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Abstract

Early detection and diagnosis of many cancers is very challenging. Late stage detection of a cancer always leads

to high mortality rates. It is imperative to develop novel and more sensitive and effective diagnosis and therapeutic
methods for cancer treatments. The development of new cancer treatments has become a crucial aspect of medical
advancements. Nanobots, as one of the most promising applications of nanomedicines, are at the forefront of multi-
disciplinary research. With the progress of nanotechnology, nanobots enable the assembly and deployment of func-
tional molecular/nanosized machines and are increasingly being utilized in cancer diagnosis and therapeutic treat-
ment. In recent years, various practical applications of nanobots for cancer treatments have transitioned from theory
to practice, from in vitro experiments to in vivo applications. In this paper, we review and analyze the recent advance-
ments of nanobots in cancer treatments, with a particular emphasis on their key fundamental features and their
applications in drug delivery, tumor sensing and diagnosis, targeted therapy, minimally invasive surgery, and other
comprehensive treatments. At the same time, we discuss the challenges and the potential research opportunities

for nanobots in revolutionizing cancer treatments. In the future, medical nanobots are expected to become more
sophisticated and capable of performing multiple medical functions and tasks, ultimately becoming true nanosubma-
rines in the bloodstream.
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Introduction

Using nanomolecular scale tools and biological nanomo-
lecular knowledge of the human body, nanomedicines
were designed to aim at treating and preventing diseases,
preserving and improving human health [1, 2]. With the
great development potential and application prospects
in the treatment of tumors, the development of nano-
medicines was very rapid in the last few decades [3, 4].
Nanorobots, as one of the most promising applications of
nanomedicines, allow one to access remote and hard-to-
reach body regions, and perform various medical tasks
[5-7] (Fig. 1).

Medical nanorobots are defined as untethered
nanostructures that contain an engine or are capa-
ble of transforming diverse types of energy sources
to mechanical forces and perform a medical task [9-
14]. Due to their small sizes, nanorobots can directly
interact with cells and even penetrate them, providing
direct access to the cellular machineries [15, 16]. As
an interdisciplinary technology, nanorobots address
the assembly and utilization of functional nano-to-
molecular scale machines and have been widely used
in cancer diagnosis and treatment. Nanorobots are
nanosized machineries able to deliver payloads (drugs,
genes, sensing molecules, etc.), achieve some certain
(biomedical) functions (diagnosis, therapeutic actions),
have targeting ability to search for tumor/disease sites,
as well have an active or passive power system able to
receive external power sources (NIR light, ultrasound,
magnetic driving force, etc.) or to utilize the mediums/
blood flow existing in a biological system. The key dif-
ferences between nanorobots and nanocarriers are the
active power system. Nanomedicines/nanocarriers can
also be considered or included as a part of nanorobots,

but without having an active power system. Research-
ers worldwide have devoted themselves to the research
and development of cancer-killing nanorobots in the
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hope to introduce them into clinical practices and to
accomplish a medical modernization. One of the unmet
and major challenges of nanorobotic technology is to
introduce these nanorobotic tools to real-world clinical
practices.

In recent years, various practical applications of micro-
and nanorobots for cancer treatments have been real-
ized from theory to practice, from in vitro experiments
to in vivo applications. The size of a single biomolecule
is at the nanometer scale, which limits the operation of
microrobots. Robotic manipulations of biomolecules
require the use of nanorobots with the same or a similar
nanoscale [17-20]. In the process of exploring nanotech-
nology from laboratory to clinics for cancer treatment,
nanorobots can achieve a variety of medical functions,
including drug delivery, tumor detection and diagnosis,
targeted therapy, minimally invasive surgery, and other
comprehensive tasks [21-28]. Miniaturization of the
robotic technology and its combination with advanced
medical technologies make it possible for numerous bio-
medical applications, including precision and targeted
medication. Each of these applications aims to address
and conquer different challenges in the treatments of
cancers.

Although a few previous reviews have covered gen-
eralized or specific topics for the use of micro- and
nanorobots in medicine [11, 16, 21, 29, 30], most reviews
address the biomedical applications of microrobots with
no reviews focusing on the recent efforts of nanorobots
in the treatments of cancers. After a brief overview of
natural biological nanomachines and the key fundamen-
tals of nanorobots, this review provides a comprehensive
overview of the recent advances of nanorobots from the
perspective of cancer treatments, mainly focusing on the
biomedical applications of nanorobots, and highlights
the most promising research opportunities that may have
profound impacts on cancer treatment in the next few
decades. In the future, medical nanorobots will be devel-
oped to become much more sophisticated and are able to
perform multi-medical functions and tasks, and eventu-
ally become true nanosubmarines in the blood.

Natural nanorobots existing in biological systems

We have witnessed great advances in nanotechnology
in the past decades, and a large number of novel nano-
technologies have been discovered and applied to a wide
range of fields. However, living organisms present us
with some impressive natural nanomachines which can
be viewed as “bionanorobots” [31, 32]. These natural
nanorobots that can both rotate and transport chemical
loads following predetermined tracks with subnanometer
precision and high efficiency are essential for a plethora
of cellular functions [33]. Numerous natural biological
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nanorobots are found to use energy to do their assigned
work and transform it into mechanical work in living
systems.

Most protein-based molecular nanorobots can con-
vert the chemical energy ATP (adenosine triphosphate)
into mechanical motion [34]. As one of the most preva-
lent and abundant proteins on Earth, ATP synthase is not
only found in the thylakoid membrane of chloroplasts,
the cristae of mitochondria, but also in the plasma mem-
brane of bacteria [35]. As the last enzyme in the oxidative
phosphorylation pathway, this natural nanomachinery
is able to use electrochemical energy to power the syn-
thesis of ATP, and it converts ADP and phosphate into
ATP molecules, which self-rotate due to the electro-
chemical gradient and the flow of protons through the
membrane [33]. ATP synthase enzyme is vital to the
well-being of humans and has the potential to contrib-
ute to new approaches to cancer, bacterial infections, and
obesity [36-38].p-glycoprotein (p-gp) is an ATP-binding
cassette transporter that can endow multidrug resist-
ance against chemodrugs, notably to anticancer agents
[39]. As an efflux pump that has ATPase-like function to
export chemodrugs out of cells, p-gp is overexpressed in
tumor cells, and drugs can be delivered to the extracellu-
lar matrix with these pumps [40]. P-gp, a 170-kD protein
containing two amino acid chains, has a flexible structure
capable of maintaining its rotational and translational
motion in the efflux mechanism. Inhibition of this efflux
activity has been one of the many aims in the exploitation
of p-glycoprotein inhibitors. Many studies reported the
p-gp inhibitors based on the information on the function
and structure of P-glycoprotein [41, 42].

As numbers of cytoskeletal nanomotor protein families,
kinesins and myosins can accomplish the correspond-
ing work by actively transporting molecules or moving
proteins within the cell. Kinesins and myosins are multi-
protein complexes with motor domains, which have the
ability to mediate the interaction between motor and
track with high precision. The motor structural domain
is chemically and functionally linked to an extended tail
that is responsible for mediating the binding of cargo to
the motor. And the wealth of motor structures is the key
for them to produce force by undergoing similar rear-
rangements [43-45].

CRISPR (clustered regularly interspaced short palin-
dromic repeats) and its related coding genes constitute
the CRISPR-Cas system, which is currently known to be
the only one to acquire immune system in prokaryotes
[46]. As a large multi-domain and multifunctional DNA
(deoxyribonucleic acid) nucleic acid endonuclease, Cas9
is the signature protein of the type II CRISPR-Cas system.
Similar to natural nanorobots, Cas9 nuclease enzymes
firstly search for PAM (protospacer adjacent motif)
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sequences on the target gene to select a target for cut-
ting, then design an sgRNA (single-guide RNA) sequence
complementary to the targeted gene, and then use the
Cas9-sgRNA complex to cut the target gene to produce
a DNA double-strand break, which triggers a base mis-
match to achieve gene knockdown [47, 48]. CRISPR-
Cas9 knockdown is more efficient and more specific
than RNAi (RNA interference) gene silencing. Moreo-
ver, CRISPR-Cas9 is currently used for high-throughput
genetic screening [49]. The success of in vitro play puri-
fication of Cas9 has allowed scientists to maturely use
CRISPR-Cas9 knockout technology to study the function
of specific genes, opening a new chapter in molecular
biology.

Recent advances in techniques to investigate the mech-
anisms and molecular structure present a wealth of infor-
mation that allows us to gain a better understanding the
differences and similarities of these nanomotor systems.
Many such natural biological nanorobots are found and
operate in living systems that could be used for therapeu-
tic purposes. Inspired by natural nanorobots, numerous
scientists have recently researched on artificial nanoma-
chineries in order to emulate these bionanorobots and
tackle the problem of cancer treatment at the nanoscopic
level. The next step was to develop systems with key
fundamentals that are able to move autonomously and
precisely when nanorobots perform specific work in the
human body environments [50].

Key fundamentals of nanorobots in the treatment
of cancers

As a miniature structure, nanorobots are capable of exe-
cuting predetermined missions and bear stark differences
to their macroscale robotic counterparts. The primary
challenges in the development of nanorobots or nanome-
chanical components lie in their construction and con-
trol. These devices operate within a microenvironment
that exhibits physical characteristics distinct from those
encountered by conventional components. The composi-
tion and structure of nanorobots are not uniform and can
vary depending on their intended function and the mate-
rials and technologies utilized in their creation. The field
of nanorobotics is an ever-evolving one, with ongoing
advancements and breakthroughs. In this regard, we have
presented a general outline of some of the crucial com-
ponents and structures commonly found in nanorobots
(Table 1) and provided a summarization of typical exam-
ples of medical nanorobots (Table 2), based on the study
by Suhail et al. [51]. Currently, most nanorobot experi-
ments are conducted under conditions akin to those
found in human microenvironments. To ensure that
nanorobots can effectively eliminate cancer cells within
the human body, scientists have set stringent standards
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for their fundamental design elements. It is noteworthy
that medical nanorobots are still in the nascent stages
of development and are yet to be widely implemented in
medical treatments. The specific composition and struc-
ture of these devices may greatly vary based on their
intended application and the necessary requirements for
safety, efficacy, and scalability.

Materials of nanorobots

At nanometer scales to work within tumor tissues and
cells, the primary consideration for the design of nanoro-
bots was the biocompatibilities of materials. The first
challenge encountered in designing a nanorobot to per-
form medical tasks is the issue of materials science or
surface science, since the operation of a microrobot is
largely dependent on the properties of its surface and
materials. The molecular interactions among biologi-
cal species and the surfaces of a nanorobot drastically
affects the motion control of a nanorobot in a biologi-
cal microenvironment. Nanorobots are mostly made of
biocompatible or biodegradable materials. These bio-
degradable materials are able to dissolve or disappear at
the end of their tasks. Meanwhile, they should be able to
accomplish a wide range of accurate tasks including sens-
ing of the presence of tumor cells/tissues, delivery and
release of nanocargoes upon stimulations upon physical
cues, certain disease biomarkers, changes of local tem-
peratures/pH values, etc. [58-61]. These materials should
also be flexible and deformable to ensure workability
and mechanical properties of nanorobots to work in the
human biological microenvironments [62, 63]. They need
to be more maneuverable in three dimensions, in viscous
and elastic body fluids, as well as in phantom organs.
Besides, when designing nanorobots to perform adaptive
tasks in a variety of different biological environments,
stimulating-responsive materials becomes significant
important [64].

Propulsion of nanorobots

The energy source of driving forces is vitally impor-
tant for nanorobots to work in the body autonomously.
The type of driving force can affect the moving speed
of a nanorobot, controllability and biocompatibility to
a great extent and thus subsequent applications in a
biosystem. It is not possible to apply the conventional
macroscopic batteries and power supply components
to these nanorobots. In the design phase, it should be
ensured that a nanorobot could move freely and has suf-
ficient power to offset the resistance from TME (tumor
microenvironment). The power sources of nanorobots
are innovatively divided into exogenous dynamics and
endogenous dynamics. Exogenous dynamics usually
include magnetic propulsion, ultrasound propulsion, and
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Table 2 Some typical examples of medical nanorobots

Entry Nanorobottypes Key characteristics Refs.

