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Abstract: The smartphone has become an indispensable tool in our daily lives, and the Android
operating system is widely installed on our smartphones. This makes Android smartphones a prime
target for malware. In order to address threats posed by malware, many researchers have proposed
different malware detection approaches, including using a function call graph (FCG). Although an
FCG can capture the complete call–callee semantic relationship of a function, it will be represented as
a huge graph structure. The presence of many nonsensical nodes affects the detection efficiency. At
the same time, the characteristics of the graph neural networks (GNNs) make the important node
features in the FCG tend toward similar nonsensical node features during the propagation process. In
our work, we propose an Android malware detection approach to enhance node feature differences
in an FCG. Firstly, we propose an API-based node feature by which we can visually analyze the
behavioral properties of different functions in the app and determine whether their behavior is benign
or malicious. Then, we extract the FCG and the features of each function from the decompiled APK
file. Next, we calculate the API coefficient inspired by the idea of the TF–IDF algorithm and extract
the sensitive function called subgraph (S-FCSG) based on API coefficient ranking. Finally, before
feeding the S-FCSG and node features into the GCN model, we add the self-loop for each node of the
S-FCSG. A 1-D convolutional neural network and fully connected layers are used for further feature
extraction and classification, respectively. The experimental result shows that our approach enhances
the node feature differences in an FCG, and the detection accuracy is greater than that of models
using other features, suggesting that malware detection based on a graph structure and GNNs has a
lot of space for future study.

Keywords: Android malware detection; function call graph; TF–IDF; self-loop; graph convolutional
network

1. Introduction

With the rapid development of technologies, the smartphone has become an indispens-
able tool in our daily lives. The mainstream operating systems of smartphones available on
the market are Android and iOS, and the Android operating system dominates the market.
As the Android operating system is popular, it is also the preferred malware target. In 2021,
Google Play users worldwide downloaded 111.3 billion mobile apps, and this was up from
76 billion apps in 2018 [1]. Many malicious apps are hidden in Google Play Store, stealing
and modifying the information of users without their authorization. Some even go so far
as to hijack users’ smartphones and force them to conduct financial transactions.

Many security technology companies provide Android antivirus products to help
people defend themselves against malware. In January 2019, AV-Comparatives down-
loaded 250 anti-malware security apps from Google Play Store that were created by various
developers to test the effectiveness of their anti-malware programs [2]. The test results
showed that 80 anti-malware security apps were able to detect more than 30% of malicious
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applications with zero false alarms, 138 of the remaining 170 apps detected less than 30%
of Android malware samples, and 32 apps were deleted from Google Play Store. In reality,
the detection efficiency of many Android antivirus products is low when offline, and the
greatest detection efficiency can only be achieved when they connect to the online dataset.

To address threats posed by malware, researchers have studied a large number of
features targeting Android malware using feature engineering, which can be broadly
classified into three main categories: static features, dynamic features, and hybrid features.
Static analysis, dynamic analysis, and hybrid analysis are the analysis methods used to
obtain these three types of features [3]. The static analysis method analyses the application
and its associated objects without executing the application [4]. The dynamic analysis
method analyses features while the application is in use (on a real device or in a virtual
environment) [4]. The hybrid analysis method is an integrated approach that combines
static and dynamic features in different forms and includes a much more comprehensive
range of feature dimensions.

In recent years, neural networks have been adapted to leverage the structure and
properties of graphs [5], but the traditional neural network models, such as CNNs [6]
and LSTMs [7], cannot directly use the graph structure as the input. The emergence of
graph neural networks (GNNs) is an excellent solution to this problem. As one of the most
commonly used models of GNNs, graph convolutional neural networks (GCNs) update the
features of their nodes in the next layer by aggregating the features of neighboring nodes
during forward propagation, which can be seen as a special form of low-pass filtering [8,9].
The features of GCNs based on low-pass filtering retain the commonality of node features
in the graph and inevitably ignore the differences, making the learned node features similar,
and the original features of the important nodes are lost [10]. The function call graph
with node features is aggregated with the features of neighbor nodes after the forward
propagation of the GCN model, as the low-pass filtering characteristic causes the node
features in the function call graph to be similar, resulting in possibly losing the important
original features of the nodes. This is not beneficial for model identification and detection.
Is there an approach to reduce the interference of this characteristic and enhance node
feature differences, thus improving the detection of the model?

In this paper, we extract the function call graph (FCG) from a decompiled APK, which
could automatically capture the semantic relationships between different functions and
extract three types of features from each function as node features based on the newest API
permissions and graph structure. Then, we calculate the API coefficient that can represent
the importance of each API and extract the sensitive function called subgraph (S-FCSG)
based on the API coefficient ranking. The S-FCSG reduces the number of nonsensical
nodes, maximizes the retention of node features, and avoids the convergence of important
node features into meaningless node features during the forward propagation of the GCN
model. Finally, we add the self-loop to each node of the S-FCSG and feed it into the GCN
model so that the node features can compute themselves again during the aggregation
of node features, increasing the difference of features between different nodes. Three
1-D convolutional neural networks with different convolutional kernel depths extract
further correlations between node features, and fully connected layers are used for the final
classification. Our experimental results show that our approach has an accuracy of 98.28%;
therefore, our approach is effective. The contributions of this paper are as follows:

• The function call graph is a static feature that is often used because it captures the intent
and behavior features of the function very well. We propose a subgraph extraction
approach that effectively removes nonsensical nodes and maximizes the retention of
node features. The function call subgraph avoids the interference of nonsense nodes
and reduces the dimensionality of the adjacency matrix and feature matrix of the
function call graph;

• We extracted the latest API protection level mapping relationship from the Android
Open Source Project [11] instead of directly using the one in Pscout [12]. Based
on the API protection level relationship, we proposed a function weight feature
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and demonstrated through experiments that embedding this feature into nodes can
effectively help neural networks identify and detect Android malware;

• Since the model learning of GCNs is based on the features of low-pass filters, the
node features in the graph structure will converge to similarity during the forward
propagation and interfere with our detection. On the one hand, we extract the sensitive
function call subgraph. On the other hand, inspired by the GCN formula, we propose
an approach of aggregating the features of its nodes one more time to enhance the
differences between the different node features;

• Traditional deep learning models cannot learn graph structure type data directly. We
propose a GCN + 1-D CNN model using the GCN model to learn the behavior features
between different nodes in the function call graph, and we use the 1-D CNN model
with different convolutional kernel depths to extract the association relationships
between important nodes. The experimental results show that our model has a high
accuracy rate in Android malware detection methods.

The rest of the paper is organized as follows: Section 2 describes previous work in
Android malware detection. Section 3 is the introduction and implementation process
of our approach, including feature extraction, graph extraction, and establishment of the
neural network. Section 4 describes the experimental environment, dataset, experimental
process, and results. The conclusion and limitations of this paper are presented in Section 5.

2. Related Work

In this section, we will introduce the approaches proposed by other researchers for
Android malware detection based on static and dynamic features. We describe the methods
and models, and we highlight the main contributions and directions for future work. Our
research contribution can inspire further questions and future research directions.

2.1. Static Features

Features obtained through analysis of the source code or from other information
about the application are called static features [3]. Static analysis can detect malware
before installation and can be detected in the model environment, thereby reducing the
experiment cost.

2.1.1. Traditional Static Features

By decompiling APK files to create file directories, such as assets, AndroidMani-
fest.xml, and classes.dex, researchers can obtain permissions, intents, and other configura-
tions from AndroidManifest.xml and opcodes from classes.dex. They often treat data, such
as permissions, intents, and opcodes, as features of the APK, which they feed into a neural
network for recognition and classification.

Wu et al. [13] proposed a static feature-based mechanism called DroidMat. They
extracted the static features from AndroidManifest.xml, including requested permissions,
intent messages passed, components which are regarded as API call entry points, etc. Next,
they used many kinds of clustering mechanisms to identify the different intents of the
malware to enhance the identification capability of the model. Finally, using the kNN
algorithm, they classified the application as benign or malicious. Their method has a better
accuracy (97.87%) and recall (87.39%) than the well-known tool Androguard, and it takes
half the time of Androguard to analyze the same number of samples.

