japan’s
prominent earth observation satellite, which features advanced capabilities such as high-
speed and large-capacity data processing technology, as well as precise satellite positioning
and attitude control technology. Zhang et al. [7] used ALOS and SPOT5 high-resolution
remote sensing images, combined with field investigations, to complete the visual interpre-
tation of the remote sensing image information and vegetation mapping of the Ulan Buhe
Desert research area in Inner Mongolia, China. Based on the long-term SPOT–vegetation
remote sensing data, Kuang et al. [16] analyzed the intensity and trends of land degradation
in Central Asia from 1999 to 2012 by combining the Theil [17,18], slope estimation, and
Ma [19–25] trend tests. The ALOS and SPOT datasets offer relatively high spatial resolution,
which proves advantageous for extracting desert vegetation and monitoring the extent of
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land degradation. It contributes to the overall quality and utility of the ALOS and SPOT
datasets in supporting desert vegetation analysis and land degradation monitoring.

MODIS, which is an essential sensor aboard the TERRA and AQUA satellites, assumes
a significant role in Earth observation. Liu et al. [26] used long-time series MODIS–NDVI
data to construct a vegetation coverage inversion model in desert areas, and they studied
their spatial distributions, dynamic changes, and development trends. The long-term
characteristics of MODIS data provide a scientific basis for sand control, vegetation restora-
tion, and ecological construction in the fragile ecological zone on the edge of the Badain
Jaran Desert.

In 2014, the Gaofen-2 (GF-2) satellite was successfully launched, thus marking a sig-
nificant milestone for China, as it became the first country to develop a self-engineered
civilian optical remote sensing satellite with a spatial resolution greater than 1m. This
accomplishment signifies the advent of the “Gaofen era” for China’s remote sensing satel-
lites, thus ushering in a new era of submicron capabilities. Yue et al. [27] used the GF-2
remote sensing images to register the aerial images with them, and they calculated the
vegetation coverage of the aerial images by using the NDVI cells of the satellite images as
the statistical unit. The empirical relationship between the two was established using fitting
data, and then the vegetation coverage estimation model was obtained using remote sens-
ing. Sun et al. [28] processed the images using the multiple endmember spectral mixture
analysis of the 16-period Gaofen-1, and they then performed a cross-wavelet transform
(XWT) to extract feedback features as the feature parameters. The high resolution of the
high-resolution satellite dataset makes it widely used in desert feature extraction.

Following its launch in 1999, Landsat 7 emerged with sensors that were renowned for
their exceptional stability and performance, thereby solidifying its position as a premier
Earth observation instrument. Subsequently, Landsat 8 commenced image acquisition after
a successful 100-day test run starting in 2013. Most recently, in 2021, Landsat 9 achieved a
successful launch from the Vandenberg Space Force Base in California. Chang et al. [29]
used Landsat 7 ETM and L1T remote sensing images of the Tengger Desert in 2000 and
2002, which constituted a total of eight scenes. Based on the Landsat 8 images, Liu [30]
studied the extraction algorithms of desert areas, which has practical significance for the
effective monitoring of desert areas. Melichar et al. [31] used the multitemporal Landsat8
Operational Land Imager spectral images from the period of 2013–2020 to prototype a novel
approach to desert vegetation classification using RF machine-learning methods. Within the
realm of desert research, numerous scholars have extensively utilized Landsat data owing
to its favorable attributes, including a short imaging cycle, convenient data acquisition,
a high signal-to-noise ratio of images, and a notable spatial resolution. Consequently, it
has garnered considerable attention from the scientific community. The recent addition of
Landsat 9 further enhanced the field of study by capturing Earth’s surface observations
with a heightened radiometric precision and a slight improvement in the overall signal-to-
noise ratio. As a result, Landsat 9 presents a more accurate and reliable dataset, thereby
paving the way for future research endeavors in the field of desert studies.

Moreover, Sentinel-2 serves as a valuable complement to other satellite missions, such
as Landsat, thereby enhancing the overall capabilities of Earth observation endeavors.
The utilization of Sentinel-2 imagery in desert research facilitates a comprehensive un-
derstanding of desert ecosystems and supports various applications in this field. Since
the launch of Sentinel-2 multispectral instruments in 2015, there have been many studies
on land cover/use classification that have used Sentinel-2 images [32]. Chen et al. [33]
combined Landsat-8 and Sentinel-2 datasets with the RF model, and they selected the
crust index(CI) and biological soil crust index(BSCI) to detect the biological soil crusts
(BSCs) coverage in the Mu Us Desert in northern China. Ali et al. [34] employed optical
image matching and a singular value decomposition approach to estimate the rates of dune
migration in the North Sinai Sand Sea using the free Landsat 8 and Sentinel-2 archives.
Al-Ali et al. [35] used Sentinel-2A remote sensing images to detect the temporal and spatial
changes of vegetation coverage from 2017 to 2020. While Sentinel-2 presents numerous
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opportunities for land cover and land use classification, it is essential to address certain
challenges that arise in its application. These challenges encompass issues such as potential
mismatches with Landsat OLI-8 data, the absence of thermal bands, and variances in the
spatial resolutions among the bands of Sentinel-2. Despite these challenges, Sentinel-2
data exhibit considerable promise and hold the potential to make substantial contributions
to the field of land cover and land use monitoring. Further research and methodological
advancements can harness the strengths of Sentinel-2 data, thereby enabling their effective
utilization in land cover and land use analysis.

Sand dunes are inherently dynamic and susceptible to alterations in their locations,
shapes, and dimensions due to environmental factors. To effectively monitor sand dune
movement, the utilization of multitemporal satellite images has become a common practice.
Els [36] compared coarse (Landsat)- and fine (Worldview)-resolutionimages. For the study
of dune morphology and movement in sand sea, Landsat was sufficient. With the deepening
of the research, the requirements for resolution have become higher. At this time, a satellite
known as Worldview has been introduced. It allows researchers to obtain more detailed
information, and it can better carry out research on the specific dynamics of specific dunes,
as well as climate and environmental changes in the time dimension. Guo et al. [37] used
the NOAA satellite AVHRR data to study the process of multiple sandstorms from 2000
to 2002, and they analyzed the spectral characteristics of different targets such as sand,
cloud, desert, Gobi, snow, bare ground, and vegetation. Sandstorms have been reflected in
AVHR-2 channels to varying degrees, and the dust information can be effectively extracted
by using the multichannel combined dust index.

These images provide valuable insights into the temporal dynamics of sand dunes.
Additionally, there exist numerous remote sensing satellites that are well-suited for con-
ducting research on dunes. These satellites offer valuable data and resources for studying
the intricate processes and changes associated with sand dunes. Their utilization enhances
our understanding of dune dynamics and facilitates the comprehensive monitoring and
analysis of these natural formations.

2.2. Status of Preprocessing

To enhance the effectiveness of data mining, it is crucial to preprocess the datasets
beforehand. Remote sensing data preprocessing involves several key steps, including
radiometric calibration, atmospheric correction, geometric correction, image mosaicking,
cropping, cloud and shadow removal, and spectral normalization. In this paper, we pri-
marily focused on the initial three sections, namely, radiometric calibration, atmospheric
correction, and geometric correction, which play a significant role in ensuring the quality
and accuracy of the data for subsequent analysis and interpretation. Figures 2 and 3 illus-
trate the data preprocessing for the Landsat 8 and GF-1 datasets, respectively, for complete
coverage of the Tengger Desert region in 2022.

(a) Unprocessed data (b) Radiometric 

calibration

(c) Atmospheric 

correction

Figure 2. Data preprocessing of Landsat8 dataset in Tengger Desert region in 2022.
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(a) Unprocessed data (b) Radiometric 
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(d) Geometric 
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Figure 3. Data preprocessing of GF-1 dataset in Tengger Desert region in 2022.

2.2.1. Radiometric Calibration

When determining the spectral reflectance or spectral radiance of ground objects, it is
crucial to convert the brightness grayscale values of the multispectral image into absolute
radiance values. Han et al. [38] proposed a new radiometric cross-calibration method for
the wide field of view. It could obtain reliable radiometric cross-calibration results for each
band, even without the available corresponding reference bands. Tang et al. [39] performed
calibration based on grayscale permanent artificial targets and multiple radiometric calibra-
tion tarpaulins (tarps) using a reflectance-based approach. Tang et al. [40] then proposed
an irradiance-based absolute radiometric calibration campaign. The results suggested that
the irradiance-based method was better than the reflectance-based method. Additionally,
apart from atmospheric radiation interference, the remote sensors’ radiation information
of ground objects may contain systematic errors, such as recording noise and detector
errors, which can distort the spectral brightness. To obtain accurate radiation information,
establishing a quantitative conversion relationship between the output value of the remote
sensor and the incident radiance value through radiometric calibration is essential. Various
methods, including reflectance, radiance, and irradiance methods, can be employed for this
purpose. The reflectance can be calculated using the method of analytical approximation,
which significantly reduces computation time and complexity.

We conducted preprocessing experiments on the Landsat 8 and GF-1 datasets in
Tengger, China in 2022. Figures 2a and 3a illustrate the original Landsat 8 and GF-1
datasets, respectively, thereby displaying the RGB composition. By combining different
bands, various RGB schemes can be employed to interpret different features and fulfill
specific requirements. To calculate the spectral reflectance or spectral radiance of the ground
objects and to enable comparisons between the images captured by different sensors at
different times, it was necessary to convert the grayscale values representing the image
brightness into absolute radiance values. The radiometric calibration results for the two
aforementioned datasets are presented in Figures 2b and 3b. The original images were
radiometrically calibrated to convert the brightness grayscale values of the images to
absolute radiance values. During this process, the voltage or data quantization values
(DN) recorded by the sensor were converted into absolute radiance values (emissivity)
or relative values associated with physical quantities, such as surface reflectance and
surface temperature.

2.2.2. Atmospheric Correction

Absolute atmospheric correction methods include the MODTRAN and 6S [41,42]. The
MODTRAN provides reflectivity calculations for the top atmospheric layer in bands greater
than 0.2 µm, while the 6S focuses on calculating the atmospheric transmission parameters
within the range of 0.2 µm–4 µm. These methods typically require surface measurements
of the imagery transits and the consideration of factors such as terrain relief to accurately
correct for atmospheric and sensor effects. However, meeting the aforementioned condi-
tions is often challenging for most remote sensing images available today, thus resulting in
their complexity [43]. Based on the performance of the atmospheric correction processor
ATCOR, Pflug et al. [44] combined two data sources and ensured the consistent quality
of the atmospheric correction to obtain a denser time series. Reyes et al. [45] developed a
new Python-based atmospheric correction software and outlined the underlying algorithm
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of the PACO, thereby making it very easy to use for any remote sensing ground segment.
Kalinskaya et al. [46] proposed an algorithm for the additional correction of satellite level
2 data that uses a two-parametric model of the Black Sea remote-sensed reflectance as a
first approximation. The additional correction significantly reduced the discrepancy the
between in situ and retrieved remote-sensed reflectance, especially in short-wave spectral
bands. By analyzing the differences in radiation values across remote sensing images
captured at different time phases, change monitoring can be achieved. Relative radiation
correction aims to establish consistency in the radiation values of relatively stable ground
objects with identical characteristics across different time-phase remote sensing images.
This enables the comprehensive monitoring of dynamic changes in ground objects using
remote sensing techniques.

