
Citation: Lu, J.; Li, H.; Huang, J.; Ma,

S.; Au, M.H.A.; Huang, Q.

Certificateless Public Key

Authenticated Encryption with

Keyword Search Achieving Stronger

Security. Information 2023, 14, 142.

https://doi.org/10.3390/

info14030142

Academic Editor: Marco Baldi

Received: 18 January 2023

Revised: 17 February 2023

Accepted: 20 February 2023

Published: 21 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Certificateless Public Key Authenticated Encryption with
Keyword Search Achieving Stronger Security
Jingwei Lu 1 , Hongbo Li 1,* , Jianye Huang 2 , Sha Ma 1 , Man Ho Allen Au 3 and Qiong Huang 1,4

1 College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
2 School of Computing and Information Technology, University of Wollongong,

Wollongong, NSW 2500, Australia
3 Department of Computing, Hong Kong Polytechnic University, Hong Kong 999077, China
4 Guangzhou Key Laboratory of Intelligent Agriculture, Guangzhou 510642, China
* Correspondence: hongbo@scau.edu.cn

Abstract: Transforming data into ciphertexts and storing them in the cloud database is a secure
way to simplify data management. Public key encryption with keyword search (PEKS) is an important
cryptographic primitive as it provides the ability to search for the desired files among ciphertexts.
As a variant of PEKS, certificateless public key authenticated encryption with keyword search (CLPAEKS)
not only simplifies certificate management but also could resist keyword guessing attacks (KGA). In
this paper, we analyze the security models of two recent CLPAEKS schemes and find that they
ignore the threat that, upon capturing two trapdoors, the adversary could directly compare them and
distinguish whether they are generated using the same keyword. To cope with this threat, we propose
an improved security model and define the notion of strong trapdoor indistinguishability. We then
propose a new CLPAEKS scheme and prove it to be secure under the improved security model based
on the intractability of the DBDH problem and the DDH problem in the targeted bilinear group.

Keywords: encryption with keyword search; certificateless public key cryptography; keyword
guessing attacks; trapdoor indistinguishability; provable security

1. Introduction

Boneh et al. [1] first proposed the notion of public key encryption with keyword search
(PEKS). As shown in Figure 1, the workflow of PEKS includes:

1. The data sender uses the file’s keyword to generate the searchable ciphertext C and
uploads it along with the encrypted file to the cloud server.

2. The data receiver uses its desired keyword to generate the trapdoor td and sends it to
the cloud server.

3. The cloud server runs an algorithm called Test to check whether C and td contain the
same keyword and returns the corresponding file to the receiver if it does. During
the search, the cloud server is unable to know the keyword as well as the content of
the file.

PEKS could be applied to encrypted instant messaging apps. The client-side archive
of chat logs may suffer from mistaken deletion and limited storage space. Therefore,
some instant messaging apps (e.g., Google Talk and Yahoo Messenger 11 Beta) support
saving chat logs on a server for future retrieval. Encrypting chat logs before uploading
is a proactive defense against cyber attacks and data breaches. However, encryption
destroys the original features of data and thus invalidates the traditional searching methods.
Downloading and decrypting all chat logs before searching seems like a solution, but this
process incurs unnecessary transmission overhead. As mentioned earlier, PEKS provides
an efficient way for users to search for their desired files among encrypted chat logs.

Information 2023, 14, 142. https://doi.org/10.3390/info14030142 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14030142
https://doi.org/10.3390/info14030142
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-7859-7861
https://orcid.org/0000-0002-6990-4855
https://orcid.org/0000-0001-5212-7562
https://orcid.org/0000-0003-4775-7062
https://orcid.org/0000-0003-2068-9530
https://orcid.org/0000-0003-1385-6564
https://doi.org/10.3390/info14030142
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14030142?type=check_update&version=2

Information 2023, 14, 142 2 of 18

File

Encrypted file

Extracts

keyword

Keyword

Search result

Searchable

ciphertext

Trapdoor

Figure 1. The general framework of PEKS

Ideally, the distribution of keywords is assumed to be uniform, and the size of key-
words space is assumed to be super-polynomial. However, in practice, the distribution of
keywords may be uneven, and keywords space may be much smaller. Therefore, it may
be feasible for the adversary to guess the keyword of a file by launching keyword guessing
attacks (KGA) [2,3]. As shown in Figure 2, upon capturing the trapdoor, the adversary
guesses the keyword w concealed in the trapdoor td by encrypting every possible key-
word and running Test algorithm. There are two types of KGA: the first type is outside
KGA, launched by anyone other than the cloud server; the second type is inside KGA,
launched by the cloud server. A searchable encryption scheme that could resist KGA should
simultaneously satisfy ciphertext indistinguishability and trapdoor indistinguishability [4].