Li et al. [14] extracted exhaustive features from the application and classified them into
eight categories: hardware components, requested permissions, app components, filtered
intents, restricted API calls, used permissions, suspicious API calls, and network addresses,
although not all of these exhaustive features are meaningful for Android malware detection.
Then, they used the principal components analysis (PCA) to choose the more important
features. In contrast to traditional machine learning models with shallow structures, such as
SVM, they chose a deep learning model with more than three layers, a deep neural network
(DNN) as the detection model. They outperformed other machine learning methods with
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more detailed results, achieving a 97.16% precision. In the future, they will consider
combining static and dynamic features to characterize Android applications.

2.1.2. Function Call Graph

The function call graph (FCG) belongs to a kind of static feature. It can capture
the semantic information of the function, which the permission-based static analysis
method cannot.

Liu et al. [15] proposed G features using information from an FCG. They fed the G
features into the machine learning algorithm to detect malware. Their method achieved
an 86.9% accuracy in an up-to-date malware testing dataset and avoided collapsing issues
induced by the high-dimension vectors of the traditional FCG. Fan et al. [16] proposed an
approach to detect Android piggybacked apps called DAPASA. They extracted sensitive
subgraphs (SSGs) using the tf–idf-like algorithm that could profile the most suspicious
behavior of an app. They extracted five features from the SSG to depict the invocation
patterns and fed them into the machine learning algorithms to detect whether the app was
piggybacked or benign. Their approach achieved a 94.32% accuracy with only five numeric
features. It complemented the permission-based and API-based approaches by combining
their proposed five features from a new perspective of the invocation structure. Moreover,
their work can be improved upon by building a more detailed behavior model.

For the graph structure features, the original deep learning model cannot directly
learn features. It needs to convert the graph structure data into vectors, while the graph
neural network can directly learn the features. Feng et al. [17] constructed the approximate
call graph from function invocation relationships to represent the app. They extracted each
intra-function attributes as node features in the graph. They were then using a graph neural
network model to generate a vector representation. Their approach constructs traditional
static features into novel graph structure data and does not propose new features based
on the graph-structured data. Vinayaka et al. [18] captured the caller–callee relationships
between the function to form the function call graph. They considered the difference in the
number of nodes in the function call graph due to the difference in APK file size, and they
proposed a balanced technique to make the number of nodes similar. Furthermore, they
tested five different GCN algorithms to evaluate the method’s performance. Experiments
were conducted to compare the performance of the different algorithmic models. The
optimal algorithm model they tested achieved a 92.29% accuracy and is also used in
this paper. Cai et al. [19] used function calls to learn an app’s behavior features. They
proposed enhanced function call graph (E-FCG) to characterize the runtime behaviors of
the app and developed a GCN-based algorithm to obtain vector representations of E-FCGs.
Their approach overcomes the inability to understand the behavioral characteristics of the
app due to missing function properties and the inability of traditional machine learning
methods to learn the graphical representations directly.

2.2. Dynamic Features

When an Android application is run on a real device or emulator, the runtime behavior
features obtained are called dynamic features for monitoring network traffic, battery usage,
CPU utilization, requests, and calls among others [3].

Garg et al. [20] proposed the network-based detection app model. They extracted four
different traffic categories of network features from each app running on the mobile device,
namely, DNS, HTTP, TCP, and origin–destination, and used machine learning classifier
algorithms to monitor and learn the network behavior of different apps. Their approach
can (1) detect malicious apps using network traces, (2) work with different versions of
operating systems, (3) detect unknown apps, and (4) detect infected apps with encrypted
data. Their future work will focus on improving the detection rate of unknown applications.
Existing dynamic analysis methods rely heavily on characterizing system calls, and these
methods are susceptible to system call obfuscation.
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Cai et al. [21] proposed a dynamic app classification technique called DroidCat to
complement existing methods. By using a diverse set of dynamic features based on method
calls and inter-component communication (ICC) intents while fully handling reflection,
DroidCat achieves superior robustness than static features, as well as dynamic features
relying on system calls. They designed the effects of DroidCat effectiveness under different
conditions and the most important dynamic features. They found that features capturing
an app execution structure are much more important than typical security features, such as
sensitive flows. Their detection technique achieved a 97% F1 measure consistent accuracy
for classifying apps evolving over the nine years.

John et al. [22] took the system calls as features representing the operating system’s
interaction, and proposed a detection mechanism using GCNs, which uses centrality
measures of the system call graph as input features. They are the first application of
GCNs for dynamic Android malware detection, achieving a 92.3% accuracy, and they
have attempted to combine dynamic features with graph neural network models. Taheri
et al. [23] proposed a hybrid feature-based detection method using permissions and intents
as static features, and 77 network flows by appending extracted n-gram sequential relations
of API calls as 78 dynamic features to detect and classify malware. This approach is the
second part of their contribution. In the first part, they presented the CICMalDroid open
accessible dataset and labeled its features. This dataset is also used in this paper. They have
planned, in the future, to generate an Android dataset with more captured features with a
massive sample size.

A comparison of the approaches proposed by different researchers and their contribu-
tions is shown in Table 1. Compared with the permission-based static features and dynamic
features, the function call graph with node features can leverage topology information to
infer apps’ behavior features. Although code obfuscation affects static feature analysis,
the function renaming cannot change the topology of the function call graph. It can re-
duce the impact of the function renaming, and it also avoids the problems, such as high
experimentation cost of dynamic features and difficulty in triggering the full malicious
behavior of the application. While using the graph neural network model can make better
and more extensive use of graph structure type data, in this paper, we use the function call
graph of static features to represent APK files and GCNs to learn graph structure data. Our
proposed approach solves the drawbacks caused by function call graphs and GCN models
to a certain extent and proves the effectiveness of our method through experiments.

Table 1. The comparison of different approaches.

Author Year Feature Algorithm Model Contribution and Future Work

Wu et al. [13] 2012
Static feature (requested

permissions, intent messages
passed, and component)

kNN algorithm Takes half the time of Androguard to
analyze the same number of samples.

Li et al. [14] 2018

Static feature (hardware
components, requested

permissions, app components,
filtered intents, restricted API

calls, used permissions, suspicious
API calls, and network addresses)

deep neural
network (DNN)

In the future, they will consider
combining static and dynamic features
to characterize Android applications.

Liu et al. [15] 2018 Static feature (function call graph) machine learning
algorithm

Avoids collapsing issues induced by
the high-dimension vectors of

traditional FCGs.

Fan et al. [16] 2017 Static feature (sensitive function
call subgraph)

machine learning
algorithm

Complements permission-based and
API-based approaches from a new

perspective of the invocation structure.

Feng et al. [17] 2020 Static feature (approximate
call graph)

graph neural
network (GNN)

Constructed traditional static features
into novel graph structure data.
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Table 1. Cont.

Author Year Feature Algorithm Model Contribution and Future Work

Vinayaka et al. [18] 2021 Static feature (function call graph)
graph

convolutional
network (GCN)

Proposed a balanced technique to
make the number of nodes similar.

Cai et al. [19] 2021 Static feature (enhanced function
call graph)

graph
convolutional

network (GCN)

Overcomes the inability to understand
the behavioral characteristics of the

app due to missing
function properties.

Garg et al. [20] 2017
Dynamic feature (four different

traffic categories of
network features)

machine learning
algorithm

Future work will focus on improving
the detection rate of

unknown applications.

Cai et al. [21] 2019
Dynamic feature (method calls

and inter-component
communication (ICC) intents)

machine learning
algorithm

Found that features capturing the app
execution structure are much more

important than typical
security features.

John et al. [22] 2020 Dynamic feature (system calls)
graph

convolutional
network (GCN)

The first application of a GCN for
dynamic Android malware detection.