When conducting desert research, it is important to note that the total radiation
luminance measured by the sensor does not directly reflect the true surface reflectance of
the ground target. This is due to errors caused by atmospheric absorption, particularly
scattering. We conducted atmospheric correction on the two datasets, and the results
are illustrated in Figures 2c and 3c. The purpose of atmospheric correction is to mitigate
the radiation errors introduced by atmospheric influences and retrieve the true surface
reflectance of ground objects. By converting the radiance or surface reflectance values, it
becomes possible to obtain the actual surface reflectance, which is valuable in mitigating
atmospheric and illumination effects.

2.2.3. Geometric Correction

Geometric deformation in remote sensing images can be categorized into two types:
systematic and nonsystematic. Systematic geometric deformation is caused by the sensor
itself and follows regular and predictable patterns, which can be corrected using the sensor
model. The original data of Landsat 8, which underwent geometric correction involving
terrain data, can generally be used directly without the need for geometric correction.
Figure 3d shows the geometric correction result of GF-1, which underwent orthorectification
after atmospheric correction to eliminate errors caused by ground elevation. On the other
hand, nonsystematic geometric deformation is irregular and can be attributed to factors
such as sensor instability and changes in terrain.

Currently, there are several well-established geometric correction techniques that are
suitable for processing desert remote sensing images. Co-Registration of Optically Sensed
Images and Correlation (COSI Corr) is a technique used to generate the raster maps of
dune movement. Baird et al. [47] were the first to apply COSI Corr to a complete Landsat
archive. Hua et al. [48] proposed an automatic correction technique based on decision
tree classification, which improved the correction accuracy. Wang et al. [49] developed
a geometric correction algorithm based on conjugate triangles and affine transformation
for remote sensing satellite data, and they then produced land-surface temperature (LST),
NDVI, and aerosol products for seismic disaster monitoring. Li et al. [50] proposed an
RPC coefficients optimization method based on image offset correction and positioning
dominant coefficients. It could improve the geometric positioning accuracy without in-
troducing additional compensation parameters. Their research introduced an automated
workflow that was capable of automatically performing scene correlations and dune detec-
tion. Compared to previous studies, the current preprocessing methods no longer require
manual operations, thus resulting in reduced labor costs and enabling faster and more
intelligent research.

3. Desert Mobility Assessment

Deserts can be classified into mobile and immobile types. The characteristic of a mobile
desert is its continuous migration and expansion. Consequently, the shape and position
of the dunes within these deserts undergo constant changes. Mobile dunes represent one
type of dunes that are classified based on their mobility and wide distribution in deserts.
In contrast, nonmobile deserts emerge when vegetation covers most of the desert surface,
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thereby preventing further migration and expansion. In nonmobile deserts, the shapes
and locations of the dunes remain relatively stable. Numerous scholars have employed
various methods to assess vegetation coverage and predict desert mobility. Based on
these predictions, interventions such as artificial sand fixation and other techniques can be
employed to effectively mitigate desertification in a timely manner [6,51,52].

3.1. Visual Interpretation

Visual interpretation is a fundamental skill employed in geoscience research and
remote sensing applications within the information society. It serves as the most intuitive
approach for studying desert vegetation coverage, thus allowing researchers to extract
valuable information from desert areas through visual analysis. Visual interpretation offers
the advantage of requiring minimal equipment and being simple and convenient to use,
thereby enabling the acquisition of thematic information from remote sensing images at
any given time.

3.1.1. Classical Methods

The Haloxylon ammodendron forest in the Ulan Buhe Desert is the largest wild
Haloxylon ammodendron forest in the world [53], and it is an important ecological protec-
tion barrier in the Alxa region. For a long time, due to unreasonable human development
and natural factors, the natural Haloxylon ammodendron forest has been weakened and
severely damaged [54]. Due to the reduction of the Haloxylon ammodendron forest belt,
its ecological functions of windbreaking and sand fixation have been seriously affected,
thereby aggravating desertification. Zhang et al. [7] used the visual interpretation method
of desert vegetation, mainly based on the Haloxylon ammodendron forest using remote
sensing images, to establish fusion image spectral interpretation signs, as well as compre-
hensive analysis and interpretation signs of the vegetation habitat conditions. In order to
comprehensively and systematically grasp the ecological status of Ulanbu and the desert,
as well as the distribution area of the Haloxylon ammodendron forest in Ulanbu and the
desert, relevant research was carried out.

After organizing and summarizing the information, the specific process of visual inter-
pretation is illustrated in Figure 4. Once the necessary preparations for image interpretation
are completed, the initial interpretation is conducted by analyzing direct features such
as tone, size, shape, shadow, color, texture, and pattern, as well as indirect features such
as position and relative arrangement. Based on the relationship between target features
and image characteristics, an interpretation feature table of the study area is established,
which serves as a reference for conducting detailed interpretation. Field verification is
conducted in conjunction with the interpretation process, and the final results are visualized
to enhance their understanding and presentation.

Collect relevant 
Information

Field study in 
interpretation area

Features of direct 
interpretation

Get results

Supplementary 
judgment

Detailed interpretation 

Clarify interpretation 
tasks

Features of indirect 
interpretation

Synthetic reasoning 
method

Information 
complex method

Direct interpretation 
method

Comparative 
analysis method

Select appropriate band 
and resolution data

Preliminary 
interpretation Field verification 

Geographical 
correlation analysis

Figure 4. Visual interpretation method of desert vegetation.
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3.1.2. Limitations

Visual interpretation plays a crucial role in acquiring knowledge about the types,
distribution, and abundance of ground objects, thereby contributing significantly to the
development and conservation of desert plant resources and the enhancement of regional
ecological environments. Nevertheless, it is important to acknowledge that visual in-
terpretation is susceptible to subjective interpretations when recognizing desert features.
Furthermore, the accurate visual interpretation of desert characteristics, such as bare land,
semisandy land, desert areas, and various types of dunes, necessitates the expertise and
domain-specific knowledge of users.

3.2. Spectral Mixture Analysis

Desert vegetation plays a vital role in maintaining the ecological integrity of oasis
ecosystems worldwide. The timely monitoring of photosynthetic and nonphotosynthetic
vegetation coverage in deserts holds significant importance in guiding land desertification
control practices and studying the mechanisms underlying vegetation decline. By accu-
rately assessing and understanding the dynamics of desert vegetation, valuable insights
can be gained for the effective conservation and sustainable management of these frag-
ile ecosystems.

3.2.1. Classical Methods

The protection of desert vegetation requires a large amount of desert vegetation
data [55]. Spectral mixture analysis (SMA) is a widely used and excellent method for
retrieving vegetation coverage [56–58]. The method flow diagram of Figure 5 shows the
process of spectral mixture analysis and validation.

Digital images

LSMM

PV/NPV
Endmembers 

extraction

Validate 

fractions

KNSMM
Mixed vegetation

spectra

Field data

Endmembers 

classification

Reference 

fractions

Estimate 

fractions

BSMM

Figure 5. The process of spectral mixture analysis and validation (FCLS—fully constrained least
squares; 3-EM—three-endmember models; 4-EM—four-endmember models; PV—photosynthetic
vegetation; NPV—nonphotosynthetic vegetation; BS—bare soil; LSMM—linear spectral mixture
model; KNSMM—kernel nonlinear spectral mixture model; BSMM—bilinear spectral mixture model).

The SMA method models the mixed spectrum into a pure spectrum through its
subpixel fraction coverage weighting [59]. Ji et al. [60] constructed the LSMM based on
the principles of linear mixtures [61–64]. The estimation of the PV/NPV in the desert
area of Minqin County, Gansu Province, China was conducted using LSMM. Furthermore,
the influence of the nonlinear spectral mixture model on the estimation of vegetation cover
was investigated. The principle of the kernel nonlinear spectral mixture model (KNSMM)
is that the data from the input space are mapped to the high-dimensional feature space
through implicit nonlinear mapping by kernel functions. According to the characteristics
of different nonlinear spectral mixture models (NSMM) [65], two relatively simple models
with results of physical significance were proposed. They are the bilinear spectral mixture
model (BSMM) and the kernel-based NSMM. Chen et al. [66] examined the ability of
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optimized multi-endmember spectral mixture analysis (MESMA) for monitoring desert
vegetation degradation, recovery, and greening in a dryland basin of Northwest China
using Landsat time series data from the 1990s to 2016. Eight modeled endmember fractions
were generated using the best endmember model with the lowest fraction error and root
mean square error (RMSE). The abundances of nondesert vegetation, desert vegetation,
soil, and impervious surface areas were incorporated based on the eight original fractions
and validated using high-spatial-resolution images.

3.2.2. Limitations

The calculation process of the linear spectral mixture model (LSMM) is known for its
clarity and conciseness. However, it relies on the assumption of a relatively ideal scenario
without multiple scattering [67,68], which introduces certain errors and calls for further
enhancements. Moreover, when it comes to nonlinear mixtures, it remains to be investigated
whether different types of desert vegetation exhibit consistency. Future research should
explore the applicability and limitations of the LSMM in capturing the complex spectral
interactions in desert environments. The MESMA is a powerful technique for detecting
desert vegetation coverage. The desert vegetation degradation, recovery, and greening can
be monitored at a regional scale. The good performance indicates its potential to detect the
desert vegetation changes, and it may be transferred to other arid regions. Future efforts
will focus on improving the spectral resolution by fusing the images with rich spectral data
and refining the validated categories to investigate the capability of the MESMA.

3.3. Fitting NDVI Data

As an evaluation index to detect vegetation growth and vegetation coverage, the NDVI
has been widely used in the study of desert mobility.

3.3.1. Background

A mobile desert primarily consists of shifting sand dunes, and the formation of
dunes is closely intertwined with vegetation. For instance, dense vegetation obstructs the
movement of sand, thereby resulting in the accumulation of sand piles. In order to survive,
plants grow taller as the sand accumulation thickens, thus contributing to the gradual
growth of the sand pile. This process forms a unique sedimentary structure as the aeolian
sand becomes intertwined with plant roots and litter. The vegetation provides a protective
cover, but once the plants perish due to water scarcity, the sand piles become susceptible to
wind erosion.

The Taklimakan Desert, known as the largest mobile desert globally, exhibits the
mobility of sand dunes influenced by various factors, including moisture content, under-
lying topography, and vegetation conditions. When the sand dunes are moist, the sand
particles become more viscous and agglomerated, thereby making them less prone to being
blown and transported, which reduces the speed of dune movement. Similarly, undulating
topography beneath the dunes can also impede their movement. Researchers [69,70] have
classified vegetation coverage and divided it into five grades based on the normalized
difference vegetation index (NDVI), as shown in Table 2. Dunes tend to move faster when
vegetation coverage is low and vice versa. In areas where humidity-tolerant and wind-
resistant plants hinder wind and sand movement, the mobility of dunes is extremely limited,
thereby leading to the classification of such dunes as semifixed. When the ground is pre-
dominantly covered by vegetation, exceeding 30% of the total coverage, the sand movement
nearly ceases, thus resulting in relatively stable dune positions. These dunes are referred
to as fixed dunes. Therefore, assessing vegetation coverage through NDVI is a crucial
approach for implementing plant-based sand fixation measures in desert control efforts.
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Table 2. Classification of vegetation coverage.

