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Abstract: Alzheimer’s disease is a chronic neurodegenerative disease that causes brain cells to
degenerate, resulting in decreased physical and mental abilities and, in severe cases, permanent
memory loss. It is considered as the most common and fatal form of dementia. Although mild
cognitive impairment (MCI) precedes Alzheimer’s disease (AD), it does not necessarily show the
obvious symptoms of AD. As a result, it becomes challenging to distinguish between mild cognitive
impairment and cognitively normal. In this paper, we propose an ensemble of deep learners based on
convolutional neural networks for the early diagnosis of Alzheimer’s disease. The proposed approach
utilises simple averaging ensemble and weighted averaging ensemble methods. The ensemble-based
transfer learning model demonstrates enhanced generalization and performance for AD diagnosis
compared to traditional transfer learning methods. Extensive experiments on the OASIS-3 dataset
validate the effectiveness of the proposed model, showcasing its superiority over state-of-the-art
transfer learning approaches in terms of accuracy, robustness, and efficiency.

Keywords: Alzheimer’s disease; ensemble learning; classification; convolutional neural network;
mild cognitive impairment

1. Introduction

Alzheimer’s disease (AD), the most common form of dementia, poses a significant
challenge to healthcare providers. It causes a progressive, irreversible brain disorder
characterised by a deterioration of cognitive functions. In the United States, Alzheimer’s
disease is the fifth leading cause of death among adults age 65 and older, and there was a
145% increase in deaths from Alzheimer’s disease in 2017 [1]. Recently, a significant amount
of research [2–6] has been conducted in order to detect early and pre-symptomatic stages
of AD to slow or prevent the progression of the disease. Surprisingly, simple cognitive
assessments of dementia were only accepted by a minority of the older adults. In particular,
techniques based on MRI testing have been developed and used to identify AD [5]. The
accuracy of an AD diagnosis mostly depends on the biomarkers of the disease. The features
to detect Alzheimer are extracted from the region of interest (ROI) of the brain which has
the potential to contain the tissue that are sensitive markers for dementia. Similarly, the
distinctive features are confirmed by the histopathology of dementia that display these
ROI in the amygdala and hippocampus embedded deep into the temporal lobe of the
brain [7,8]. Due to the recent advancements in automating the prediction of early diagnosis
of dementia, the objective has shifted to help non-experts and non-neurologist users to
identify early signs of AD.
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AI-based computer-aided diagnosis (CAD) has become a feasible and a popular tool in
medicine due to its low cost and transparent decision making [9–12]. Traditional methods
of feature extraction require handcrafted features [13–16]. Castellazzi et al. [17] combined
advanced qMRI measurements along with conventional machine learning techniques to
classify AD from Vascular Dementia (VD) and investigated if the suggested method might
be used to forecast the common illness in those who do not have distinct AD or VD profiles.
In the work proposed by Battineni et al. [18], four machine learning algorithms were trained
with three different sets of experiments—extracting features manually, extracting features
automatically, and ensembling all the models. Alickovic et al. [19] manually extracted brain
characteristics using the histogram approach in order to feed the data into the Random
Forest model. The proposed method is not only a conventional process, but it is also
time-consuming and leads to accuracy that is subpar.

On the other hand, deep learning (DL) approaches are incredibly effective since they
automatically extract key characteristics from the data. Transfer learning may recognise
new things in accordance with the knowledge that is learnt from other things, just like
human cognition can. Based on the notion that transfer learning can efficiently use the
knowledge of old domains to identify the goals of a new domain, numerous enhanced
transfer learning methodologies have been presented in recent years. Ahana et al. [20]
employed two strategies: one is ensembling different machine learning algorithms via two
methods, gradient boosting and a voting classifier, and the second is training an artificial
neural network (ANN) to detect AD. A lot of researchers have confined their studies of
classification of AD to the ADNI dataset, as investigated in some papers [21–23]. However,
ensembles of deep convolutional architectures and similar networks that use deep learning
have produced the best results. Wang et al. [21] presented an ensemble of 3D densely
connected convolutional networks (3D-DenseNets) for AD and MCI diagnosis. The use of
a probabilistic-based ensemble method showed an increase in accuracy.

In this paper, we propose to use the ensemble technique by combining the predictive
capabilities of various state-of-the-art pre-trained transfer learning models for AD diagnosis.
At the beginning, pre-processed MRI images are passed on to each individual pre-trained
model such as VGG19, DenseNet201, EfficientNetV2S, MobileNet, ResNet152, InceptionV3,
NASNetLarge, and Xception. This method has been proven useful for the insufficient
availability of large image datasets [24,25]. The following are our key contributions to this
work:

• This paper presents a neural network framework with two ensemble methods, i.e.,
weighted averaging and simple averaging, on the OASIS-3 dataset for AD diagnosis.