Taheri et al. [23] 2019 Hybrid feature (permissions,
intents, and network-flow)

machine learning
algorithm

Plans to generate an Android dataset
with more captured features and with

a massive sample size.

3. Method

In this section, we will focus on the proposed API-based node feature function weight,
the subgraph extraction method, and the role of adding node self-loops. As illustrated
in Figure 1, our model is the overall framework of our approach. The APK samples of
known categories are first processed by graph structure data pre-processing to generate the
function call graph required by the model and their corresponding node feature matrices.
Then, the function call graph and node feature matrices are fed into GCN and 1-D CNN
models. Following the forward and backward propagation of the model, the parameters of
the model are updated and the APK samples are classified. The process of graph structure
data pre-processing and model detection is divided into different phases. These phases
are explained in this section, and the corresponding subsections have been marked in
the figure.

Figure 1. Overall framework of our approach.

3.1. Feature Extractor

Our approach extracts three types of features from the FCG and decompiled APK files.
Two of these features are Dalvik opcodes and function weight, which are obtained from
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each function in the DEX file, and the remaining one is the node importance based on the
graph structure level. Finally, we concatenate the three types of features as the node feature
of the FCG.

3.1.1. Dalvik Opcodes

Dalvik is a virtual machine especially designed by Google for the Android operating
system, and opcodes exist in the code of the DEX file. According to the opcode list provided
by Gabor Paller [24], we extract the Dalvik opcodes from each method in the class and
classify their variety as our first feature. Prior to commencing our work, we need to
distinguish between internal and external classes. The internal class is obtained from the
DEX file of the decompiled APK. We can obtain the code sources of each internal class, but
the external class cannot. They stem from third-party libraries. Due to their difference, we
are using an array with a length of 14 to represent the Dalvik opcode feature of each method.

For the external class, it cannot obtain the detailed code instructions from each function,
so we represent the function of the external class as dalvik_opcodes[0] = 1.

For the internal class, we obtain the Dalvik opcodes by analyzing each instruction
in each function of the internal class. In order to better analyze these instructions in
each function, divide them into 13 categories, as shown in Table 2. Then, obtain the
corresponding keyword and i value according to the Dalvik instruction opcodes and store
as dalvik_opcodes[i] = 1.

For each method in the class of the DEX file, we represent the Dalvik opcode feature
of each method as dalvik_opcodes[i] = 1 (i ∈ [0, 13]).

Note that if dalvik_opcodes[0] = 1, then dalvik_opcodes[i] (i ∈ [1, 12]) could equal 0.
The converse is also true. The dalvik_opcodes is an array of variables defined in Python,
with a total length of 14 used to store the state of opcodes at different index i.

Table 2. The 13 types of Dalvik opcodes.

i Opcode (hex) Opcode Keywords Explanation

1 00 nop Empty operation instruction: aligns the code
and has no actual operation.

2 01-0D move Data operation instruction.

3 0E-11 return Method return instruction: returns the result
of the current working function.

4 12-1C const Data definition instruction.

5 1D-1E monitor Lock instruction: used in multithreaded
programs to operate on the same object.

6 1F/20/22 check Object operation instruction: used to
transform, check, and new instances.

7 21/23-26 array Array operation instruction.
8 27 throw Exception instruction.

9 28-2C/32-3D goto/switch/if Jump instruction: jump from the current
address to the specified offset.

10 2D-31 cmpl/cmpg/cmp Compare instruction: compare the values of
two registers.

11 44-6D/F2-F7 iget/iput/sget/sput Field operation instruction: read or write the
fields of the object instance.

12 6E-72/74-
78/F0/F8-FB invoke Function call instruction: calls the method of

other class instances.

13 7B-E2
neg-/not-/int-to/long-
to/float-to/double-to/-

int/-long/-float/-double
Datatype transfer instruction.
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3.1.2. Node Importance

The FCG is a directed graph that is extracted from decompiled APK files. In a directed
graph, the in-degree and out-degree of each node are different, while the degree values can
directly reflect the importance of that node. We can analyze the current node’s behavior
features based on a node’s in-degree and out-degree. Generally, we use only in-degree for
external class function nodes and only out-degree for app initialization function nodes.

In graph theory and network analysis, centrality is an indicator that judges the in-
fluence of nodes in the network. The higher the degree of a node, the higher the degree
centrality of the node, which means that the node has more influence in the network. This
is the degree centrality [25]. The calculation formula is as Equation (1).

Degree Centrality =
Nindegree + Noutdegree

n− 1
(1)

Although degree centrality reflects the influence of a node and includes the in-degree
and out-degree of nodes, we cannot use this metric to find out whether the node is fre-
quently pointed to other nodes or not. We need the node’s in-degree and out-degree values
to analyze whether the node plays the role of initiator, executor, or intermediate node in
the network. Therefore, we combine the in-degree and out-degree of the node and degree
centrality as the feature of each node in the FCG, represented as

Node Importance = [In Degree, Out Degree, Degree Centrality]

3.1.3. Function Weight

Application programming interfaces (APIs) are some pre-defined functions. Through
APIs, functions can be rapidly expanded for applications without understanding how they
are implemented to improve development efficiency.

The programmers often use APIs to develop Android applications. They can access
key information from the smartphone via the APIs, but using the APIs requires config-
uring the permission in AndroidManifest.xml, such as android.permission. READ_SMS
permission [26] allows for applications to read SMS messages. While each permission has
its protection levels, the permission mentioned above is dangerous, which means that it has
higher risk permissions, which allow the application requesting authorization to access the
user’s private data or gain control of the device that can adversely affect the user. We make
the maps between APIs and protection levels. Then, we can analyze the code in the DEX
file to obtain the permission protection levels required by the application and calculate the
weight of each API function as each node feature of the FCG.

To create the maps between APIs and protection levels, we need to map between the
APIs and required permissions, and between the permissions and protection levels first.
As for the maps between permissions and protection levels, they can be obtained from
the AndroidManifest.xml of the AOSP, while for the maps between APIs and permissions,
some use Pscout to build the maps [12]. We think that Pscout is complete but outdated
because its latest maps are based on Android 5.1 released in 2018, and this version has since
been replaced by several generations (the latest Android system is Android 13, which was
launched on 12 May 2022).

Google has formally documented permission specifications in two ways since Android
6.0 (API level 23) [27]:

• Using Java annotation @requiresPermission to associate APIs with permissions;
• Using @link android.Manifest.permission# to describe an API’s required permissions.

In the two ways mentioned above, we can extract the permission corresponding to
the API from the Android Open Source Project (AOSP) [11] and form the API permission
mapping. As shown in Figure 2, this is a Java code fragment from the AOSP. This code
fragment could tell us that the setActiveAdmin API needs MANAGE_DEVICE_ADMINS
and INTERACT_ACROSS_USERS_FULL permission. Similarly, Figure 3 tells us that the
getFactoryResetProtectionPolicy API needs MASTER_CLEAR permission. As shown in
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Table 3, this is the explanation of the fields we extracted from Figures 2 and 3. A total of
1640 APIs were extracted from the AOSP.

We use the extracted permissions protection level mapping and the API permission
mapping to build the maps between APIs and protection levels.

Figure 2. Google formally documents permission specifications using @RequiresPermission annota-
tion in the AOSP.

Figure 3. Google formally documents permission specifications using {@link android.Manifest.
permission#XXX} annotation in the AOSP.
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Table 3. The mapping relationship obtained from Figures 2 and 3.

The Type of
Annotation

The Meaning of the
Fields Fields Explanation

Java annotation sign @requiresPermission A kind of annotation in Java.

Number of required
permissions allOf

There are two categories: allOf and
anyOf. allOf: all permissions are

required. anyOf: only one of
the permissions is required.

@RequiresPermission
Annotation Permission name

android.Manifest.permission.
MANAGE_DEVICE_ADMINS,
android.Manifest.permission.

INTERACT_ACROSS_USERS_FULL

MANAGE_DEVICE_ADMINS and
INTERACT_ACROSS_USERS_FULL
are the required permission names.