Grading Vegetation
Coverage /% Surface Landscape Features

Pretty-low-
coverage vegetation <10

Mainly mobile sand dunes, with sporadic vegetation
coverage between the dunes, as well as water bodies,
residential areas, etc.

Low-coverage vege-
tation 10–30

Mainly semifixed dunes; the area of quicksand is more
than 50%, and the dunes are usually covered with sandy
grass and shrubs.

Medium-coverage
vegetation 30–50 Mainly fixed dunes and thickets of sand; the dunes are

covered with lush shrubs.
Medium-to-high
coverage vegetation 50–70 Sandy land with spotted quicksand distribution, as well

as medium- and high-yield grassland, woodland, etc.
High-coverage vege-
tation >70 High-yield woodland, swamp wetlands, etc.,

with lush vegetation

3.3.2. Classical Methods

The Silk Road Economic Belt traverses numerous countries, all of which face common
challenges related to desertification prevention and sustainable development. Obtaining
traditional vegetation coverage data through ground measurements is a time-consuming
process that requires substantial effort. Consequently, the utilization of remote sensing as an
indirect method for acquiring vegetation coverage data has gained prominence. Researchers
have explored various estimation methods based on vegetation indices, such as empirical
modeling approaches and data mining techniques such as decision tree classification [71].
This is motivated by the strong linear or nonlinear correlation observed between vegetation
indices and vegetation coverage [72,73]. However, the development of remote sensing
estimation models that are specifically tailored for vegetation coverage in desert areas
remains limited, thereby posing significant challenges for desertification monitoring and
related studies [27,74,75]. Conducting research on empirical models for the remote sensing
estimation of vegetation coverage holds considerable practical significance in promoting
and enhancing ecological monitoring and research in relevant regions.

Liu et al. [26] obtained high-resolution NDVI data of ground plots with a multispectral
camera mounted on a UAV to calculate vegetation coverage. By studying the fitting
relationship between the high-resolution satellite vegetation coverage and NDVI data,
Yue et al. [27] established a linear model for the remote sensing estimation of the vegetation
coverage in the northern desert of Fukang based on the NDVI derived from high-resolution
satellite images. At the same time, Yue established a quadratic polynomial model for the
remote sensing estimation of the desert vegetation coverage in the Karamay Plain based on
the NDVI derived from ZY1-02C images. These models can provide service and reference
for ecological monitoring and research in desert areas to some extent.

Fractional vegetation coverage (FVC) is a common evaluation index for desert ecosys-
tems. In areas with less manual intervention, it has been found that the FVC can be
effectively predicted by meteorological factors, such as surface temperature, temperature,
precipitation, and evaporation.Tang et al. [76] analyzed and verified the feasibility and
practicability of MODIS–NDVI products in desert areas through meteorological factors.

3.3.3. Vegetation Estimation Model

Numerous scholars have developed remote sensing estimation models for vegetation
coverage by fitting various NDVI data. The formulas and indicators of these models are
presented in Table 3.

Based on the analysis of the correlation between the vegetation coverage and NDVI
index using the MODIS–NDVI data method, it was observed that the linear model exhibited
the highest accuracy (R2 = 0.930). The linear model was selected to invert the vegetation
coverage in the interior and marginal areas of the desert. Then, a spatial inversion model
of the MODIS–NDVI data and the vegetation coverage of the quadrat was established.
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It is helpful for us to grasp the characteristics of the vegetation in the desert, as well as
the response of the vegetation to temperature and precipitation. Among them, it can be
concluded that, in the fitting equation of the GF2 NDVI and vegetation coverage, the poly-
nomial fitting effect was shown to be the best, followed by the linear fitting. Although the
polynomial fitting increases with the degree, the coefficient of determination R2 also contin-
ues to increase. However, since the coefficient of the high-order polynomial term is negative,
as the x value (NDVI) increases, the y value (vegetation coverage) will have a downward
inflection point near 30 or slightly greater than 20, which is obviously inconsistent with
common sense. Therefore, choose the linear equation y = 149.86x− 13.449(R2 = 0.7353).
In the fitting equation between the ZY1-02C NDVI and the vegetation coverage, the poly-
nomial fitting effect was the best (As shown in the Table 3). The polynomial equation
y = 97.397x2 + 80.837x− 5.2109(R2 = 0.818) was selected as the remote sensing estimation
model of the vegetation coverage based on the ZY1-02C NDVI. By combining UAV images
with high-resolution data and corresponding statistical units, the method successfully
addresses the uncertainty associated with previous point-based data measurements. No-
tably, there exists a significant correlation between precipitation, evaporation, and the
FVC (fractional vegetation cover). However, the interaction between temperature, sur-
face temperature, precipitation, and evaporation also exerts a considerable influence on
the FVC.

Table 3. Regression models between vegetation coverage and the NDVI: (x —NDVI; y—vegetation
coverage (%); T—temperature; P—precipitation; L—land-surface temperature; V—evaporation;
“:”—interaction.).

Types of NDVI Study Area Type of Model Model Equation R2 References

MODISNDVI

Linear function y = 124.62x− 4.998 0.930

[26]
Badain Quadratic polynomial y = 60.932x2 + 82.141x− 0.307 0.920
Jaran Logarithm function y = 27.226lnx + 73.203 0.780
Desert Exponent function y = 4.370× 105.024x 0.760

Power function y = 136.087x1.283 0.860

GF2NDVI

Linear function y = 149.86x− 13.449 0.735

[27]
Gurban Quadratic polynomial y = −311.85x2 + 251.03x− 21.138 0.742
tunggut Logarithm function y = 22.929lnx + 53.236 0.734
Desert Exponent function y = 0.203× 1022.291x 0.444

Power function y = 5120x3.5206 0.473

ZY1-02CNDVI

Linear function y = 118.9x− 8.4998 0.816

[27]
Quadratic polynomial y = 97.397x2 + 80.837x− 5.2109 0.818

Karamay Logarithm function y = 20.468lnx + 49.22 0.770
Desert Exponent function y = 1.7665× 109.7935x 0.778

Power function y = 236.74x1.7639 0.805

FVCR Alxa Stepwise regression
FVCR = −10.53 + 1.939T + 0.01585P −
0.001559T : V + 0.0002772V : L −
0.001559T : P− 0.06309T : L

0.736 [76]

FVCM Alxa Stepwise regression
FVCM = −0.9219 − 0.002354V +
0.5962T + 0.001268P + 0.0001761V :
L− 0.038T : L

0.834 [76]

3.3.4. Limitations

The establishment of NDVI remote sensing estimation models can provide valuable
services and references for ecological monitoring and research in desert areas to a certain
extent. Currently, despite the numerous NDVI data that have been fitted to develop
the remote sensing estimation models of vegetation coverage, the stability of the NDVI
data remains insufficient, thereby leading to lower accuracy in the model estimation
and some errors. These limitations necessitate further improvements. Although satellite
remote sensing technology has been extensively applied for vegetation coverage inversion,
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there are certain drawbacks when evaluating the authenticity of the inversion results.
To accurately assess the vegetation coverage, it is imperative to gain a deeper understanding
of the relationship between the vegetation coverage and meteorological factors, as well
as the composition, structure, and dynamics of the desert vegetation. Such knowledge is
crucial for enhancing the evaluation of vegetation coverage accuracy and gaining insights
into the complexities of desert vegetation.

3.4. Classification of Plant Community Types

A plant community type can be defined as a grouping of plant types that exhibit
interconnected relationships between species and their environments. In the context of
dryland systems, integrating sparse desert vegetation and bare surfaces into comprehensive
cover complexes is essential for understanding the underlying biophysical processes, as
well as for ensuring sustainable management and decision making [8,9]. This integration
plays a critical role in sand fixation, carbon sequestration, and the overall ecosystem stability
in deserts and oases [77,78]. Differentiating community types is highly valuable and has
found applications in various desert-related fields. However, further breakthroughs in this
area of research are currently needed to advance our understanding.

3.4.1. Classical Methods

The multi-angle method has been applied in the mapping of desert steppe vegetation
types. The multiangle imaging spectroradiometer (MISR) provides four spectral bands
and nine angular reflectances. Su et al. [79] searched for the best combination of MISR
multiangle data through multiangle reflectivity, surface anisotropy patterns, and support
vector machine algorithms. The research sought to extract more useful information from
the MISR data. It promoted the differentiation of desert vegetation types.

In order to reduce the misclassification of dryland cover, Sun [28] combined the cross-
wavelet transform (XWT), logistic regression, and EM to conduct experiments. They first
established the XWT to quantify the interactive features in the EM time-series pairs. Then,
the research integrated the feature parameters in the EM pairs through principal component
analysis (PCA) to reduce the dimensionality and to solve the multicollinearity. It used
logistic regression to map and characterize the desert vegetation–habitat complex. Finally,
this process was compared with other advanced machine-learning methods. This method
could effectively reproduce the desert vegetation–habitat complex. It also has the potential
to accurately monitor highly heterogeneous dryland landscapes.

Shrubs abound in the Gobi desert. In its ecosystem, its productivity is assessed by
monitoring the AGB. Based on UAV RGB images, Ding et al. [80] used the visible vegetation
index to estimate AGB of the shrub communities in Gobi Desert. The real-time control of
the AGB is beneficial to protect and improve the Gobi Desert ecosystem.

3.4.2. Limitations

The complex relationship between the desert vegetation and the habitat in dryland
systems [8] directly impacts the stability of desert oasis ecosystems [77,78]. A key focus of
theresearch is the detailed classification of sparse vegetation and bare land, as it determines
the potential degradation of the dryland system [8,9].

When studying the aboveground biomass (AGB) of vegetation, relying solely on
vegetation coverage as a single index is insufficient. It is beneficial to incorporate inves-
tigations into community types to enhance the estimation of vegetation the AGB across
different types.

3.5. Summary and Prevention Measures

The study of desert mobility aims to differentiate mobile deserts from nonmobile
deserts in order to implement sand fixation and control measures for mobile desert areas.
The primary distinction between mobile deserts and nonmobile deserts lies in their vegeta-
tion cover. This chapter initially introduces the visual interpretation method to provide a
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preliminary assessment of the desert vegetation coverage, thereby enabling the classifica-
tion of mobile deserts for further investigation. However, visual interpretation is subjective,
time-consuming, and labor-intensive, thus imposing certain limitations. To obtain a more
accurate understanding of the vegetation conditions in mobile deserts, spectral mixture
analysis was employed to monitor the photosynthetic and nonphotosynthetic vegetation
coverage. However, some deviations exist in this study, thus requiring further evaluation
and confirmation. Lastly, fitting the NDVI index to establish a remote sensing estimation
model for vegetation coverage enables more precise monitoring of vegetation growth in
the desert. These research methods highlight the importance of the stability and accuracy
in the model, thus pointing towards future research directions.

Monitoring the vegetation coverage allows for the identification of the mobile desert’s
extent and facilitates the implementation of appropriate control measures. Examining the
photosynthetic and nonphotosynthetic characteristics of vegetation aids in studying the
degradation mechanism of desert vegetation, as well as in selecting suitable species for
sand fixation and control. The application of remote sensing estimation models in desert
regions enables the timely adjustment of control strategies based on the vegetation growth
status and trends, thereby transforming mobile deserts into nonmobile ones and reducing
their detrimental effects.