1 Pharmacyte A medical nanorobot with a diameter of 1-2 um [52]
Molecular indicators or chemotactic sensors are used to ensure the precision of the targeting system
They can be eliminated or recuperated through centrifuge nanapheresis after finishing the tasks

2 Microchips Nanorobots possess microchips which can conduct current signals once the molecules detect a disease [53]
The benefits are the small charge to yield and simple to operate

3 Respirocyte A type of nanorobot that carries oxygen like an artificial red blood cell [54]
The power is achieved through endogenous serum glucose

4 Microbivores The nanorobot is flat and spheroidal in shape for nanomedical uses [55]
With a diameter of 3.4 um along its main axis and a diameter of 2.0 um on the minor axis
It has the phagocytic capability which is almost 80-fold higher proficient than other macrophages

5 Clottocytes They have the ‘instant’hemostasis biological activity which is called artificial mechanical platelets [56]
They also transport substances that assist in the coagulation process

6 Chromallocyte The renovation machine will first assess the condition by inspecting the cellular substances, actions, and works ~ [57]

These repair machines are capable of overhauling the complete cell

light-driven propulsion, whereas endogenous dynam-
ics are usually achieved by chemical or biological reac-
tions [65-71]. Locomotional control also represents an
important challenge in micro- and nanoscales. In vivo
operations of nanorobots have been demonstrated their
abilities to enhance tissue penetration and payload reten-
tion. But viscous forces dominate over inertial forces at
nanoscopic scales. Therefore, it is necessary to take into
account the environment effects while designing an effi-
cient nano-machine. For example, it requires different
swimming strategies that allow nanorobots to operate
under these low Reynolds number constraints, as well as
various kinds of navigation strategies for nanorobots to
overcome the Brownian motion [9, 72-74].

Recently, blood glucose, urea and other bodily fluid
constituents were utilized as the power sources for
enzyme reaction-derived nanorobots, but the stability of
these enzyme reactions-driven nanorobots requires fur-
ther improvements before practical implementation can
be possible [75, 76]. However, new alternative fuels and
propulsion mechanisms are needed to achieve safe and
successful operation in the human body, although dif-
ferent fuels and external stimuli have been explored for
nanorobots in aqueous media [21, 77-79].

Nanorobots core

After satisfying the previous fundamental requirements,
an ideal nanorobot core is required. Much more research
is needed before nanorobots can achieve widespread bio-
logical applications [80]. DNA origami is one of the great-
est advancements in the core project of nanorobotics. A
single-stranded DNA can be collapsed into a two-dimen-
sional shape and eventually form a three-dimensional
nanostructure, which can release its payloads upon
binding with a specific cancer biomarker [81-85]. Viral

capsids are robust and environmentally stable nanopar-
ticles and are an innovative design employed by natural
systems. The proteinaceous shell of viral capsids allows
the protection of viral nucleic acids from denaturation
by the external environment. The receptor, in turn, can
be integrated into the face of the virus shell to allow ini-
tiation of conformational shifts in the shell structure and
release of the nucleic acid into a selected host cell upon
conjugation to the receptor’s corresponding biomarker or
molecule [15, 86-88]. Another commonly adopted bioin-
spired technique for nanoparticle fabrication is chemical
modification of natural polymers. Natural polysaccha-
rides, such as chitosan, will be the most logical choice
when we put biocompatibility at the top of the list. Chi-
tosan has been widely used for nanoparticle produc-
tions in the last decade [75, 89-91]. Besides nanoparticles
derived from chitosan, various kinds of nanoparticles,
such as gelatin, alginate, pectin, chondroitin, and dex-
tran, have been widely used in cancer therapies.

Fabrication of nanorobots

When researchers design and build small-scale robots,
they are motivated by the need to find active materials
that can consistently convert different forms of energy
into motion. The first generation of nano-engines for
small-scale robots relied on their simple geometry and
manufacturing procedures [92]. Through electrochemical
reduction of salts corresponding to metals within nano/
micron symmetric pores, these early nanorobots were
fabricated [93]. Another strategy is the self-assembly of
nanocomponents, for example, the layer-by-layer assem-
bly of sequentially charged materials, the generation of
self-organizing polymers to create bowl-shaped stoma-
tal cells that can be filled with catalytic materials in their
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internal spaces, the attachment of colloids to create engi-
neered structures and magnetic links [94-98].

Another strategy for fabrication of nanorobots is to use
of a thin film layer on a template to produce an asymmet-
rical coating structure [99, 100]. From polymers to metal
beads, these approaches make use of diverse commer-
cially available microtemplates as well as biological and
bioinspired templates [101]. 3D printing, glancing angle
deposition, rolled-up lithography and other advanced
techniques are also used in the design and fabrication of
more complex nanorobots [102-106]. Each of these new
innovations provides novel capabilities for design and
high quality, although they are generally more expensive
and have restricted material options.

Biohybrid nanorobots were fabricated with diverse
methods. For example, in recent publications noncova-
lent interactions were commonly adopted to attach syn-
thetic components to the head or tail of microorganisms
[107]. Biohybrid nanorobots are made of living organisms
and synthetic components, which were coupled together
via electrostatic interactions-driven self-assembly.
Another approach benefits from the physical retention of
functional nanostructures on the rough surface of micro-
organisms [11]. But, due to the lack of covalent bonds
between the synthetic material and the microbial surface,
it tends to come off under certain environmental stresses.

Degradation of nanorobots

Nanorobots may be manufactured and driven in a vari-
ety of ways, but toxin-free degradation is of great sig-
nificance for biosafety. The degradability of materials in
nanorobots is a key factor to be considered first before
their biomedical applications [108-111]. High degradabil-
ity could avoid the post-use operation of the nanorobots.
For example, biodegradable polymers were adopted to
make microrobots using laser direct writing to control
the shape [112]. Water-soluble polymers such as polyvi-
nyl alcohol were employed to produce drug-carrying bio-
degradable nanorobots in mass production [113]. Natural
polymers including gelatin and chitosan could be hybrid-
ized with magnetic nanoparticles to produce magnetic
field-driven, biodegradable nanorobots that could reach
the targeted defective locus under proper magnetic field
guidance payloads continuously upon being gradually
degraded in a biological system, while the released pay-
loads/cells could move toward the diseased site to exe-
cute repairment functions [114].

Types of driving forces for nanorobots in cancer
drug delivery

As nanotechnology keeps moving forward, drug deliv-
ery has become one of the most widespread functions of
nanorobots in cancer therapy. Nano-drug carriers have
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been developed with some evident features, including
small sizes, large specific surface area/internal void vol-
umes, and outstanding physicochemical properties. An
ideal nanorobot, in general, possesses some special capa-
bilities such as controlled navigation, tissue penetration,
propulsion, cargo hauling and release.

In addition to passive mass transport limitations, most
existing drug delivery nanocarriers rely on systemic cir-
culation, and they also lack the self-driving force and
navigation capabilities required for targeted delivery and
tissue penetration. Several anti-tumor therapies using
nanorobots have been reported to enable precise thera-
peutic drug delivery to targeted tumor areas [114-121].

Nanorobots could be used to treat cancers via i.v. injec-
tion into the blood stream or uptaken via orally adminis-
tration, gathering at the focus to significantly improve the
anti-cancer effect with little harm to healthy normal cells.
To accurately deliver the therapeutic payload directly to
the tumor area, numerous advanced technologies were
introduced to help nanorobots to reach the diseased
sites. Nanorobots reported in recent years were catego-
rized to a few different types based on their propulsion
methods and motion driving forces.

External magnetic-driven nanorobots

A number of preliminary studies have been performed to
prove the transport function and properties of nanoro-
bots using magnetic propulsion [122-126]. And research
on the application of nanorobots for cancer treatment
has also achieved numerous excellent outcomes. A pre-
requisite for this driving force pattern is that magnetic
helically shaped nanorobots can be propelled by rota-
tional-to-translational motion using a torque gener-
ated by an external magnetic field [127-130]. Andhari
et al. [131] engineered a multi-component magnetic
nanorobot, which was fabricated using multi-walled car-
bon nanotubes (CNT) loaded with doxorubicin (DOX)
and anticancer antibody. This self-propelling magnetic
nanorobot could be driven by an external magnetic field
in complex biological fluids, and could release antican-
cer drug payloads inside the three-dimensional (3D)
spheroidal tumors upon stimulation by intracellular
H,0, or local pH changes in the tumor microenviron-
ments. The nanorobot was composed of chemically
conjugating magnetic Fe;O, nanoparticles and was able
to preferably release DOX in the intracellular lysosomal
compartment of human colorectal carcinoma (HCT116)
cells via opening the gate on the surface of Fe;O, nano-
particles (Fig. 2A). Wang et al. reported a nickel-silver
nanoswimmer which could be powered by an external
magnetic field and could deliver micron-sized particles at
high speeds of more than 10 pm s™! [132]. This modified
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Fig. 2 A lllustration of a DOX-loaded magnetic nanorobot which was driven to penetrate into the 3D spheroid tumor, followed by drug release
under intracellular endo/lysosomal conditions. Modified and reprinted from ref. [131]. Reproduced with permission, Copyright 2020, Springer
Nature. B The process for flexible magnetic nickel-silver nanoswimmer capturing magnetic polymer particles loaded with drugs and transporting it
to target cells via channels. Modified and reprinted from ref. [132]. Reproduced with permission, Copyright 2011, Wiley-VCH

polymer microspheres with doxorubicin were made of  drug-carrying microspheres using its extended polydi-
poly(D, L-lactic-co—glycolic acid) (PLGA). The robot methylsiloxane (PDMS) channel. When the nanoswim-
was propelled by a flexible magnet and could deliver —mer reached the vicinity of human cervical cancer (Hela)
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cells, the drug-carrying microspheres were released to
kill the cancer cells (Fig. 2B).

Xie et al. adopted a biological template method and
transformed pine pollens into a magnetic microrobot,
filled doxorubicin into the natural cavity of the robot by
vacuum loading and then used the collaborative behav-
ior of the microrobot to upload drugs through the PDMS
narrow channels. When reaching the interior space of
cancer cells, the semi-natural magnetic microrobot uses
its magnetic rotor inside the cavity to generate fluid and
release the payload drug molecules to kill cancer cells
[133]. Magnetic field-driven nanorobots are often used
to imitate bacterial flagella motion with an external mag-
netic field and deliver anti-tumor drugs [134, 135]. Fel-
foul et al. found that biohybrid microrobots (based on
magnetococcus marinus strain MC-1) can be successfully
driven using an external magnetic field to deliver drug-
loaded nanoliposomes to hypoxic regions within the
tumor [136]. Bacteria in these natural environments are
accustomed to swim along the magnetic field lines of the
living region to areas with low oxygen content. When the
drug-containing nanoliposomes are bound to MC-1 bac-
teria and administered into mice with xenogeneic neo-
plasms under the guidance of an external magnetic field,
as much as 55% of the microrobots could penetrate the
HCT116 large intestine anoxic area of tumors in a xeno-
graft mouse model. As compared to passive reagents, the
microrobot demonstrated an excellent xenograft tumor
penetration ability.

External ultrasound-driven nanorobots

It is relatively easy to establish an acoustic condition.
Being able to be transmitted in such media as solid, liq-
uid and air, sound waves could penetrate deeply into bio-
logical tissues to power nanorobots from outside without
causing noticeable harm to the human body. However,
application of ultrasound may result in cellular oxida-
tive stress, which may influence both target tumor cells
and normal cells [137]. The underlying mechanism is
that the ultrasonic wave exerts a local acoustic stream-
ing strain on the surface of asymmetric nanorod-nanoro-
bots, which generates a driving force for the movement
of nanorobots. High-intensity focused ultrasound could
be used to induce quick evaporation of chemical fuel and
to drive tubular nanorobots in a flexible movement state.
Such kind of microtube-based robots could move at an
extremely high rate and penetrate into tissues with strong
propelling force [138]. Garcia et al. [139] showed that
ultrasound-driven nanowire motors could provide rapid
drug delivery toward HeLa cancer cells to achieve a near-
infrared light-triggered drug release. In this case, it was
revealed that 38% of the DOX payload drug was released
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inside cancer cells after 15 min of NIR light irradiation
(Fig. 3A).