API function name
and parameters

setActiveAdmin(@NonNull
ComponentName policyReceiver,

boolean refreshing, int)

Extract the mapping relationship
between the API function name and

parameters and permission name based
on those fields.

Permission name android.Manifest.permission
#MASTER_CLEAR Explanation as above.

@link
android.Manifest.
permission#XXX

Annotation

API function name
and parameters

getFactoryResetProtectionPolicy(@Nullable
ComponentName admin)

According to the counts of the different APIs called, we calculate the API call weight
of each function. If the API permission has multiple protection levels, only the maximum
weight value of the protection level is taken for the calculation. For each function in the
internal classes, we represent the API call weight of each function as Equation (2). In
contrast, for functions in the external classes, we represent the API call weight of each
method as the weight value of the protection level of selves, as defined by Equation (3).
Normal, signature, privileged, and dangerous are the four common levels of protection
for APIs. As the normal permission is the default value for API permissions, it is low-
risk. The system will automatically grant such permissions to the application without
explicit permission from the user. All of the protection levels, except the normal protection
level, carry some risk, and we need to capture both the identified and the potential risks
fully. Therefore, we define the API weight for the normal permission as 0 and the other
permissions as 1. We use this method to calculate the function weight of 12,898 APK
files (6530 benign APK files and 6368 malicious files) in our dataset, obtained from open
accessible datasets. Detailed information on the datasets used in our work can be found in
Section 4.2.

API_Call_Weightinternal_method =
n

∑ weightprotection level
(2)

API_Call_Weightexternal_method = max (weightAPI) (3)

If a function has a higher value of API call weight, it means that there are more
API calls in this function. However, there are more API calls at other protection levels
than at dangerous protection levels, which can only mean more behavior exists in this
function. Therefore, we put forward the ratio between API call counts with a dangerous
protection level and the total API call counts defined by Equation (4). This ratio represents
the percentage of calls to APIs identified as dangerous.

ratioeach_method =
dangerous_api_call_counts

api_call_counts
(4)
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We select the API call weight, ratio, and their product as the function weight feature
of each node in the FCG represented as

method weighteach_method = [api_call_weight, ratio, api_call_weight ∗ ratio]

Furthermore, we have made the following assessment on these features:
Assessment 1: Randomly select 2000 APK files from our dataset.
In Assessment 1, we calculate the sum of the API call weight and the ratio of 2000 APK

files (1000 malware and 1000 benign), as shown in Figure 4. In general, the larger the API
call weight value, the larger the APK file. Although the size of 2000 randomly selected
APK files varies greatly, we can see that under the same weight value, the ratio value of
malware is greater than that of benign, which means that the API with dangerous protection
permission in this APK file is called more frequently. In the following assessment, we will
select samples with similar sizes from these samples to demonstrate this finding.

Figure 4. API call weight and the ratio of 2000 APK files.

Assessment 2: Select 300 APK files of similar size in Assessment 1.
In Assessment 2, we find 300 samples (150 malware and 150 benign) of similar size

from 2000 samples and calculate the sum of the API call weight and the ratio of those
samples, as shown in Figure 5. Normally, In the case of the same weight value, the ratio
value of malware is greater than benign, and in the case of the same rational value, the
weight value of malware is greater than benign. Therefore, malware’s weight value and
ratio value are generally greater than benign.

Figure 5. API call weight and ratio of 300 APK files of similar size.

As we can see in Figures 4 and 5, malware is more distributed on the upper right
side of the scatter plot than benign. According to the results of Assessments 1 and 2, we
speculate that the value of the product between the weight and ratio of malware should
generally be greater than benign. Hence, we conduct Assessments 3 and 4.

Assessment 3: Calculate the value of weight ∗ ratio based on Assessment 2.
As shown in Figure 6, it can basically prove our above speculation.
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Figure 6. The value of the API call weight ∗ ratio of 300 APK files of similar size.

Assessment 4: Select 100 APK files of similar size in Assessment 3 to calculate the
value of weight ∗ ratio.

In order to obtain our inference more clearly from the figure, we calculated the value
of weight ∗ ratio again after reducing the number of APK samples. As shown in Figure 7,
we can definitely prove our speculation: the value of the weight ∗ ratio of malware should
generally be greater than benign.

Figure 7. The value of the API call weight ∗ ratio of 100 APK files of similar size.

With the four assessments above, the API call weight in function weight can reflect
the size of an APK file to some extent. We can clearly find that malware’s ratio, the
weight ∗ ratio value is generally larger than benign’s ratio for a similar API call weight.
Thus, even without precise computation by the neural network, we can use this feature to
distinguish the APK class roughly. The later experimental sections show that using this
node feature makes our model very effective.

3.2. Graph Extractor

In this Section, our approach first extracts the function call graph (FCG) and, on top
of the FCG, extracts the sensitive function call subgraph (S-FCSG). The extraction of the
S-FCSG involves three steps: calculate the API coefficient, extract the FCSG, and extract the
S-FCSG.

3.2.1. Generate an Entire Function Call Graph (FCG)

Androguard [28] is a complete Python tool used to play with Android files and is used
to extract the FCG in our work. It can decompile the APK file and obtain the functions in the
class. By analyzing the invoked instructions in each function, it takes the calling and called
functions as nodes, adds directed edges according to the calling relationship, and then
builds a directed function call graph. The function call graph can automatically capture
their behavior features through this call–callee relationship between different functions. As
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shown in Figure 8 from this directed graph, we can discover the call–callee relationships
between the different nodes.

Figure 8. The FCG of 382faa3f0119848f4c0b325fe50ae8659be2b09e069f6660436276358856708b of the
Drebin dataset. The nodes represent the functions of the APK file. The edges represent the call–callee
relationship between the different functions.

3.2.2. Calculate the API Coefficient

The API coefficient is calculated to indicate the importance of APIs in Android appli-
cations. If only the frequency of API occurrences in the dataset is calculated as the API
coefficient, then the measurement will be biased, such as MIGDroid [29].

Inspired by the idea of the TF–IDF [30] algorithm, we apply the TF–IDF algorithm
suitable for our work to calculate the API coefficient, and use the API coefficient to express
the importance of this API. From the 1640 APIs extracted from the AOSP above, we select
978 APIs with high protection levels and a special call frequency, and use these 978 APIs to
build a sensitive API set.

We have defined four terms to help us calculate the API coefficient.

• count(apii, apk): the counts of apii is called in the APK;
• count(apk, ∗): the total counts of API called in the APK;
• number(c): the counts of APKs of type c in the dataset. c indicates whether the

category of the APK is malicious or benign;
• number(apii): the counts of APK which are called apii.

According to the formulas in TF–IDF, we propose the formulas applicable to our work,
as follows:

TF(apii, apk) =
count(apii, apk)

count(apk, ∗) (5)

IDF(apii, c) = log
number(c)

number(apii) + 1
(6)

TF− IDF(c) = TF(apii, apk) ∗ IDF(apii, c) (7)

TF− IDF(malware) indicates the TF–IDF value of malware.
TF− IDF(benign) indicates the TF–IDF value of benign.
To avoid program exceptions with denominator 0 caused by unused APIs, we added

1 to the denominator of the log function in the IDF formula. The API coefficient value
should be proportional to the value of TF − IDF(malware) and TF − IDF(benign). The
calculation formula is as follows:

API coe f f icient(apii) = TF− IDF(malware) ∗ TF− IDF(benign) (8)
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Through calculation, we can learn that in our sensitive API set, the API coefficient
value of getInstance(context) ranks first and its TF and TF–IDF values in malware and
benign also rank first, indicating that this API has been called the most times and is the
most important. Several APIs with a dangerous protection level also rank high, such
as connect(WifiP2pManager$Channel,WifiP2pConfig,WifiP2pManager$ActionListener),
getExternalStorageDirectory(), etc.

3.2.3. Extract the Function Call Subgraph (FCSG)

We extract the function call subgraph (FCSG) containing all sensitive API nodes based
on the sensitive API set. As shown in Algorithm 1, this is our extraction process.