4. Desertification Monitoring

Desertification is a multifaceted process of land degradation [81]. It involves the
gradual deterioration of the soil organic matter content and a progressive reduction in
the vegetation and water coverage on the soil surface. As a result, land productivity
experiences a decline or loss, thereby significantly impacting the sustainable development
of both the economy and the ecological environment [82]. To address this issue, various
technical approaches have been employed to systematically observe and monitor indicators
that are relevant to land degradation, thereby providing insights into the phenomenon.
These observations, conducted at regular intervals and irregular intervals, have focused on
key indicators that are of concern to humanity and can effectively reflect the occurrence of
land degradation.

4.1. Desert Area Change Monitoring
4.1.1. Classical Methods

Desertification is a significant ecological and environmental issue that has garnered
widespread attention in the contemporary world. Traditional methods for monitoring
desert dynamics suffer from limitations such as long monitoring periods and limited cover-
age. However, with the advancement and widespread use of remote sensing technology,
monitoring temporal and spatial changes in deserts has become faster and more objec-
tive [83,84]. Remote sensing enables the efficient and objective assessment of desertification
processes, thereby providing valuable insights into the dynamics of desert ecosystems on a
larger scale and in a more timely manner.

In order to monitor the dynamic movement of sand dunes, a number of methods
have been proposed to extract sand dunes from satellite images using remote sensing. The
manual tracking of dune shapes on aerial photographs and satellite images is the most
primitive method [85,86]. Manual tracking is a difficult task that takes time and effort.
The automatic and semiautomatic extraction technology of dune detection comes into
being. The interannual variation of large-scale desert areas can be obtained, which is of
great significance for understanding the dynamic change laws and driving mechanisms of
desertification. Chang et al. [29] evaluated the accuracy of the corrected desert area based on
the interpretation results of remote sensing images of the Tengger Desert. Bandeira et al. [87]
proposed a method to detect sand dune fields on the surface of Mars by automatically
extracting local information from Mars orbiter camera images. This study used machine-
learning methods to extract barchan dunes from the Martian surface using high-resolution
satellite imagery [88].
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For classification based on object extraction, many studies have used sliding windows
to extract spectral features and texture features [89,90]. Pi et al. [10] proposed the DGC and
3D-CNN models to identify deserts and grasslands. Moghaddam et al. [11] used an MLP to
classify the Isfahan desert using Landsat satellite images, and they obtained the land cover
map of the Sejzy area. Ge et al. [91] used the ANN, RF, SVM, and KNN to analyze seven
different land cover types in China’s Dengkou Oasis. Based on Sentinel high-resolution
remote sensing images, Du et al. [92] applied the CNN deep-learning algorithm to the
remote sensing classification of aeolian sand landforms. The study monitored the area of
different types of sandy landforms in the western part of the Horqin Sandy Land, such as
longitudinal dunes, flat sandy land, mild undulating sand land, nest-shapes land, parabolic
dunes, barchan dunes, and dune chains. From 2015 to 2020, the area of the sand dunes
decreased by 89.27 km2, and the effectiveness of sand protection was remarkable, which
shows a transformation of this area from a desert to an oasis. Aydda et al. [93] presented
an easy method based on the processing of Sentinel 2 data. The proposed processing
techniques included band selection (band ratio, the redness index, and the crust index),
band filtering using low-pass filter 3 × 3, data transformation using principal component
analysis (PCA), unsupervised classification using k-means, expectation maximization (EM),
and isodata algorithms, and image segmentation. Using an isodata algorithm to realize the
automatic extraction of dunes resulted in high performance.

Remote sensing satellite images with different resolutions can meet certain classi-
fication requirements. The resolution of remote sensing satellite data is continuously
advancing, thereby offering increasingly detailed and comprehensive information. More-
over, with the integration of emerging technologies, the capture and utilization of remote
sensing information have been significantly enhanced [94]. These advancements in remote
sensing technology have facilitated a more in-depth understanding and analysis of various
environmental and ecological phenomena, including the monitoring and assessment of
desertification. The improved resolution and richer information content of remote sensing
data have opened up new possibilities for accurately detecting and characterizing subtle
changes in desert ecosystems, thereby contributing to more effective management and
conservation strategies.

4.1.2. Limitations

The research and control of desertification are essential for achieving sustainable
development goals [95]. In this study, an object-oriented approach combined with human–
computer interaction interpretation was employed to classify and map the dynamic changes
in sandy land. This methodology allows for the analysis of spatial and temporal evolution
characteristics. The specific processing workflow is illustrated in Figure 6. The preprocessed
data bands were fused, followed by classification. A comparison was made between the
resulting data and the spatial distribution images of the interannual area sequence to assess
the area error. Through iterative refinement, a revised interannual sequence of the desert
area was ultimately obtained, thereby providing valuable insights into the ongoing changes
and trends in desertification.

Compared to previous studies [96,97], the collaborative approach of object-oriented
classification [98] and human–computer interactive interpretation [99] have effectively
addressed the challenge of identifying sparse vegetation areas with subtle spectral charac-
teristics. By utilizing the spectral, spatial, and thematic features of remote sensing images,
a comprehensive extraction of land use/cover information was achieved. However, it
should be noted that the utilization of the MODIS data in this study involved two different
resolutions: medium and low [100–102], which may have introduced errors in the extrac-
tion and monitoring of the sandy land and vegetation coverage. Thus, further research is
required to continuously improve the accuracy.
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Figure 6. Accuracy evaluation of desert area based on remote sensing images.

In future investigations, the focus will be on optimizing the image data resolution
and refining the computer algorithms. There remains ample room for exploration and
application. The next step involves optimizing deep-learning parameters in convolutional
neural networks and integrating long-term images, meteorological data (including wind
direction, temperature, and precipitation), and human activity factors. These additions will
enable remote sensing classification, dynamic evolution analysis, and the identification of
the driving factors related to the long-term of sandy landform types. These methods aim to
fully leverage the information contained within remote sensing images and enhance the
accuracy of land classification, particularly in high-resolution images. However, challenges
such as time-consuming calculations and inaccurate edge segmentation results need to be
addressed. Future research should fully utilize image segmentation techniques to overcome
these issues. Additionally, it is crucial to validate the proposed methodology using high-
resolution images to detect smaller barchan dunes that might have been missed in the
previous unsupervised classification studies. Moreover, exploring other bands, ratios,
and indices that are suitable for the different mineralogical compositions of sand dunes
would serve as a valuable supplementary study to improve the detection of various types
of sand dunes.

4.2. Remote Sensing Ecological Index

The evaluation of the ecological environment in mobile deserts requires the use of
an RSEI. As research in this field progresses, there has been a continuous increase and
optimization of the indices that are applicable for this purpose. Additionally, new algo-
rithms that are suitable for RSEI calculation continue to emerge, thereby contributing to the
advancement of this research area.

4.2.1. Background

The RSEI is calculated by integrating four key indices—greenness, dryness, humidity,
and heat—using a principal component analysis. The first principal component is then
selected as the RSEI value. Jiang et al. [103] conducted a study using remote sensing images
from 2006 and 2017 by employing the RSEI proposed by Xu [12]. To assess the ecological
environment of the Gurbantunggut Desert, the researchers selected four ecological factors,
namely, the NDVI, wet, the LST, and the NDSI, which are known to reflect the quality of
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the ecological environment. These factors were utilized to construct a dynamic evaluation
system for the remote sensing ecological index. The multivariate statistical method of
principal component transformation was employed to combine the aforementioned indices,
and the normalized PC1 was used to generate the RSEI.

The RSEI expression was defined as follows: RSEI0 = 1− PC1[ f (NDVI, Wet, LST,
NDSI)]. To facilitate the contrast between the different indicators, RSEI0 can be normal-
ized as RSEI = (RSEI0 − RSEI0min)/(RSEI0max − RSEI0min). Its value is between [0, 1].
According to the existing grading standards, the normalized RSEI was divided into 0–0.2,
0.2–0.4, 0.4–0.6, 0.6–0.8 and 0.8–1 at an interval of 0.2 corresponding to five ecological
grades: Worst, Worse, Middle, Good, and Excellent, respectively. The value of the RSEI is
positively correlated with ecological quality. This classification method of intervals can
provide a rough understanding of the ecological environment conditions in this area to
some extent. To obtain a more accurate assessment, further research is needed to determine
the specific numerical values for each level of environmental condition classification.

Moreover, the study examined the spatial and temporal variations and patterns of the
ecological environment quality in Gurbantunggut Desert. Although the overall ecological
quality of the Gurbantunggut Desert displayed a declining trend, certain areas exhibited
improved ecological quality, particularly in the densely vegetated northeastern region and
the irrigation area along the southern border. These findings will serve as a foundation for
future scientific and effective environmental protection and management initiatives.

4.2.2. Classical Methods of Indices

In order to better monitor and evaluate the ecological quality, researchers used a
variety of indices for assessment. Table 4 lists the equations for each feature. After data
preprocessing, the vegetation, soil, surface radiation, and texture information can be char-
acterized by the feature index combining spectral features and texture features. The indices
include the NDVI, the soil-adjusted vegetation index (SAVI), the enhanced vegetation index
(EVI), the 2-band EVI (EVI2), the modified soil adjusted vegetation index (MSAVI), the
soil moisture monitoring index (SMMI), the topsoil grain size index (TGSI), the visible
atmospherically resistant index (VARI), the index-based built-up index (IBI), the bare soil
index (BSI), the normalized different bare soil index (NDBSI), the albedo, the brightness,
the greenness, the wetness, the mean, the variance, the homogeneity, the contrast, the
dissimilarity, the entropy, the angular second moment and correlation, etc.

Table 4. Characteristic computational formulas (ρBlue, ρGreen, ρRed, ρNIR, ρSWIR1, and ρSWIR2 corre-
spond to blue, green, red, near infrared, short infrared 1, and short infrared 2 bands of the remote
sensing satellite images, respectively. L—soil adjustment factor; p(i, j)(i, j = 0, 1, 2, · · · , N − 1)—
grayscale co-occurrence matrix; N—image gray level; and i, j—pixel gray value.).

Characteristic Index Computational Formula References

NDVI NDVI = ρNIR−ρRed
ρNIR+ρRed

[104]

SAVI SAVI = (1 + L) ρNIR−ρRed
ρNIR+ρRed+L [105]

EVI EVIMODIS = 2.5 ρNIR−ρRed
ρNIR+6ρRed−7.5ρBlue+1 [105]

EVI2 EVI2MODIS = 2.5 ρNIR−ρRed
ρNIR+2.4ρRed+1 [105]

MSAVI MSAVI =
2ρNIR+1−

√
(2ρNIR+1)2−8(ρNIR−ρRed)

2
[106]

SMMI SMMI =
√

ρNIR2+ρRed
2

2
[107]

TGSI TGSI = ρRed−ρBlue
ρRed+ρBlue+ρGreen

[108]

VARI VARI = ρGreen−ρRed
ρGreen+ρRed−ρBlue

[109]

IBI IBI =
2ρSWIR1

ρSWIR1+ρNIR
−
(

ρNIR
ρNIR+ρRed

+
ρGreen

ρGreen+ρSWIR1

)
2ρSWIR1

ρSWIR1+ρNIR
+
(

ρNIR
ρNIR+ρRed

+
ρGreen

ρGreen+ρSWIR1

) [110]

BSI BSI = (ρSWIR1+ρRed)−(ρNIR+ρBlue)
(ρSWIR1+ρRed)+(ρNIR+ρBlue)

[111]

NDBSI NDBSI = IBI+BSI
2 [112]
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Table 4. Cont.

