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Abstract: With the rapid proliferation of cyber-physical systems (CPSs) in various sectors, including
critical infrastructure, transportation, healthcare, and the energy industry, there is a pressing need
for robust cybersecurity mechanisms to protect these systems from cyberattacks. A cyber-physical
system is a combination of physical and cyber components, and a security breach in either component
can lead to catastrophic consequences. Cyberattack detection and mitigation methods in CPSs involve
the use of various techniques such as intrusion detection systems (IDSs), firewalls, access control
mechanisms, and encryption. Overall, effective cyberattack detection and mitigation methods in CPSs
require a comprehensive security strategy that considers the unique characteristics of a CPS, such
as the interconnectedness of physical and cyber components, the need for real-time response, and
the potential consequences of a security breach. By implementing these methods, CPSs can be better
protected against cyberattacks, thus ensuring the safety and reliability of critical infrastructure and
other vital systems. This paper reviews the various kinds of cyber-attacks that have been launched or
implemented in CPSs. It reports on the state-of-the-art detection and mitigation methods that have
been used or proposed to secure the safe operation of various CPSs. A summary of the requirements
that CPSs need to satisfy their operation is highlighted, and an analysis of the benefits and drawbacks
of model-based and data-driven techniques is carried out. The roles of machine learning in cyber
assault are reviewed. In order to direct future study and motivate additional investigation of this
increasingly important subject, some challenges that have been unaddressed, such as the prerequisites
for CPSs, an in-depth analysis of CPS characteristics and requirements, and the creation of a holistic
review of the different kinds of attacks on different CPSs, together with detection and mitigation
algorithms, are discussed in this review.

Keywords: cyber-attack; cybersecurity; cyber-physical systems; detection

1. Introduction

Since the beginning of the millennium, there has been an exponential increase in the
use of the modern computer for different forms of computation at any given time and place.
Currently, many different fields of computation are focusing on cyber-physical systems
(CPSs) to increase reliability, resilience, and the safety of physical processes [1–3]. A CPS
involves the combination of several areas of science and engineering to achieve a unified
task [4]. One of the widely used definitions of a CPS is the “integration of calculation
and physical process, which involves embedded computers, network monitoring and
controlling the physical process”. The physical processes are usually engineering processes
in systems such as bio-medical systems, defense systems, electrical power systems, process
control in chemical and mechanical engineering systems, and transportation systems [5–9].
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A cyber system often involves 3C technology (communication, computation, and control)
with a feedback loop to the physical system. With a feedback loop, real-time commu-
nication, usually two-way, is achieved to monitor and control the physical system in a
safe and reliable way. Generally, a CPS has actuators, sensors, and other communication
links/protocols that interface with the physical system. They are mostly supervised by
a supervisory control and data acquisition (SCADA) system or other dedicated control
centers [10,11]. A SCADA system oversees the high-level management and control of the
CPS. In early SCADA systems, communication was usually between a few devices via
telemetry, which allowed for regulated access to information between linked devices in a
CPS [12]. These SCADA systems were known as “monolithic” SCADA systems because
of the closed communication network that was usually adopted [13,14]. As the use of the
internet has increased in recent years, “networked” SCADA systems were developed. A
networked SCADA system can be hosted on local area networks (LANs) or wide area
networks (WANs) to exploit information technology (IT) for dedicated communication [15].
For example, in smart grids, for a typical CPS, measurements such as voltage, current, and
frequency are collected from physical plants by the sensors and transmitted via remote
terminal units (RTUs) to the SCADA system that hosts various control architectures; signals
are sent back to different actuators in the physical plant for efficient and safe operation [16].
A CPS involves a heterogeneous integration of subsystems with physical and network
characteristics. The open communication structure of a CPS allows for tampering, falsifica-
tion, delay, invasion, and other kinds of attack on the data transmission that may affect the
physical operation of the system [17–19]. These cyber-attacks are a major concern in terms
of the safety, reliability, resilience, and security of a CPS. The impacts of an attack on a CPS
can range from service disruption and theft, to equipment damage and information theft,
as well as, in more severe cases, the loss of lives.

Over the years, several kinds of attacks have been successfully launched on various
CPSs. The passport control system at the Istanbul Ataturk airport was attacked by hackers,
which led to the delay and cancellation of flights [20]. The David–Besse nuclear plant in
Ohio was attacked by the Slammer worm from a contractor’s system. The worm initiated
a denial of service attack on the control system. The impact of the worm led to the
deactivation of the safety and protection devices for about 6 h [21]. In 2007, the code-named
“Aurora” attack was launched on a generator control system. This led to the continuous
tripping of the protection devices, which caused a loss of synchronization between the
generator and grid. It was reported the Aurora attack caused an explosion at the generator
that was valued at $1 million [22]. Another successful cyber-attack with significant impact
is the Ukraine attack that caused a major blackout affecting over 220,000 customers for
several hours [23]. In 2009, two industrial control systems—Pacific Energy Resources,
California, and Energy Future Holdings, Texas—were attacked by two ex-staff members.
They attacked the leak detection system of the marine oil plant and energy forecast system
of the nuclear plant, respectively [24]. In 2012, Aramco, Saudi Arabia, and RasGas, Qatar,
were attacked by malware that caused significant disruptions in the generation of energy
and affected business processes. An attack on a SCADA-based water CPS that caused
usual behaviour in the system is reported in [25]. The attack affected the pump and
caused a denial of service of the central control system. Even after the control software was
reinstalled, the pumps continued to change their configurations erratically until an engineer
discovered that it was a cyber-attack carried out about three months after the initial attack
was launched by the attacker [24]. For health-based CPSs, attacks can be programmed
on devices such as pacemakers, neurostimulators, and other embedded computers that
can be programmed wirelessly [26]. It was demonstrated that implantable defibrillators
can be reconfigured without permission. In 2009, an employee of the Carrell Clinic, Texas
installed malware that granted remote access to the control of the heating, ventilation, and
air conditioning (HVAC) system of the clinic [26]. Several other attacks have been reported
in the transportation and defense sectors [27].
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These cyber-attack incidents have alerted governments to the severe impacts of these
attacks. Thus, various ways to ensure the security of CPSs have been enacted. For example,
the National Institute of Standards and Technology (NIST) provides regulation for the secu-
rity of cyber systems [28,29]. Additionally, the International Society of Automation (ISA)
provides the regulation for cyber-based industrial process control systems [30]. Researchers
continue to investigate the various loopholes in modern CPSs that make them vulnerable
to cyber-attacks. This begins with the identification of attacks, then moves forward to
impact assessments of the identified attacks, and concludes with mitigation strategies for
these attacks. While several reviews have been conducted in the areas of cyber-attacks and
CPSs, they do not provide a holistic review of the different kinds of attacks on different
CPSs, together with detection and mitigation algorithms. To fill this gap, this review article
presents a survey of cyber-attacks on various CPSs, the implementation of these attacks
from a hacker’s perspective, and defense (detection and mitigation) strategies from the
defender’s perspective.