Algorithm 1 Generate the Function Call Subgraph (FCSG)

Input: FCG = {V,E}; SENSITIVE_API_SET;
Output: FCSG

1: SUBGRAPH_NODE_LIST ← Φ
2: for each Vapi ∈ SENSITIVE_API_SET do
3: if Vapi ∈ FCG then
4: for each Vi ∈ FCG do
5: if shortest_path(Vi, Vapi) <= 2 then
6: SUBGRAPH_NODE_LIST ← Vapi ∪ {Vi}
7: end if
8: end for
9: end if

10: end for
11: FCSG ← subgraph(FCG, SUBGRAPH_NODE_LIST)
12: return FCSG

Algorithm 1 shows the step of extracting the FCSG with the input of the FCG of each
application and sensitive API set, which is extracted from the AOSP we mentioned earlier.
We define SBUGRAPH_NODE_LIST variable to save API nodes and their neighbor nodes.
Note that the FCG is considered an undirected graph during the extraction of the FCSG.

In Algorithm 1, the function of shortest_path(Vi, Vapi) is used to calculate the shortest
distance between Vi and Vapi vertices, set(SBUGRAPH_NODE_LIST) function is for re-
moving duplicate vertices in the list. subgraph(FCG, SBUGRAPH_NODE_LIST) function
extracts the subgraph FCSG of the FCG according to the nodes in SBUGRAPH_NODE_LIST.

In the function of shortest_path(Vi, Vapi), it extracts neighbor nodes with the shortest
path length that is less than or equal to 2. For the reason that we randomly selected
2001 APK files from the dataset, it turns out that the average shortest path length of API
nodes to its neighbor nodes ranges from the greatest amount (94.8%) of APKs at (2, 4) and
only a few APKs are greater than 4, as shown in Figure 9. To extract subgraphs, we set the
neighboring nodes with the shortest path length of less than or equal to 2.

Figure 9. Average shortest path length in the 2001 randomly selected APK files from the dataset.
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3.2.4. Generate the Sensitive Function Call Subgraph (S-FCSG)

We further extract the sensitive function call subgraph (S-FCSG) from the FCSG. As
shown in Figure 10, this is an S-FCSG, and Algorithm 2 is our extraction process.

Figure 10. The S-FCSG of 382faa3f0119848f4c0b325fe50ae8659be2b09e069f6660436276358856708b
of the Drebin dataset. The meanings of the nodes and edges in the figure are the same as those in
Figure 8.

Algorithm 2 Generate the Sensitive Function Call Subgraph (S-FCSG)

Input: FCSG = {V,E}; SENSITIVE_API_SET; API_COEFFICIENT_LIST
Output: S− FCSG

1: SBUGRAPH_NODE_LIST ← φ
2: for each Vi ∈ FCSG do
3: if Vi ∈ SENSITIVE_API_SET and

coe f f icient_rank(Vi, API_COEFFICIENT_LIST) then
4: Vn ← b f s_tree(FCSG, Vi)
5: end if
6: end for
7: SBUGRAPH_NODE_LIST ← {Vn}
8: S− FCSG ← subgraph(FCSG, SBUGRAPH_NODE_LIST)
9: return S− FCSG

Algorithm 2 shows the extraction process of the S-FCSG using the FCSG, the sensitive
API set, and the API coefficient list as input. The algorithm’s essence is to extract the
sensitive subgraph with the high API coefficient nodes from the FCSG. The FCSG is also
considered an undirected graph during the extraction.

The function of the variable SBUGRAPH_NODE_LIST is the same as that of the
variable SBUGRAPH_NODE_LIST in Algorithm 1.

The coe f f icient_rank(Vi, API_COEFFICIENT_LIST) function is used to calculate
the rank of the API coefficient of API node Vi, the function of b f s_tree(FCSG, Vi) utilizes
breadth-first search to find all connected neighbor nodes of Vi in the FCSG.

In the process of subgraph extraction, we treat directed graphs as undirected graphs
using the all-preserving approach. We randomly tested 3000 sample APKs in the dataset,
extracted subgraphs starting from the top 1, 3, 5, 7, 10, 20, and 30 sensitive API nodes sorted
by API coefficients, and observed the changes in the number of nodes and node features in
the graph, respectively, as shown in Table 4. The subgraphs extracted using this approach
may contain API nodes that do not have a high API coefficient ranking, which are API
nodes within two hops of the top API coefficient ranking node.

With Table 4, the S-FCSG effectively reduces the number of nodes in the function call
graph, directly reducing the complexity of the graph structure while retaining the maximum
node features and structure. Based on the characteristics of the graph neural networks,
the S-FCSG avoids the tendency for high feature weight nodes to be similar to nonsensical
nodes or less important nodes during the propagation of the graph convolutional neural
network, thus reducing the interference of redundant nodes in our model learning. The
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dimensionality of the adjacency and feature matrices of the S-FCSG is smaller than that
of the FCG, which speeds up the training of our model below and consumes resources.
Following the comparison, we chose the S-FCSG with the top 10 parameters for the next
experiments.

Table 4. Comparison of the subgraph extraction.

Number of
Sensitive APIs

That Began to Be
Extracted

The Average
Number of

Nodes in the
FCG

The Average
Number of

Nodes in the
FCSG

Average
Node

Reduction
Rate

The Total of the
Feature Weight

in the FCG

The Total of
the Feature

Weight in the
FCSG

Node Feature
Reduction

Rate

Top 1

12,189

7303 40.1%

1,884,584

1,663,770 11.7%
Top 3 7776 36.2% 1,733,300 8.0%
Top 5 7914 35.0% 1,766,982 6.2%
Top 7 7986 34.5% 1,776,055 5.8%

Top 10 8170 33.0% 1,789,436 5.0%
Top 15 8531 30.0% 1,802,242 4.4%
Top 20 9115 25.2% 1,822,036 3.3%
Top 30 10,094 17.1% 1,866,399 1.0%

3.3. Neural Network Model

In this section, we hope to use a neural network model to automatically capture the
semantic relationship between different nodes in the graph structure. In this paper, we
propose a combined GCN+1-D CNN model, as shown in Figure 11. The GCN model is
used to embed the graph structure data and node features directly. During the propagation
of the GCN model, it is possible to aggregate the features of the current node and its
neighbors, allowing for feature learning between different nodes. A 1-D CNN model is
used to further capture the correlation between the node features, which after learning
by the GCN model, then feeds the captured relevant features back to the fully connected
network for classification.

Figure 11. Our GCN+1-D CNN model.

3.3.1. Graph Convolutional Networks

For the GCN model, we compare two algorithmic models:
(1) GraphConv [31]:
Kipf et al. consider a layer-wise propagation rule of a multi-layer graph convolutional

network (GCN), as shown in Equation (9):

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2 H(l)W(l)) (9)



Sensors 2023, 23, 4729 17 of 24

Ã is an adjacency matrix with an added identity matrix that is pooling the information of
each node and its neighbors. W(l) is a learnable weight matrix and σ is an activation function.

Equation (10) is the simple form of the forward propagation model and Figure 12
is the schematic depiction of the multi-layer graph convolutional network (GCN) for
semi-supervised learning.

Z = f (X, A) = so f tmax(Â ReLu(ÂXW(0))W(1)), Â = D̃−
1
2 ÃD̃−

1
2 (10)

Figure 12. Schematic depiction of the multi-layer graph convolutional network (GCN) [31].

(2) GraphSAGE [32]:
The GraphSAGE approach is closely related to GraphConv. Nodes aggregate features

from their neighbors and gain more and more features from further neighbor nodes of the
graph with the increase of GraphSAGE layers. Equations (11) and (12) are the process of
aggregation features. Equation (13) is the L2 normalization. Figure 13 visually illustrates
the GraphSAGE sample and aggregate approach.

h(l+1)
N(i) = AGGREGATE(hl

j, ∀j ∈ N(i)) (11)

h(l+1)
i = σ(W ∗ concat(h(l)i , h(l+1)

N(i) )) (12)

h(l+1)
i =

h(l+1)
i∥∥∥h(l+1)

i

∥∥∥
2

(13)

Figure 13. Visual illustration of the GraphSAGE sample and aggregate approach [32].