• Fine tuning of eight different models such as VGG19, DenseNet201, EfficientNetV2S,
MobileNet, ResNet152, InceptionV3, NASNetLarge, and Xception achieved a higher
accuracy in comparison to the state of the art.

• This paper conducts a qualitative evaluation in the result variations of pre-trained
models between cropping and without cropping of MRI images.

The rest of the research paper is structured as follows: In Section 2, related work is
discussed. Section 3 entails the details of the workflow of the proposed framework along
with the detailed discussion of the dataset and ensemble learning. Section 4 lays down the
experiments and results performed on the provided dataset. Finally, Section 5 summarizes
this study with future insights.

2. Related Works

The field of Alzheimer’s disease (AD) classification has indeed made significant
advancements with the utilisation of multimodal brain imaging data and deep learning
approaches. Deep convolutional neural networks (CNNs) have emerged as powerful tools
for AD classification due to their ability to leverage the rich information provided by
various imaging modalities. Several research studies have been conducted to improve
the classification of AD using deep learning techniques. Some studies focus on manually
building feature extraction approaches combined with machine learning algorithms, while
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others utilise deep learning methods. For example, a hybrid deep learning framework was
introduced for the early-stage diagnosis and detection of AD [26], and improved CNNs
were proposed for classifying AD using multimodal brain imaging data [27].

Liu et al. [28] presented a multi-modality cascaded convolutional network for the
prediction and detection of AD. A systematic study on deep-learning-based medical im-
age analysis for disease diagnosis was conducted by Abdou [29]. Additionally, a multi-
scale feature fusion network was introduced for classifying illnesses like AD using MRI
data [30], and a three-channel phase feature learning model was proposed for jointly learn-
ing from MRI and PET images for AD diagnosis [31]. Various deep learning methods,
including CNNs, stacked deep polynomial networks, and generative adversarial networks
(GANs), have also been explored for the diagnosis of AD. For instance, a tensor-train,
high-order pooling and semisupervised learning-based GAN (THS-GAN) was presented
by Yu et al. [32], and Shi et al. [33] developed multimodal deep polynomial networks.

CNNs can be used as feature extractors and classifiers, or solely as feature extractors.
Some researchers use CNN to extract features and then apply traditional machine learning
methods for classification [34]. CNN has been employed to extract target-level representa-
tions generated from sparse regression for clinical decision making [35]. Furthermore, a
combination of 3D CNN with MRI was utilised for AD classification [36]. In specific studies,
2D CNNs have been developed and trained using 2D MRI slices as input. Wang et al. [37]
incorporated a pre-trained VGG-16 feature extractor from ImageNet and explored the
application of Lasso and PCA in conjunction with CNN to predict the conversion of mild
cognitive impairment (MCI) to AD. Similarly, in [38], a landmark-based deep multi-instance
learning (LDMIL) classifier was proposed, which can detect anatomical landmarks in brain
MRI images and define regions of interest (ROIs) for diagnosis using the ADNI dataset.

Other approaches have focused on structural magnetic resonance imaging (sMRI) to
improve AD diagnosis. For example, a dual-attention multi-instance deep learning model
(DA-MIDL) was developed to extract global and local features and create a classification
system [39]. Automatic segmentation methods using the ensembling of neural networks on
the hippocampus region have also been employed [40,41]. Furthermore, a semi-supervised
multimodal Laplacian regularized least squares (mLapRLS) method was developed to
differentiate MCI subjects from healthy controls (HC) [42], and an architecture capable of
combining multimodal neuroimaging information in one setting was proposed to classify
AD [43]. Lastly, Liu et al. [44] developed a Monte Carlo ensemble neural network on 2D
image slices from multiple database sources and achieved an accuracy of 90% for AD
classification.

The field of Alzheimer’s disease (AD) classification has made significant advance-
ments using multimodal brain imaging data and deep learning approaches, particularly
deep convolutional neural networks (CNNs). Deep learning eliminates the need for manual
feature extraction and allows for the automatic learning of features. CNNs have proven
effective in AD classification by leveraging the rich information provided by various imag-
ing modalities. Several techniques have been proposed, including hybrid deep learning
frameworks, improved CNN architectures, multi-modality cascaded networks, and multi-
scale feature fusion networks. Deep learning methods, such as stacked deep polynomial
networks and generative adversarial networks (GANs), have also been explored. More-
over, 2D and 3D CNNs have been employed, with some models incorporating pre-trained
feature extractors and utilising techniques like Lasso, PCA, and landmark detection. Ad-
ditionally, structural MRI methods, automatic segmentation methods, and multimodal
fusion techniques have contributed to improving AD diagnosis. These advancements offer
valuable insights and tools for the classification and detection of AD using deep learning
and multimodal brain imaging data. Addressing these research gaps is crucial to advancing
the field of AD classification and improving the accuracy and applicability of deep learning
models in clinical settings. By addressing issues related to generalization, interpretability,
data scarcity, standardization, and the integration of clinical information, researchers can
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enhance the reliability and effectiveness of AD classification methods, ultimately leading to
improved diagnosis and treatment of AD patients.