A comprehensive literature search method was adopted in this review. The keywords
“Cyberattack” and “ Cyber-physical systems” were used to carry out the initial search on
Google Scholar to obtain articles that were not necessarily reviewed, which including jour-
nal and conference papers. Other journal and conference databases, such as IEEE-Xplore,
Science Direct, Web of science and Researchgate, were searched for peer-reviewed journal
and conference papers and other specialized publications. The initial search returned
3200 articles; the articles that were returned were screened using titles not related to the
subject and articles not written in English, thereby excluding 258 articles. Some web pages
and duplicates were further eliminated, thereby excluding 278 articles. Further elimination
based on dates was carried out; the year range of choice was 2013–2023, and the total
number of relevant articles for review was 169.

The remainder of this paper is organized as follows: Section 2 discusses the basic
features and requirements of a typical CPS; in Section 3, cyberattack detection, mitigation,
and strategies are presented; Section 4 provides attack implementation and mitigation from
an industrial perspective; Section 5 discusses the current challenges and future directions
in CPS security; and Section 6 provides the conclusion.

2. Cyber-Physical Systems: Characteristics and Requirements

As previously mentioned, CPSs are an integration of physical systems with a cyber
system to create a heterogeneous system. The cyber components of the CPS guarantee the
intelligent, secure, resilient, and safe operation of the physical system. Nowadays, most
CPSs are internet enabled and use an open-access communication network [31]. This open
communication network characteristic make them highly vulnerable to cyberattacks and
other malicious activities. The actuators and sensors in the physical system receive and send
signals or measurement data from the SCADA system, control centers, and distributed con-
trollers for real-time monitoring and control [32]. In this section, the essential characteristics
or requirements of CPSs are discussed, because they are the targets for attackers.

2.1. Safety

Safety is essential, and it is one of the most important features of a CPS. The safe failure
fraction (SFF) is defined by IEC 61508 as a confirmation of safety-related system fail-safes.
This decides the safety integrity level (SIL) for safe operating functions using a risk-based
approach [33]. IEC 61508 is regarded as a basic safety standard for the industry. Other
standards were developed using risk acceptance, risk analysis, and hazard criteria (such
as ISA 84/IEC 61511) and are in operation [34]. The intra-relationships within the CPS,
the inter-relationships between the CPS and the environment, and the inter-relationships
between the CPS and the users, are the root causes of safety issues [35]. Safety in a CPS is
assessed by identifying assets, analyzing vulnerabilities, and measuring and evaluating
probable damage [33].
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2.2. Availability

The availability requirements ensure that only authorized users and systems have
access to certain CPS features at all times. For a CPS, the availability of measurement data
and signals from the control systems, the actuators in the physical plant, and the operator’s
room, including the communication devices, is important. Availability may be controlled
more strictly compared to IT systems, where delays may have minor consequences. In
CPSs, a delay in the availability of data may be as a result of a successful attack on the
system [30].

2.3. Integrity

Integrity refers to the authenticity of the data and information that are being routed to
the CPS. The transmitted data or message should be trustworthy and without compromise
from unauthorized or malicious systems or users. The violation of data integrity in a CPS
poses a threat to the safety of the the physical system or its environment [36,37]. The risk of
data manipulation in a CPS is high; thus, some CPSs, such as those using smart grids, use a
bad data detection scheme to ascertain the integrity of measurements, such as voltage and
frequency, received from the power system.

2.4. Security

The security requirement of CPSs is very important, because the cyber system in a
CPS structure represents the vulnerability of the entire system to malicious activities. CPS
cybersecurity has been identified as a critical issue that must be continually addressed to
ensure a secure and safe system. The NIST [38], ISA [39], National Infrastructure Protection
Plan (NIPP), and IEEE 1402 [40,41], are amongst the several organizations working on the
continuous development of the security requirements of CPSs.

2.5. Timeliness

Based on the real-time operation of CPSs, it is important that the data and information
are generated and transmitted in real-time for the system to function properly [42]. Delay in
the transmission and processing of data in a CPS can have varying degrees of consequence
in a CPS.

2.6. Confidentiality

The confidentiality requirement in a CPS refers to the protected access of information
only to authorized systems or users [36]. In IT systems, confidentiality in achieved by
encrypting or protecting the information with passwords or security keys by the sender, and
only authorized or dedicated systems can successfully decrypt the information. However,
in a CPS, since the timeliness of data is a crucial requirement, the encryption and decryption
processes do not take precedence over data availability. Therefore, methods to protect the
transmitted data from external parties without compromising timeliness in the CPS are
active areas of research.

2.7. Authentication and Authorization

The authorization requirement refers to prohibiting access to intruders or unauthorized
persons to the system. In a CPS, authorization differentiates legal and illegal access to
other CPS requirements such as data integrity, confidentiality, and availability. However,
authentication refers to the process to ascertain the legitimate identity of the different
communication agents within the CPS [43].

3. Cyber-Attack Detection and Mitigation Methods

Various techniques for detecting and mitigating cyber-attacks have been reported.
Existing detection techniques may be categorized broadly as model-based detection or data-
driven detection schemes, as illustrated in Figure 1. On the basis where state estimation
is used in the detection process, model-based detection techniques may be divided into
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estimation-based and estimation-free approaches. In this section, the various model-based
detection approaches are reviewed.

Figure 1. Classification of attack detection techniques.

3.1. Model-Based Methods

A system is often described using a state–space form when using model-based method-
ologies. Methods that are based on estimation are used in order to monitor the status of
the system and provide analytical redundancy for the purpose of attack detection [44].
The most recent advancements in the following methods are surveyed and include the
following: (1) the Kalman Filter (KF) [45,46]; (2) the Sliding Mode Observer (SMO) [47,48];
and (3) the Unknown Input Observer (UIO) [49,50].