Characteristic Index Computational Formula References

Albedo Albedo = 0.356× ρBlue + 0.13× ρRed + 0.373× ρNIR +
0.085× ρSWIR1 + 0.072× ρSWIR2 − 0.0018 [113]

Brightness
BrightnessLandsat5 = 0.33183 × ρBlue + 0.33121 ×
ρGreen + 0.55177× ρRed + 0.42514× ρNIR + 0.48087×
ρSWIR1 + 0.25252× ρSWIR2

[114]

BrightnessLandsat8 = 0.3029 × ρBlue + 0.2786 ×
ρGreen + 0.4733 × ρRed + 0.5599 × ρNIR + 0.508 ×
ρSWIR1 + 0.1872× ρSWIR2

Greenness
GreennessLandsat5 = −0.24717 × ρBlue − 0.16263 ×
ρGreen − 0.06239× ρRed + 0.85468× ρNIR + 0.05493×
ρSWIR1 − 0.11749× ρSWIR2

[114]

GreennessLandsat8 = −0.2941 × ρBlue − 0.243 ×
ρGreen − 0.5424 × ρRed + 0.7276 × ρNIR + 0.0713 ×
ρSWIR1 − 0.1608× ρSWIR2

Wetness
WetnessLandsat5 = 0.13929× ρBlue + 0.22490× ρGreen +
0.40359× ρRed + 0.25178× ρNIR− 0.70133× ρSWIR1−
0.45732× ρSWIR2

[114]

WetnessLandsat8 = 0.1511× ρBlue + 0.1973× ρGreen +
0.3283 × ρRed + 0.3407 × ρNIR − 0.7117 × ρSWIR1 −
0.4559× ρSWIR2

Mean Mean = ∑i ∑j i× p(i, j) [114]
Variance Variance = ∑i ∑j(i− u)2 p(i, j), µ = Mean [114]
Homogeneity Homogeneity = ∑i ∑j

p(i,j)
1+|i−j| [114]

Contrast Contrast = ∑n n2{∑i ∑j p(i, j)}, n = |i− j| [114]
Dissimilarity Dissimilarity = ∑i ∑j p(i, j)× |i− j| [114]
Entropy Entropy = ∑i ∑j p(i, j) log p(i, j) [114]
AngularSecondMoment AngularSecondMoment = ∑i ∑j p2(i, j) [114]

Correlation Correlation = 1
σ1σ2

∑i ∑j(ij)p(i, j) − µ1µ2, µ =
Mean, σ = Variance

[114]

The multitemporal series of the EVI2 covering the period between 2000 and 2016 was
used, which was calculated from data provided by the MODIS sensor carried aboard the
Terra satellite. According to this, Bezerra et al. [115] proposed a methodology that con-
tributed to the determination of the degree of the degradation through the determination of
degradation trajectories. However, it must be complemented with additional information,
such as trends and climatic scenarios of the land use and land cover with retrospective
analysis of the landscape, soil erosion, field recognition, and socioeconomic information,
among others. According to the actual situation of the Naiman Desert, Guo et al. [116]
selected four sensitive indicators, including the MSAVI, NDVI, TGSI, and albedo, to con-
struct five feature spaces. After that, experiments were conducted to compare the various
desertification monitoring models in order to find a more accurate classification model.
Among the feature space models used for the Naiman Desert, the albedo–MSAVI achieved
the highest accuracy, which reached 90.1%. It was deemed most suitable for monitoring the
desertification of the Naiman Desert.

The causes of desertification are complex, which include but are not limited to climate
and human factors. Liu et al. [117] studied the desertification change in the eastern region
from 2000 to 2015 by using the MODIS data for 15 years and combining multiple time
nodes and desert stations. Liu et al. [118] used PCA to construct an improved remote
sensing ecological index (MRSEI) that combined greenness, humidity, dryness, heat, and
air quality indices. The research also used the entropy weight method to calculate the
weight of each index in the pressure state response model. The ecological environment
index was obtained through the weighted method and compared with the MRSEI and RSEI.
At the same time, the integrated greenness, heat, humidity, and dryness indices were used
to construct the nonlinear remote sensing ecological index (NRSEI) using kernel principal
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component analysis (KPCA). Finally, the MRSEI and NRSEI were compared and analyzed
with the commonly used RSEI.

Desertification has emerged as a prevalent ecological issue worldwide, particularly
in Central Asia. Jiang et al. [119] conducted a spatial and temporal analysis of the de-
sertification process from 1982 to 2012, wherein they employed an analytical hierarchy
process and used four selected indices. Desertification is influenced by various drivers,
which can vary depending on the vegetation type present. Consequently, it is essential to
determine the specific types and weights of ecosystem driving factors based on the unique
circumstances of each ecosystem. However, due to the limited availability of long-term
serial data sets, the study focused only on four selected indices to monitor the desertifi-
cation process, without considering other potential factors contributing to desertification.
In future research, the inclusion of additional indicators represents a promising avenue for
the further exploration and understanding of the desertification process. The use of the
NDVI, wetness, NDBSI, and LSI by Zhang et al. [120] was performed to construct the RSEI.
The seasonal and annual RSEI values were calculated for temporal analysis. This finding
suggests that, when studying desert regions, the seasonal effects of the RSEI should also be
taken into consideration, as the vegetation in different areas exhibits varying trends in the
NDVI and wetness due to different growth periods.

4.2.3. Classical Methods of Algorithms

A variety of indices of research has gradually matured. At the same time, the algo-
rithms used to integrate the various indices that are used to evaluate desertification degree
are also maturing.

The spatial structure of a desert can predict the signs of desert change. In order to
verify this, Hamada et al. [121] used the variogram function generated by the VARI to
provide theoretical support for the correlation between them. Furthermore, LST maps
can reflect desert characteristics to a certain extent [122–124]. The improvement of its
resolution depends on downscaling through the random forest multiple remote sensing
index (MIRF) [125]. The normalized difference dust index (NDDI) is suitable for desert
identification in an oasis. Thus, the MIRF is efficient and accurate. Pan et al. [126] improved
the MIRF algorithm and designed a remote sensing index that could characterize the desert
characteristics in arid areas.

Many scholars have comprehensively compared and analyzed various desertification
monitoring algorithms. Meng et al. [113] used six machine-learning methods, and the
maximum entropy method had the best performance. By using the change in center
the of gravity and intensity analysis model, the study monitored the distribution and
change in desertification in Mongolia from 1990 to 2020 and made a desertification map.
Jiang [127] determined the potential occurrence range of desertification in China from
2000 to 2020 based on meteorological data, which calculated desertification monitoring
indicators (albedo, LST, NDVT, and TGSI) using the MODIS data based on the Google Earth
Engine platform, and they used four machine-learning models (minimum distance, SVM,
classification and regression tree (CART), and random forest) for desertification monitoring.
The results showed that the accuracy of both the random forest model and the CART with
the combination of the four indicators was good, but the accuracy of the random forest was
somewhat higher. Li et al. [114] applied eleven algorithms: multinomial logistic regression
(MLR), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), CART,
support vector machines (SVM), Naive Bayes classifier (NB), K-nearest neighbor (KNN),
RF, extremely randomized trees (ERT), AdaBoost (AB), and gradient boosting machine
(GBM). The change in desertification in the Ningdong region since 2000 was analyzed.

In current research, researchers strive to identify the optimal desertification moni-
toring approach by integrating multiple indicators and employing advanced algorithms.
Feng et al. [128] conducted an 18-year study on desertification change in the Mu Us Desert
and concluded that the combination of the random forest (RF) algorithm and four selected
indices (albedo, NDVI, LST, and TGSI) to achieve the highest classification accuracy. This
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finding highlights the effectiveness of the RF algorithm in conjunction with these specific
indicators for monitoring desertification dynamics in the Mu Us Desert.

4.2.4. Limitations

Based on the current studies, it has been found that the modified remote sensing
ecological index (MRSEI) effectively reflects the influence of the air quality spatial dis-
tribution on the ecological quality, while the nonlinear remote sensing ecological Index
(NRSEI), considering the weak linearity or nonlinearity among indices, outperforms the
linear-transformed RSEI. Integrating various indicators and algorithms in desertification
research provides a crucial approach for achieving more accurate and efficient understand-
ing, as well as the management of desertification. Considering the seasonal effects, future
research on the changing trends of RSEI values in deserts holds significant value. In the
future, the utilization of diverse artificial intelligence platforms can be explored to enhance
desert monitoring and control.

Among the algorithms used, the maximum entropy method, random forest (RF),
and support vector machine (SVM) demonstrate reliable and stable performance in deserti-
fication monitoring. RF, in particular, exhibits superior classification results and proves to
be an effective method. To avoid reliance on land cover datasets, the NDSI–RF approach
excludes this dataset, thereby providing greater convenience in the implementation and
improving the resolution and accuracy of land surface temperature (LST) estimation. De-
spite the effective prevention and control measures implemented in severely desertified
areas worldwide, regions that are prone to desertification and those experiencing mild
desertification continue to expand annually. This remains a focal point for future research.

In summary, the integration of multiple indicators and algorithms in desertification
research offers a promising avenue for the enhanced understanding and control of deserti-
fication. Future studies can explore the integration of artificial intelligence platforms for
more advanced desert monitoring and management.

4.3. Extraction of Ground Object Information from Remote Sensing Images

With the continuous development of the society and economy, coupled with climate
change and population growth, various complex factors such as excessive farming and
overgrazing have contributed to the increasing prevalence of land desertification. Egypt,
for instance, possesses very limited areas suitable for human habitation. Out of its vast
expanse of one million square kilometers, only 50,000 square kilometers are inhabited [129].
Consequently, research on the prevention and control of land desertification through the
extraction of ground object information remains a prominent and crucial topic within the
scientific community [130].

4.3.1. Classical Methods

Desertification mainly occurs in the desert border areas [131]. Therefore, the extraction
of desert areas can provide researchers with valuable reference information about desert
areas so as to formulate strategies for sand prevention and control. It is very difficult
to separate spectrally confused land cover classes in semiarid regions using medium-
resolution remotely sensed data, as the spectral response of several classes (e.g., settlements,
barren land, and fallow land) are highly similar. Ali et al. [132] contributed to the remote
sensing literature by testing different Sentinel-2 bands, as well as the transferability of well-
optimized CNNs, for semi arid land use and land cover (LULC) classification in semiarid
regions. Dang et al. [133] used a variety of satellite remote sensing data, such as Landsat,
SPOT and GF, and combined them with a variety of machine-learning methods to develop
the regional dataset and soil erosion intensity database of the Kubuqi Desert from 1990 to
2020 in the study of land use in the desert. The combination of high-resolution data and
ground sampling was very effective for mapping efficiency and information recognition.