In general, the low-pass filter in the GNN mainly retains the commonality of node
features. It inevitably ignores differences so that the learned feature representations of
connected nodes are similar [10]. Similarly, the GraphConv and GraphSAGE models
mentioned in the paper make the feature representations of the interconnected nodes
converge to be similar in the forward propagation of the models. In Section 3.2, we extract
sensitive function call subgraphs and remove nonsensical nodes and less significant nodes
from the graph, which can effectively avoid the feature representation of important nodes
that are similar to those of nonsensical nodes after the process of forward propagation of
the GCN model.
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Compared to the algorithm of GrapConv, GraphSAGE is an inductive graph embed-
ding that can embed nodes that never appeared, but GraphConv cannot. Therefore, we
take GrapSAGE as our GCN model and set the parameters AGGREGATE to mean and σ
to ReLu. Influenced by Equation (9) in GraphConv, we added the self-loop to the S-FCSG
before feeding it into the GCN model in order to allow the GraphSAGE model to aggregate
its own features once more as it propagates the aggregated node features forward, further
enhancing the features of the important nodes on the basis of preventing them from being
similar to the features of the nonsensical nodes. As shown in Figure 14, this shows the
feature weights initially after the GraphSAGE model embedding and after the GraphSAGE
with the self-loop S-FCSG model embedding, respectively. We set both the weight and bias
in the model to none during this process.

Figure 14. Comparison of the feature weights of com.moyou.gjqx.uc.apk of the Androzoo dataset.

3.3.2. Global Pooling Layer

The S-FCSG has a high-dimensional adjacency matrix and node feature matrix. We use
the global pooling layer to extract the critical features and reduce the dimensionality of the
node feature matrix. The sort pooling model [33] is used as our global pooling layer. It first
sorts the node features in ascending order along the feature dimension of the GCN model
output and selects the sorted feature weight of top-K nodes. The nodal feature matrices of
different dimensions can all be normalized to the same dimension after the global pooling
layer, which facilitates the definition and calculation of our next model. We combine the
extracted K node feature vectors into a K-dimensional nodal feature matrix.

The size of K represents the number of significant nodes selected for our experiment,
and we experimentally demonstrate in the next Section that using different values of K in
the global pooling layer gives different experimental results.

3.3.3. The 1-D Convolution Neural Networks and Fully Connected Layer

Our 1-D convolutional neural network and fully connected layer consist of three 1-D
convolutional layers, a merge layer, a max pooling layer, and a fully connected layer. Each
convolutional layer has a different convolutional kernel depth, which is used to extract
behavior features between nodes at different granularities. The merge layer joins the three
node feature vectors from the 1-D CNN output, and we set the sampling kernel as three
and stride as three in the next max pooling layer. Then, the fully connected layers have
128 hidden layer nodes. Finally, we use the sigmoid function for the binary classification.

4. Experiment and Evaluation
4.1. Experimental Software and Environment

Pytorch 1.10 was used to build our model framework and Androguard [28] was
used to extract the function call graph from APK. DGL [34] was used to implement the
GraphSAGE model, and Joblib [35] was used to help us, in parallel, decompile the APK. The
environment was established on Windows 10 with 8GB of RAM for analysis and extraction,
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and Ubuntu 18.04 with 11GB of VRAM was used for calculation. Both operating systems
had installed Python 3.7.

4.2. Dataset

In our work, we used 6530 benign APKs that were generated after 1 Jan 2017 from the
Androzoo [36] dataset as our benign dataset, and 6368 malware APKs from Drebin [37]
and CICMalDroid 2020 [38] were taken as our malware dataset, 3500 and 2868, respectively.
However, some of these APKs were broken, and we cleaned up some APKs that could not
be decompiled or from which we could not obtain code resources. The dataset was divided
into 80% training set and 20% verification set.

In parallel, we decompiled these APKs in advance and utilized the pickle method of
Python to form serialized files, which can greatly reduce the time for analyzing APK files
during training.

4.3. Evaluation Indicator

We evaluated our model using standard metrics, such as accuracy, precision, F1 score,
TPR, FPR, and AUC. These metrics were calculated as Equation Accuracy = (TP+TN)

TP+TN+FP+FN)
,

Precision = TP
(TP+FP) , F1 Score = 2∗Precision∗Recall

(Precision+Recall) , TPR = TP
(TP+FN)

, FPR = FP
(FP+TN)

, and
AUC is the area under ROC curve. In the above equations, TP denotes the counts of
malware correctly detected, FP denotes the counts of benign APKs incorrectly classified as
malicious, TN denotes the counts of benign APKs correctly detected, and FN denotes the
counts of malware APKs incorrectly classified as benign.

4.4. Experimental Process and Result

During our experiments, there were many parameters that influenced the outcome
of our experiments. The first was the number of layers of the GCN model. We started
our experiments with a two-layer GCN model because of the recommendation made by
Hamilton et al. [32]. The different node features in the S-FCSG gradually converged to be
similar to the GCN model that was continuously trained. This does not mean that more
layers in the GCN model were better in our approach. We tested the effect of the GCN
model with two, three, and four layers on our experimental results. We observed that
the detection accuracy of the model with three layers was higher at K = 20, as shown in
Figure 15.

Figure 15. Experimental results for the different GCN model layers (K = 20).

In addition to the effect of the number of model layers, the size of the K-value in
the global pooling layer also affected our experimental results. The size of the K-value
represented the dimensionality of the behavior features extracted from the APK file. A
higher dimensionality may contain more information about the behavioral features, but
may also result in a feature overlap, which is not conducive to learning important behavior
features. Then, we tested the effect on our experimental results at different GCN layers with
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K-values of 20, 40, and 60, respectively. As shown in Table 5, the experimental results use
GraphSAGE with a self-loop graph for different numbers of layers and K-values as input.

Table 5. Experimental Results.

GCN Layers K Accuracy Precision F1 Score TPR FPR AUC

2
20 0.9534 0.9696 0.9527 0.9362 0.029 0.9908

40 0.9593 0.9644 0.9597 0.9539 0.035 0.9879

60 0.9719 0.9820 0.9716 0.9614 0.017 0.9962

3
20 0.9687 0.9620 0.9688 0.9757 0.038 0.9922

40 0.9828 0.9890 0.9827 0.9765 0.011 0.9968

60 0.9652 0.9625 0.9653 0.9681 0.037 0.9936

4
20 0.9631 0.9623 0.9631 0.9640 0.037 0.9930

40 0.9476 0.9635 0.9467 0.9304 0.035 0.9867

60 0.9661 0.9688 0.9660 0.9631 0.031 0.9946

In Table 5, we find that when the number of layers of the GCN model is low, the larger
the K-value, i.e., the larger the dimensionality of the node behavior features, the better the
results. However, this phenomenon is no longer evident as the number of model layers
increases. As the number of layers of the GCN model increases, the accuracy of the model
detection is higher at K-values of 20 and 40 than when the number of layers of the GCN
model is two. This may be because the node features have not yet fully aggregated the
features of neighboring nodes in two layers of the GCN model, and the model cannot
correctly identify the APK category at low feature dimensions. However, when the value
of K is 60 when the multi-layer GCN model is used again to aggregate node features,
the features may overlap, and the features used lose their original importance, causing
interference in the model detection and making the final result inferior to that of the two-
layer GCN model. By our experimental comparison of different model layers and K-values,
the GCN model has the best results in our approach when the number of layers is three
and K = 40, with an accuracy of 98.28%. The epoch of our training process is set to 150, as
shown in Figure 16 for the experimental process with GCN model layers of three and K of
40. When the epoch reaches 150, the loss function curve and the training accuracy curve
have fully converged.

Figure 16. Loss and accuracy of training.