3.1.1. Kalman Filter (KF)-Based Methods

The Kalman filter (KF) is an iterative mathematical process that executes an optimal
predictor–corrector-type estimator by minimizing the estimated error covariance when
certain presumptive requirements are satisfied. There are numerous attack detection
algorithms that are derived from the standard KF; these include, but are not limited
to, the following: an extended Kalman filter (EKF); an unscented Kalman filter (UKF);
an adaptive Kalman filter (AKF); and a constrained Kalman filter (CKF). The literature
indicates that hybrid implementations of these methods have been successful. To detect a
false data injection attack (FDIA) in a power system CPS, a novel attack detection approach
was reported in [51]. This used integrated model-based and data-driven methods. The
proposed model implemented the AKF and convolutional neural networks (CNN). As
a consequence of the capability of attackers to execute an FDI attack at any location in
the system, a study [52] analysed the performance of a system under the risk of potential
FDIAs on sensors, actuators, and physical systems, both individually and in their combined
locations. The study considered the following seven attacks:

1. Compromised actuator;
2. Compromised physical system;
3. Compromised sensor;
4. Compromised actuator and physical system;
5. Compromised actuator and sensor;
6. Compromised physical system and sensor;
7. Compromised actuator, physical system, and sensor.

The impact on the security of the system under the above-mentioned attacks was
analyzed. The system was modelled as a discrete linear time-invariant system with white
Gaussian noise. The system incorporated both an attack detector in the form of a chi-
square detector and a KF as a state estimator. A chi-square detector can reliably identify
DoS attacks and other random attacks. The process measurements are sent to the system
estimator equipped with a chi-square (x2 − detector), and the output of the estimator
provides input to the physical system. Simulation results have indicated the attacker’s
ability to generate errors that are bounded in certain scenarios, while in other cases, the
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errors can be unbounded. The effectiveness of the model was demonstrated by comparing
the results with those of previous studies [53–56].

The process state and measurement of the KF-based system can be described as follows:{
xk+1 = Akxk + Bkuk + wk

yk = Ckxk + vk.
(1)

The process state vector is xk, where k ∈ N is the time step. xk ∈ Rn, uk ∈ Rp, and
yk ∈ Rm are the state, control variable, and measurement vectors, respectively. wk is
the process noise, and vk is the measurement noise, which is white Gaussian noise with
covariances Q and R that satisfy the requirements E[wkwT

j ] = δkjQk, E[vkwT
j ] = δkjRk,

E[wkvT
j ] = 0 and ∀k, j ∈ N. The time update using the KF is given by the following:{

x̂
′
k |k−1 = Ak x̂

′
k |k−1 + Bkû

′
k |k−1

Pk |k−1 = AkPk−1 AT
k + Qk.

(2)

The state estimation is updated using the following:Kk = Pk |k−1CT
k

(
CkPk |k−1CT

k + Rk

)−1

x̂
′
k = x̂

′
k |k−1 + Kk

(
yk − Ck x̂

′
k |k−1

)
Pk = (I − Kk)Pk |k−1,

(3)

where x̂
′
k |k−1 is the prior estimate of the system at the time step k with the error covariance

Pk |k−1. Kk is the KF gain, x̂
′
k is the posterior estimate, and Pk is the error covariance. The

residue signal ẑ
′
k and the state estimation error e

′
k are defined by the following:

ẑ
′
k , y

′
k − Ck x̂

′
k |k−1 (4)

e
′
k , x

′
k − x̂

′
k. (5)

Considering a steady-state KF where Pk |k−1 and Kk are constants, the error covariance
matrix and KF gain are computed as follows:

Pk , lim
k→∞

Pk |k−1 (6)

Kk , PkCT
k

(
CkPkCT

k + Rk

)−1
. (7)

In the steady state, the value of Pk is obtained by solving the discrete-time Riccati
equation [52,57]. Consequently, the estimated state equation can be rearranged to yield
the following:

x̂
′
k+1 = Ak x̂

′
k + Bkû

′
k + Kk

(
y
′
k+1 − Ck

(
Ak x̂

′
k + Bû

′
k

))
(8)

x̂
′
k+1 = Ak x̂

′
k + Bkû

′
k + Kkz

′
k+1. (9)

The estimated state is sent to the controller to optimize the cost function, which is
determined by the following equation:

J = min lim
T→∞

1
T

E

[
T−1

∑
k=0

(
x
′T
k G
)

x
′
k + u

′T
k Hu

′
k

]
, (10)
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where G and H are positive weight matrices [58], and u
′
k is the controller output. The

controller gain can be calculated from the following:

L = −
(

BT
k FBT

k + H
)−1

BT
k FAT

k , (11)

where F is the solution of the Riccati equation, which is defined as follows:

F = G + AT
k FAk − AT

k FBk

(
H + BT

k FAT
k

)
. (12)

Finally, the x2 detector is used for FDIA detection. In the absence of an attack, the
system residue has a zero-mean and covariance defined as (CkPkCT

k + R). A threshold
value of n > m is given as input to the detector, where its computation yields the degree
of freedom, and E[z

′T
k ∑−1

z z
′
k = m]. In the absence of an attack, the value of x2 is greater

than n; otherwise, the value of x2 is less than n. With the proposed model, seven different
FDIA were detected, which demonstrated the effectiveness of the proposed model. The KF
and the x2 detector were used in [59] to investigate the performance deterioration of CPSs
confronted by stealthy FDIAs.

There is no doubt that the hybrid detection method of the KF and detector is an
effective technique of attack detection; however, in [60], the KF was adopted for state esti-
mation, and the Euclidean detector was emploted for the FDIA of a smart grid. A Euclidean
detector was proposed to overcome the limitations of the detector outline [61]. From the
results, it was evident that the Euclidean detector could effectively detect sophisticated
injection attacks.

3.1.2. Sliding Mode Observer Methods

A conventional state estimate controller has the capability to confine the system to a
bounded domain; however, the system cannot converge to its original state. The variable
structure control system, such as a sliding mode control, can be implemented in a CPS to
mitigate the discrepancy between the actual plant and the mathematical model, which may
result from disturbances. The sliding mode strategy forces the state of a system towards
a manifold, from which state dynamics and estimation errors slide toward the origin of
the state space [62,63]. This regulates the system’s state when controlling the system and
forces the state estimates toward their actual value, all within a finite amount of time and
in the presence of uncertainties and disturbances. In the presence of a fault or disturbance,
the SMO-based observer generates a sliding motion on the error to provide state estimates
that approximate the actual output [64]. Therefore, the system dynamic behavior may be
modified by the selection of the switching function. Subsequently, the closed-loop response
becomes entirely insensitive to uncertainties in the system; hence, we have the robustness
of the SMO [65,66].