Many scholars use different algorithms to extract the ground object information of
different deserts. Liu et al. [30] proposed an improved multispectral desert superpixel
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generation algorithm based on entropy weight, which improved the simple linear iterative
cluster (SLIC) algorithm from the input spectral information and the selection of compact-
ness factors. The research proposes a superpixel compactness factor adaptive algorithm.
In complex regions with large spectral differences, the compactness factor becomes smaller,
and the superpixel edge fit is enhanced. In areas with high uniformity and consistency,
the compactness factor becomes larger, which maintains the compactness and regularity of
the superpixel shape, thereby improving the edge fit of the superpixels in complex terrain
areas. At the same time, a rough extraction algorithm of the desert area based on superpixel
and random walk has been proposed to remove nondesert features that are far away from
the desert. It also combines an algorithm for the removal of abandoned farmland and
artificial buildings based on spatial structure rules. Finally, the nondesert features such as
desert transition zone, the Gobi, and sand were removed by the NDDI. Most desert areas
can be accurately extracted. Yu et al. [134] used an improved superpixel algorithm based
on the compactness factor to quickly and accurately extract the boundary of the Kumtag
Desert in Shanshan County. The research based on the extraction of medium-resolution
multispectral remote sensing images at the desert boundary provided data support for the
confirmation of natural resources.

Tian et al. [135] automatically obtained the deep-level features of multiband remote
sensing images by establishing a convolutional neural network. Then the research carried
out the green space extraction experiment in the Kubuqi Desert. Based on the characteristics
of multiband remote sensing data, the research designed CNNs for feature extraction of
raw data. It also fused the extracted features with the band features of the original image.
The fused features were input to the SVM classifier for training and model selection.
Then, the models were evaluated and compared. In order to classify deserts rapidly and
accurately from remote sensing images, Wang et al. [136] proposed am MSRNet based on
an attention mechanism. The network initially extracts features through a conventional
convolutional network, and then goes through a multiscale residual module for further
processing. At the same time, the network introduces an attention mechanism to establish
dependencies, which enables the network to adaptively recalibrate.

4.3.2. Comparison of Different Algorithms

The detailed outcomes of different algorithms utilized to extract ground feature infor-
mation from diverse desert regions are summarized in Table 5. The remote sensing data
used in multiple distinct studies were all acquired from the Landsat 8 satellite.

From the findings presented in Table 5, it can be observed that the SVM, CNN,
and MSRNet classification algorithms yielded relatively reliable results. Particularly,
the MSRNet exhibited superior generalization capabilities and achieved a higher clas-
sification accuracy for multispectral desert remote sensing images. As presented in Table 6,
while enhancing the overall classification accuracy, the MSRNet also demonstrated superior
classification performance for some highly perplexing land types. Through training on sam-
ples I and II for desert land type classification, it was confirmed that the MSRNet achieved a
high accuracy in rapid basic classification and detailed classification. Detailed classification
results can be obtained from the model trained on sample II. Comparative analysis of
the experimental findings revealed varying types and degrees of misclassification within
different classification methods. The ResNext network yielded the least satisfactory results,
thereby exhibiting confusion in classifying basic landforms. Xception demonstrated less
accuracy in classifying water compared to other land types. In comparison to the previous
two networks, GoogLeNet achieved better classification results for desert images, albeit it
lacked the desired level of detail in processing to attain the expected accuracy.
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Table 5. Desert area extraction algorithm performance index.

Desert Area Algorithm OA (%) Kappa References

Kubuqi Desert

SVM - 0.975 [135]
Decision tree C5.0 - 0.970
Naive Bayes - 0.890
CNNs classifier - 0.978

Kubuqi Desert
Superpixel and random walk 91.500 0.830 [30]
SVM 86.000 0.720
IRI 89.000 0.780

Taklimakan Desert
Superpixel and random walk 93.500 0.870 [30]
SVM 86.000 0.720
IRI 85.500 0.710

Kumtag Desert
Superpixel and random walk 94.500 0.890 [30]
SVM 91.500 0.830
IRI 74.500 0.700

Kumtag Desert
Manual mapping 84.300 0.750 [134]
SVM 90.800 0.830
Improved Superpixel Algorithm 93.500 0.880

Xinjiang, China I

SVM 50.080 0.317 [136]
Random Forest 83.980 0.785
VGG–BN 90.010 0.866
GoogLeNet 94.210 0.922
Inception–SE 95.040 0.934
MSRNet 95.980 0.946

Xinjiang, China II

ResNext 89.380 0.875 [136]
Xception 92.500 0.912
GoogLeNet 95.470 0.947
MSRNet 96.690 0.961

Table 6. Classification accuracy on the sample test set. (Ds—Desert. Gl:—Grassland; Wt—Water.
Gb—Gobi. Mt—Mountain. Cl—Cloud. Sn—Snow. Bg—Background).

Sample Network Ds
(%)

Gl
(%)

Wt
(%)

Gb
(%)

Mt
(%)

Cl
(%)

Sn
(%)

Bg
(%) References

I

SVM 74.86 53.87 - 19.05 - - - 43.36 [136]
RF 89.21 80.81 - 83.52 - - - 80.66
VGG–BN 93.24 89.86 - 88.80 - - - 90.88
GoogLeNet 95.62 94.59 - 91.41 - - - 93.65
Inception–SE 95.82 95.72 - 92.97 - - - 94.75
MSRNet 96.81 95.95 - 94.53 - - - 96.69

II

ResNext 91.06 91.59 85.51 87.04 91.18 85.82 93.20 - [136]
Xception 93.39 93.21 89.58 91.70 94.05 91.67 94.06 -
GoogLeNet 96.31 95.91 93.77 95.18 96.43 93.72 96.44 -
MSRNet 98.10 96.66 95.29 96.19 97.02 95.89 97.62 -

4.3.3. Limitations

There are various methods available for the automatic classification of desert remote
sensing images, among which the MSRNet yields the most effective results and demon-
strates proficient feature generalization, extraction, and classification. This superiority
stems from the fact that other methods often encounter issues such as boundary blurring
and low correct detection rates. However, it is important to acknowledge that the MSRNet
also has certain drawbacks, such as the increased complexity of computations, as well as a
higher time and cost consumption due to the pursuit of more accurate outcomes.

In studies employing CNNs for semiarid LULC mapping, it is worth exploring other
machine-learning and deep-learning methods that may achieve similar or even superior
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performance under different circumstances. Factors to consider include the variations
in training data size and the different types of LULC classes. This direction of research
holds promise for the future. High-resolution remote sensing images exhibit complex
distributions of ground objects, which often contain redundant information that is irrele-
vant to the current scene, which can hinder accurate scene classification. To address this
challenge, Zhang et al. [137] proposed a scene classification method based on the sparse
representation of the spike convolutional neural network (SCNN). By leveraging the sparse
output characteristics of spiking neurons, the study designed an SCNN to eliminate irrele-
vant redundant information in remote sensing images and achieved sparse representation
of the images. The research also introduced a back-propagation algorithm based on the
pulse output cross-entropy loss function, thereby enabling the gradient descent to train
the spiking convolutional neural network. This optimization process aims to realize the
classification of remote sensing image scenes.

In the context of desertification prevention and control, the demands for accuracy and
precision in desert classification are continuously increasing. Moreover, the uncertainty
factors and external influences impacting desert areas introduce certain challenges to
desert classification. The most advanced machine-learning methods for remote sensing
information extraction often construct feature vectors through image band combinations
and texture analysis. However, this approach has limitations in terms of its optional features
and often requires excessive human intervention.

4.4. Summary and Prevention Measures

Desertification poses significant harm by depleting organic matter, vegetation, and wa-
ter resources. Therefore, the regular monitoring of desertification is crucial. One of the most
straightforward indicators is the measurement of the desert area. This chapter provides
an overview of various supervised and unsupervised classification methods employed to
monitor long-term changes in desert area sizes. However, image segmentation based on
deep learning still faces challenges such as misclassification and time-consuming processes,
thereby necessitating further optimization in this area in future studies. Remote sensing
ecological indices utilize multiple environmental factors, including humidity and temper-
ature, to evaluate the quality of the ecological environment. In this chapter, two main
approaches are summarized: the utilization of different indices and the different algorithms
utlilized for desertification monitoring. The combination of diverse indices and algorithms
has proven to yield better results for assessing and monitoring the quality of the desert
ecological environment. Additionally, monitoring ground object information in desert
regions is also of great importance. This chapter reviews various deep-learning-based
classification methods for monitoring the distribution and changes in grassland, the Gobi,
and mountain areas within the desert. Currently, the extraction of band and texture features
is limited, and further exploration of additional desert-specific features is warranted.

During the desert control process, it is essential to establish a comprehensive and
effective monitoring system to aid in the formulation of control plans and the timely
evaluation of control outcomes. The effectiveness of prevention and control measures relies
on the monitoring of regional area changes, environmental index data, and the ecological
characteristics of ground objects. Based on such monitoring efforts, more precise and
efficient control programs can be developed for subsequent implementation.

5. Types of Mobile Dunes

Desertification has emerged as a pressing ecological issue that garners considerable
attention and concern from human society. Its detrimental effects pose a serious threat to
human well-being and overall health. Desertification is widespread across the inland areas
of northwest China, with sand dunes being the predominant landform in deserts and sandy
regions. These sand dunes, which account for 96% of China’s desert and sandy land area,
result from the accumulation of sand debris under the influence of wind. Understanding
and comprehending the key regional morphological characteristics of sand dunes, as well
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as their formation and evolutionary patterns, are essential for various aspects such as the
development of sand resources and the preservation of ecological environments. The adop-
tion of efficient and rational methods for classifying and monitoring dune morphology
becomes a necessary endeavor to safeguard oasis ecosystems. This effort holds signifi-
cant value in the study of regional aeolian landform characteristics, the environmental
processes governing their formation and evolution, and the judicious allocation of sand
control measures.

5.1. Sand Dune Morphology Extraction and Recognition
5.1.1. Deep-Learning Morphology Recognition Model

The term “deep learning” introduces the field of machine learning and then intro-
duces artificial neural networks [138]. The excellent classification effect of deep learn-
ing methods also makes this method popular. Convolutional neural networks are the
most commonly used models in the field of image recognition and classification. In 2012,
Krizhevsky et al. [139] used an improved deep convolutional neural network, AlexNet, in
the ImageNet competition. In 2015, Long et al. [140] proposed fully convolutional neural
networks (FCNs). These networks cancel the fully connected layers in the network and
replace them with convolutional layers, which enables the neural network to realize image
segmentation at the semantic level and deal with pixel-by-pixel classification. In 2016,
He et al. [141] designed a residual network (ResNet) architecture with up to 152 layers,
which is deeper than previous DNNs, while still reducing complexity and being easier to
train. Convolutional neural networks, deep convolutional autoencoders, deep belief nets,
etc. have also been applied in remote sensing image processing [142–144]. Hu et al. [145]
designed a 5-layer convolutional neural network to classify images for spectral domain
features. The effect was better than traditional SVM and other classification methods.

With the frequent use of high-resolution remote sensing images, their classification
methods emerge endlessly. Liu et al. [146] used deep-learning models to complete the
task of classifying ground objects in high-resolution images. Moreover, it their work was
compared with SVM and ANN methods, and the comparison proved that deep learning can
better mine ground object information in images. Yang et al. [147] combined deep learning
with SVM, and used the advantages of both to significantly improve the performance of
image feature classification. Gao et al. [148] integrated spatial semantic information into
the deep learning model to achieve the accurate recognition of ground objects in high-
resolution images. Zhao et al. [149] combined deep learning with object-oriented methods
to extract deep features of ground object information using convolutional neural networks.
At the same time, the reseasch also uses the object-oriented method to extract the topology
and shape information of the ground object information. The application of deep learning
models improves the classification accuracy of the ground objects in high-resolution images,
which has advantageous development prospects.