3. Methodology

The early diagnosis of Alzheimer’s disease (AD) can be formulated as a mathematical
problem involving the identification of reliable biomarkers and the development of accurate
diagnostic models. Let X be the set of potential biomarkers, including neuroimaging data,
genetic markers, and biomarker measurements. Let Y be the set of diagnostic outcomes,
with Y = {0, 1} representing healthy individuals and individuals with AD, respectively.
Let D be the dataset consisting of N samples, where each sample di = (x i, yi) represents
the biomarker measurements and corresponding diagnostic outcome for the ith individual.
The goal is to learn a mapping function f : X→ Y that accurately predicts the diagnostic
outcome based on the biomarker measurements. Our proposed architecture includes two
steps: the training of individual deep convolutional classifiers and ensembling them. As
an end-to-end method, deep learning relies on a large amount of labelled data to obtain
features from graphs. Medical data on Alzheimer’s disease, in particular, are scarce. In
order to meet the requirements of the deep network, we adopt the transfer learning method,
which can not only reduce the amount of calculation in the model, but can also greatly
improve model performance. The last layer of the fully connected network can be altered
and omitted depending on the categorising of our classes, namely, cognitively normal and
mild cognitive impairment. Hence, the final fully connected layer for this purpose would
have only 2 neuron units instead of 1000 employed in the models for the ILSVRC challenge.
The proposed research work model architecture combines features from 8 models.

Features from all models are retrieved in this case, and the final layers are then
modified as necessary. Before adding the final 2 units, dropouts are also added. The
final layer computes the classification probability of each output type using the Softmax
function:

σ
(→

z
)

i
=

ezi

∑K
j=1 ezj

, (1)

where σ corresponds to Softmax function,
→
z is the input vector, ezi and ezj denote the

standard exponential function applied to the input and output vectors, while K represents
the number of classes within the multi-class classifier.

Consequently, the accuracy of individual models was improved. Secondly, 8 individ-
ual architectures after training individually on dementia images and saving the model
predictions and ensembling using different weights for each model’s predictions are em-
ployed. This proposed ensemble of classifiers ensures that each architecture can operate
independently.

By integrating the ensembled learners, it often outperforms a single algorithm by
determining the average to obtain a higher accuracy, as it is less sensitive to noise, outliers,
or changes in sampling [45]. The majority of the labels predicted by each particular result
of feature representation for a subject constitute the expected label. The projected label for
a certain subject is the label that indicates the highest likelihood of these findings for the
subject if there is a scenario in which a subject cannot be categorised when we combine two
results of a single feature representation.

3.1. Dataset Pre-Processing

This experiment was performed on 113 subjects taken from OASIS-3: Longitudinal
Multimodal Neuroimaging, Clinical, and Cognitive Dataset for Normal Aging and AD
archive [46]. The MRI images are available in NifTI format. A total of 247 and 410 MRI scans
were used for cognitively normal and mild cognitive impairment patients respectively.
T1-weighted structural sequences were processed on the axial plane of brain MRIs. The
Clinical Dementia Rating (CDR) Scale was used to determine the dataset’s dementia status;
a score of 0 on the scale indicates cognitively normal, while a score of more than 0 but less
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than 2 indicates mild impairment. Each image in the dataset is completely characterised,
and complete details are given.

The first task with this dataset was converting the image files from NifTI to PNG.
Performing this conversion resulted in 255 slices of the axial view of the brain for each
subject, as shown in Figure 1. Multiple axial scans of the brain of each patient were
extracted, particularly the images containing the hippocampus embedded deep into the
temporal lobe and some areas which demonstrate a significant shrinkage in some parts
of the brain, were fed as an input to the neural network. Multiple slices of MRIs were
extracted from each subject for accurate prediction of the disease. The middle slices contain
more tissue than the border slices. Since tissues are a biomarker for dementia, central slices
aid the system in precisely classifying disorders that resemble AD. For the categorisation of
AD, the slices along the border are less helpful and more deceptive since they contain more
of the bones and skulls. The central slices are therefore utilised for training. This section
goes into great detail on the dataset preparation.
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Figure 1. Illustration of the proposed methodology.