Biological-driven nanorobots

Bio-driven microrobots or nanorobots primarily refer
to biohybrid microrobots. They are created from live
microorganisms (cells) and artificial materials. Microor-
ganisms, such as sperm and bacteria moving under the
propelling effect of flagella, could act as an engine for
biohybrid micro-/nanorobots. Besides, sperm, which
has the special ability to bind with body cells, could sig-
nificantly raise the issues of biocompatibility and safety
of micro-/nanorobots. It was reported that a biohybrid
robot having a 3D printed magnetic tubular microstruc-
ture and four arms adopts a mobile sperm cell as its
power source and drug carrier. As compared to entirely
synthetic microrobots or other nanocarriers, such kind of
sperm-hybridized microrobots could seal high-concen-
tration drugs into sperm membrane and protect the pay-
load drugs from being diluted by body liquid or affected
by enzymatic degradation [127].

Hybrid-driven nanorobots

Many studies have testified the success of nanorobots in
achieving targeted drug delivery using a hybrid power
supply. Nanorobots were shown to have strong binding
abilities toward pathogens and toxins, which allow them
to achieve good detoxification abilities [140]. He et al.
[141] built a tubular multi-layer microrobot using layer-
by-layer self-assembly technology. With the combination
of bubble drive and magnetic field guidance, these micro-
robots are able to rapidly deliver doxorubicin to cancer
cells at speeds of up to 68 microns/second. The magnetic
field could also control the motion of nanorobots along
with other physical power methods [68]. For instance,
Wang’s group from the University of California prepared
porous metal rod-like nanorobots using an electro-
deposition method [139]. The porous structure of their
nanorobots makes it possible to carry more pharma-
ceutical molecules (20 times more than that by a planar
metal counterpart). NIR (near-infrared) light was used to
trigger the drug release from the nanorobots. Under the
driving of ultrasonic wave and the guidance of an exter-
nal magnetic field, tumor cells were effectively killed by
the released drugs.

Chen et al. developed a hybrid magnetoelectric
nanorobot able to execute targeted drug delivery in
which drug release was triggered by an external magnetic
field [142]. Victor et al. designed a magnetic field-guided
three-segment Au—Ni—Au nanowire motor, which could
be propelled by ultrasound [143]. The change of the
applied magnetic field direction allows one to achieve
omni-directional movement of the ultrasound-propelled
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Fig. 3 A Schematic of the nanowire motor which was driven by ultrasound toward cancer cells, followed by NIR light-triggered drug release.
Modified and reprinted from ref. [139]. Reproduced with permission. Copyright 2014, Wiley-VCH. B The illustration of the Bi-based tubular
microrobot showing the performance for smart drugs or heavy metals delivery in vein with electrochemical release mechanism. Modified

and reprinted from ref. [147]. Reproduced with permission. Copyright 2019, American Chemical Society. C Schematic illustration of MPCM@JMSNMs
applied to thermomechanically percolating the cell membranes, and the scanning electron microscopy (SEM) image of MPCM@JMSNMs. Modified
and reprinted from ref. [148]. Reproduced with permission. Copyright 2018, Wiley-VCH

particles. Bismuth (Bi) derivatives have been shown in
recent studies to have promising abilities for biological
applications [144, 145]. Beladi-Mousavi et al. presented
the manufacturing of self-propelled Bi-based tube-like
microrobots and demonstrated proof-of-concept experi-
ments for intelligent drug delivery [146]. Bi was fabri-
cated on the outer surface of the microrobots as drug
carriers in clinical research. Bi-based microrobots were
loaded with the clinical first-line anti-cancer drug DOX
on their surface, and using the magnetic properties of
the nickel layer, these robots were transported to target
cancer cells. The loaded microrobots were directed by a
magnet to a tunnel containing an electrochemical device,
which allows the on-demand release of cargoes within
only a few seconds [147] (Fig. 3B).

Other power-driven nanorobots

Although it sounds promising, most reported examples
were conducted in vitro levels. When dealing with a com-
plicated inner biological environment, it remains to be
proven whether the directional movement of nanorobots
can be achieved as effectively as those shown in in vitro

experiments. Xuan et al. [148] showed that a nanoro-
bot system could perform a directional motion when
exposed to NIR light (under NIR irradiation, Au half-
nanoshells could produce a thermal gradient to provide
self-heating energy to overcome Brownian motion). The
NIR light-powered macrophage cell membrane-cloaked
Janus mesoporous silica nanomotor (MPCM@JMSNMs)
was also wrapped by macrophage membranes, giving the
nanorobots the immunological property of selectively
binding cancer cells (Fig. 3C). As micro-/nanorobots and
their use in drug delivery have made great progress in
recent research, these micro-/nanorobots are expected
to be potent active delivery tools for various therapeu-
tic applications that would otherwise be challenging to
accomplish in current passive delivery systems.

Medical nanorobots versus conventional
nanomaterials for drug delivery

The emergence of nanotechnology has brought forth sig-
nificant advancements in medical science, particularly in
drug delivery. Conventional nanomaterials, also known
as nanocarriers or nanomedicines, have been extensively
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used to improve drug delivery efficiency and specificity
[149, 150]. Recently, a novel concept, medical nanoro-
bots, has been introduced, showing great potential in
cancer treatments and other biomedical applications
[151]. This section will discuss the differences between
medical nanorobots and conventional nanomaterials for
drug delivery, with a focus on their design elements, tar-
geting abilities, power systems, biocompatibility, safety
considerations, and potential applications.

Design elements

Medical nanorobots epitomize a groundbreaking inno-
vation in the sphere of nanomedicine, functioning as
nanoscale apparatuses specifically devised to execute
an array of biomedical tasks, such as diagnostics, thera-
peutic interventions, and targeted drug delivery. Unlike
conventional nanomaterials, which primarily serve as
drug delivery vessels, nanorobots are engineered with
a plethora of sophisticated components that empower
them to operate efficaciously within the human body
[151, 152]. Some of these components encompass a
protective shell composed of biocompatible materi-
als like silicon, carbon, or diamond, which safeguards
the nanorobot and its internal components from the
surrounding biological milieu. Moreover, nanorobots
necessitate a power source, which can manifest as a
battery, hydrogen fuel cell, or even energy harnessed
from the body’s metabolism, to fulfill their designated
functions. The payload of a nanorobot alludes to its
specific objective, such as targeted drug delivery, imag-
ing, or tissue restoration [153, 154]. Furthermore, med-
ical nanorobots are furnished with refined sensors that
can detect alterations in the body, such as temperature,
pH levels, or the presence of particular molecules, as
well as actuators that permit them to physically interact
with the body by traversing the bloodstream, dispens-
ing drugs, or performing surgical procedures. Lastly,
communication systems within nanorobots enable
them to interface with each other or external appara-
tuses, such as computers or remote-control systems
[20, 155]. In summation, medical nanorobots proffer a
substantial advancement in nanotechnology, boasting
an array of intricate design elements and functionalities
that traditional nanomaterials do not have.

In contrast, conventional nanomaterials primar-
ily function as vehicles for drug delivery, devoid of
the intricate functionality and design constituents
present in medical nanorobots. These nanomaterials
are typically passive in nature and rely on the body’s
innate processes for their dispersion and release,
which can constrain their effectiveness and specificity
[156, 157]. Conventional nanomaterials may comprise
liposomes, polymeric nanoparticles, or micelles, which
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encapsulate the therapeutic agents and safeguard them
from degradation, but do not possess the advanced
capabilities proffered by nanorobots, such as active
propulsion, real-time sensing, or communication [158,
159]. This fundamental disparity in design and func-
tionality between medical nanorobots and traditional
nanomaterials underscores the potential of nanorobots
to revolutionize drug delivery and other biomedical
applications, proffering more targeted, efficient, and
adaptable therapeutic resolutions.

Enhanced targeting proficiencies

A salient advantage of medical nanorobots over conven-
tional nanomaterials resides in their exceptional targeting
capabilities, which can be largely ascribed to the intricate
sensors incorporated into their design. These sensors
endow nanorobots with the capacity to discern subtle
fluctuations within the body, such as variations in tem-
perature, pH levels, or the presence of specific biomol-
ecules, encompassing proteins, enzymes, or other cellular
markers [19]. Armed with this advanced sensory infor-
mation, nanorobots can actively pursue and converge on
target sites, including tumors, area of inflammation, or
regions of infection, with remarkable precision.

In addition to sensors, medical nanorobots are also
devised with advanced actuators and propulsion systems,
permitting them to navigate and maneuver through com-
plex biological environments, such as the bloodstream
or interstitial spaces. This active propulsion enables
nanorobots to surmount physiological barriers, access
deeply-situated target sites, and permeate tissues more
efficiently than their conventional counterparts [121,
160]. Consequently, therapeutic agents can be delivered
with a high degree of precision, minimizing off-target
effects and mitigating potential side effects. Furthermore,
the amalgamation of these sophisticated design features
empowers medical nanorobots to adapt and respond to
the dynamic nature of the human body. They can modify
their trajectory and delivery strategies in real time based
on the sensed biological cues, ensuring optimal thera-
peutic outcomes. This adaptability and responsiveness
are exclusive to medical nanorobots and proffer signifi-
cant advantages over conventional nanomaterials, which
are typically passive and contingent on the body’s natural
processes for distribution and release [161, 162]. In sum-
mary, the integration of intricate sensors, actuators, and
propulsion systems in medical nanorobots enables more
accurate and efficient delivery of therapeutic agents,
resulting in improved treatment outcomes and dimin-
ished side effects.

In contrast, conventional nanomaterials primar-
ily function as vehicles for drug delivery, devoid of the
intricate functionality and design constituents present
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in medical nanorobots. These nanomaterials are typi-
cally passive in nature and depend on phenomena like
the enhanced permeability and retention (EPR) effect,
as well as the body’s natural processes for their disper-
sion and release, which can constrain their effectiveness
and specificity [163, 164]. Conventional nanomaterials
may comprise liposomes, polymeric nanoparticles, or
micelles, which encapsulate the therapeutic agents and
safeguard them from degradation, but do not possess the
advanced targeting capabilities proffered by the sensors
in nanorobots.

This fundamental disparity in design and function-
ality between medical nanorobots and conventional
nanomaterials underscores the potential of nanoro-
bots to revolutionize drug delivery and other biomedi-
cal applications, proffering more targeted, efficient,
and adaptable therapeutic resolutions. The superior
targeting performance of medical nanorobots has the
potential to transform drug delivery and various other
biomedical applications, providing more precise and
efficient therapeutic solutions with minimal off-target
effects. This could lead to enhanced patient outcomes,
reduced side effects, and the development of innovative
treatment strategies for a wide array of diseases and
conditions.

Active versus passive power systems

The primary distinction between medical nanorobots
and conventional nanomaterials resides in their respec-
tive power systems. Medical nanorobots are furnished
with active power systems, empowering them to harness
external power sources such as near-infrared light, ultra-
sound, or magnetic driving forces. Additionally, they can
capitalize on the inherent flow of biological mediums,
like blood, to traverse the body [165, 166]. This active
propulsion capability considerably amplifies their maneu-
verability and navigation, permitting them to efficiently
reach specific targets and execute their designated func-
tions with remarkable precision.

Conversely, conventional nanomaterials lack active
power systems, relying instead on passive mechanisms
such as diffusion or convection to navigate through bio-
logical systems. These passive transport methods intrin-
sically circumscribe the mobility and functionality of
nanocarriers, rendering them less efficient and versa-
tile in certain drug delivery applications when juxta-
posed with their nanorobot counterparts [167, 168]. The
absence of an active power system in conventional nano-
materials may culminate in sluggish transport, dimin-
ished targeting accuracy, and reduced control over the
release and distribution of therapeutic agents.
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The active power systems inherent in medical nanoro-
bots endow them with superior mobility and functional-
ity as compared to conventional nanomaterials, which
are contingent on passive transport methods. This funda-
mental distinction enables nanorobots to excel in various
drug delivery applications, proffering enhanced target-
ing, precision, and control over the delivery and release
of therapeutics. Consequently, medical nanorobots hold
tremendous promise for revolutionizing drug delivery
and other biomedical applications, potentially leading to
improved treatment outcomes and reduced side effects
for patients.