……

Keyword Keyword

Keywords space

Searchable

ciphertext
Trapdoor

Selects next keyword

Figure 2. Keyword guessing attacks

Information 2023, 14, 142 3 of 18

1.1. Related Works

Song et al. [5] proposed a searchable symmetric encryption scheme. However, it
suffers from problematic key distribution in symmetric key cryptography. To solve this
problem, Boneh et al. [1] proposed public key encryption with keyword search (PEKS). However,
the initial PEKS scheme [1] is vulnerable to KGA [2,3]. Rhee et al. [4] first formally defined
trapdoor indistinguishability and proved that trapdoor indistinguishability is a necessary
condition for a PEKS scheme to be secure against KGA. They also proposed a designated-
tester PEKS (dPEKS) scheme that could resist outside KGA. Later, some improved dPEKS
schemes [6,7] were proposed, but none of them could resist inside KGA.

To resist both outside and inside KGA, Wang and Tu [8] proposed a PEKS scheme
based on a dual-server setting. However, their scheme is still vulnerable inside KGA if
two servers collude. Huang and Li [9] proposed the first public key authenticated encryption
with keyword search (PAEKS) scheme, which is similar to signcrpytion [10]. In PAEKS,
the sender’s secret key is involved in the ciphertext generation. As a result, the cloud
server cannot launch inside KGA successfully unless it obtains either the sender’s secret
key or the receiver’s secret key. Later, some PAEKS schemes with stronger ciphertext
indistinguishability were proposed [11,12]. Pan and Li [13] proposed a PAEKS scheme with
stronger trapdoor indistinguishability. However, their scheme cannot provide stronger
ciphertext indistinguishability [14].

The aforementioned schemes are based on public key infrastructure and thus suffer
from complicated certificate management. To solve this problem, Abdalla et al. [15]
proposed the notion of identity-based encryption with keyword search (IBEKS), which integrates
search function into identity-based encryption [16]. Li et al. [17] proposed the first IBEKS
scheme that could resist both outside and inside KGA.

To solve the key escrow problem in IBEKS, Peng et al. [18] proposed the first searchable
encryption scheme based on certificateless public key cryptography [19]. However, Peng et
al.’s scheme are vulnerable to both outside and inside KGA. Therefore, some certificates
PAEKS (CLPAEKS) schemes [20–22] were proposed. Pakniat et al. [23] analyzed the flaws
of the security models defined in [20–22] and proposed an improved security model. They
also presented a new CLPAEKS scheme with provable security in the proposed security
model. Shiraly et al. [24] proposed an efficient CLPAEKS scheme that gets rid of the
time-consuming Hash-To-Point [25] computation and bilinear pairing [16] computation.

1.2. Motivation and Contribution

We notice that in Pakniat et al.’s work [23] and Shiraly et al.’s work [24], in the
games that formally define trapdoor indistinguishability, the adversary cannot query
(ID�s , ID�r , wi) to trapdoor oracle, in which ID�s is the challenge sender, ID�r is the challenge
receiver, and wi (i ∈ {0, 1}) is the challenge keyword.

However, in practice, the same keyword may be used for different searches. As a
result, the trapdoor corresponding to (ID�s , ID�r , wi) may appear repeatedly. For privacy
protection, it would be necessary to prevent the adversary from successfully determining
whether two trapdoors are generated using the same keyword. Therefore, it is necessary to
get rid of the aforementioned limitation when defining trapdoor indistinguishability.

Following are the contributions we make in this paper:

1. We propose an improved security model, in which the notion of strong trapdoor
indistinguishability is defined.

2. We propose a new CLPAEKS scheme and prove it to be secure under the improved
security model based on the intractability of the DBDH problem and the DDH problem
in the targeted bilinear group.

2. Preliminaries

Suppose that A is a probabilistic-polynomial-time (PPT) adversary, G1 and GT are
cyclic groups with the same prime order p.