To make our predictions more robust, data augmentation technique was applied to
our dataset. Since it is a classification model, the visual transformation mainly focused
on flipping random images horizontally; rotating them by a certain degree and min-max
normalisation; and rescaling inputs to the range of [0, 1], computed as follows:

y =
(x−min(x))

(max(x)−min(x))
, (2)

where min(x) and max(x) are the minimum and maximum intensity values, respectively,
for the entire dataset, and yi represents the normalised intensity value against location
xi (where i ∈ [1, n]). This helps our dataset to resolve the class imbalance issue, creating
variations and generalizations for our model.

3.2. Ensemble Learning

Ensemble learning is a technique that combines the predictions of multiple individual
models to make more accurate and robust predictions. It is widely used in machine
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learning and has shown promising results in various domains, including Alzheimer’s
disease classification. In this paper, an ensemble of transfer learning models is proposed
using two different methods: simple averaging and weighted averaging. By combining
the predictions of these models, we aim to improve the extraction of sparse patterns and
features from MRI images for Alzheimer’s disease diagnosis. These learning models are
used for identifying Alzheimer’s disease. The proposed methodology’s block diagram is
shown in Figure 2. Our transfer learning models are input with 2D image slices.
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Combining the judgements from several different models yields superior outcomes
to those produced by a single model [47]. The generalization capacity of an ensemble,
comprising multiple learners, is often considerably stronger than that of an individual
learner, especially when it comes to weak learners. While an ensemble of weak learners can
theoretically achieve good performance, in practice, people tend to prefer strong learners for
various reasons. These reasons include minimizing the number of individual learners and
leveraging the ability to reuse previously learned information about the strong learners [47].

In this paper, we utilise heterogeneous ensembles which have individual learners
called component learners or simply individual learners. Unlike homogeneous ensembles,
where all individual learners are of the same type, such as employing the same classification
models, heterogeneous ensembles consist of diverse individual learners and learning
algorithms, without relying on a single base learner or learning algorithm.

In order to compare and circumvent these problems, different ensemble models have
been developed along with simple averaging. Weighted averaging provides various
weights to various base learners. The goals were to determine which ensemble method
had a strong correlation with the accuracy of the ensemble, which type of averaging had a
high capacity to produce classification models that were not only accurate but also more
diverse, and which types of ensembles were most likely to be able to enhance classification
performance.

Simple Averaging: The most straightforward method to combine the output is by aver-
aging them together. Let our ensemble contain T individual learners {h1, h2, h3, . . . . . . , hT},
where hi(x) is the result of hi on x number of samples. The equation can be described as
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H(x) =
1
T ∑T

i=1 hi(x), (3)

This approach has the benefit being easily implemented [28], but it does not take into
account that some models may perform better than others.

Weighted Averaging: The transfer learning model which has lower classification error
is given a smaller weight when combined for ensembling, as described by [29]. The values
of weights are assigned manually with the help of multiplying with a factor α to each
model.

H(x) = ∑T
i=1 αihi(x), (4)

where α is the weight of an individual learner hi, and αi ≥ 0, ∑T
i=1 αi = 1. It is shown in [30]

that optimal choice for alpha is

αi=
∑j Cij

−1

∑k ∑j Ckj
−1 , (5)

4. Experimentation and Results
4.1. Evaluation Indicators

The confusion matrix is a table that is commonly used in classification problems to
evaluate the performance of a classification algorithm. It compares the actual and predicted
values of a dataset and provides a summary of the number of true positives, true negatives,
false positives, and false negatives for each class in a classification problem. The true
positives (TP) are the number of correctly predicted positive instances, while the true
negatives (TN) are the number of correctly predicted negative instances. The false positives
(FP) are the number of negative instances that were incorrectly predicted as positive,
and the false negatives (FN) are the number of positive instances that were incorrectly
predicted as negative. Overall, the confusion matrix and its associated performance metrics
provide valuable information for evaluating the performance of classification algorithms
and identifying areas for improvement.

The following parameters and metrics are used for comparative analysis of data-driven
models. In this study, the classifier correctly predicted TP and TN instances and incorrectly
predicted FP and FN instances. The paper includes various performance metrics such
as accuracy, sensitivity, specificity, and AUC score. It is a valuable tool for evaluating
the performance of classification models and identifying areas where the model can be
improved. To assess the unbiasing effectiveness of the proposed classification method,
the TP, FP, FN, and TN statistical indices are computed and used to calculate accuracy,
sensitivity, and specificity, as follows:

Accuracy =
TP + FP

TP + FP + TN + FN
(6)

Sensitivity =
TP

TP + FN
(7)

Speci f icity =
TN

TN + FP
(8)

The entire dataset contained 657 images. The models are trained and evaluated using
5-fold cross-validation technique. We used 30 epochs with a batch size of 16. The learning
rate was fixed at 0.001 for all architectures with the Adam optimizer.