Biocompatibility and safety considerations

A pivotal aspect distinguishing medical nanorobots from
conventional nanomaterials is the imperative to ensure
biocompatibility and safety. Owing to their elaborate
design and intended interactions with intricate biological
systems, nanorobots must be fabricated with biocompat-
ible materials and components to circumvent eliciting
adverse reactions or immune responses. This require-
ment necessitates meticulous contemplation of various
factors, such as the selection of materials, surface chem-
istry, and potential for long-term accumulation within
the body. Furthermore, addressing the potential risks of
toxicity and clearance of nanorobots is crucial to protect
patient health [169, 170].

While conventional nanomaterials are also mandated
to be biocompatible, their relatively simpler design and
fewer interactions with the body result in a less convo-
luted safety profile. Conventional nanomaterials generally
comprise well-established materials such as liposomes
or polymeric nanoparticles, which possess a more lin-
ear safety evaluation process [171, 172]. Nonetheless,
both medical nanorobots and conventional nanomateri-
als must undergo rigorous safety assessments, preclinical
testing, and regulatory approval before being deployed in
clinical applications.

The biocompatibility and safety considerations for
medical nanorobots underscore the challenges and
opportunities in developing these advanced technolo-
gies for clinical use. As research advances and safety
concerns are addressed, medical nanorobots harbor the
potential to revolutionize drug delivery and other bio-
medical applications, providing more targeted, efficient,
and adaptable therapeutic solutions for a diverse array of
diseases and conditions.

Potential applications and future outlook

While conventional nanomaterials have already been
employed in numerous drug delivery applications, medi-
cal nanorobots offer a vast array of potential uses that
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remain under exploration. These applications encompass
targeted drug delivery, wherein nanorobots can precisely
deliver therapeutics to specific tissues, cells, or even sub-
cellular locations, thereby minimizing side effects and
maximizing treatment efficacy [173]. In vivo diagnostics
is another potential application, with nanorobots being
utilized for real-time monitoring of various physiologi-
cal parameters, which can aid in the early detection and
diagnosis of diseases [174]. Furthermore, nanorobots
could revolutionize regenerative medicine by assisting
in tissue repair and regeneration, as well as modulating
the immune system by suppressing it in autoimmune
diseases or enhancing its anti-tumor activity in cancer
treatments. Medical nanorobots could also be harnessed
for minimally invasive microsurgical procedures, allow-
ing for more precise and targeted interventions, reduced
trauma, and faster recovery times [11, 175]. As the field
of medical nanorobots continues to advance, their poten-
tial applications are anticipated to expand even further,
transforming the landscape of medicine and providing
innovative therapeutic options for a wide range of dis-
eases and conditions.

In summary, medical nanorobots and conventional
nanomaterials differ significantly in their design ele-
ments, targeting abilities, power systems, biocompat-
ibility, safety considerations, and potential applications.
While conventional nanomaterials have been success-
fully utilized in drug delivery applications, the emer-
gence of medical nanorobots holds immense promise
for an array of novel biomedical applications, including
cancer treatment, diagnostics, tissue repair, immune sys-
tem modulation, and microsurgery [19, 120]. As research
and development in this field progress, medical nanoro-
bots may ultimately transform the landscape of medicine
and provide new therapeutic strategies for various dis-
eases, enhancing patient outcomes and overall healthcare

quality.

Nanorobot-assisted cancer diagnosis and targeted
therapies

As compared to traditional anti-cancer treatments,
emerging targeted therapy can selectively interact with
specific biomarkers that are involved in tumor develop-
ment, and obstructs tumor growth [176]. It provides
certain significant advantages over traditional chemo-
therapy, as it targets only at those specific biomarkers
related to tumor growth. In recent years, several anti-
tumor therapies have been reported to achieve targeted
therapy using nanorobots [173, 177-180]. Nanorobots-
assisted targeted therapy could avoid unwanted side
effects of high toxicity besetting traditional chemother-
apy, and provide a new solution for anti-cancer treatment
[181]. Nevertheless, power-driven nanorobots could
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target at specific lesions, implement controllable move-
ment, detection, positioning and gathering, as well as
administer therapeutic compounds in a proper and tar-
geted manner [182, 183]. Some common directions of
clinical applications of nanorobots in future cancer diag-
nosis and treatments are briefly summarized in Table 3.
We also summarized the recent ongoing clinical trials
about the applications of nanorobots or nanomedicine
on cancer treatment (Table 4). Nanorobotics is an inter-
disciplinary field that combines the principles of robotics,
nanotechnology, and material science to develop robots
at the nanoscale. The use of nanorobots could lead to sig-
nificant advancements in fields like medicine, manufac-
turing, energy production, and environmental cleanup.
Nanorobotics could also lead to new scientific discover-
ies and a deeper understanding of the nanoscale world.
However, after an extensive review of relevant literature
and a comprehensive search for clinical trials related
to nanorobots for cancer treatment on the website of
www.clinicaltrials.gov (Additional file 2), we realized
that much of our current knowledge about nanorobot-
ics is theoretical and conceptual, or still in the preclinical
research stage. As such, there are still very few absolute
nanorobots with all 5 components mentioned in Table 1
currently in clinical uses.

Cancer detection and diagnosis
Early detection of cancers is urgently needed because it
can increase greatly the survival rates for patients [184].
The study on tumor-killing nanorobots keeps moving
forward, accompanied by increasingly mature designs of
nanorobots, leading to more effective and accurate early-
stage clinical cancer diagnosis [185-188]. Maheswari
et al. [189] proposed another tumor-detecting nanoro-
bot that could examine tumor cell growth in vivo using
positron emission topography. In the meanwhile, an
embedded system was embedded so that the nanoro-
bot could be controlled through pre-programmed pro-
cedures on the Arduino software platform. In order to
avoid any potential side effects on the human body, an
isotope-labeled nano-carbon material was used to fab-
ricate the nanorobot. After being injected into a human
body, nanorobots will not cause any harm to the human
body with their reliable stability and safety. Once accom-
plishing the pre-set tasks, the nanorobot will be dis-
charged from the human body as excrement. Similar to
macro-robot in composition, the nanorobot is also com-
posed of sensor, power device, and a camera. In addition,
advanced algorithms were employed to design the short-
est path, and the build-in sensor helps the nanorobot to
evade from obstacles.

Overexpressed biomarkers on the cancer cell mem-
brane surface provide good targets for disease diagnosis,
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Fig.4 A Diagram showing the preparation and assembly processes of (NK@AlEdots) and the “smart tight-junctions (TJs)-modulated BBB
penetration of NK@AlEdots for brain tumor-targeted light-up and inhibition. Modified and reprinted from ref. [205]. Reproduced with permission.
Copyright 2020, American Chemical Society. B Pictorial illustration of the MCDP model. Modified and reprinted from ref. [206]. Reproduced

with permission. Copyright 2020, [EEE

therapeutics and biomedical engineering [190-192]. Peng
et al. designed and engineered an 3D DNA nanorobot
[193]. This 3D DNA-based logic gate nanomachine was
designed to target at overexpressed cancer cell biomark-
ers with bispecific recognition [194, 195]. Besides, the
DNA nanorobot can perform Boolean logic operations
on the cancer cell membrane and has a great theranos-
tic potential to be used in clinical treatment of cancers.
Dolev et al. [196] designed a nanorobot that could detect
circulating cancer cells in the blood and expose the drug
to the tumor site under the driving force. This nanorobot
was capable of storing electricity in a built-in capacitor,
and it had the ability to harvest blood energy. The glucose
levels in cancer cells are usually higher than those in nor-
mal cells. A high glucose level can promote cancer cells
proliferation and metastasis [197]. A glucose sensor was
immobilized on a CNT-based nanorobot to detect can-
cer cells via the elevated level of glucose-driven electric
current in cancer cells. At the same time, this mechanism
could in turn permit the activation of a nanoelectro-
mechanical (NEM) relay (mechanical transistor) by the
electric current, and it could break the chamber ceiling,
exposing a drug identified by the immune system for
cell elimination. This concept is in line with the effort on
designing an autonomous computational nanorobot for
in vivo medical diagnosis and treatment.

As part of the innate immune system, natural killer
(NK) cells are lymphocytes and can breach the BBB
(brain blood barrier) by using certain membrane pro-
teins [198-202]. NK cells were used for cancer immu-
notherapy as previously reported [203, 204]. Deng et al.
developed NK cell-mimic nanorobots with aggregation-
induced emission (AIE) character (NK@AIEdots) by

wrapping NK cell membrane on an AIE-active polymeric
nanoendoskeleton [205]. The nanorobots have good bio-
compatibility and could emit very strong fluorescence in
the NIR-II region upon photo-excitation. Besides, they
could move across the brain—blood barriers in a self-help
manner by unzipping tight junction structures and spe-
cifically accumulate at brain tumor sites in the complex
brain matrix to provide tumor imaging with high con-
trast and penetration into the skull (Fig. 4A).

Shi et al. proposed a nanorobot-assisted multifocal
cancer detection procedure (MCDP) which adopted a
niche genetic algorithm (NGA) technology for multifocal
cancer detection [206]. The NGA-inspired nanorobots,
which detect tumors by swimming in the high-risk tis-
sue region, can be regarded as an auto-searching process
where the system could search for the optimal solution of
an objective function in the parameter space with some
constraints. It can solve the multimodal optimization
(MMO) problem to locate at the tumor sites efficiently
while considering realistic in vivo propagation and con-
trolling of the nanorobots (Fig. 4B).

Wang et al. [207] reported a DNA logic-gated nanoro-
bot (DLGN) that can anchor on the surface of living cell
membranes to load multiple inducers and therapeutic
agents for effective and precise treatment approaches.
This nanorobot not only facilitated precise detection
among five cell lines, but also exerted effective killing of
cancer cells via triggered release of effector aptamer-teth-
ered synergistic drugs (EASDs) in the cancer cells. The
logic-gated recognition integrated into inducer-function-
alized molecular machines enables rapid cancer dissec-
tion, in situ trapping and separation, and the safe delivery
of precision medicine.
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Fig.5 A Schematic illustration of the steps of the gold nanowire driven into living cells by an extracellular ultrasound field. And the images

of gene-mRNA silencing in living cells. Modified and reprinted from ref. [210]. Reproduced with permission. Copyright 2016, American Chemical
Society. B lllustration of the process of the thrombin-loaded DNA origami nanorobot bending into specific tubular nanorobot, opening

and releasing the thrombin after the nanorobot reaching the nucleolin-binding aptamer. Modified and reprinted from ref. [212]. Reproduced

with permission, Copyright 2018, Springer Nature

With a diameter of less than 100 nm, nanoparticles
can move across various biological barriers, such as the
brain—blood barrier or gastrointestinal barrier, which is
an unique feature of nanorobots for detecting and diag-
nosing tumor cells at a very early stage, ideally at the
level of a single cell or multiple cell level [208, 209]. These
tumor searching-&-detection nanorobots exhibited
excellent tumor-targeting efficiency for precise localiza-
tion of cancer cells.

Targeted delivery of nucleic acid for gene therapy

Except for drugs, targeted delivery of various theranostic
compounds using nanorobots could avoid unwanted side
effects besetting conventional chemotherapy such as high
toxicities, and provides a new solution for anti-cancer
treatments. For example, magnetic helical microswim-
mers can be directed delivery of pDNA to fetal kidney
cells of human. Motors loaded with pDNA are wirelessly
guided to the cell to release their gene cargo into the cell
upon exposure. A gold nanowire coated with a rolled
amplified DNA strand that can hybridize with siRNA
was engineered for delivery of intracellular siRNA [210].
The pressure gradient generated by ultrasound provides
a fast and strong thrust for the motion of the nanorobot,
thus allowing the nanorobot to effectively penetrate into
the cancer cells, and then, the target mRNA is split by
the scissor-like scissors of siRNA, which is able to reach
94% efficiency of silencing in a few minutes of processing
(Fig. 5A).