Under the same parameters of the model, we compared the results of GraphConv [31],
GraphSAGE [32], and GraphSAGE with input as a self-loop graph, as shown in Figure 17.
The ROC plot shows that the classification effect of using the GraphSAGE with input as a
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self-loop graph is higher than the other two models, which shows that we can effectively
enhance the important node features by adding self-loop to the S-FCSG and improve the
classification performance of the original model.

Figure 17. ROC curves for the different models.

We compared several existing malware detection methods. The model algorithms
ranged from machine learning in the past to the latest GCN models, and the use of features
from single permission to complex behavior features in the function call graph. In particular,
the approach proposed by Vinayaka et al. [18] uses the FCG as a feature and the GCN
model for detection. However, they use the readout function to extract the overall features
of nodes in the FCG, which amounts to the aggregation of both important and nonsense
node features. Table 6 and Figure 18 compare our approach with the existing ones. The
closer the value of AUC is to 1, the better the performance of the classifier. By comparing
the size of the AUC area and other metrics, our approach has better results and greater
performance in Android malware detection.

Table 6. Comparison of our approach with existing approaches.

Approaches Accuracy Precision F1 Score TPR FPR AUC

Derbin [37] 0.9651 0.9542 0.9431 0.9565 0.043 0.9765

MaMaDroid [39] 0.9681 0.8909 0.8489 0.9371 0.063 0.9599

DAPASA [16] 0.9432 0.9356 0.9422 0.9279 0.072 0.9578

DroidSim [40] 0.9336 0.9124 0.8930 0.8878 0.108 0.9141

AMDroid [41] 0.9749 0.9787 0.9729 0.9739 0.027 0.9748

V et al. proposed [18] 0.9229 0.9242 0.9205 0.9223 N/A N/A

Ours 0.9828 0.9890 0.9827 0.9765 0.011 0.9968

Figure 18. Comparison of our approach with existing approaches.
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5. Conclusions

In this paper, we propose an Android malware detection approach to enhance the
differences of node features in a function call graph (FCG). Through the validation of
the function weight feature proposed in Section 3.1.3, we know that the high permission
protection level of APIs is generally more frequent in malicious APKs than in benign APKs.
Based on the FCG, we obtained the critical nodes in the graph and extracted them and their
neighbors to build the sensitive function call subgraph (S-FCSG). Firstly, the S-FCSG is able
to capture important nodes while effectively reducing the number of nodes in the FCG
and maximizing the retention of node features and structures. Then, the S-FCSG removes
meaningless nodes and it prevents important node features from becoming meaningless
during the propagation of the GCN, reducing the impact of low-pass filterability on the
interference of important information learned by our model and the effect of the experiment.
Based on the GraphSAGE aggregation of node features, we considered involving our node
features in the aggregation operation, increasing the weight of important node features
and the differences between different node features. The important node features are
extracted through the global pooling layer as the node behavior features of the S-FCSG so
that the information with significant features can facilitate the identification and detection
of our model. Experiments show that our approach is better at identifying and detecting
Android malware than previous machine learning-based approaches and current FCG-
based approaches.

We have focused on the node features of the graph and the characteristics of the GCN
model in this paper, but the graph structure is rich in semantics and there are many entry
points to study, such as nodes, edges, attributes, and types of graphs. In the future, we will
first study the subgraph extraction method. In our approach, all of the datasets used the
same subgraph extraction method. Although this method is effective, we want to adopt a
better dynamic subgraph extraction method using the combined GraphSAGE [32] model.
Secondly, the important assessment of the nodes in the graph is also advantageous for
research content. Our method uses feature weights to evaluate the degree of importance of a
node, and a dynamic method of evaluating node importance proposed by Huang et al. [42]
is a very novel method worthy of our research. Finally, making the graph richer in feature
information will make it easier to identify the model, so the construction of heterogeneous
graphs will also be our next research step. In short, malware detection based on graph
structure and graph convolutional networks has a lot of space for future study.
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Abbreviations

The following abbreviations are used in this paper:
GCNs Graph Convolutional Networks
FCG Function Call Graph
FCSG Function Call Subgraph
S-FCSG Sensitive Function Call Subgraph
AOSP Android Open Source Project
1-D CNN 1-D Convolutional Neural Network

References
1. Google Play Annual App Downloads 2021. Available online: https://www.statista.com/statistics/734332/google-play-app-

installs-per-year/ (accessed on 22 February 2022).
2. Android Test 2019—250 Apps. Available online: https://www.av-comparatives.org/tests/android-test-2019-250-apps/

(accessed on 22 February 2022).
3. Liu, K.; Xu, S.; Xu, G.; Zhang, M.; Sun, D.; Liu, H. A review of android malware detection approaches based on machine learning.

IEEE Access 2020, 8, 124579–124607. [CrossRef]
4. Bhat, P.; Dutta, K. A survey on various threats and current state of security in android platform. Acm Comput. Surv. (CSUR) 2019,

52, 1–35. [CrossRef]
5. A Gentle Introduction to Graph Neural Networks. Available online: https://distill.pub/2021/gnn-intro (accessed on 22 March 2022).
6. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
7. Gers, F.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. In Proceedings of the 1999 Ninth

International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ. No. 470), Edinburgh, UK, 7–10 September 1999;
Volume 2, pp. 850–855. [CrossRef]

8. Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying Graph Convolutional Networks. In Machine Learning
Research, Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019 ; Chaudhuri, K.,
Salakhutdinov, R., Eds.; MLR Press: Philadelphia, PA, USA , 2019; Volume 97, pp. 6861–6871.

9. Li, Q.; Wu, X.M.; Liu, H.; Zhang, X.; Guan, Z. Label efficient semi-supervised learning via graph filtering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 10–20 June 2019 ; pp. 9582–9591.

10. Bo, D.; Wang, X.; Shi, C.; Shen, H. Beyond low-frequency information in graph convolutional networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, Online, 2–9 February 2021 ; Volume 35, pp. 3950–3957.

11. Android Open Source Project. Available online: https://github.com/aosp-mirror (accessed on 22 June 2022).
12. Au, K.W.Y.; Zhou, Y.F.; Huang, Z.; Lie, D. PScout: Analyzing the Android Permission Specification. In Proceedings of the CCS

’12, 2012 ACM Conference on Computer and Communications Security, New York, NY, USA, 16–18 October 2012; pp. 217–228.
[CrossRef]

13. Wu, D.J.; Mao, C.H.; Wei, T.E.; Lee, H.M.; Wu, K.P. DroidMat: Android Malware Detection through Manifest and API Calls
Tracing. In Proceedings of the 2012 Seventh Asia Joint Conference on Information Security, Tokyo, Japan, 9–10 August 2012;
pp. 62–69. [CrossRef]

14. Li, D.; Wang, Z.; Xue, Y. DeepDetector: Android Malware Detection using Deep Neural Network. In Proceedings of the 2018
International Conference on Advances in Computing and Communication Engineering (ICACCE), Paris, France, 22–23 June 2018;
pp. 184–188. [CrossRef]

15. Liu, Y.; Zhang, L.; Huang, X. Using G Features to Improve the Efficiency of Function Call Graph Based Android Malware
Detection. Wirel. Pers. Commun. 2018, 103, 2947–2955. [CrossRef]

16. Fan, M.; Liu, J.; Wang, W.; Li, H.; Tian, Z.; Liu, T. DAPASA: Detecting Android Piggybacked Apps Through Sensitive Subgraph
Analysis. IEEE Trans. Inf. Forensics Secur. 2017, 12, 1772–1785. [CrossRef]

17. Feng, P.; Ma, J.; Li, T.; Ma, X.; Xi, N.; Lu, D. Android Malware Detection Based on Call Graph via Graph Neural Network.
In Proceedings of the 2020 International Conference on Networking and Network Applications (NaNA), Haikou, China,
10–13 December 2020; pp. 368–374. [CrossRef]

18. Vinayaka, K.V.; Jaidhar, C.D. Android Malware Detection using Function Call Graph with Graph Convolutional Networks. In
Proceedings of the 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC), Jalandhar,
India, 21–23 May 2021; pp. 279–287. [CrossRef]