4.2. Model Selection

This section evaluates different pre-trained deep convolutional networks [48–55] on
the OASIS dataset, as shown in Table 1. It can be observed that the VGG19 model performed
the best with an accuracy of 0.977, whereas NASNetLarge model scored the least with
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an accuracy of 0.912. MobileNet, DenseNet201, ResNet152, EfficientNetV2S, InceptionV3,
and Xception scored an accuracy of 0.922, 0.961, 0.946, 0.952, 0.936, and 0.931, respectively.
Furthermore, we improve the accuracy of the models using a cropping technique. The
results demonstrate that DenseNet201 has a higher AUC score than VGG19, even though
the accuracy of DenseNet201 is much less than that of VGG19. This discrepancy can
be attributed to the fact that the AUC score only considers the ranking of the predicted
probabilities. In contrast, the accuracy score considers both the ranking and the threshold
for classification. In some cases, a model with a higher accuracy score may not have a better
ROC curve and, thus, a lower AUC score.

Table 1. Performance of transfer learning models.

Models Accuracy Specificity Sensitivity AUC

MobileNet [48] 0.922 0.927 0.913 0.920

VGG19 [49] 0.977 0.949 0.961 0.958

DenseNet201 [50] 0.961 0.965 0.958 0.962

ResNet152 [51] 0.946 0.942 0.911 0.937

EfficientNetV2S [52] 0.952 0.966 0.943 0.959

InceptionV3 [53] 0.936 0.939 0.923 0.932

NASNetLarge [54] 0.912 0.927 0.913 0.920

Xception [55] 0.931 0.929 0.901 0.918

The cropping technique used extracted slices by finding the biggest contour, i.e., inside
of the skull where the hippocampus is located. As shown in Figure 3, the extreme points of
the brain were localised, which reduces the computation by exempting the pixels which
do not contain the information of the features or unwanted space which may hinder the
performance of classification model. The unwanted space also acts as noise for the image.
To counter that, we applied threshold or canny edge detection, followed by finding the
continuous points along the boundary having the same colour or intensity. The extreme
points of the top, left, bottom, and right edges of the images were localised, and the same
set of models with same hyperparameters as in without cropping the images were trained.
As shown in Table 2, the performance of the eight models increased significantly in terms
of accuracy and AUC score. It can be observed that VGG19 achieved the highest accuracy
score of 0.982, and the lowest accuracy score was achieved by MobileNet. DenseNet201,
ResNet152, EfficientNetV2S, InceptionV3, NASNetLarge, and Xception scored accuracies
of 0.974, 0.966, 0.975, 0.952, 0.926, and 0.959, respectively. In terms of the AUC, VGG19
performed the best with a score of 0.986, whereas the lowest AUC score of 0.911 was
achieved by NASNetLarge.
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Table 2. Performance of transfer learning models using cropping technique.

Models Accuracy Specificity Sensitivity AUC

MobileNet [48] 0.915 0.892 0.867 0.899

VGG19 [49] 0.982 0.973 0.993 0.986

DenseNet201 [50] 0.974 0.967 0.975 0.969

ResNet152 [51] 0.966 0.957 0.968 0.959

EfficientNetV2S [52] 0.975 0.988 0.969 0.973

InceptionV3 [53] 0.952 0.947 0.962 0.942

NASNetLarge [54] 0.926 0.899 0.901 0.911

Xception [55] 0.959 0.944 0.966 0.954

4.3. Model Ensembling Strategy

Training of these network was followed by ensembling in two ways i.e., simple
averaging and weighted averaging. The experimentation settings for both the ensem-
ble methods were kept same i.e., learning rate of 0.0001 with Adam optimizer and 100
Epochs. Images obtained through the cropping technique are used. Table 3 shows the
performance of the two different ensemble methods. We select the best three models, i.e.,
VGG19, DenseNet201, and EfficientNetV2S according to Table 2 and denote their names
as M1, M2, and M3 respectively. Next, we perform experiments by merging M1, M2, and
M3 models in different combinations such as M1 + M2 + M3, M1 + M2, M2 + M3, and
M1 + M3. According to Table 3, the best performance with an accuracy of 0.989 is achieved
by combining models (M2 + M3) using simple averaging method. However, the lowest
accuracy of 0.941 is achieved on M1 + M2 + M3 model that used weighted averaging
method. In terms of the AUC, highest score is obtained by M1 + M2 with simple averaging
method whereas lowest score is achieved by M1 + M2 + M3 model with weighted averaging
method.