Information 2023, 14, 142 4 of 18

2.1. Bilinear Pairing

A bilinear pairing ê : G1 ×G1 → GT has the following features:

• Bilinearity: For any (ϕ1, ϕ2) ∈ G2
1 and any (η1, η2) ∈ Z2

p, ê (ϕ
η1
1 , ϕ

η2
2) = ê(ϕ1, ϕ2)

η1·η2 .
• Non-degeneracy: Suppose that ϕ is a generator of G1, ê(ϕ, ϕ) 6= 1.
• Computability: For any (ϕ1, ϕ2) ∈ G2

1, ê(ϕ1, ϕ2) can be computed in polynomial time.

2.2. Decisional Diffie–Hellman (DDH) Assumption in GT

Given (ϕt, ϕ
η1
t , ϕ

η2
t , Z) ∈ G4

T , in which ϕt is a generator of GT , (η1, η2) ∈ Z2
p. A’s

aim is to determine whether Z = ϕ
η1·η2
t or Z = ϕr

t , in which r is randomly selected from
Zp. The DDH assumption in GT holds if A’s advantage

AdvDDH
A = |Pr[A(ϕt, ϕ

η1
t , ϕ

η2
t , ϕ

η1·η2
t) = 1]− Pr[A(ϕt, ϕ

η1
t , ϕ

η2
t , ϕr

t) = 1]|

is negligible.

2.3. Decisional Bilinear Diffie–Hellman (DBDH) Assumption

Given (ϕ, ϕη1 , ϕη2 , ϕη3) ∈ G4
1 and Z ∈ GT , in which (η1, η2, η3) ∈ Z3

p. A’s aim is to
determine whether Z = ê(ϕ, ϕ)η1·η2·η3 or Z = ê(ϕ, ϕ)r, in which r is randomly selected
from Zp. The DBDH assumption holds if A’s advantage

AdvDBDH
A = |Pr[A(ϕ, ϕη1 , ϕη2 , ϕη3 , ê(ϕ, ϕ)η1·η2·η3) = 1]

−Pr[A(ϕ, ϕη1 , ϕη2 , ϕη3 , ê(ϕ, ϕ)r) = 1]|

is negligible.

3. Definition of CLPAEKS
3.1. System Model

The following three types of entities are involved in our CLPAEKS scheme.

• Key generation center (KGC): KGC generates the master secret key, the public parame-
ters, and every user’s partial secret key.

• Users: Include the sender and the receiver, which have been introduced in Section 1.
Every user randomly selects a secret value and then generates its secret key using its
partial secret key and the secret value.

• Cloud Server: It is a semi-trusted party managing the encrypted cloud database and
responding to search requests.

3.2. Algorithms

The frequently used symbols are defined in Table 1. Our CLPAEKS scheme consists of
the following algorithms.

Table 1. Notations.

Symbols Meaning

λ Security parameter
pp Public parameters
msk Master secret key
IDi A user’s identity
pski, xi, ski, pki IDi’s partial secret key, secret value, secret key, and public key, respectively
IDs, pks, sks A sender’s identity, public key, and secret key, respectively
IDr, pkr, skr A receiver’s identity, public key, and secret key, respectively
C Searchable ciphertext
td Trapdoor

Information 2023, 14, 142 5 of 18

1. Setup(λ): Run by KGC.

• Input: λ.
• Output: msk and pp.

2. Extract Partial Secret Key(pp, msk, IDi): Run by KGC.

• Input: pp, msk, and IDi.
• Output: pski.

3. Extract Secret Value(pp, IDi): Run by the user IDi.

• Input: pp, IDi.
• Output: xi.

4. Extract Secret Key(pp, pski, xi): Run by the user IDi.

• Input: pp, pski, xi.
• Output: ski.

5. Extract Public Key(pp, xi): Run by the user IDi.

• Input: pp, xi.
• Output: pki.

6. CLPAEKS(pp, IDs, sks, IDr, pkr, w): Run by the sender IDs.

• Input: pp, IDs, sks, IDr, pkr, and a keyword w.
• Output: C.

7. Trapdoor(pp, IDs, pks, IDr, skr, w): Run by the receiver IDr.

• Input: pp, IDs, pks, IDr, skr, w.
• Output: td.