The authors of [67] conducted a study that examined the reliability of an ASMO on a
smart grid under an FDIA. The cyberattacks targeted the CPS through the actuators. The
SMO error detection model was established, followed by the model for estimating the actual
attack signal, which formed part of the attack reconstruction model. The reconstructed
signal and the state signal were implemented in the proposed ASMO to eliminate the
adverse effects of the FDIA. The proposed control strategy was evaluated in a power system
with three generator buses and six load buses. The simulation results demonstrated that the
proposed control technique was superior to existing results in securing the system against
malicious attacks. Subsequently, in [68], the sliding mode observer was implemented in
an improved approach to detect cyber attacks on power systems. The study explored the
challenge of automatically detecting cyber attacks in CPSs, especially when an attacker has
corrupted some state variables. Timeliness and accuracy are two characteristics that the
proposed adaptive sliding mode observer ASMO-based detector must satisfy in order to
perform detection and response operations that are both efficient and effective. The ASMO-
based detector was equipped with parameter adjustment using a differential evolutionary
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algorithm. In contrast to existing techniques, the proposed methodology detected unknown
attack vectors and modified the parameters to detect attacks quickly and accurately. On an
IEEE-39 bus system under state attack, a conventional SMO-based detector and the ASMO-
based detector were implemented for a comparative study. Based on the simulation results,
the SMO-based detector did not yield accurate detection for the random attack vector.
However, the ASMO-based detector showed 100% accuracy. Based on the vulnerability
of conventional distributed secondary control, a DC microgrid in [47] incorporated a
distributed sliding mode observer (DSMO) in its secondary control scheme. Several cyber-
attacks on a communication-based hierarchical control system were presented in [69]. The
simulations of the proposed model were carried out on a 48 V DC microgrid with four
distributed energy resources (DERs) controlled by the DSMO-based secondary control
system. The DSMO detected and compensated for the false signals with the control
variables of the secondary control to eliminate the adverse impact under various types of
attacks. The effectiveness of the controller was demonstrated by the experiments carried
out on a 48 V DC microgrid with two DERs.

Based on a second-order SMO and a hybrid logic dynamic model, a technique for
detecting open-circuit faults of a sensorless inverter was presented in [70]. However,
the chattering issue of the SMO was quite severe. This encouraged a study, as reported
in [71], which proposed a method of diagnosing inverter anomalies under DoS attack. The
proposed control strategy incorporated the internal estimation and SMO to improve the
convergence speed of the SMO and reduce chattering, thus increasing the robustness of the
fault diagnosis system. The linear system is similar to (1) but can be written as follows:{

x̂(t) = Ax(t) + θBu(t) + Dv(t)
y(t) = Cx(t),

(13)

where A ∈ µn×n, B ∈ µn×1, C ∈ µ1×n, and D ∈ µn×q are matrix constants. x ∈ Rn(x(t0) =
x0), x ∈ R, and y ∈ R are the state variable, input variable, and output variable, respectively.
v ∈ Rq is the upper and lower bounds of both known and unknown disturbances, and
θ is an uncertain parameter, and its upper and lower bounds are known as θ ∈ [θ−, θ+].
The state output of the initial system can be estimated more accurately through the convex
weighted sum upper and lower bound SMO estimator. The sliding mode gain Ks is given
by the following:

Ks >
||D||vmin + ||D||vmax

||C|| . (14)

Considering the upper and lower bound SMO expressed in{
x̂
′+(t) = Ax̂+(t) + θ+Bu(t) + E(y− Cx̂+(t)) + Ks(sgn(y− Cx̂+(t)) + Dvmax

x̂
′−(t) = Ax̂−(t) + θ−Bu(t) + E(y− Cx̂−(t)) + Ks(sgn(y− Cx̂−(t)) + Dvmin,

(15)

the weighted estimator of the state x(t) is defined as follows:

x̂(t) = αx̂−(t) + (1− α)x̂+(t), (16)

where α is the weighting factor:

α =
y− Cx̂+

C(x̂− − x̂+)
. (17)

When α = 0, the estimated value of the interval SMO is equivalent to the estimated
value of the upper bound SMO. Subsequently, when α=1, the estimated value of the interval
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SMO is equal to the estimated value of the lower bound SMO. Thus, the hybrid logic model
of the inverter developed in [71] can be given as follows:{

i = Ai + θBu + Dv
y(t) = Ci.

(18)

The upper and lower bound SMO of (18) can be described by the following:{
î
′+ = Aî+ + θ+Bu + E(y− Cî+) + Ks(sgn(y− Cî+) + Dvmax

î
′− = Aî− + θ−Bu + E(y− Cî−) + Ks(sgn(y− Cî−) + Dvmin.

(19)

Hence, the real-time estimate of the system can be obtained from the following equation:

î = αî− + (1− α)î+. (20)

The observations from the simulation demonstrate that the technique is highly effective
for the detection of inverter DoS attacks.

3.1.3. Unknown Input Observer Methods

A variety of factors necessitate many plants to be modeled with disturbances. Conven-
tional observers have a Luenberger structure that requires the utilization of all input signals
to get an estimate of the state vector. This makes the implementation of such observers
more challenging. Hence, this constraint makes them inefficient for a wide variety of appli-
cations. In contrast, unknown input observers (UIOs) treat uncertainty and disturbance as
unknown inputs, thereby allowing them to be approximated and exploited in closed-loop
control and to operate in real-time [18,72]. Thus, their use in attack detection applications
becomes more feasible.

A fault detection problem was addressed in [73] for non-linear continuous-time multi-
agent systems with external disturbances and random time-varying delay. External per-
turbations and errors caused by other agents were designated as unknown inputs and
separated into two components to overcome the UIO’s rigorous rank requirements. Based
on the established numerical model and simulation results, system faults were efficiently
detected, and the residual signal was resilient against disturbances.

An innovative UIO-based sensor detection technique for an MG with various types of
energy sources was presented in [72]. The load fluctuations and output power variations
were modeled as unknown inputs. The simulation results provided a measure of the
model’s degree of accuracy. The results illustrated the sensor’s ability to detect various
types of sensor faults and the robustness of the isolation scheme.

Three novel methods for estimating unknown inputs were developed in [74]; the
success of each technique was contingent on the configuration of the system’s unknown
inputs. A UIO was developed in [75] as a mechanism for state estimates of the load fre-
quency control (LFC) loop of a power system that considered renewable energy sources as
unknown inputs. A new UIO that is able to yield the asymptotic system state estimate and
unknown input reconstruction concurrently through an interval observer was developed
in [76].