Table 3. Performance of ensemble networks using two different methods.

Ensemble Method Models Accuracy Specificity Sensitivity AUC

Simple Average

M1 + M2 + M3 0.971 0.960 0.973 0.966

M1 + M2 0.969 0.958 0.983 0.979

M1 + M3 0.977 0.989 0.969 0.977

M2 + M3 0.989 0.967 0.978 0.968

Weighted Average

M1 + M2 + M3 0.941 0.942 0.922 0.936

M1 + M2 0.976 0.961 0.984 0.978

M1 + M3 0.969 0.964 0.936 0.952

M2 + M3 0.981 0.970 0.925 0.947

4.4. Visualizations

A feature map is produced as a result of the convolution operation being performed
on the input by a convnet filter. To create an output volume, we apply a number of filters
and stack the feature maps that are produced. Instead of looking at a single feature map,
we have displayed multiple hidden feature maps in Figure 4 to show how the input is
modified through subsequent layers. We exhibited eight VGG19 feature maps per layer
for viewing purposes. As we move through different levels, there are several observations
regarding the feature maps. Simple forms are picked up by the filters in the first layer. The
hidden representation shows various cross-sectional anatomies of the brain, such as the
hippocampus, cerebral artery, and different lobes. The majority of the information provided
in the image is retained in the first layer feature maps, i.e., conv1 of block1. The first layers



Algorithms 2023, 16, 377 10 of 13

in CNN architectures typically serve as edge detectors. The feature maps appear to be an
abstract depiction of the original when we delve deeper into the network. Despite being
less visible to humans, they still encode useful features. As we dig deeper, the feature maps
become sparser because the filters pick up fewer features.
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5. Conclusions

In this paper, we proposed an ensemble-based transfer learning approach using
two methods: simple averaging and weighted averaging. The proposed framework ex-
tracts superior sparse patterns and features from MRI images. To avoid overfitting, we used
data augmentation techniques. After obtaining superior results from experiments, it can be
inferred that both ensemble methods are equally competent. Furthermore, we investigated
the performance of the models using uncropped and cropped MRI images. In future work,
we aim to further refine and expand the proposed ensemble framework by incorporating
additional transfer learning models, exploring different ensembling approaches, evaluating
its performance on various AD databases, and leveraging adversarial networks for syn-
thetic image generation. We also plan to test the results of our architecture on other AD
databases to improve the generalization of our model. These advancements can potentially
enhance the accuracy, robustness, and generalization of the model for Alzheimer’s disease
classification.

Author Contributions: Conceptualization, P.G., K.C. and M.P.; methodology, P.G., K.C. and X.Z.;
software, P.G. and K.C.; validation, A.S., S.P., T.J. and M.P.; formal analysis, P.G. and X.Z.; investigation,
P.G., K.C. and X.Z.; resources, A.S., S.P. and T.J.; data curation, P.G. and X.Z.; writing—original draft
preparation, P.G.; writing—review and editing, P.G., K.C., X.Z., A.S., S.P., T.J. and M.P.; visualization,
K.C., X.Z. and A.S.; supervision, M.P.; project administration, S.P. and T.J.; funding acquisition, T.J.
and M.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: We OASIS-3: Longitudinal Neuroimaging, Clinical, and Cognitive
Dataset for Normal Aging and Alzheimer Disease [24].

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationship that could have appeared to influence the work reported in this paper.



Algorithms 2023, 16, 377 11 of 13

References
1. Alzheimer’s Association. 2022 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2022, 18, 700–789. [CrossRef]

[PubMed]
2. Thushara, A. An Efficient Alzheimer’s Disease Prediction Based on MEPC-SSC Segmentation and Momentum Geo-Transient

MLPs. Comput. Biol. Med. 2022, 151, 106247. [CrossRef] [PubMed]
3. Thapa, S.; Singh, P.; Jain, D.K.; Bharill, N.; Gupta, A.; Prasad, M. Data-Driven Approach Based on Feature Selection Technique for

Early Diagnosis of Alzheimer’s Disease. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN),
Glasgow, UK, 19–24 July 2020; pp. 1–8.