8. Test(C, td): Run by the cloud server.

• Input: C = CLPAEKS(pp, IDs, sks, IDr, pkr, w) and td = Trapdoor(pp, IDs, pks,
IDr, skr, w′).

• Output: 1 will be output if w = w′, and 0 otherwise.

3.3. Security Model

The following two types of PPT adversaries are considered:

• Type-1 adversary: Denote this type of adversary with A1. A1 can replace any user’s
public key but cannot get the master secret key.

• Type-2 adversary: Denote this type of adversary with A2. A2 can get the master secret
key but cannot replace any user’s public key.

We consider two security properties, ciphertext indistinguishability and trapdoor in-
distinguishability. Since there are two types of adversaries in certificateless cryptosystems,
we define the semantic security of CLPAEKS via four games. In Game G1 and Game G2, we
formally define ciphertext indistinguishability in the same way as [23,24]. In Game G3 and
Game G4, we formally define a stronger version of trapdoor indistinguishability. Different
from [23,24], the adversary against trapdoor indistinguishability could freely access the
trapdoor oracle in the games, which makes our definition of trapdoor indistinguishabil-
ity stronger.

3.3.1. Game G1

1. Setup: The challenger C sends pp to A1.
2. Phase 1: A1 is allowed to access the following oracles.

• Opk(IDi): Given IDi, C returns pki.
• Opsk(IDi): Given IDi, C returns pski.
• Osk(IDi): Given IDi, C returns ski. IDi cannot occur in Osk if IDi’s public key

has been replaced.
• Orpk(IDi, pk′i): Given IDi and a new public key pk′i, C replaces pki with pk′i.

Information 2023, 14, 142 6 of 18

• OCLPAEKS(IDs, IDr, w): Given IDs, IDr and w, C returns C ← CLPAEKS(pp, IDs,
sks, IDr, pkr, w).

• OT(IDs, IDr, w): Given IDs, IDr and w, C returns td← Trapdoor(pp, IDs, pks,
IDr, skr, w).

3. Challenge: A1 selects IDs∗ , IDr∗ , and two keywords (w∗0 , w∗1) for the challenge, with
the following restrictions: (1) Neither IDs∗ nor IDr∗ has been submitted to Opsk;
(2) Neither IDs∗ nor IDr∗ has been submitted to Osk; (3) Neither (IDs∗ , IDr∗ , w∗0) nor
(IDs∗ , IDr∗ , w∗1) has been submitted to OT . C randomly selects b ∈ {0, 1} and sends
C∗ ← CLPAEKS(pp, IDs∗ , sks∗ , IDr∗ , pkr∗ , w∗b) to A1.

4. Phase 2: A1 is allowed to access the oracles as in Phase 1, with the following restrictions:

• Neither IDs∗ nor IDr∗ can be submitted to Opsk.
• Neither IDs∗ nor IDr∗ can be submitted to Osk.
• Neither (IDs∗ , IDr∗ , w∗0) nor (IDs∗ , IDr∗ , w∗1) can be submitted to OT .

5. Guess: A1 submits b′ ∈ {0, 1}. If b = b′,A1 wins the game. A1’s advantage is defined as

AdvCT−IND−CKA
A1

=

∣∣∣∣Pr[b = b′]− 1
2

∣∣∣∣.
Definition 1. Our scheme satisfies ciphertext indistinguishability under adaptive chosen-
keyword attacks (CT-IND-CKA) against Type-1 adversary if AdvCT−IND−CKA

A1
is negligible.

3.3.2. Game G2

1. Setup: The challenger C sends pp and msk to A2.
2. Phase 1: A2 can is allowed to access the following oracles.

• Opk(IDi): Same as Opk in Game G1.
• Opsk(IDi): Same as Opsk in Game G1.
• Osk(IDi): Given IDi, C returns ski.
• OCLPAEKS(IDs, IDr, w): Same as OCLPAEKS in Game G1.
• OT(IDs, IDr, w): Same as OT in Game G1.

3. Challenge: A2 selects IDs∗ , IDr∗ , and two keywords (w∗0 , w∗1) for challenge, with
the following restrictions: (1) Neither IDs∗ nor IDr∗ has been submitted to Osk;
(2) Neither (IDs∗ , IDr∗ , w∗0) nor (IDs∗ , IDr∗ , w∗1) has been submitted toOT . C randomly
selects b ∈ {0, 1} and sends C∗ ← CLPAEKS(pp, IDs∗ , sks∗ , IDr∗ , pkr∗ , w∗b) to A2.