In 2017, Thubagere et al. [211] reported a DNA
nanorobot equipped with a sorting function. The DNA
nanorobot was designed with two walking legs and cargo-
carrying arms. It could pick up the target cargo during

the trip and deliver the cargo to target sites. As illustrated
by experiments, this nanorobot could deliver cargoes
to a targeted site with a success rate of 80%. It means
when applied to tumor treatment, it could deliver drugs
in a human body and kill the tumor cells at 80% success
rate. However, in clinical applications, there is still 20%
uncertainty, suggesting that some unknown harm may
be brought to the healthy normal cells of a human body.
Once receiving the command from an external control
system, the nanorobot could unload the drug; if other-
wise, it would keep moving without releasing the payload
drug. DNA nanorobots could communicate with each
other depending on algorithms, find the hiding places of
tumor cells, and kill them with their payload drug. The
design of this tumor-killing nanorobot relies more on
biological molecules existing in a human body, so it can
adapt to a complicated environment there.

Infarction of tumor blood vessels

DNA-guided thrombin-inducing nanorobot is becoming
a powerful treatment strategy for cancer [84, 212-214].
The technology has shown promising anticancer efficacy
with low toxicity in preclinical settings. Translational
studies of this technology in clinical trials represent a
major advance in the application of DNA nanotech-
nology for anticancer therapy. In 2018, Li et al. [212]
designed a kind of DNA origami nanorobot using the
DNA origami technique. Depending on the DNA origami
technology, Li et al. also suggested a customized tubular
DNA nanorobot that could be bent into a specific confor-
mation [212]. Within the tube, thrombin was loaded and
isolated from the external circumstance so that it would
not be enzymatically degraded during the transportation.
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Besides, a smart system was built into the DNA nanoro-
bot so that it became biologically specific and could find
the hiding places of tumor cells with high precision.
DNA nanorobot found its right target through the spe-
cific receptor on the tumor cell membrane surface. After
reaching the receptor, a build-in molecular switch was
activated to release the thrombin within the right vessel
to block the blood vessel and forbid nutrient supply to
tumor tissues (Fig. 5B).

As an acute blood event, DNA-guided thrombin-
inducing nanorobot was demonstrated to induce quick
and massive necrosis of tumor cells with a more dra-
matic efficacy than many other therapies. Besides, it has
no fatal side effects to the heart and does not cause any
detectable damages on vital organs as compared to other
effective anticancer modalities. (such as life-threatening
cardiovascular toxicities from chimeric antigen recep-
tor T (CAR-T) cell immunotherapy) [215-217]. How-
ever, several potential clinical concerns were raised for
the DNA-guided thrombin-inducing nanorobot recently
[218]. Vasculogenic “rebounds” may appear after tumor
vascular infarction caused by the DNA nanorobot, in
addition to an increased risk of tumor lysis syndrome
(TLS) which results in serious metabolic crisis [219-224].

Other targeted cancer therapies

Various DNA nanorobots

DNA-based nanorobots are inherently biocompatible
and biodegradable, and they have attracted great atten-
tion owing to their high potential in various applications
for cancer treatment [225-230]. Based on the classic prin-
ciple of complementary base pairing, a single-stranded
DNA is folded repeatedly and fixed by many short “sta-
ple strands” oligonucleotides to obtain the designed DNA
nanostructures. DNA origami has excellent addressabil-
ity to allow additional functional ligands, biomolecules,
or nanoscale objects be organized precisely on a desired
position along its outer surface, which introduces the
targeting ability to DNA origami nanorobots [231-239].
Li et al. designed a pre-programed rectangular DNA
origami nanorobot (20 nmx30 nm), which could load
with Adriamycin and effectively penetrate into ovarian
cancer cells [240]. DNA origami nanorobots have also
been reported to deliver ribonuclease (RNase) A mol-
ecules successfully into cancer cells [212, 241]. Singh
et al. argued that DNA single-strand could be bent into a
proper shape with DNA origami technology [242]. Some

(See figure on next page.)
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chemical approaches could be adopted to change DNA’s
molecular properties so that the tubular nanorobot could
accurately bind with the receptor in vivo and achieve site-
selective treatment purpose. However, it is also believed
if blood supply within tumor cells remains insufficient,
the DNA nanorobot may not be able to achieve a signifi-
cant effect on the treatment. HER2, as one of the trans-
membrane epidermal growth factor receptors (EGFRs),
is involved in various types of information signaling
processes among cancer cells. HER2 can enhance the
malignancy of breast cancer. Overexpression of the HER2
receptor always leads to a poor prognosis for affected
individuals [243-246]. In order to improve its delivery
and therapeutic efficacy in treating HER2-positive breast
cancer with less side effects [247, 248], Ma et al. [249]
designed a nanorobot called HApt-tFNA, in which he
anchored an anti-HER2 inducer (HApt) to a tetrahedral
framework nucleic acid (tFNA). The nanorobot’s com-
position is based on DNA framework smart DNA, which
can selectively degrade specific tumor proteins in cancer
cells. The DNA nanorobot was then injected into a mouse
model. Experimental results showed that the presence of
tFNA could enhance the stability of the DNA nanoro-
bot and prolong the blood circulation time of HApt. The
HAPpt-tENA could therefore drive HER2 into lysosomal
degradation with higher efficiency (Fig. 6A). This novel
DNA nanorobot opens up a new path for targeted pro-
tein degradation in precision breast cancer treatment,
and improves the prognosis of breast cancer patients.

Photothermal therapy

As a photothermal therapy with high spatiotemporal
selectivity, NIR light can be absorbed by nanorobots
and converted to local thermal heat to induce cancer
cell apoptosis process [250-252]. However, lack of pre-
cise and controllable targeting to tumor sites hinders
the development of photothermal therapy [253, 254].
Song et al. developed a NIR light-responsive drug-loaded
robust magnetic tri-bead microrobots and demonstrated
their good biocompatibility even when their concentra-
tion is up to 200 pg/mL [255]. The microrobots showed
fast NIR-responsive photothermal property in in vitro
experiments. Microrobots were triggered to release pay-
load drugs when the local temperature reaches 50 °C.
The microrobots inside the microchannel could target
tumor cells, and the successful application of targeted
chemotherapy-photothermal therapy to lung cancer cells

Fig. 6 A Schematic illustration of the nanorobot HApt-tFNA incorporating HER2 in the HER2-HApt-tFNA complex and internalizing the complex
into human mammary gland adenocarcinoma cells. The complex degrades within lysosomes, which suppresses cell proliferation and induces cell
death. Modified and reprinted from ref. [249]. Reproduced with permission. Copyright 2019, American Chemical Society. B The effects of the cancer
microenvironment on the development of drug resistance, and the ultrasound-responsive alkaline nanorobots (AN-DSP) for enhancing anticancer
effects. Modified and reprinted from ref. [268]. Reproduced with permission. Copyright 2020, Royal Society of Chemistry



Kong et al. Journal of Hematology & Oncology (2023) 16:74 Page 23 of 45

) (1) Binding of HApt-tFNA with HER2
(@ Endocytosis of HER2 and HApt-tFNA
(3) Degradation of HER2 and HApt-tFNA

GYEn-Dl N

. ~ 4
\@ A S Cell eyele |
' Bax ) = ‘

p
— Apoptosis & *

; s
y A N
z . —. .o e

)

-

Cell deatﬁ

a
Tumor
microenvironment

Lactic acidosis

b
AN-DSP Ultrasound Cavitation
(W) O PFC vaporation
° O ¢ o O
l e o ’;K ) —
c f
> - o, ® © %o =
o— Na,CO, o O
L Liquid PFC " o © : Cancer cell
PLGA ”

Recovery of lactic acidosis
induced DOX resistance

®)

Fig. 6 (Seelegend on previous page.)



Kong et al. Journal of Hematology & Oncology (2023) 16:74

in vitro demonstrated the feasibility of nanorobotic tar-
geted chemotherapy-photothermal therapy in cancer
treatment.

Nanorobot-assisted detoxification

Nanorobots are also used as a dominant detoxification
tool with excellent cleaning capabilities. As with biosens-
ing, the detoxification approach relies on self-propelled
nanorobots that rapidly arrest and eliminate toxins to
reduce environmental nontoxicity. Esteban-Ferndn-
dez et al. [140] reported a nanorobot for multipurpose
removal of biological threat agents, particularly for bio-
detoxification and concurrent removal of pathogenic
bacteria and toxins. This dual-cell membrane—function-
alized nanorobot was integrated with diverse biological
functions from the plasma membranes of two cell types,
namely red blood cells (RBCs) and platelets (PLs).

Drug resistance is one of the major challenges in the
treatment of malignant tumors [256-258]. In the tumor
microenvironment, lactic acidosis plays a critical role in
the development of drug resistance, which makes it an
attractive target for conquering tumor drug resistance
problem [259-262]. However, few approaches were devel-
oped to show good abilities in overcoming lactic acidosis
[263-267]. Meng et al. [268] developed novel ultrasound-
responsive alkaline nanorobots. These nanorobots can
autonomously accumulate at tumors via the enhanced
permeability and retention (EPR) effect. With the ability
to respond to external ultrasonic powering, it can destroy
the acidic microenvironment of the tumor specifically,
causing few adverse effects. As the first stimulus-respon-
sive nanoscale therapeutic strategy for selectively reliev-
ing lactic acidosis, this nanorobot represents a promising
approach for improving anti-tumor drug resistance effi-
cacy (Fig. 6B).

Nanorobots for conquering challenges in cancer
treatments

Cancer cells exhibit uncontrolled growth, which invades
or spreads to other parts of the body. Although chemo-
therapy, radiotherapy, photodynamic therapy, immu-
notherapy and many other therapeutic modalities are
available choices for synergistic cancer therapies, it
remains as a grand challenge for cancer treatment due to
the diverse, complex, and heterogenic nature of tumors.
Persistent efforts of scientists have been put forward to
transport therapeutics to tumor mass through the intro-
duction of nanomedicine, which was proven to be more
effective and safer in face of conquering challenges in
tumor treatments.
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Nanorobots help resolve multidrug resistance problem

As a major reason responsible for the failure of cancer
chemotherapy, multidrug resistance (MDR) is one of the
most difficult challenges for cancer treatment [269]. The
MDR phenomenon refers to the development of resist-
ance of cancer cells, after repeated treatment, not only
to the specific chemotherapeutic agent used, but also to
other cytotoxic agents with different chemical structures
or mechanisms of action, resulting in cross-resistance
[270, 271]. MDR reduces the efficiency of treatment and
makes the prognosis of cancer patients worse.

Cancer stem cells (CSCs) are closely associated with
cancer recurrence and MDR occurrence [272]. However,
CSCs are normally protected in niches inside the tumor
bulk, promoting proliferation of cancer cells, and are
difficult to target [273, 274]. With the EPR effect, nano-
carriers can passively and selectively accumulate in the
environment of tumors [275, 276]. Nanorobots, com-
bined with CSC-targeting drugs, can selectively accumu-
late in solid tumors to effectively eradicate cancers [277].

Previously, Meng et al. recovered the lactic acidosis-
mediated drug resistance by designing novel ultrasound-
responsive alkaline nanorobots (AN-DSP) [268]. The
nanorobots can rapidly release Na,CO; to neutralize
lactic acidosis in the TME with sensitive response to
ultrasound stimulation. P-glycoproteins, the drug efflux
pumps of cells, are overexpressed in tumor cells and
could pump the anticancer compounds out of intracellu-
lar space, rendering the drug resistance of tumors [277,
278]. Nanoparticle formulations with various P-gp inhibi-
tors will be one of the targets for nanorobots to prevent
chemotherapy drugs being pumped out of the cancer
cells. Polysiloxane nanosheets (PSX NSs) are approved
by Fojttt M et al. that they have favorable properties for
biomedical applications and are found to be highly effec-
tive in binding anticancer drugs [277]. Interestingly, poly-
siloxane nanosheets were found to be especially effective
in the therapy of drug-resistant tumors, improving the
effectiveness of up to 52%. They bound DOX on the sur-
face of PSX NSs to become PSX@DOX. The PSX@DOX
could reduce the growth of DOX-resistant tumors in vivo
with 3.5 times better average efficiency than the free drug
alone. The application of polysiloxane nanosheets to
nanorobots will increase the therapeutic efficacy of anti-
tumor drugs more specifically.