In [19], the authors presented a secondary frequency control, which is a hybrid-based
control strategy. The UIO was implemented in a standalone MG for state estimation,
cyberattack detection, and reconstruction. In order to reduce the degree of frequency varia-
tion that the cyberattack may have driven, a type-2 fuzzy logic system was implemented.
The stand-alone MG model can be represented in a state–space form and is similar to (1)
and (13): {

X
′
(t) = AX(t) + BU(t) + Ed(t)

Y(t) = CX(t),
(21)
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where A, B, C, and E are the state, input, output, and disturbance matrices, respectively. X,
U, and d are the state, known input, and unknown input or disturbance vectors, respectively.
The proposed UI model was defined with the following variables: Z(t) is the state vector
of the UIO, and X̂(t) is the estimated state of the MG. The parameters N, G, Q, and H are
matrices that describe the estimation characteristics of the UIO. The state estimation error
must satisfy the following condition in the presence of unknown inputs:

lim
t→∞

e(t) = X(t)− X̂(t) = 0. (22)

Consider the first derivative of (22), which is given by the following:

ė(t) = Ẋ(t)− ˙̂X(t) = 0. (23)

Expanding ė(t) yields the following:

ė(t) =(A− HCA−QC)e(t) + (N − (A− HC1 A1 −QC))Z(t)

+ (Q2 − (A− HCA−Q1C))Y(t) + (T − (I − HC))BU(t)

+ (HC− I)Ed(t),

(24)

which must satisfy the following:

H = (CE)−1E, T = I − HC, N = A− HCA−Q1C,

Q2 = NH, Q = Q1 + Q2.
(25)

If all the eigenvalues of N are stable, then e(t) will approach zero asymptotically.
Thus, (24) can be reduced and expressed as the following:

ė(t) = Ne(t). (26)

The necessary and sufficient conditions to be satisfied for the UIO are the following:

• rank(CE) = rank(E);

• (C, P) is a detectable pair, where P = A− E
(
(CE)TCE

)−1
(CE)TCA.

3.1.4. Model-Based Machine Learning Methods

The basic principle of model-based machine learning methods is to develop a typical
custom model that is specifically designed for particular applications. Examples of model-
based machine learning methods are given in [77–79]. Machine learning methods are
discussed further in Section 3.2.2.

3.1.5. Advantages and Disadvantages of Model-Based Methods

Memory is an essential resource for data-driven detection algorithms, since the process
of monitoring a large number of training samples demands the use of extensive amounts
of the resource. The key advantage that model-based detection algorithms provide over
data-driven detection algorithms is their independence from the historical dataset, which
is a necessary requirement for data-driven detection algorithms. The substantial amount
of computing complexity required for each measurement sample obtained is a major hin-
drance. When an iterative process that has potential divergence concerns is involved, the
severity of this issue is amplified significantly. As a direct consequence, the algorithm
scalability is adversely affected. The most significant disadvantage of using model-based
algorithms is the requirement for both the system parameters and a model. The perfor-
mance of this detection method might be compromised by any slight inaccuracies in these
parameters. Table 1 briefly summarizes the different model-based techniques discussed in
the reviewed literature. The next section will review data-driven methods, which have the
advantage of being model-free.
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Table 1. A summary of model-based methods and their detection accuracies.

Reference Method System Attack
Type/Mode

Attacked
Element

Detection
Accuracy/Rate

Measures

[80] EKF Automotive
Systems

DoS
FDIA

Path Tracking:
control of
autonomous
vehicles

High Detection and
isolation

[81] KF
Industrial
Control Systems
(ICS)

Zero-Alarm Sensor 90 % Detection

[82] Sliding Mode
Observer Power Systems FDIA

Load
Frequency
Control System

High Detection and
isolation

[83] Optimal Sliding
mode observer

Magneti-Tape-
Drive Servo
System

FDIA Actuators High Detection

[84] UI Interval
Observer-Based Smart Grid FDIA Smart Sensor - Detection and

isolation

[49] UI Observer-Based DC Micro-Grid FDIA
Phasor
Measurement
Unit (PMU)

- Detection and
isolation

[85]
Distribution
System State
Estimation (DSSE)

Power System Generic - High ≈ 100% Detection

[86] Sliding Mode Ob-
server

Generic
Sub-System FDIA Sensor - Detection and

mitigation

[87] Weighted Least
Square (WLS) Smart Grid FDIA - High Detection

[88] Watermarking Control System DoS Sensor Attack High Detection

3.2. Data-Driven Methods

Data-driven methods are model-free, i.e., the detection process of an FDIA involves
neither models nor system parameters, unlike the model-based methods. Data-driven
methods can be divided into three main groups based on the data used to detect the FDIA
in a smart grid. These are the following [87]:

1. Data mining methods.
2. Machine learning methods.
3. Other methods outside of 1 and 2.

3.2.1. Data Mining Methods

These methods are applied to large datasets to discover patterns. Data measurement
variables received from a particular system can be processed to draw inferences about
data patterns or hidden features using data mining methods. The data mining method
is an interdisciplinary field, because it is interconnected with machine learning methods
and statistics. The authors of [89] explored the data mining methods in Twitter’s Smart
Living Environments to address security issues using nearly one million tweets collected
under the user-generated data (UGD) framework. These were subjected to a random forest
classifier, logistic regression, a multinomial naïve Bayes classifier, and a support vector
classifier under the sentiment analysis.
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Tomasevic et al. [90] explored data mining methods to investigate the performance
of students during exams. This was done to discover high-risk students who were on the
verge of dropping out from a particular course to forecast their final exam scores. It was
discovered that demographic data did not give sufficient forecasting accuracy, but past
performance data and student engagement data gave high precision when fed into artificial
neural networks.

Salo et al. [91] conducted a review to detect intrusion systems using data mining meth-
ods. The research gap that established the efficiency of the classifiers in identifying network
traffic intrusions when aging datasets are used for training was observed. Mughal [92]
reviewed the tools and algorithms used in web data mining techniques. Different web data
mining types, which help to find informative data from increasingly large and difficult web
domains, were described.

Data mining techniques were used in educational environments as described in [93].
These techniques help better understand student results, interests, and behavior. The work
reviewed more than 100 documents, analyzed 7 domains, and discussed 12 data mining
techniques used to solve, understand, and analyze problems in an educational environment.

Data mining techniques were applied in the study reported in [94] to identify signif-
icant features in forecasting heart disease. The study developed prediction models for
heart disease using a combination of seven classification techniques: logistic regression,
naive Bayes, support vector machine, vote (a hybrid method involving logistic regres-
sion and naive Bayes), neural network, decision tree, and k-NN. The forecasting of the
survival of heart failure patients was improved when using data mining methods and
synthetic minority oversampling techniques [95]. For effective prediction, the study used
nine classification models: support vector machine, extra tree classifier, random forest,
logistic regression, decision tree, gaussian naive Bayes classifier, gradient boosting classifier,
stochastic gradient classifier, and adaptive boosting classifier.

The study reported in [96] integrated data mining algorithms into the PostgreSQL
management system. The induction rule and decision tree data mining algorithms were
analyzed in the process. This resulted in higher results and response time. Decision making
for predicting student performance in the university admission systems was investigated
using data mining methods in [97]. The applicants’ early academic performance outcomes
were predicted with high precision based on some pre-admission criteria such as gen-
eral aptitude test scores, scholastic achievement admission test scores, and high school
grade averages.