4. Phase 2: A2 is allowed to access the oracles as in Phase 1, with the following restrictions:

• Neither IDs∗ nor IDr∗ can be submitted to Osk.
• Neither (IDs∗ , IDr∗ , w∗0) nor (IDs∗ , IDr∗ , w∗1) can be submitted to OT .

5. Guess: A2 submits b′ ∈ {0, 1}. If b = b′,A2 wins the game. A2’s advantage is defined as

AdvCT−IND−CKA
A2

=

∣∣∣∣Pr[b = b′]− 1
2

∣∣∣∣.
Definition 2. Our scheme satisfies CT-IND-CKA against Type-2 adversary if AdvCT−IND−CKA

A2
is negligible.

3.3.3. Game G3

1. Setup: The challenger C sends pp to A1.
2. Phase 1: Same as Phase 1 in Game G1.
3. Challenge: A1 selects IDs∗ , IDr∗ , and two keywords (w∗0 , w∗1) for the challenge, with

the following restrictions: (1) Neither IDs∗ nor IDr∗ has been submitted to Opsk;
(2) Neither IDs∗ nor IDr∗ has been submitted to Osk; (3) Neither (IDs∗ , IDr∗ , w∗0) nor
(IDs∗ , IDr∗ , w∗1) has been submitted to OCLPAEKS. C randomly selects b ∈ {0, 1} and
sends td∗ ← Trapdoor(pp, IDs∗ , pks∗ , IDr∗ , skr∗ , w∗b) to A1.

Information 2023, 14, 142 7 of 18

4. Phase 2: A1 is allowed to access the oracles as in Phase 1, with the following restrictions:

• Neither IDs∗ nor IDr∗ can be submitted to Opsk.
• Neither IDs∗ nor IDr∗ can be submitted to Osk.
• Neither (IDs∗ , IDr∗ , w∗0) nor (IDs∗ , IDr∗ , w∗1) can be submitted to OCLPAEKS.

5. Guess: A1 submits b′ ∈ {0, 1}. If b = b′,A1 wins the game. A1’s advantage is defined as

AdvS−TD−IND−CKA
A1

=

∣∣∣∣Pr[b = b
′
]− 1

2

∣∣∣∣.
Definition 3. Our scheme satisfies strong trapdoor indistinguishability under adaptive
chosen-keyword attacks (S-TD-IND-CKA) against Type-1 adversary if AdvS−TD−IND−CKA

A1
is negligible.

3.3.4. Game G4

1. Setup: The challenger C sends pp and msk to A2.
2. Phase 1: Same as Phase 1 in Game G2.
3. Challenge: A2 selects IDs∗ , IDr∗ , and two keywords (w∗0 , w∗1) for the challenge, with

the following restrictions: (1) Neither IDs∗ nor IDr∗ has been submitted to Osk;
(2) Neither (IDs∗ , IDr∗ , w∗0) nor (IDs∗ , IDr∗ , w∗1) has been submitted to OCLPAEKS. C
randomly selects b ∈ {0, 1} and sends td∗ ← Trapdoor(pp, IDs∗ , pks∗ , IDr∗ , skr∗ , w∗b)
to A2.

4. Phase 2: A2 is allowed to access the oracles as in Phase 1, with the following restrictions:

• Neither IDs∗ nor IDr∗ can be submitted to Osk.
• Neither (IDs∗ , IDr∗ , w∗0) nor (IDs∗ , IDr∗ , w∗1) can be submitted to OCLPAEKS.

5. Guess: A2 submits b′ ∈ {0, 1}. If b = b′,A2 wins the game. A2’s advantage is defined as

AdvS−TD−IND−CKA
A2

=

∣∣∣∣Pr[b = b′]− 1
2

∣∣∣∣.
Definition 4. Our scheme satisfies S-TD-IND-CKA against Type-2 adversary if AdvS−TD−IND−CKA

A2
is negligible.

4. The Proposed CLPAEKS Scheme

The frequently used symbols have been defined in Table 1. Following are the details
of our CLPAEKS scheme.