Numerous multifunctional nanocarriers, such as poly-
mers mesoporous, silica nanoparticles and layered dou-
ble hydroxide nanoparticles, were previously used to
conquer MRD [279-281]. And co-delivery therapeutics
through nanorobots will be one of the best approaches to
achieve synergistic effects and eliminate hurdles of MDR
in cancer treatments [282].
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Fig. 7 A Relationship between pH gradients and the extent of hypoxic regions in tumors. B Vascular densities and acidity levels in different
regions of a tumor. Modified and reprinted from ref. [292]. Reproduced with permission, Copyright 2021, Springer Nature. C The main components
of the MTB strain MC-1 nanorobot. Modified and reprinted from ref. [293]. Reproduced with permission, Copyright 2016, MDPI, Basel, Switzerland

Nanorobots help resolve tumor hypoxia problem

As a salient pathological feature in TME, hypoxia was
observed in 50-60% of solid tumors, influencing the
cell cycle regulation, apoptosis evasion, stem cell main-
tenance, quiescence, and so on [283, 284]. Hypoxic
adaptation holds a pivotal role in cellular energy metab-
olism, angiogenesis, trafficking and signaling, which
results in difficulties to conventional cancer therapeutic
approaches and enables cancer progression [285-287].
Acute hypoxia in tumor cells contributes to abnormal
angiogenesis, which stimulates an aggressive, metastatic
tumor phenotype, treatment-resistant tumor growth,
thereby reducing overall patient survival [284, 288]. The
remarkably diverse microenvironments in hypoxic tis-
sues provide the potential doorway for suppressing the
effects of nanomedicines via decreased oxygen partial
pressure. Nanorobots display a new hope to the challenge
of hypoxia-induced poor cancer therapy response [181,
289]. Reduced oxygen partial pressure is often treated as
a stimulus for tumor-specific nanoparticles drug delivery.
Hypoxia-induced factors 1 (HIF-1) and other sequences
of HIFs play important roles for cancer cells to adapt to
the hypoxic stress, leading to genetic transformations.
The hypoxic regions of tumors can influence vascular
density, and it means that regions with very low vascular

density often have very low tissue oxygen levels. Based
on the vascular density mathematical model, the extra-
cellular and intracellular concentrations of a drug can be
simulated by considering the binding/dissociation of the
free drug from the cell surface receptors and the uptake
by the cells. Acidic TME is another feature in the tumor
hypoxia domains, which can be utilized as a stimulus for
drug release in the tumor treatment (Fig. 7A) [290, 291].
M. Soltani et al. investigated a pH-responsive nanosized
delivery system based on the extravascular release para-
digm through a developed mathematical model (Fig. 7B)
[292]. In order to develop the therapeutic nanorobots
to be more effective in targeting hypoxic tumor regions,
Martel S et al. [293] selected the magnetotactic bacteria
(MTB) of the MC-1 strain with the ability to seek low
oxygen concentration regions to serve as a candidate
for implementing such a sophisticated cancer-fighting
nanorobot (Fig. 7C). Following computer-based magne-
totactic guidance to reach the tumor area, the self-pro-
pelled, sensory-based and drug-loaded nanorobot can
be guided by a decreasing oxygen concentration toward
the hypoxic regions. In this way, the MC-1 nanorobot can
transport therapeutic payloads to the hypoxic zones of
solid tumors following peritumoral injections.
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Nanorobots for precision surgery

Traditional surgery incorporates no nanosized surgi-
cal tools, which restricts surgical operation in such a
nanoscale. Miniaturized nanorobots are small in sizes
so that they could reach areas inaccessible to commonly
used macro-sized surgical tools, such as catheters or
blades. In addition, they may reduce the risk of infec-
tion and recovery period of time while improving surgi-
cal control and accuracy, and offering major advantages
for high precision tumor-killing surgery. Currently, most
previous studies in the field of robot-assisted surgery
are microrobotic surgeries, which are of considerable
promise in precision surgery and can overcome many
of the above-mentioned limitations [294-298]. Most of
untethered microscale robotic devices are in the cen-
timeter-to-millimeter range. Further miniaturization of
these miniature devices is also under development, such
as microgrippers, microtraps, and microdriller, which
were used for sample collection, tissue penetration, inci-
sion operations, etc. [299-304]. Reports about nanoscale
robotic surgery for cancer treatment at a single cell level
are still very rare. Some application scenarios and stud-
ies about nanorobots for precision surgery were summa-
rized in Table 5. Disregarding the current developments
of microrobots or nanorobots, there is still a long way to
go on the road to precise surgery for cancer treatment.
We believe that the potential of surgical nanorobots for
tumor-killing will be greatly improved upon the devel-
opment of multidisciplinary technologies, the choice of
more advanced propulsion methods, real-time localiza-
tion, and mapping with a more robust control system.

Challenges faced by nanorobots for clinical cancer
treatments

Nanorobotics hold great promise for revolutionizing
cancer treatment by targeting cancer cells more pre-
cisely, reducing side effects, and improving treatment
outcomes. However, numerous challenges remain to be
addressed before nanorobots can be widely adopted for
clinical cancer treatments [151, 315]. This section will
discuss the technical complexity, precision, safety con-
cerns, regulatory issues, funding and resources, as well
as scalability challenges that currently hinder the devel-
opment and implementation of nanorobotics in clinical
cancer treatments.

Technical complexity and precision

Designing and operating nanorobots for clinical can-
cer treatments involves overcoming multiple technical
difficulties, such as developing nanoscale components,
controlling their movements, and ensuring their stabili-
ties. One major issue is the precise control of magnetic
nanorobots through externally applied magnetic fields.
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The complexity of magnetic fields within narrow spaces
and the interference from other electromagnetic waves
make it difficult to achieve fine and precise control of
nanorobots’ motions, which may result in inaccurate tar-
geting of tumor sites and potential harm to the human
tissues/organs [316, 317].

In addition, the body fluid environment at low Reyn-
olds numbers poses further challenges to the working
accuracy and speeds of nanorobots. Interference from
the biological environment may drastically affect the
working accuracy and speeds of nanorobots [318]. Circu-
lating proteins, blood cells and immune cells can interact
with foreign particles leading to retardation in the move-
ments and actions (or even removal) of nanorobots in
blood [319, 320]. A higher power conversion efficiency is
needed to promote the motions and actions of nanoro-
bots in vivo. Different from blood, urine and saliva are
two types of biological fluids that are also needed to be
considered. Catalytic motors driven by diffusion and
electrophoresis will suffer from reduced efficiency and
metal corrosion in both cases.

Safety concerns

The prospect of employing nanorobots in biomedical
applications, particularly in cancer treatments, raises
valid concerns regarding their safety and potential
adverse effects on patients. Malfunctioning nanorobots
could not only harm patients, but also lead to unin-
tended side effects, further complicating the treatment
process. For example, in cases of malignant tumors char-
acterized by poorly developed blood vessels, the deploy-
ment of tubular DNA nanorobots containing thrombin
may prove ineffective, ultimately failing to achieve the
intended therapeutic goals [321, 322].

To address these concerns and ensure the safety and
the efficacy of nanorobots for cancer treatments, a rigor-
ous approach involving thorough preclinical and clinical
testing is essential. Such an approach will help evaluate
the biocompatibility, pharmacokinetics, and pharmaco-
dynamics of these nanoscale devices in various biological
environments. Additionally, implementing robust qual-
ity control measures during the manufacturing process
will be crucial to minimize the risk of device failure and
ensure consistent performance across different batches of
nanorobots [323, 324].

Regulatory issues

The current absence of comprehensive regulations gov-
erning the development and the use of nanorobots may
hinder their widespread adoption by both public and
private sector entities. Establishing appropriate regula-
tory frameworks that can effectively address the unique
challenges posed by nanorobotics, while simultaneously
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promoting innovation and safeguarding public health, is
essential for the successful integration of nanorobots into
clinical cancer treatments [11].

Regulatory agencies should focus on developing guide-
lines that encompass the entire lifecycle of nanorobots,
from design and development to clinical trials and post-
market surveillance. Such guidelines should also include
provisions for collaboration and data sharing among
researchers, industry, and regulatory agencies to ensure
that all stakeholders can contribute effectively to the
development of safe and effective nanorobotic therapies
[325].

Funding and resources

Developing nanorobotics for clinical cancer treatments is
an expensive endeavor that necessitates substantial fund-
ing and resources, as well as specialized equipments and
human expertise. Securing adequate funding for research
and development is paramount to advancing the field
of nanorobotics and overcoming the various challenges
it faces [326]. Government agencies, private organiza-
tions, and philanthropic institutions should collaborate
to provide financial support for research initiatives and
facilitate the translation of research findings into clinical
applications.

Moreover, fostering collaboration among researchers,
industry stakeholders, and regulatory agencies will be
instrumental in expediting the development of nanoro-
botics for cancer treatments. Such collaborative efforts
can help optimize resource allocation, drive innovation,
and ensure that regulatory requirements are met, ulti-
mately accelerating the translation of nanorobotic thera-
pies from bench to bedside [325, 327].

Scalability

Scaling up the development and production of large
numbers of nanorobots for clinical cancer treatments is
a formidable challenge due to the complex and time-con-
suming nature of the manufacturing processes. This scal-
ability issue involves several key aspects that need to be
addressed, including production techniques, cost, quality
control, and supply chain management [328].

Production techniques

Traditional manufacturing techniques are often ill-suited
for producing nanoscale devices. To mass-produce
nanorobots, novel manufacturing methods and technolo-
gies must be developed that can reliably create intricate
nanostructures with high precision. Advances in area
such as self-assembly, 3D printing, and nanolithography
may enable the production of nanorobots on a larger

Page 30 of 45

scale [329, 330]. Additionally, the integration of automa-
tion and machine learning into the manufacturing pro-
cesses could further streamline production, reducing
human errors and increasing overall efficiency.

Cost

The high cost of developing and manufacturing nanoro-
bots is a significant barrier to their widespread adoption.
Reducing the cost of production will require advances in
nanomaterials, as well as improvements in manufactur-
ing efficiency. For instance, the discovery of new, more
cost-effective nanomaterials or the refinement of exist-
ing ones could help lower the overall cost of nanorobots.
Moreover, increased collaboration between research-
ers, manufacturers, and funding agencies can foster the
development of more affordable production techniques
[331, 332].

Quality control

Maintaining high level of quality control during the mass
production of nanorobots is essential to ensure their
safety and efficacy. This entails developing robust testing
and validation protocols to identify potential defects and
ensure that nanorobots meet the necessary performance
standards [333]. Implementing in-process monitor-
ing and real-time feedback systems can further improve
quality control by enabling manufacturers to identify and
address issues more quickly during production.

Supply chain management

As the production of nanorobots increases, so too will
be the complexity of their supply chain. Managing this
complexity will require the development of efficient sup-
ply chain strategies that can handle the sourcing, storage,
and transportation of nanoscale components and mate-
rials. This may involve the establishment of partnerships
between manufacturers, suppliers, and logistics providers
to optimize the flow of materials and ensure timely deliv-
ery of nanorobots to healthcare providers and patients
[334, 335].

Nanosubmarines in blood

As mentioned above, nanorobots are organic combina-
tions of nanomechanical devices and molecular biological
species (e.g., the combination of enzymes and nanogears)
that can act as miniature doctors in biomedical engineer-
ing solving problems that are difficult for conventional
medical devices to solve [19]. Such nanorobots can be
injected into human blood vessels and become molecular
robots operating in the vasculature, which could often be
figuratively described as “nanosubmarine” [214]. These
nanosubmarines derive energy from glucose and oxygen
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dissolved in the blood and are programmed by the physi-
cian to detect any object they encounter through exter-
nal acoustic signals. Molecular nanosubmarines can
perform whole-body health checkups, unblock blood
clots in blood vessels, remove lipid deposits in the heart
and arteries, engulf germs, kill cancer cells, and moni-
tor lesions in the body, bringing a profound revolution in
the diagnosis and treatment of modern medicine. Nano-
submarines can also be used to perform human organ
repair work, such as repairing damaged organs and tis-
sues, completing cosmetic surgery, and performing gene
assembly work, i.e. removing wrong or harmful DNA
from genes, or assembling normal DNA into chromo-
somes to make the organism function normally.