4. Adhikari, S.; Thapa, S.; Naseem, U.; Singh, P.; Huo, H.; Bharathy, G.; Prasad, M. Exploiting Linguistic Information from Nepali
Transcripts for Early Detection of Alzheimer’s Disease Using Natural Language Processing and Machine Learning Techniques.
Int. J. Hum. Comput. Stud. 2022, 160, 102761. [CrossRef]

5. Tanveer, M.; Richhariya, B.; Khan, R.U.; Rashid, A.H.; Khanna, P.; Prasad, M.; Lin, C.T. Machine Learning Techniques for the
Diagnosis of Alzheimer’s Disease. ACM Trans. Multimed. Comput. Commun. Appl. 2020, 16, 1–35. [CrossRef]

6. Tremblay-Mercier, J.; Madjar, C.; Das, S.; Pichet Binette, A.; Dyke, S.O.M.; Étienne, P.; Lafaille-Magnan, M.-E.; Remz, J.;
Bellec, P.; Louis Collins, D.; et al. Open Science Datasets from PREVENT-AD, a Longitudinal Cohort of Pre-Symptomatic
Alzheimer’s Disease. NeuroImage Clin. 2021, 31, 102733. [CrossRef] [PubMed]

7. Poulin, S.P.; Dautoff, R.; Morris, J.C.; Barrett, L.F.; Dickerson, B.C. Amygdala Atrophy Is Prominent in Early Alzheimer’s Disease
and Relates to Symptom Severity. Psychiatry Res. Neuroimaging 2011, 194, 7–13. [CrossRef] [PubMed]

8. Westman, E.; Cavallin, L.; Muehlboeck, J.-S.; Zhang, Y.; Mecocci, P.; Vellas, B.; Tsolaki, M.; Kłoszewska, I.; Soininen, H.;
Spenger, C.; et al. Sensitivity and Specificity of Medial Temporal Lobe Visual Ratings and Multivariate Regional MRI Classification
in Alzheimer’s Disease. PLoS ONE 2011, 6, e22506. [CrossRef]

9. Gupta, A.; Kumar, D.; Verma, H.; Tanveer, M.; Javier, A.P.; Lin, C.-T.; Prasad, M. Recognition of Multi-Cognitive Tasks from EEG
Signals Using EMD Methods. Neural Comput. Appl. 2022. [CrossRef]

10. Kiani, M.; Andreu-Perez, J.; Hagras, H.; Papageorgiou, E.I.; Prasad, M.; Lin, C.-T. Effective Brain Connectivity for FNIRS With
Fuzzy Cognitive Maps in Neuroergonomics. IEEE Trans. Cogn. Dev. Syst. 2022, 14, 50–63. [CrossRef]

11. Ding, W.; Lin, C.-T.; Prasad, M. Hierarchical Co-Evolutionary Clustering Tree-Based Rough Feature Game Equilibrium Selection
and Its Application in Neonatal Cerebral Cortex MRI. Expert Syst. Appl. 2018, 101, 243–257. [CrossRef]

12. Lazli, L.; Boukadoum, M.; Mohamed, O.A. A Survey on Computer-Aided Diagnosis of Brain Disorders through MRI Based on
Machine Learning and Data Mining Methodologies with an Emphasis on Alzheimer Disease Diagnosis and the Contribution of
the Multimodal Fusion. Appl. Sci. 2020, 10, 1894. [CrossRef]

13. Chen, Z.S.; Kulkarni, P.; Galatzer-Levy, I.R.; Bigio, B.; Nasca, C.; Zhang, Y. Modern Views of Machine Learning for Precision
Psychiatry. Patterns 2022, 3, 100602. [CrossRef] [PubMed]

14. Zhang, Y.; Zhang, H.; Adeli, E.; Chen, X.; Liu, M.; Shen, D. Multiview Feature Learning With Multiatlas-Based Functional
Connectivity Networks for MCI Diagnosis. IEEE Trans. Cybern. 2022, 52, 6822–6833. [CrossRef]

15. Anh, N.; Prasad, M.; Srikanth, N.; Sundaram, S. Wave Forecasting Using Meta-Cognitive Interval Type-2 Fuzzy Inference System.
Procedia Comput. Sci. 2018, 144, 33–41. [CrossRef]

16. Za’in, C.; Pratama, M.; Prasad, M.; Puthal, D.; Lim, C.P.; Seera, M. Motor Fault Detection and Diagnosis Based on a Meta-Cognitive
Random Vector Functional Link Network. In Fault Diagnosis of Hybrid Dynamic and Complex Systems; Springer International
Publishing: Cham, Switzerland, 2018; pp. 15–44.

17. Castellazzi, G.; Cuzzoni, M.G.; Cotta Ramusino, M.; Martinelli, D.; Denaro, F.; Ricciardi, A.; Vitali, P.; Anzalone, N.; Bernini, S.;
Palesi, F.; et al. A Machine Learning Approach for the Differential Diagnosis of Alzheimer and Vascular Dementia Fed by MRI
Selected Features. Front. Neuroinform. 2020, 14. [CrossRef] [PubMed]

18. Battineni, G.; Chintalapudi, N.; Amenta, F.; Traini, E. A Comprehensive Machine-Learning Model Applied to Magnetic Resonance
Imaging (MRI) to Predict Alzheimer’s Disease (AD) in Older Subjects. J. Clin. Med. 2020, 9, 2146. [CrossRef] [PubMed]

19. Alickovic, E.; Subasi, A. Automatic Detection of Alzheimer Disease Based on Histogram and Random Forest; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 91–96.