5.1.2. Sand Dune Form Monitoring

Sand dunes, which are characterized as hill-like or ridge-like formations, arise from
the accumulation of sand particles under the influence of wind. They represent the predom-
inant landform types in deserts and sandy areas, thus exhibiting a close connection with
natural factors such as climate variations, wind patterns, and sand availability. As the inves-
tigation of aeolian landforms progresses, comprehensive research on sand dune morpholo-
gies has emerged, thereby encompassing the analysis of their distribution, classification,
morphology, as well as their intricate relationships with the natural environment [13].

Scientists began to use remote sensing images to observe sand dunes and used various
methods to analyze the relationship between dune types, sand sources, and wind conditions.
Anthonsen et al. [150] analyzed the sand dunes of the Danish coastline based on GIS
and remote sensing technology. Then, the research explored the relationship between the
morphological characteristics of sand dunes and their main influencing factors such as wind
conditions and vegetation coverage, as well as their interrelationships with time changes.
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Necsoiu et al. [151] used ASTER and SPOT images to model according to the Gaussian
noise characteristics of the images, and they calculated the moving speed of the dunes.
Brown et al. [152] used aerial photos to extract relative stereo mapping and established the
DEM to analyze the morphological characteristics of the coastal dunes in Michigan, USA.
Lyons et al. [153] conducted research in the Strzelecki Desert in Australia, wherein they
focused on dune biology to find the relationship between dune morphology and ecology.
Zhao et al. [14] first divided Chinese deserts (sandlands) into fixed, semifixed, and mobile
dunes according to the mobility classification method, and they then subdivided them
into crescent dunes and dune chains according to the morphological method. Li et al. [15]
divided the north coast of the Luan River in China into horizontal dunes, crescent dunes,
star dunes and flat sandy land.

Zhao [154] used the three deep convolutional neural network models of VGG16,
VGG19, and ResNet50 to train a prepared dataset. Then, the research optimized the network
model by training image slices at various scales to extract the high-level features of dune
types. Their work realized the automatic classification of typical dune type information
in the Gurbantunggut Desert and Taklimakan Desert based on deep-learning technology.
The utilization of various deep-learning algorithms emerges as a crucial approach for
extracting sand-dune-type information. Through the integration of deep learning and
multi-scale segmentation, characteristic information of the five typical sand dunes can be
effectively extracted, thus facilitating automatic classification. Furthermore, it extracted
more detailed boundary information at the junction of the two dune types. This approach
not only leverages the advantages of automatically extracting and learning deep features
of dune types, but it also achieves precise extraction of the dune types.

Despite advancements, there remains ample room for research on sand-dune-type
classification, and deep-learning-based algorithms for sand dune feature extraction and
classification will encounter various challenges during their practical applications.

Barchan dunes represent the most prevalent type of dune. Elbelrhiti [155] analyzed the
relationship between barchan dunes and wind direction changes through the long-term ob-
servations of barchan dunes in the Great Lakes region of the United States. Chang et al. [156]
investigated the stability mechanisms of the top section of barchan dunes in the Hexi Desert,
Gansu Province. In addressing diverse environmental disasters in the Yamalak Desert,
Jia et al. [157] conducted a study on dune migration patterns, which focused on typical
barchan dunes in the area. They constructed a digital elevation model of sand dunes based
on extensive measured data and high-resolution remote sensing images.

By utilizing deep-learning models to identify and classify ground objects in images or
high spatial resolution images, current research has achieved commendable recognition
accuracy and effectiveness. It has demonstrated the feasibility of employing deep-learning
models in conjunction with remote sensing images for ground object recognition. While
numerous studies have been conducted on barchan dunes, the characterization and changes
of these dunes in certain desert areas still lack sufficient investigation.

Regarding the stability of barchan dunes, it can be inferred that prevailing winds
and opposing winds play a crucial role in determining their stability and influencing their
shape. Conversely, the movement pattern of aeolian sand can also be observed through the
behavior of dunes. Opposing winds cause the dunes to elevate in height, thereby leading
to an increase in their volume and a subsequent decrease in their movement speed. These
factors exhibit a power function relationship.

Despite the incomplete resolution of barchan dune stability, the present study estab-
lishes a foundation for further research and creates favorable conditions for the effective
monitoring and control of deserts.

5.2. Sand Ridge Line Extraction and Recognition
5.2.1. Background

The morphological evolution of sand dunes serves as a valuable record of past near-
surface wind conditions and environmental changes. However, the study of these charac-
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teristics has been constrained by the challenges of low efficiency and high cost associated
with large-scale sand ridge extraction.

In the early research, dunes are mainly divided into five shapes according to their
shape and the number of falling sand slopes: crescent shape, linear shape, reverse shape,
parabolic shape, and star shape [158,159]. This classification, which is mainly limited to
dune morphology, cannot truly achieve the quantitative reconstruction of the relationship
between the two. Hunter et al. [160] divided the sand dune shape into horizontal, oblique,
and vertical according to the relationship between the sand ridge line trend and the syn-
thetic wind direction of the sand-blowing wind, which solved the problem of quantifying
the sand dune shape. Based on these understandings, Rubin et al. [161] improved the
mathematical method of the relationship between the strike of the sand ridge line and the
synthetic direction of the sand-moving wind. He proposed a mathematical model of Gross
Bedform–normal Transport, and realized the quantitative study between the sand ridge
line trend and the near-surface dominant wind direction.

Greater attention should be directed towards the research of sand ridge line extrac-
tion methods, which are continually undergoing optimization and updates. Presently,
the extraction methods can be classified into three main types: differential operator edge
detection, fuzzy operator edge detection, and wavelet transform edge detection. These
methods play a crucial role in accurately identifying and delineating sand ridge lines in
remote sensing images.

5.2.2. Differential Operator Edge Detection

Edge detection technology, as a research hotspot in digital image processing technology,
has been well developed in the past decades, and some research results have been achieved.
Research on edge detection algorithms began in the 1950s. In 1959, Julez [162] mentioned
the concept of edge detection in his paper. In 1965, Roberts [163] researched edge detection
technology and proposed the famous Roberts edge detection operator. In 1970, Prewitt [164]
proposed the Prewitt operator. In 1973, Irwin Sobel proposed the Sobel edge detection
operator. These three edge detection operators are all first-order differential operators.
The detection accuracy will be reduced because the detected edges are wider [165].

In 1980, David Courtnay Marr and Ellen Hildreth proposed the Laplacian of the
Gaussian operator. This method of calculating image edge points through second-order
derivatives improves the deficiencies of the above three first-order differential operators.
It is no longer necessary to refine the edge, but because of the addition of Gaussian
filtering, the image cannot meet the requirements of positioning and filtering noise at the
same time. In 1986, Canny [166] proposed the Canny edge detection operator, which is
still widely used. In 2013, Xu et al. [167] optimized on the basis of the Canny operator.
The algorithm first removes impulse noise using on–off median filtering, and then uses
histogram concave analysis to determine a double threshold. In 2020, Han et al. [168]
increased the number of direction templates of the traditional Sobel operator to eight by
improvement. The adaptability of the algorithm is realized by combining the local and
global thresholds.

Conventional differential operations often amplify image noise, which can adversely
affect the performance of edge detection. To mitigate this issue, the Canny operator employs
a smoothing filter prior to the differential operation, thus effectively reducing the impact of
noise and enhancing the overall edge detection results.

5.2.3. Fuzzy Operator Edge Detection

In addition to differential operators, researchers have explored the use of fuzzy oper-
ator methods for edge detection. The fundamental concept involves mapping the image
from the spatial domain to the fuzzy feature domain using a membership function. This is
followed by a blur enhancement process that enhances the contrast of pixels on either side
of the edge. The fuzzy domain is then transformed back into the data space through the
inverse transformation of the membership matrix, ultimately extracting the image’s edges.
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In 1987, Lee et al. [169] defined a fuzzy minimal morphological edge detection opera-
tor. This operator is less sensitive to noise than dilation and erosion operations. In 2012,
Mahesh et al. [170] proposed a morphological edge detection algorithm based on multi-
structures and multiscales. This algorithm enhances the resistance to noise while preserving
image details. In 2016, Ge [171] proposed an edge detection algorithm that combined the
Canny operator and morphological operator, which obtained the final image edge by fusing
the edges obtained by the two operators.

The edge detection method based on fuzzy theory offers advantages such as a narrow
edge width and a high signal-to-noise ratio, thereby enabling the effective separation of
objects from the background. However, it involves complex matrix operations and exhibits
limited anti-noise performance.

5.2.4. Wavelet Transform Edge Detection

The high-frequency part of the image is subdivided on the time scale and the low-
frequency part is subdivided on the frequency scale through a wavelet transform, which
can meet the needs of effectively extracting local detail edge information under different
resolutions. In 2011, Huang et al. [172] used wavelet decomposition to detect the edges of
low-frequency subimages and high-frequency subimages using the improved morphologi-
cal operator and wavelet modulus maxima algorithm, respectively, and they then fused
the subedge images. In 2017, Zhang et al. [173] proposed an edge detection algorithm
based on interpolation wavelet tower decomposition. They could detect more detailed
edges by combining the interpolating conjugator with the Mallat tower decomposition
algorithm. However, the existence of the fracture point of the dune ridge line was still
inevitable. The research on the continuity and integrity of dune ridge line still needs to be
further improved.

We proposed an edge detection method based on the Faber–Schauder wavelet lifting
scheme for extracting dune ridge lines from an original image (Figure 7). The method
involved decomposing the image and connecting the edge points using a predicted edge
algorithm to obtain the final extraction result. Additionally, we performed sand ridge line
extraction using the lifting wavelet and mathematical morphology techniques. For compar-
ison, we evaluated classical edge detection operators such as Roberts, Sobel, Prewitt, LOG,
and Canny operators, as well as other algorithms including multiscale edge detection based
on wavelet transform, extreme value detection, mathematical morphology, ant colony
algorithm, and phase consistency algorithm. The results obtained from the different edge
detection algorithms using two dune region images are shown in Figures 8 and 9.

(a) Dune image Ⅰ (b) Dune image Ⅱ

Figure 7. Dune image sample.

From the comparisons, it can be observed that the classical edge detection operators
(Roberts, Sobel, Prewitt) extracted sand ridges with poor continuity and lost significant
detail information. The LOG operator was sensitive to noise, and both the Canny and LOG
operators produced pseudoedges rather than real sand ridges. The wavelet multiscale
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edge detection algorithm achieved accurate sand ridge localization and noise suppression
but exhibited slightly reduced continuity and integrity. The mathematical morphology
algorithm preserved edge continuity but introduced false edge points. The extreme value
detection algorithm struggled to detect high-curvature edges effectively. The ant colony
algorithm resulted in numerous discontinuous ridges, and it had difficulty detecting weak
edges while requiring significant computational time. The phase consistency algorithm
was computationally intensive and susceptible to noise. The results obtained from these
comparison algorithms exhibited unclear ridge locations, thus leading to significant errors
in the analysis of the aeolian sand dynamics and geomorphic patterns.