19. Cai, M.; Jiang, Y.; Gao, C.; Li, H.; Yuan, W. Learning features from enhanced function call graphs for Android malware detection.
Neurocomputing 2021, 423, 301–307. [CrossRef]

20. Garg, S.; Peddoju, S.K.; Sarje, A.K. Network-based detection of Android malicious apps. Int. J. Inf. Secur. 2017, 16, 385–400.
[CrossRef]

21. Cai, H.; Meng, N.; Ryder, B.; Yao, D. DroidCat: Effective Android Malware Detection and Categorization via App-Level Profiling.
IEEE Trans. Inf. Forensics Secur. 2019, 14, 1455–1470. [CrossRef]

https://www.statista.com/statistics/734332/google-play-app-installs-per-year/
https://www.statista.com/statistics/734332/google-play-app-installs-per-year/
https://www.av-comparatives.org/tests/android-test-2019-250-apps/
http://doi.org/10.1109/ACCESS.2020.3006143
http://dx.doi.org/10.1145/3301285
https://distill.pub/2021/gnn-intro
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1049/cp:19991218
https://github.com/aosp-mirror
http://dx.doi.org/10.1145/2382196.2382222
http://dx.doi.org/10.1109/AsiaJCIS.2012.18
http://dx.doi.org/10.1109/ICACCE.2018.8441737
http://dx.doi.org/10.1007/s11277-018-5982-0
http://dx.doi.org/10.1109/TIFS.2017.2687880
http://dx.doi.org/10.1109/NaNA51271.2020.00069
http://dx.doi.org/10.1109/ICSCCC51823.2021.9478141
http://dx.doi.org/10.1016/j.neucom.2020.10.054
http://dx.doi.org/10.1007/s10207-016-0343-z
http://dx.doi.org/10.1109/TIFS.2018.2879302


Sensors 2023, 23, 4729 24 of 24

22. John, T.S.; Thomas, T.; Emmanuel, S. Graph Convolutional Networks for Android Malware Detection with System Call Graphs.
In Proceedings of the 2020 Third ISEA Conference on Security and Privacy (ISEA-ISAP), Guwahati, India, 27 February–1 March
2020; pp. 162–170. [CrossRef]

23. Taheri, L.; Kadir, A.F.A.; Lashkari, A.H. Extensible Android Malware Detection and Family Classification Using Network-Flows
and API-Calls. In Proceedings of the 2019 International Carnahan Conference on Security Technology (ICCST), Chennai, India,
1–3 October 2019; pp. 1–8. [CrossRef]

24. Dalvik Opcodes. Available online: http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html (accessed on 10 June 2022).
25. Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [CrossRef]
26. Android Developers. Available online: https://developer.android.com/reference/android/Manifest.permission (accessed on

12 June 2022).
27. Improve Code Inspection with Annotations. Available online: https://developer.android.com/studio/write/annotations

(accessed on 12 June 2022).
28. Welcome to Androguard’s Documentation. Available online: https://androguard.readthedocs.io/en/latest/index.html (accessed

on 17 March 2022).
29. Hu, W.; Tao, J.; Ma, X.; Zhou, W.; Zhao, S.; Han, T. MIGDroid: Detecting APP-Repackaging Android malware via method

invocation graph. In Proceedings of the 2014 23rd International Conference on Computer Communication and Networks
(ICCCN), Shanghai, China, 4–7 August 2014; pp. 1–7. [CrossRef]

30. Aizawa, A. An information-theoretic perspective of tf–idf measures. Inf. Process. Manag. 2003, 39, 45–65. [CrossRef]
31. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the International

Conference on Learning Representations, Toulon, France, 24–26 April 2017.
32. Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive Representation Learning on Large Graphs. In Proceedings of the NIPS’17, 31st

International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 4–9 December 2017; pp. 1025–1035.
33. Zhang, M.; Cui, Z.; Neumann, M.; Chen, Y. An End-to-End Deep Learning Architecture for Graph Classification. In Proceedings

of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–3 February 2018; Volume 32. [CrossRef]
34. Deep Graph Library. Available online: https://www.dgl.ai (accessed on 18 July 2022).
35. Joblib: Running Python Functions as Pipeline Jobs. Available online: https://joblib.readthedocs.io (accessed on 4 July 2022).
36. Allix, K.; Bissyandé, T.F.; Klein, J.; Le Traon, Y. AndroZoo: Collecting Millions of Android Apps for the Research Community. In

Proceedings of the MSR’16, 13th International Conference on Mining Software Repositories, New York, NY, USA, 14–22 May 2016;
pp. 468–471. [CrossRef]

37. Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K.; Siemens, C. Drebin: Effective and explainable detection of android
malware in your pocket. NDSS 2014, 14, 23–26.

38. Mahdavifar, S.; Kadir, A.F.A.; Fatemi, R.; Alhadidi, D.; Ghorbani, A.A. Dynamic android malware category classification using
semi-supervised deep learning. In Proceedings of the 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing,
Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and
Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB, Canada, 17–22 August 2020; pp. 515–522.

39. Onwuzurike, L.; Mariconti, E.; Andriotis, P.; Cristofaro, E.D.; Ross, G.; Stringhini, G. MaMaDroid: Detecting Android Malware by
Building Markov Chains of Behavioral Models (Extended Version). ACM Trans. Priv. Secur. 2019, 22. [CrossRef]

40. Sun, X.; Zhongyang, Y.; Xin, Z.; Mao, B.; Xie, L. Detecting Code Reuse in Android Applications Using Component-Based Control
Flow Graph. In IFIP Advances in Information and Communication Technology , Proceedings of the ICT Systems Security and Privacy
Protection, Marrakech, Morocco, 2–4 June 2014 ; Cuppens-Boulahia, N., Cuppens, F., Jajodia, S., Abou El Kalam, A., Sans, T., Eds.;
Springer: Berlin/Heidelberg, Germany, 2014; pp. 142–155.

41. Ge, X.; Pan, Y.; Fan, Y.; Fang, C. AMDroid: Android Malware Detection Using Function Call Graphs. In Proceedings of the
2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C), Sofia, Bulgaria,
22–26 July 2019; pp. 71–77. [CrossRef]

42. Huang, H.; Sun, L.; Du, B.; Liu, C.; Lv, W.; Xiong, H. Representation Learning on Knowledge Graphs for Node Importance
Estimation. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore,
14–18 August 2021; pp. 646–655.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ISEA-ISAP49340.2020.235015
http://dx.doi.org/10.1109/CCST.2019.8888430
http://pallergabor.uw.hu/androidblog/dalvik_opcodes.html
http://dx.doi.org/10.1016/0378-8733(78)90021-7
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/studio/write/annotations
https://androguard.readthedocs.io/en/latest/index.html
http://dx.doi.org/10.1109/ICCCN.2014.6911805
http://dx.doi.org/10.1016/S0306-4573(02)00021-3
http://dx.doi.org/10.1609/aaai.v32i1.11782
https://www.dgl.ai
https://joblib.readthedocs.io
http://dx.doi.org/10.1145/2901739.2903508
http://dx.doi.org/10.1145/3313391
http://dx.doi.org/10.1109/QRS-C.2019.00027

	Introduction
	Related Work 
	Static Features
	Traditional Static Features
	Function Call Graph

	Dynamic Features

	Method 
	Feature Extractor
	Dalvik Opcodes
	Node Importance
	Function Weight

	Graph Extractor
	Generate an Entire Function Call Graph (FCG)
	Calculate the API Coefficient
	Extract the Function Call Subgraph (FCSG)
	Generate the Sensitive Function Call Subgraph (S-FCSG)

	Neural Network Model
	Graph Convolutional Networks
	Global Pooling Layer
	The 1-D Convolution Neural Networks and Fully Connected Layer


	Experiment and Evaluation
	Experimental Software and Environment
	Dataset 
	Evaluation Indicator
	Experimental Process and Result

	Conclusions 
	References