3.2.2. Data-Based Machine Learning Methods

In data-based machine learning (ML) methods, machines can be trained to do complex
tasks; ML algorithms are data-driven and, therefore, depend largely on the data input from
the system to enhance the learning of the machine. Based on the learning procedures of the
machine, ML can further be classified as unsupervised learning, supervised learning, and
reinforcement learning methods. These methods are reviewed below.

Unsupervised Learning Method

This machine learning method clusters and analyzes unlabeled data to find hidden
patterns and classifications without the necessity of human intervention. The machine
classifies the data points according to their hidden structures, thereby discovering false
data injection algorithms (FDIA), because their data classes should be different from that of
normal data in smart grids. Examples of unsupervised learning methods are the hidden
Markov model (HMM), probabilistic neural network (PNN), deep belief network (DBN),
isolation forest (IF), hierarchical clustering (HC), principal component analysis (PCA),
fuzzy clustering (FC), and k-means clustering (KMC). The KMC methods is popular in
classification problems, where it works by separating into k clusters and the s observed
variables. The cluster prototype, which is the nearest mean, dictates which observation s
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belongs to a particular cluster k. For n samples s of mean ϕi in k sets y, the minimization
problem, is defined as follows [87]:

arg min
y

k

∑
i=1

∑
s∈yi

||s− ϕi||2, (27)

where yi is the set with mean ϕi. Although this method is very sensitive to sample noise,
its advantage is embedded in its simplicity. In FC, a sample could be a subset of many
clusters with diverse grades, thereby leading to a more elaborate clustering process and
giving rise to overlapped clusters with well-defined boundaries. HMM is a unique time
series model used in FDIA detection for predicting sample models [98]. PNN is a form
of feedforward neural network (FNN), which is much faster than multilayer perceptron
networks. It is mostly used in classification problems and pattern recognition [99]. In
DBN, the time for training the network can be reduced by setting the initial weights as the
learned weights and later turning it into a generatively pre-trained deep neural network
(DNN) by backpropagation [100]. IF, which is a collection of different isolation trees, is
acknowledged as an outlier detection method. With more dimensional datasets, there is a
higher possibility of more isolation trees in IF. Because anomalies, such as false data, are
usually different from other data, the IF method can isolate them, since there are few of
them [101]. In summary, each of these methods is unique despite giving similar results.

Supervised Learning Methods

This machine learning method clusters and analyzes labeled data to find hidden
patterns and classifications. This is done with human aid. Thus, each output has a link
to a particular input. Examples of supervised learning methods are linear regression
(LR), random forests (RF), decision tree (DT), extended nearest neighbor (ENN), k-nearest
neighbor (KNN), the extreme learning machine (ELM), autoencoder (AE), artificial neural
networks (ANN), and the support vector machine (SVM). LR models, which are known to
be simple and straightforward to implement, highlight a connection between independent
variable x and dependent scalar variable f (x) so that the following is obtained [102]:

f (x) = wx + b, (28)

and minimizing, using the least square method, gives the following:

min
w,b

∑
i
( f (xi)− (wxi + b))2, (29)

where b and w represent the bias and weight vectors, respectively.
DT models predict their outputs by mapping samples to their targets. The DT learns

by creating subsets from input variables. The DT is easy to construct but has the problem of
overfitting [103]. RF models have been developed to overcome the problems of overfitting
in neural networks by using ensemble learning. Several DTs can be combined to form an
RF. The mean and mode values of individual tree classifications lead to the classification of
the RF [104].

In the KNN method, a sample is assigned to the class of the nearest possible k-neighbor
by the classifier. The assigned class is determined by the Euclidean distance between the
prelabeled sample sj and the unlabeled sample si:

di,j = ||si − sj||2. (30)

The classification of the new sample is determined by the lowest distance between
the prelabeled samples and the unlabeled sample. The disadvantages of this technique are
the prelabeled sample density and distribution [105]. The ENN method was designed to
overcome these disadvantages by considering local neighbors of the class and the global
distribution to predict the class of the new sample [106].
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An AE is a neural network providing nonlinear solutions by decoding and encoding
sample variables. When the error between the network input and the decoded sample
exceeds a threshold level, an alarm is triggered, which results in the detection scheme.
The limitation of this technique is the extensive training time required [107]. Meanwhile,
the ELM method was designed to overcome this disadvantage such that the biases of the
hidden layers and input weights of ELM are randomly chosen [108].

The ANN was inspired by the working principles of the biological brain [109]. It
is used to approximate, estimate, and classify functions [110]. An ANN can have one
or multiple hidden layers [111,112]. The output produced by an ANN depends on the
activation function, bias, and input weighted sum to the neuron [113].

A convolutional neural network (CNN) does not adopt the matrix multiplication
that is generally used, but instead uses the convolution at the layers. It has found wide
application in image processing and pattern recognition because of its ability to obtain
different characteristics from samples [114].

The deep neural network (DNN) is another neural network method with a high level
of precision due to its multiple hidden layers [115].

An SVM is a binary-based non-probabilistic linear method that is based on two parallel
hyper-plane boundaries that yield the following:

wT(φ)si + b = +1, if yi = +1 (31)

wT(φ)si + b = −1, if yi = −1, (32)

where samples si are mapped by function φ(.) to a linearly separable space, b is the offset
constant, and w is the hyperplane orthogonal normal vector. The limitations of an SVM are
the requirement for extensive training time and the choice of the kernel function, while its
simplicity of implementation is its major advantage [66].

Semi-Supervised Learning Method

Semi-Supervised learning predicts the output using labelled data; it also learns the
larger data distribution shape using unlabelled data. Semi-Supervised learning also has
applications in cybersecurity, as shown in [116–118].

Reinforcement Learning Methods

In this method, the previous experiences of the machine help it to chart a new course
that leads to optimal action. This is achieved through the trial-and-error method, which
leads to a series of fruitful choices in the reinforced process by solving the problem in an
appropriate manner [119].

3.2.3. Advantages and Disadvantages of Data-Driven Methods
Advantages

The advantages of data-driven methods as compared to their model-based counter-
parts include the following [120–123]:

1. It has a more powerful ability to select informative samples.
2. Although its training is slower, its prediction is faster.
3. Its dependence on prior assumptions and human experiences is low.
4. It is more efficient to run computationally and simple to implement.
5. It depends on the I/O data and does not depend on the prior knowledge of the system

in question.
6. Updating the model with changing conditions over time is straightforward.