Intelligent nanosubmarine to block tumor blood supply
With an in-depth understanding of the tumor micro-
environment’s biological characteristics, including the
tumor vascular microenvironment and the advance-
ment of nanomedicine carrier construction technol-
ogy, the development of nanosubmarine for cancer
therapy has entered a new stage [336]. According to
the pathological characteristics of different cancers, it
is possible to design individualized functionally inte-
grated intelligent drug delivery nanocarriers with pre-
cise preparation and controlled drug release for precise
regulation of tumor microenvironment, which is also
an important direction in the development of oncol-
ogy nanomedicines. The development and applica-
tions of a new generation of functionally integrated
and highly controllable smart drug carriers, such as
mRNA nanosubmarine [337], DNA nanosubmarine
based on DNA origami technology, provided new
opportunities to realize nanomedicines to address the
in vivo and intratumoral microenvironment in a more
detailed manner [338]. In the field of tumor microen-
vironment regulation, a variety of molecules that are
aberrantly expressed in the tumor vascular microenvi-
ronment could be used as specific targets for targeted
drug delivery, and co-modification of one or more
ligands on the surface of nanoparticles could facilitate
the precise targeting of nanomedicines at specific sites
of tumor vessels [339, 340]. In this section, we reviewed
the important representative advances of smart nano-
submarines in anti-angiogenesis, vascular structure
disruption and vascular embolization, and provide an
outlook on the future development of smart nanosub-
marines in this field, focusing on two strategies: tumor
vascular blood supply blockage and tumor vascular
modulation.
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Anti-vascular nanosubmarine agents

Anti-vascular nanosubmarine agents (AVNAs) could
be divided into angiogenesis inhibitors (Als) and vascu-
lar-disrupting nanosubmarine agents (VDNAs) [341],
of which angiogenesis inhibitors included sorafenib,
avastin, apatinib mesylate, etc., which inhibited tumor
angiogenesis by inhibiting the activity of angiogenic
factors or receptors. VDNAs, such as sorafenib, beva-
cizumab, and lapatinib, inhibited tumor angiogenesis
by inhibiting the activity of angiogenic factors or recep-
tors, while VDNAs, such as Combretastatin A-4 (CA4)
and its derivatives, induced secondary thrombosis by
destroying the structures of existing blood vessels, both
of which ultimately inhibited tumor growth and pro-
gression by blocking the blood supply [214]. However,
most anti-vascular drugs are small molecules or mono-
clonal antibodies, which have inherent disadvantages
such as poor water solubility, rapid clearance, and poor
targeting. Their clinical efficacy and safety need to be
improved by virtue of state-of-art nanotechnologies
[341].

(1) Nanosubmarine with anti-vascular effects. Certain
types of nanomaterials used to construct nanomedi-
cine carriers are inherently anti-vascular, and their
use in anti-tumor drug delivery could synergistically
enhance the anti-cancer efficacy of the drugs while
simplifying the composition of nanomedicines and
making them easier to prepare and apply. The anti-
vascular effects of nanomaterials mainly include
inhibition of angiogenesis and disruption of tumor
vascular structure. Recent studies have found that
gold, silver, copper oxide, cerium oxide, chitosan, and
other nanoparticles have certain inhibitory effects on
tumor angiogenesis, among which gold nanoparticles
have been most intensively and widely studied [342].
Bhattacharya et al. reported that gold nanoparticles
could inhibit the proliferation of human umbilical
vein endothelial cells (HUVEC) induced by vascular
endothelial growth factors (VEGFs) in vitro, suggest-
ing a potential anti-angiogenic effect of gold nano-
particles [343]. They further found that gold nano-
particles could bind to the heparin-binding domain
of VEGF and basic fibroblast growth factor (bFGF)
in a size- and surface electrical-dependent manner,
and competitively inhibit the binding of VEGF to
the receptor VEGFR-2 to achieve the effect of inhib-
iting angiogenesis and tumor growth. In addition,
Seo et al. further enhanced the vasopressor effect of
gold nanoparticles by coupling VEGFR-1 antagonist
peptide via sulthydryl groups on the surface of gold
nanoparticles, taking advantage of the easy function-
alization of gold nanoparticles [344].
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In addition to VDNAs that caused vascular disruption,
nanosubmarines for photodynamic and photothermal
therapy could also directly disrupt tumor vascular struc-
tures by absorbing light energy under near-infrared (NIR)
light irradiation to generate reactive oxygen species
(ROS). It was reported that a gadofullerene nanoparticles
(GENPs) could directly kill cancer cells by energy or elec-
tron transfer process under light illumination [345]. The
GENPs could act on tumor vascular endothelial cells, dis-
rupting the endothelial junctions and thereby destroying
the vascular structure. The anti-cancer effects of GFNPs
in melanoma with rich blood supply were remarkable.
Gao et al. used hollow copper sulfide nanoparticles
loaded with ethylene azide and externally modified with
peptides containing arginine-glycine-aspartate (Arg-Gly-
Asp) sequence (RGD peptides) to prepare a “nano-bomb”
targeting at tumor blood vessels [346]. Under the excita-
tion of NIR light, the heat generated by copper sulfide led
to the rapid production of large amounts of N, gas, which
blasts nearby tumor blood vessels and induced necrosis
of surrounding cancer cells, resulting in complete regres-
sion of tumors in a single dose in a mouse subcutaneous
transplantation cancer model without recurrence within
30 days’ follow-up, showing strong anti-cancer efficacy
[346].

(2) Nanosubmarine to improve anti-vascular efficacy.
A variety of nanosubmarine have been used for the
delivery of anti-vascular drugs. Anti-vascular nano-
submarine exhibited strong stability, long circula-
tion time, and exhibiting tumor-targeting ability,
which ultimately manifested itself in the anti-cancer
effects of increased efficiency and reduced toxicity.
Zhang et al. used the internal porous structure of
mesoporous silica nanoparticles (MSNs) to efficiently
load bevacizumab, a VEGF antibody drug, and cou-
pled cancer endothelial marker 1 (CEM1) monoclo-
nal antibody on the surface of MSNs via a coupling
reaction between the carboxyl group and the amide
moiety in the antibody to achieve the tumor vascu-
lar targeting ability. The coupled CEM1 monoclo-
nal antibody could specifically direct MSNs to the
blood vessels of ovarian tumor sites, and signifi-
cantly reduced the toxicities of MSNs to other nor-
mal tissues [347, 348]. Based on the local high level
of glutathione (GSH) in the tumor tissues, Liu et al.
synthesized a novel GSH-responsive polyethylene
glycol (PEG)-based poly(alpha lipoic acid) (PALA)
nanocarrier, to which CA4 was bonded ot the sur-
face of the nanoparticles via the PEG chain [349,
350]. When PALA reached the tumor site, the high
level of intra-tumor GSH reduced the disulfide bond
in PALA, resulting in the degradation of the polymer
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and subsequent in situ release of CA4, which had
strong anti-cancer activity without causing systemic
toxicities. This study was the first to achieve tumor
site-selective delivery of vascular-disrupting agents
using simple nanosubmarines. Gao et al. designed a
cationic lipid-coated poly(lactic acid)-hydroxyacetic
acid copolymer (PLGA) nanosubmarine based on
the phenomenon that sorafenib to conquer drug
resistance in hepatocellular carcinoma by activat-
ing the stromal-derived cytokine-1a/C-X-C motif
chemokine receptor 4 (SDF1a/CXCR4) axis [351].
The inner PLGA nanosubmarines carried sorafenib
via hydrophobic interaction, and the outer cationic
lipid layer could adsorb AMD3100 (CXCR4 antago-
nist) by electrostatic interaction, which impart the
tumor site-targeting properties to the material while
blocking CXCR4 activity. This nanosubmarine could
deliver sorafenib specifically to the tumor site and
restore the sensitivity of hepatocellular carcinoma
cells to sorafenib, demonstrating the potential of
CXCR4-targeted nanoparticles for clinical applica-
tions in delivering sorafenib specifically to the tumor
site and overcoming acquired drug resistance in
hepatocellular carcinoma [351].

Cancer vascular embolization nanosubmarine

In 1997, Huang et al. [352] employed a novel approach to
deliver the extracellular region of tissue factor to tumor
vascular sites using antibodies that targeted at the MHC
II, with the goal of inducing tumor intravascular throm-
bosis and cutting off the tumor’s blood and nutrient sup-
ply, effectively “starving” the tumor tissue. This approach
showed several key advantages over traditional cell-based
anti-cancer therapies. Firstly, it was capable of induc-
ing the death of a significant number of cancer cells in
a tumor within a short time frame. Secondly, it did not
require direct contact with the cancer cells, thus reduc-
ing issues associated with drug delivery to the tumor tis-
sues. Finally, it was less likely to induce drug tolerance of
cancer cells. Since then, various tumor-targeting nano-
materials have been developed to connect tissue factor
extracellular regions and deliver various cytokines to the
tumor site, such as L19, NGR, VEGF, chTNT-3, VCAM-1
and RGD. They have demonstrated promising thera-
peutic effects in animal models [353]. To date, the only
cancer vasoembolic protein drug that has entered clini-
cal trials is tTF-NGR [354]. This is likely due to the non-
specific embolism that occurs as a result of direct contact
between the tissue factor fusion protein and blood after
entering the body, which may cause serious toxicity.
In order to address these limitations and safely deliver
thrombin to the local tumor site, researchers are seeking
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new strategies that can intelligently identify the tumor
vasculature and perform specific embolization.

(1)

Smart DNA nanosubmarine loaded with thrombin.
In response to the non-druggable nature of throm-
bin and its transport dilemma, Li et al. developed
a series of DNA nanorobots that could efficiently
deliver thrombin to a tumor site, and release it in
response to molecular signals from the tumor
microenvironment [212]. These nanosubmarines
were constructed from rectangular lamellar nano-
structures using a single strand of M13 phage
DNA as a template and multiple complementary
short strands. Thrombin was immobilized on the
upper surface of the nanostructures by modify-
ing the DNA and hybridizing it with complemen-
tary DNA sequences. The nanosubmarines were
designed with multiple pairs of “latch” structures
on both sides that could be triggered to convolute
the structure into a tubular form and encapsulate
the thrombin inside. To ensure precise tumor vas-
cular localization, the nanosubmarines were loaded
with tumor-targeting nucleic acid adaptor AS1411
at both ends, which specifically targeted at nucleo-
lin protein, a marker of tumor vascular endothe-
lial cells [212]. When the DNA nanosubmarine
reached the tumor vasculature, the double-stranded
part of the "latch" sequence responded to the rec-
ognition of nucleolin and underwent a structural
transformation, opening the nanosubmarine and
exposing the thrombin, thus triggering the coagula-
tion cascade and inducing thrombosis at the local
tumor site. The results of protein and cellular level
experiments showed that when the nucleophosmin
was encountered by the nanosubmarine, it under-
went structural deformation to expose the throm-
bin, leading to thrombus formation [212]. In vitro
and in vivo stability studies demonstrated that the
DNA nanosubmarines maintained their structural
stability and thrombin activity quite well [212]. The
nanosubmarines were successfully delivered to the
tumor site in tumor-bearing rats, inducing throm-
bus formation in a variety of tumors including lung,
ovarian, melanoma, and breast cancer. The appli-
cation of DNA nanosubmarines for in vivo tumor
embolization using non-druggable thrombin repre-
sents a major breakthrough in the field [212].