20. Bandyopadhyay, A.; Ghosh, S.; Bose, M.; Singh, A.; Othmani, A.; Santosh, K. Alzheimer’s Disease Detection Using Ensemble Learning
and Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2023; pp. 12–21.

21. Wang, H.; Shen, Y.; Wang, S.; Xiao, T.; Deng, L.; Wang, X.; Zhao, X. Ensemble of 3D Densely Connected Convolutional Network
for Diagnosis of Mild Cognitive Impairment and Alzheimer’s Disease. Neurocomputing 2019, 333, 145–156. [CrossRef]

22. Ortiz, A.; Munilla, J.; Górriz, J.M.; Ramírez, J. Ensembles of Deep Learning Architectures for the Early Diagnosis of the Alzheimer’s
Disease. Int. J. Neural Syst. 2016, 26, 1650025. [CrossRef]

23. Tanveer, M.; Rashid, A.H.; Ganaie, M.A.; Reza, M.; Razzak, I.; Hua, K.-L. Classification of Alzheimer’s Disease Using Ensemble of
Deep Neural Networks Trained Through Transfer Learning. IEEE J. Biomed. Health Inform. 2022, 26, 1453–1463. [CrossRef]

24. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.
arXiv 2013, arXiv:1311.2524.

25. Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How Transferable Are Features in Deep Neural Networks? arXiv 2014, arXiv:1411.1792.
26. Balaji, P.; Chaurasia, M.A.; Bilfaqih, S.M.; Muniasamy, A.; Alsid, L.E.G. Hybridized Deep Learning Approach for Detecting

Alzheimer’s Disease. Biomedicines 2023, 11, 149. [CrossRef] [PubMed]

https://doi.org/10.1002/alz.12638
https://www.ncbi.nlm.nih.gov/pubmed/35289055
https://doi.org/10.1016/j.compbiomed.2022.106247
https://www.ncbi.nlm.nih.gov/pubmed/36375415
https://doi.org/10.1016/j.ijhcs.2021.102761
https://doi.org/10.1145/3344998
https://doi.org/10.1016/j.nicl.2021.102733
https://www.ncbi.nlm.nih.gov/pubmed/34192666
https://doi.org/10.1016/j.pscychresns.2011.06.014
https://www.ncbi.nlm.nih.gov/pubmed/21920712
https://doi.org/10.1371/journal.pone.0022506
https://doi.org/10.1007/s00521-022-07425-9
https://doi.org/10.1109/TCDS.2019.2958423
https://doi.org/10.1016/j.eswa.2018.01.053
https://doi.org/10.3390/app10051894
https://doi.org/10.1016/j.patter.2022.100602
https://www.ncbi.nlm.nih.gov/pubmed/36419447
https://doi.org/10.1109/TCYB.2020.3016953
https://doi.org/10.1016/j.procs.2018.10.502
https://doi.org/10.3389/fninf.2020.00025
https://www.ncbi.nlm.nih.gov/pubmed/32595465
https://doi.org/10.3390/jcm9072146
https://www.ncbi.nlm.nih.gov/pubmed/32650363
https://doi.org/10.1016/j.neucom.2018.12.018
https://doi.org/10.1142/S0129065716500258
https://doi.org/10.1109/JBHI.2021.3083274
https://doi.org/10.3390/biomedicines11010149
https://www.ncbi.nlm.nih.gov/pubmed/36672656


Algorithms 2023, 16, 377 12 of 13

27. Pei, Z.; Wan, Z.; Zhang, Y.; Wang, M.; Leng, C.; Yang, Y.-H. Multi-Scale Attention-Based Pseudo-3D Convolution Neural Network
for Alzheimer’s Disease Diagnosis Using Structural MRI. Pattern Recognit. 2022, 131, 108825. [CrossRef]

28. Liu, M.; Cheng, D.; Wang, K.; Wang, Y. Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer’s Disease
Diagnosis. Neuroinformatics 2018, 16, 295–308. [CrossRef] [PubMed]

29. Abdou, M.A. Literature Review: Efficient Deep Neural Networks Techniques for Medical Image Analysis. Neural Comput. Appl.
2022, 34, 5791–5812. [CrossRef]

30. Zhang, T.; Shi, M. Multi-Modal Neuroimaging Feature Fusion for Diagnosis of Alzheimer’s Disease. J. Neurosci. Methods 2020,
341, 108795. [CrossRef]
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