Disadvantages

Its comparative disadvantages include the following [120,121]:

1. Designing a good data-driven network architecture is a huge task.
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2. Its statistical and physical meaning may not be very clear.
3. It usually requires considerable amounts of sample data for training.
4. The availability of sufficiently large empirical and historical data determines the

confidence level of its predictions.
5. In some instances, such as the case of a new component or system, obtaining historical

data may be difficult. Some cases may require a long time and expensive tests to
generate the required data.

Table 2 briefly summarizes the different model-based techniques discussed in the
reviewed literature.

Table 2. A summary of data-based methods and their detection accuracies.

Reference Method System Attack
Type/Mode

Attack
Parameter

Detection
Accuracy/Rate

Measures

[124]

Dynamic-Estimator-
Based Cyber-Attack
Tolerant Control
(CTC)

Power Systems

Generic (malware
attacks, password
attacks, phishing
attacks, and SQL
injection attacks)

-

Estimation error
≈ 10−17; norm
order ≈ 10−34,
which is ≈ 0.

Detection and
isolation

[125]

Federated Learning,
(Gated Recurrent
Units and Random
Forest)

Vehicular Sen-
sor Networks
(VSN)

Intrusion

Car Hacking: Attack
and Defense
Challenge 2020
dataset.

99.52% and
99.77% Detection

[126] Short Circuit
Analysis

Industrial
Power Plants Short-Circuiting

Equipment
(transformer,
breaker, generator,
etc.) security breach

High Detection

[127] Parallelized
Database Approach

Healthcare
Systems

Malicious transactions,
damage Damage assessment High Detection and

isolation.

[128] Retrospective
Impact Analysis

National Health
Service (NHS)

WannaCry attack,
ransomware attack.

Missed
appointments,
deaths, and fiscal
costs attributable to
the ransomware

High Detection

[129]
A Hybrid Deep
Random Neural
Network

Industrial
Internet of
Things (IIoT)

Generic
Two IIoT
security-related
datasets

98% and 99% Detection

[130] Survey
Unmanned
Aerial Vehicles
(UAV)

Channel jamming,
message interception,
deletion, injection,
spoofing, etc.

Cyberattack counter-
measures -

Prevention, de-
tection, and mit-
igation

[131]
Unified
Architectural
Approach

Industrial
Control Systems
(ICSs)

Generic Cyberattack
resilience High -

[132] Controller
Switching

Process Control
System (PCS)

Multiplying the data
communicated over the
link by a factor

Control system and
attack-sensitive
parameters

High Detection

[133]

AI Engine,
Two-Fold Feature
Selection, and
Hyper-Parameter
Optimization

Network Traffic
System Intrusion

Binary attack,
synthesized atypical
attack flows

90% Detection

3.3. The Role of Machine Learning Methods in Cyber Assaults

ML methods are now widely used to salvage many cyber assaults; such roles are
categorized into five classes: the analysis of raw data; the management of alerts; the
detection of assaults; the assessment of risk exposure; and threat intelligence.
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3.3.1. Analysis of Raw Data

The cybersecurity domain deals with heterogenous systems that generate different
types of raw data, such as alerts, reports, and logs. ML leverages its ability on such raw data
to maximize the opportunities to provide solutions to cybersecurity problems. The more the
availability of such data, the more promising the use of ML in cyber security. The benefits
of such data came to the fore after several high-profile cyber-assaults. In [134], large-scale
log analysis was carried out using ML, in which, out of the 800 incidents detected, 65%
were discovered to be true cybersecurity incidents, whereas the non-ML methods used
were only able to detect 8 incidents correctly. Likewise, in [135], DeepLog was trained on
only 1% of the available data, but achieved a cybersecurity detection rate of almost 100%.

3.3.2. Management of Alerts

It is known that, with or without ML, a perfect detection system cannot be developed.
Hence, ML has been used to prevent the automatic execution of actions due to incorrect
predictions. Detection system outputs come in the form of alerts, and thousands of such
alerts are generated in modern environments every hour [136,137]. To overcome this
challenge, ML could be deployed to filter, prioritize, and aggregate the alerts into a more
generalized event [138]. Significant quantities of alerts are not malicious but amount to false
alarms. Such alerts could be filtered using ML; for instance, in [139], ML was able to reduce
false alarms by about 75% as against about a 30% reduction of false alarms using a non-ML
method. In situations where many alerts are encountered by security administrators, ML
has been used to identify and prioritize the most critical alerts, as ML ranks alerts in order
of sensitivity [140]. Also, large amounts of data are well managed by aggregating similar
alerts, finding correlations between them, and identifying causal relationships responsible
for security problems [141].

3.3.3. Detection of Assaults

Before ML methods were developed, existing cybersecurity detection methods were
error-prone, time-consuming, and unable to cope with modern environments that are
characterized by increasing growth. But with ML, there are fewer manual efforts, and
greater accuracy is achieved [142]. This improved performance is due to ML’s intrinsic
capability to learn weak signals or make up for missing data and outliers. ML analyzes
large data by learning patterns, thereby identifying abnormal or irregular activities from
normal or regular ones [143].

3.3.4. Assessment of Risk Exposure

ML strengthens a system by concentrating on its weak point and predicting its most
likely threat. In [144], ML crafted attacks using reinforcement learning against a network
intrusion detection system (NIDS), which achieved a 90% speedup as against a random
attack process. In [145], the weaknesses of databases were assessed against SQL injection
attacks using ML were investigated. In the study reported in [146], fake user accounts on
social media were identified by correlating different sources using ML, thereby reducing
such accounts by 30%.

3.3.5. Threat Intelligence

Threat intelligence acts by collecting and analyzing data for anticipated novel attacks.
This is a proactive method for keeping defenses up-to-date, as reported in [147], where
threat intelligence using the ML method was configured in such a way that the protection
of the business with the most-critical infrastructure was prioritized. Examples where ML
was used in threat intelligence can be found in [148–151].

4. Industrial Review

There have been several published studies on industrial cyber-attacks, but there is a
need for publication of more up-to-date and relevant research. Ref. [152] presented the
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results of attack simulations published between 1999 and 2019 and highlighted the steps
taken that resulted in successful attacks. The results garnered eleven key contributions and
different implementation methods for attack simulations. However, the methodology for
constructing a fully unified view of attack simulation remains unclear.

In [153], the IoT-based cyber-attack paths to critical industrial services and infrastruc-
ture were assessed in a risk-like manner to determine their current threat and to explore
mitigation methods for different application domains.

An exploration of machine learning techniques regarding the stability and security
of power systems was carried out in [154]. A comprehensive review of the studies using
machine learning methods for the stability and security of the power systems was carried
out. In particular, dynamic security assessment, power quality disturbance, and cyber-
attack detections were focused on. The limitations, contributions, and methodologies of
the test systems, datasets, and classifier designs were highlighted.