Novel nanoembolic submarines. Solid or lig-
uid embolic agents used in clinical transarterial
chemoembolization (TACE) often result in tumor
revascularization or collateral circulation due to
poor flow and absorption degradation [355, 356].
Temperature-sensitive polymeric nanogels with
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three-dimensional nano-networks have been used
to solve the problem of existing tumor vascular
embolization agents. The temperature-sensitive
sol—gel phase transition allows the polymeric gels
to flow freely through the catheter and respond
to temperature changes after entering the blood-
stream, forming a high-strength hydrogel network
to embolize tumor vessels. The high drug loading
capacity, controlled drug release, and the ability to
integrate diagnostic reagents have further expanded
the scope of the application of nanogels [357].
Several novel nano-embolic submarines that can
block tumor vasculature in response to structural
changes in the tumor microenvironment or spe-
cifically induce tumor vascular embolization have
further broadened the idea of embolization therapy.
Agemy et al. used the procoagulant effect of iron
oxide nanoubmarines to design and synthesize a
superparamagnetic iron oxide “nano-bug” coupled
to two tumor-homing peptides (CRE KA and CRK-
DKC), which induced a broad coagulation response
in the tumor vasculature without affecting normal
blood vessels, effectively reducing tumor blood
supply and inhibiting tumor growth [358]. Zhang
et al. designed dual-responsive laminin mimic pep-
tide (LMMP)-based nanosubmarines with both
pH-responsive His6 sequence, tumor microthrom-
bus-targeting peptide CREKA and fibril-forming
sequence KLVFE, and the intravenously injected
nanoparticles were enriched to the tumor site by
CREKA. The His6 sequence responded to the acidic
tumor microenvironment and thus underwent
charge and molecular conformational changes,
causing the laminin mimic peptide (LMMP) mol-
ecule to change from hydrophilic to hydrophobic,
mimicking the process of fibril formation by natu-
ral laminin, forming a fibrous network in the tumor
vasculature, blocking the tumor vasculature and
inhibiting tumor growth [359]. Nanoembolic sub-
marines mainly block tumor blood vessels through
their structural changes, and do not cause the natu-
ral coagulation cascade reaction in the organism, so
they have higher safety as compared with delivered
coagulation factors, but also reduce the efficiency of
local thrombosis and the permanence of emboliza-
tion, how to balance their safety and efficacy needs
to be further studied.

Nanosubmarine for tumor vascular property modulation
Tumor vasculature is characterized by structural imma-
turity and high permeability, resulting in spatial and
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temporal heterogeneity of the blood flow in the tumor
hypoxia domains, and increased interstitial fluid pres-
sure, which are the main reasons for the ineffective
enrichment of drugs in the tumor tissue during clinical
treatment [360]. In addition, normalized tumor vascu-
lature restores a certain degree of perfusion capacity,
which increases drug delivery and thus enhances thera-
peutic efficacy [360, 361]. In addition, the enhanced
permeability and retention (EPR) effect is the main way
of nanomedicine accumulation in tumor sites. The EPR
effect varies greatly among different tumor sizes and
types [362]. Modulating the effect of EPR by regulating
tumor vascular permeability to increase the penetra-
tion of nanomedicine has become one of the research
focuses in oncology nanomedicine.

Tumor vascular permeability modulation by delivering
nitrogen oxide (NO) donors

As a natural vasodilator, nitrogen oxide (NO) is one of
the most commonly used regulators of tumor vascular
permeability, and its donors increase blood flow by dilat-
ing blood vessels, thereby increasing the accumulation
of drugs (especially nano drugs) in tumor tissues [361].
However, NO donors have a very short half-life and low
stability and are prone to release NO in the physiologi-
cal environment, leading to adverse reactions, largely
limiting their clinical applications [363]. To address
such problems, various nanosubmarines based on like
liposomes, silicon dioxide, metal oxides, and polymeric
nanoparticles have been used to deliver NO donors by
controlling the behavior of nanocarriers to achieve spatial
and temporal specific release of NO [363, 364]. NONO-
ate is a commonly used NO donor that releases NO by
protonation-induced self-decomposition under physi-
ological conditions [365]. Tahara et al. used liposomes
loaded with NONOate and enhanced its stability with
an alkaline buffer inside the liposomes, while NONOate
entering the acidic tumor microenvironment acceler-
ated the decomposition of NO production and achieved
the continuous release of NO in the tumor site without
increasing NO in the blood, effectively dilating the tumor
vasculature, and ultimately the accumulation of NON-
Oate-laden liposomes in the tumor site was two times
higher than that of empty liposomes [365]. The final
accumulation of NONOate liposomes at the tumor site
is two times higher than that of empty liposomes [365].
However, although the use of liposomes to encapsulate
NO donors significantly enhances their stability. Lipo-
some leakage may lead to the nonspecific release of NO
from the blood environment due to the lack of stability
of liposomes themselves, and the development of highly
biocompatible and biodegradable polymeric carriers
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may expand the clinical application of NO donors in the
future [366].

Normalization of tumor vasculature using nanosubmarine
Theoretically, normalization of tumor vasculature can be
achieved by restoring the balance between pro- and anti-
angiogenic signals, for example, by adding angiogenic
inhibitors (e.g., endothelial inhibitors) or interfering with
pro-angiogenic signals (e.g., angiogenic inhibitors) [367].
Li et al. used AuNPs to deliver rhES-AuNPs. rhES-AuNPs
were passively accumulated at tumor sites through the
EPR effects, prolonging the circulation time of rhES and
increasing its aggregation at tumor sites. The combina-
tion with the chemotherapeutic agent 5-fluorouracil
(5-FU) increased the delivery of 5-FU to a tumor site,
showing a significantly stronger tumor suppressive effect
than 5-FU monotherapy, and significantly prolonged the
survival of mice [368]. As compared to free endothelial
inhibitors, rhES-AuNPs have a longer action time to
induce vascular normalization [368, 369]. Since existing
drugs can only induce temporary tumor vascular nor-
malization, this extended action time window is of great
importance for clinical application. Therefore, the use of
nanosubmarines to deliver vascular normalization induc-
ers can not only overcome the inherent defects of drugs,
but also facilitate the combination with other therapies.
However, cancer vascularization may have different
effects on nanoparticles that are themselves accumulated
at the tumor site by EPR-dependent effects, i.e., improv-
ing the delivery of small size (around 10 nm in diameter)
and hindering the delivery of larger size (around 100 nm
in diameter or larger) nanoparticles [370]. Therefore, the
size range of nanosubmarines needs to be carefully con-
trolled when combining tumor vascularization strategies
with other therapies.

Directions and criteria for nanorobots in clinical
cancer treatments

Technical reform of the current medical systems has
attracted much attention from the nanomaterials and
oncology societies. As the economy keeps growing, peo-
ple are paying more attention to the healthcare. Many
cancers are hard to diagnose at early stages, resulting in
poor survival rates. More accurate and efficient medi-
cal diagnosis means are highly desired. Development of
novel theranostic tumor-detecting or killing nanorobotic
tools has become an important direction in the field of
cancer treatments. Further clinical trials directly per-
formed on cancer patients in the future can testify the
efficacies of nanorobots in anti-tumor therapies. Current
studies on tumor-detecting or killing nanorobots, how-
ever, are still in their infancy stage, and there is still a long
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way to go before being implemented in clinical practices.
Significant future efforts are needed to promote nanoro-
bots from animal model experiments to living human
organisms. Without a doubt, many factors are essential
to the development of nanorobots in clinical surgery of
living bodies, including the advancement of safer mate-
rials with better biocompatibility and degradability, the
advancement of higher power conversion efficiency, and
other advancements in the key foundation of nanorobots.

In order to achieve widespread adoption in clinical
practices, medical nanorobots designed for cancer treat-
ments must meet several key criteria. The following pre-
requisites are the primary requirements that a medical
nanorobot must fulfill:

(1) Medical safety assurance/requirements ensuring the
safety of medical nanorobots is of utmost impor-
tance for their successful integration into clinical
practices. Rigorous preclinical and clinical testing
must be conducted to evaluate the safety, biocom-
patibility, and potential side effects of nanorobots.
Furthermore, the development of robust quality
control measures during the manufacturing process
is essential to minimize the risk of malfunctions and
ensure consistent performance. Nanorobots should
also be designed to be biodegradable or be easily
removed from the body once their therapeutic pur-
pose is completed, preventing long-term accumula-
tion and potential toxicity.

(2) Biological wmimicry. Future nanorobots should
emulate the natural intelligence of their biological
counterparts, enabling precise control, high mobil-
ity, deformable structures, adaptive and sustain-
able operations, swarm-intelligent group behavior,
complex functionality, and even self-evolutionary
and self-replicating capabilities. This will allow for
better adaptation to the human body and enhanced
treatment efficacy.

(3) Swarm intelligence. Advancing the swarm intel-
ligence of nanorobots toward group motion plan-
ning, machine learning, and AI toolbox at the
nanoscale is crucial for enhancing their capabilities
in precision treatments [371-373]. This will enable
coordinated actions and increased adaptability in
complex biological environments.

(4) Integration with modern bioimaging and feedback
control systems. Future biomedical operation of
nanorobots should be capable of coupling with
modern bioimaging and feedback control systems
for arbitrary four-dimensional navigation of many-
nanorobot systems. This may enable the clustering
and closed-loop feedback control of nanorobots
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within a living body, ensuring precise targeting and
monitoring of treatment progress.

(5) Cutting-edge nanotechnologies. New, innovative
nanotechnologies are needed to propel nanoro-
bots to the next level and enable cooperation with
the latest advances in cancer medicine. For exam-
ple, by attaching different types of biomolecules
to nanorobots as guides, nanorobots can target
specific cells, such as immune cells, to stimulate
immune responses [18, 374-376]. This could inspire
advances in cancer immunotherapy and further
improve treatment outcomes.

(6) Financial feasibility. In order to achieve lab-to-
clinic transition, financial costs must be considered.
Governments worldwide should support research
into nanorobots for cancer treatments, and pro-
mote the further development of this novel medical
robot nanotechnology. Simultaneously, costs should
be controlled to favor the translation of advanced
nanotechnology into the market and clinical use,
making these treatments accessible to a broader
patient population.

Perspectives and conclusions

As described above, the development and application of
nanorobots in cancer treatment are becoming a vigorous
research area. To realize the full potential of nanorobots
in the field of cancer treatment, material and Al scientists
should work closely together with medical researchers for
thorough investigations of the behaviors and function-
alities of nanorobots, including drug delivery, targeted
therapy, minimally invasive surgery, tumor detection and
early diagnosis, and other advanced nanorobot-assisted
comprehensive treatments. Considering the promis-
ing results achieved recently in both in vivo and in vitro
experiments, scientists should look into the demands and
the needs/challenges of oncology medical doctors, and
design cancer-oriented medical nanorobots/nanosubma-
rines for specific diagnostic or therapeutic purposes to
accelerate the translation of nanorobots/nanosubmarines
cancer research to real-world clinical uses. We believe
that using nanorobots as an integrated platform for mul-
tiple aims in different anticancer domains will soon be
realized in the future.

The attainment of effective treatment for cancer
through applications of nanomedicines necessitates the
successful crossing of a vascular barrier of micron scale
in order to exert therapeutic effects. Despite the high
targeting efficiency demonstrated by actively targeted
nanomedicines on cancer cells in vitro, the heterogene-
ous nature of the tumor microenvironment presents a
challenge to their efficacies in vivo [336]. On the other
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hand, direct exposure of the vascular endothelial cells to
the bloodstream offers convenient opportunities for tar-
geted recognition and function of nanomedicines aimed
at tumor blood vessels [377]. However, further optimiza-
tion of the specificity of the relevant targets and tumor
microenvironmental responses is imperative. The trans-
lation of experimental nanorobots/nanosubmarines into
the clinical arena is limited by the complexity and het-
erogeneity of tumor biology, the lack of comprehensive
understanding of nanomaterials-biology interactions,
and the absence of scalable synthesis and mass produc-
tion technologies for nanorobots/nanosubmarines [378].
The utilization of DNA nanotechnology in the form of
DNA origami for thrombin delivery highlights the poten-
tial of precision drug delivery, yet substantial challenges
such as immunogenicity, in vivo metabolic behavior, and
large-scale production must be overcome before clinical
implementation [379]. In the future, it is crucial to inves-
tigate the mechanisms of interactions between nanoro-
bots/nanosubmarines and proteins/cells/tissues/organs
in greater depths, regulate drug uptake through modu-
lation of relevant target molecules, and prioritize the
selection of nanomaterials with established biosafety and
clear in vivo metabolic behavior. In addition, advanced
preparation methods and characterization systems are
imperative for the broadening of the clinical applications
of nanorobots.

In the future, simple structured medical nanorobots
are expected to evolute and become more sophisticated
and capable of performing multiple medical functions
and tasks, ultimately becoming true nanosubmarines in
the bloodstream.
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