(a) Roberts operator (b) Sobel operator (c) Prewitt operator (d) LOG operator

(e) Canny operator (f) Wavelet transform (g) Extreme value detection (h) Mathematical morphology

(i) Ant colony (j) Phase consistency (k) Faber Schauder wavelet (l) Lifting wavelets and adaptive 
     mathematical morphology

Figure 8. Dune ridge lines extraction results using different algorithms (Dune image I).

The Faber–Schauder wavelet algorithm demonstrated excellent performance in ex-
tracting dune ridge information. It preserved high continuity and integrity of the sand
ridges, thereby making it suitable for calculating geomorphic pattern parameters and
analyzing dynamic changes in deserts. Furthermore, the improved lifting wavelet and
adaptive mathematical morphology algorithm yielded fewer breakpoints in the extracted
dune ridges, thus ensuring continuity and integrity in the ridgeline extraction. This ap-
proach also exhibited better performance in extracting weak edges. This improvement was
achieved by first using the improved mathematical morphology to extract edges from the
low-frequency component of the image after lifting a wavelet transform, followed by edge
extraction from the approximate part of the high-frequency component decomposed by the
wavelet packet. These steps effectively suppressed the noise and enhanced the extraction
of the dune ridge lines.
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(a) Roberts operator (b) Sobel operator (c) Prewitt operator (d) LOG operator

(e) Canny operator (f) Wavelet transform (g) Extreme value detection (h) Mathematical morphology

(i) Ant colony (j) Phase consistency (k) Faber Schauder wavelet (l) Lifting wavelets and adaptive 
     mathematical morphology

Figure 9. Dune ridge lines extraction results using different algorithms (Dune image II).

5.2.5. Other Methods

Modern edge detection techniques encompass various approaches, including neural-
network-based edge detection, genetic-algorithm-based edge detection, multiscale edge
detection, and subpixel edge detection. Jiang et al. [174] focused on the lateral dune area of
the Tengger Desert as their research subject and extracted dune ridge lines from remote
sensing images. Their approach relied on the grayscale difference between the dune wind-
ward slope and the falling sand slope in the remote sensing image to extract the sand
ridge lines. Gao et al. [175] constructed a U-Net model based on a deep convolutional
neural network, thereby enabling the efficient and accurate batch extraction of sand ridges.
By incorporating data augmentation techniques, neuron random deactivation, batch nor-
malization, and transfer learning, they achieved higher model accuracy during training
and parameter updating.

While fuzzy edge detection and subpixel edge detection exhibit high accuracy, their
performance regarding noise suppression is limited. On the other hand, methods based on
neural networks and mathematical morphology edge detection address the issue of poor
noise suppression but may not achieve sufficient detection accuracy. Further research is
required to enhance the sand ridge line detection algorithm.

5.3. Summary and Prevention Measures

In the process of desert management, it is essential to utilize desert resources effec-
tively. A comprehensive understanding of the geomorphic types, morphological charac-
teristics, and evolution rules of deserts facilitates the development of sand resources and
the protection of the ecological environment. This chapter provides a summary of the
classification methods for dune morphology types and sand ridge extraction techniques.
The current advancements in edge detection algorithms and classification/recognition
using deep-learning models combined with remote sensing images have proven to be more
effective. However, given the rapid progress of artificial intelligence, there is a constant
emergence of lightweight and high-precision models, which present promising directions
for future research.
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Each dune type exhibits unique characteristics. The classification and monitoring
of dune morphology discussed in this chapter contribute to desertification control strate-
gies that are tailored to local conditions, resource allocation, and the preservation of the
ecological environment.

6. Discussion

Extensive exploration and research have been conducted on deserts, and the applica-
tion of remote sensing imagery combined with deep-learning methods has significantly
advanced desertification monitoring and control. However, the current literature in this
field lacks comprehensive integration and analysis. Considering the pressing need for
the effective monitoring and control of desertification, this study initiates with remote
sensing data and introduces various commonly used remote sensing datasets in desert
research. Moreover, as desertification predominantly occurs in mobile desert regions,
the study begins by analyzing and summarizing different research methods for distinguish-
ing between mobile and nonmobile deserts. Once the mobile desert region is identified,
a detailed study of its internal characteristics becomes possible. The study provides a com-
prehensive summary and analysis of the advanced and representative desert characteristics,
ecological indicators, and detection methods for dune types, thus facilitating a thorough
understanding of the research status and future development of desertification monitoring.

Furthermore, the study presents a range of high-quality and widely applicable desert
remote sensing datasets that are available worldwide. These datasets serve as excellent
resources for desertification monitoring and studies on desert mobility. Notably, the MODIS
data has low spatial resolution, the GF satellite data offers high spatial resolution, and the
Landsat satellite data, with its moderate resolution, is extensively employed in desert
research. Although spatial resolution continues to improve, high resolution comes with
the cost of larger data volumes. Hence, researchers can selectively choose appropriate data
according to their specific research needs. The study also provides a detailed description
of the preprocessing steps for each component of the desert remote sensing dataset. It is
evident that preprocessing greatly reduces errors, thereby establishing optimal conditions
for accurate desert studies. Additionally, many scholars combine desert remote sensing
datasets with field survey data to construct sample datasets for comprehensive desert
system research.

Deserts can be classified into mobile and nonmobile categories, where fixed deserts do
not expand, while mobile deserts migrate and expand, thereby leading to desertification
due to various factors. Currently, the most intuitive method for assessing desert mobility
is visual interpretation, which aims to enhance vegetation protection and improve the
ecological environment. However, this method has limitations in terms of misclassification,
time consumption, and lacks intelligence and automation. In contrast, deep learning-based
classification algorithms offer accurate and effective alternatives. Vegetation coverage
serves as a crucial indicator for evaluating desert mobility. Many scholars have employed
linear and nonlinear spectral hybrid models to estimate vegetation cover through spectral
measurements, thus monitoring both photosynthetic and nonphotosynthetic desert vegeta-
tion. However, this method has limitations in effectively distinguishing between different
vegetation types, and thus requires further improvement. Additionally, researchers have
developed remote sensing estimation models for vegetation coverage by fitting various
NDVI data. Moreover, differentiating community types serves as a classification approach
involving known plant community types, thereby facilitating the monitoring of semiarid
grasslands. Teh detailed monitoring of vegetation cover enables a more accurate assess-
ment of the desertification extent and the formulation of effective prevention and control
measures. The optimization of research models should not be overlooked. Nevertheless,
the use of vegetation monitoring methods is constrained by the presence of vegetation,
and the results are unreliable when studying areas with minimal vegetation in deserts.

To observe indicators reflecting desert conditions in the face of desertification, specific
techniques need to be employed. Based on recent research on desertification monitoring,
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it can be concluded that monitoring changes in desert areas and utilizing remote sensing
ecological indices are fundamental and common approaches in desertification monitoring.
Macrolevel monitoring of desert conditions holds great value, and future improvements
can be made by combining different indices with diverse algorithms to enhance the effec-
tiveness of the monitoring data acquisition. In order to achieve more precise control of
desertification, desert classification serves as the foundation. Scholars have conducted fea-
ture information extraction research using deep learning techniques. Through the training
of models and the utilization of convolutional neural networks combined with attention
mechanisms, the classification of green spaces, lakes, and other features within deserts
has been achieved. The generalization ability and classification accuracy of these models
continue to improve, thus providing robust support for studying regional aeolian land-
form characteristics. However, the current feature information remains relatively limited,
and further exploration of more comprehensive feature information is needed. Different
desert regions exhibit distinct forms and types of deserts. In order to tailor desertification
monitoring and control to local conditions, researchers have conducted detailed studies
on different dune types. The deep-learning-based extraction of dune feature information
is primarily employed for the classification of mobile dune morphology. However, stud-
ies on dune types are still imprecise. Sand ridge lines, which play a prominent role in
dune classification, offer a favorable approach for such studies. Scholars have employed
edge detection techniques to extract sand ridge lines, thereby continuously updating the
model parameters of the detection and extraction algorithm to improve accuracy. Existing
studies on barchan dunes have only discussed and analyzed a limited number of factors
influencing their movement, including natural and desert-specific factors. Thus, the relia-
bility of these studies requires further investigation. In future research, a comprehensive
consideration of multiple factors and the introduction of lightweight and high-precision
models are necessary for desert studies to effectively utilize desert resources and protect
the ecological environment.

This study had several limitations. Firstly, the stability of NDVI data for desert mobil-
ity assessment is still lacking, thus resulting in reduced estimation accuracy of the model
and necessitating further improvement. Additionally, there is a need for spatially refined
methods to identify complex desert vegetation–habitat interactions, with considerable
room for accuracy enhancement. Secondly, as a crucial research index, remote sensing
ecological indices are indispensable in desertification monitoring. However, the selection
of too many or too few parameters and monitoring algorithms can lead to poor monitor-
ing outcomes. Future research should address the problem of determining the optimal
combinations of parameters and algorithms. Lastly, the recognition and classification of
dune types hold significant importance for studying dune stability, but the stability of
dunes remains an unsolved scientific problem. In future research, remote sensing data with
higher resolutions should be appropriately utilized in desert studies, thereby ensuring data
quantity within acceptable limits to obtain more precise desert characteristic information
and experimental accuracy. By selecting different indices from existing remote sensing
ecological indices, the most suitable parameter combination and corresponding algorithm
can be determined. The transformation from mobile deserts to nonmobile deserts remains
an urgent issue to be resolved, and the development of lightweight and high-precision algo-
rithms for dune feature extraction and classification based on deep learning will encounter
numerous challenges.

7. Conclusions

The field of desertification monitoring and control, which utilizes remote sensing
images combined with deep learning, has witnessed significant advancements. However,
there is still ample room for improvement and optimization, thus necessitating a com-
prehensive summary and analysis. This review introduces various desert remote sensing
datasets that are commonly used in desert research, as well as their preprocessing methods.
Among these datasets, the Landsat satellite stands out as the most widely utilized due to
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its high spatial resolution and moderate data volume. Looking ahead, the acquisition of
remote sensing data with even better spatial resolution will be imperative to obtain more
comprehensive desert characteristic information. The review also summarizes the recent
methods for desert mobility assessment and techniques for monitoring desertification in
mobile desert areas. These advancements have led to the more precise and rapid extraction
of mobile desert regions, with a primary focus on vegetation monitoring within deserts.
Particularly, there is a need to further optimize the stability and accuracy of vegetation
coverage estimation models. However, existing research methods are no longer applicable
for desert areas with minimal vegetation, thus necessitating the exploration of alternative
approaches. Furthermore, in the pursuit of effective desertification control, the study
reviews the current state of dune type recognition and classification. The application of
deep-learning methods in recognizing and monitoring dune morphology and ridge lines
enables the tracking of dune direction and velocity within a specific time frame, thereby
providing critical and comprehensive information on the real-time state of the desert’s
ecological environment and ground objects. The effective and reliable monitoring of desert
conditions plays a crucial role in desertification control, threby highlighting the urgency to
further enhance model efficiency and accuracy. Drawing from relevant work, this review
points out the limitations of current research and offers suggestions for future endeav-
ors. The aim is to ensure the implementation of ecosystem protection and sustainable
development practices in desert regions based on scientific foundations.
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