Setola itet al [155] presented the behavior of process-engineering-based cyber-attacks.
Some relevant approaches, which are useful for protection against industrial control sys-
tems, were considered.

In [156], a cyber-attack detection model for industrial control systems was developed
using an ensemble deep learning method. This constructed a balanced representation for
the problem of the imbalanced nature of industrial control system datasets. The model
helps improve the security of the network in preventing critical failures in the industrial
control system against cyber-attacks.

The authors in [157] reviewed and defined industrial cyber-physical systems from
a cyber-security viewpoint. Real-life industrial cyber-physical system incidents were
evaluated using multi-dimensional adaptive attack taxonomy. In [158], the manufacturing
sector was the focus of the review of cyber-security problems in critical infrastructures in the
industries. The study helped in developing strategies for modeling cyber-security objectives
for the mitigation of the effects of cyber-attacks on industrial control system infrastructures.

In [159], the authors proposed a key component kit in an industrial control sys-
tem as a robust cyber-attack detection method using false data injection techniques in
nuclear power plant settings. In the study reported in [160], cyber-security standards
were reviewed, and roadmaps were provided to implement, converge, map, align, and
identify the right strategies and standards for securing Industrial Internet of Things
machine-to-machine communications.

Currently, in most governmental and non-governmental institutions, social, cultural,
commercial, and industrial operations are executed in cyber-space. Many of these establish-
ments are currently facing cyber-attacks. Without electronic technology, it is a big challenge
to protect this data from cyber-attacks. Cyber-Attacks target industries and other estab-
lishments to cause financial, political, or military havoc [161]. The havoc could take the
form of data distribution services (DDSs), knowledge breaks, and PC viruses. As a result,
establishments use different solutions to protect their systems against cyber-attacks. This
section is reviewed to re-emphasize the need for the awareness of industrial cyber-attacks
and to showcase some recent advances in industrial prevention and mitigation methods.
Researchers globally have proposed different methods, which are either in the study phase
or operation phase.

5. Current Challenges and Future Directions

The integration of a CPS into critical infrastructure systems has greatly improved
efficiency, accuracy, and safety. However, the dependence on a CPS has made these systems
vulnerable to cyber-attacks. In this section, the current challenges and future directions of
cybersecurity for a CPS are discussed.

5.1. Complexity of CPS Models

As previously mentioned, CPSs are complex systems that involve multiple components
such as sensors, actuators, controllers, and software. This complexity makes it difficult to
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identify vulnerabilities and potential attack vectors. Additionally, the inter-connectivity of
a CPS with other systems and networks further complicates the security landscape. The
complexity also makes it difficult to accurately model a modern CPS for cyber-security
studies. Thus, advanced modeling methods that can accurately capture the behaviour of
emerging CPSs are required to guarantee the security of all components of the CPS.

5.2. Advanced Measurement and Data Collection Techniques

Typically, in prior research, the outcomes regarding detecting attacks, secure estima-
tion, and secure control, particularly when faced with different kinds of attacks, were
developed utilizing data from a single measurement device. However, this approach can
lead to significant system degradation. In reality, physical systems such as robots and vehi-
cles have redundant measurement devices that may remain available for feedback, even if
some of them are compromised. For instance, mobile robots often have numerous measure-
ment devices that provide information about the robot such as local and relative positions,
angular velocity, and speed. These devices have different methods of implementation and
function on multiple time scales. Consequently, it is hard for an adversary to attack all of
these devices and jam all of the communication channels [60,162]. An investigation into
applying multiple measurement devices and data collection techniques is worthy of future
consideration [163–168]. Nevertheless, collecting and fusing data from various sensors is
a complicated task, since most measurement devices operate non-simultaneously, which
introduces new challenges due to the presence of different time scales.

5.3. Detection of Advanced and Stealthy Attacks

With the development of new technologies, cyber-attacks are advancing quickly. Ad-
vanced attacks have been launched successfully. Stealth FDIAs can be launched randomly
and avoid detection by current detection techniques. Thus, preventing sophisticated attacks
on a CPS is a difficult but necessary topic that requires further attention. In addition, the
area of confidentiality attack detection has not been studied robustly compared to availabil-
ity and integrity attacks detection. Given the need for privacy protection in a modern CPS,
it is important to investigate the impacts on confidentiality attacks.

5.4. Standardization of Security Measures for a CPS

Inadequate security testing is another major challenge in cyber-security for a CPS.
Many CPSs are tested for functionality but not for security. As a result, vulnerabilities may
go undetected until an actual attack occurs. The standardization of security measures for
CPSs will help reduce the complexity of developing security strategies. Standards should
be developed for security controls, access controls, and incident response.

5.5. Testing of Detection and Mitigation Methods

In model-based detection and mitigation methods, key parameters such as detection
thresholds and other control parameters play a very crucial role. However, the choice
of these parameters largely affects the accuracy of the detection and mitigation methods.
While some methods attempt to identify a trade-off between these parameters, since they
have varying efficiencies, other methods may forgo one efficiency to optimize another.
Hence, it is important to investigate the testing of current and future cyber-attack detection
methods to analyze the performance and efficiency of the different detection and mitigation
parameters. Additionally, CPSs have different characteristics that make the detection and
mitigation methods only suitable to a specific CPS and undesirable for other types of CPSs.
Thus, providing the appropriate performance analysis of existing and future CPSs is an
area that is worthy of consideration.

6. Conclusions

Demands for improved security, operational efficiency, and environmental protection
have hastened the adoption of CPSs, which are now standard features of modern businesses.
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Given the essential nature of the services provided by CPSs, any disruption to them might
have dire effects. This highlights the difficulty inherent in designing a system that can
withstand attacks. This paper presents a summary of the requirements that CPSs need
to satisfy, in addition to the characteristics that they are expected to exhibit. A concise
categorization of the various types of detection and mitigation strategies is provided.
Furthermore, recent research on the detection and mitigation techniques of cyber-attacks
in CPSs has been discussed, and models have been described. Subsequently, an analysis
of the benefits and drawbacks of model-based and data-driven techniques was carried
out. This paper presents a survey of the relevant industrial research. In conclusion, the
limitations and opportunities for future research focuses were discussed. These are based
on recent advancements.
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Abbreviations

AKF Adaptive Kalman Filter
ANN Artificial Neural Network
ASMO Adaptive Sliding Mode Observer
CKF Contrained Kalman Filter
CNN Convolutional Neural Networks
CPS Cyber-Physical System
DER Distributed Energy Resource
DoS Denial of Service
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