1. Setup(λ): Run by KGC.

• Input: Security parameter λ.
• Select two cyclic groups G1 and GT with the same prime order p > 2λ and a

bilinear pairing ê : G1 ×G1 → GT . Randomly select two generators g ∈ G1 and
gt ∈ GT .

• Define 3 collision-resistant hash functions:

– H1 : {0, 1}∗ → G1. It takes the user’s identity as input.
– H2 : {0, 1}∗ → G1. It takes the keyword as input.
– H3 : {0, 1}∗ × {0, 1}∗ ×GT → Zp.

• Randomly select y ∈ Zp. Set master secret key msk = y and master public key
mpk = gy.

• Output: pp = {p, G1, GT , ê, g, gt, H1, H2, H3, mpk}.
2. Extract Partial Secret Key(pp, msk, IDi): Run by KGC.

• Input: pp, msk, and a user’s identity IDi.
• Output: IDi’s partial secret key pski = H1(IDi)

y.

3. Extract Secret Value(pp, IDi): Run by the user IDi.

• Input: pp, IDi.

Information 2023, 14, 142 8 of 18

• Output: IDi’s secret value xi, which is randomly selected from Zp.

4. Extract Secret Key(pp, pski, xi): Run by the user IDi.

• Input: pp, pski, xi.
• Output: IDi’s secret key ski = (ski,1, ski,2) = (xi, pski).

5. Extract Public Key(pp, xi): Run by the user IDi.

• Input: pp, xi.
• Output: IDi’s public key pki = gxi

t .

6. CLPAEKS(pp, IDs, sks, IDr, pkr, w): Run by the sender IDs.

• Input: pp, IDs, sks = (sks,1, sks,2) = (xs, H1(IDs)y), IDr, pkr = gxr
t , and a

keyword w.
• Randomly select α ∈ Zp.
• Compute C = (c1, c2, c3):

c1 = ê(g, H2(w))α·k, c2 = gα, c3 = g
α
k ,

in which

k = H3(IDs ‖ IDr ‖ pksks,1
r · ê(sks,2, H1(IDr)))

= H3(IDs ‖ IDr ‖ gxs ·xr
t · ê(H1(IDs), H1(IDr))

y).

• Output: C = (c1, c2, c3).

7. Trapdoor(pp, IDs, pks, IDr, skr, w): Run by the receiver IDr.

• Input: pp, IDs, pks = gxs
t , IDr, skr = (skr,1, skr,2) = (xr, H1(IDr)y), and a

keyword w.
• Randomly select (β, γ) ∈ Z2

p.
• Compute td = (td1, td2, td3):

td1 = H2(w)β+ γ
k , td2 = H2(w)

k3
β −γ, td3 =

β

k
+

k
β

,

in which

k = H3(IDs ‖ IDr ‖ pkskr,1
s · ê(skr,2, H1(IDs)))

= H3(IDs ‖ IDr ‖ gxs ·xr
t · ê(H1(IDs), H1(IDr))

y).

• Output: td = (td1, td2, td3).

8. Test(C, td): Run by the cloud server.

• Input: C = (c1, c2, c3) and td = (td1, td2, td3).
• Output: Check whether

ctd3
1 = ê(c2, td1) · ê(c3, td2)

holds, if it holds then output 1, and 0 otherwise.

5. Security Analysis
5.1. CT-IND-CKA against Type-1 Adversary

Theorem 1. Our scheme satisfies CT-IND-CKA against Type-1 adversary in the random oracle
model if the DBDH assumption holds.

Proof. Suppose that AdvCT−IND−CKA
A1

= ε. Given a DBDH instance (G1, GT , ê, g, gη1 ,
gη2 , gη3 , Z). Denoted by ζ = 0 that Z = ê(g, g)η1·η2·η3 , and by ζ = 1 that Z is random. In

Information 2023, 14, 142 9 of 18

the following, we construct a simulator B that runs A1 as a subroutine to correctly guess
the value of ζ.

1. Setup: B sets mpk = gη1 , implying that msk = η1, in which η1 is unknown to B. Then
sends pp to A1.

2. Phase 1: A1 is allowed to access the following oracles.

• OH1(IDi): Suppose that there are qH1 distinct queries toOH1 . B randomly selects
(i∗, j∗) ∈ {1, · · ·, qH1} as its guess of the identities selected by A1 for challenge.
For IDi:

– If i = i∗, B adds {IDi∗ , −, gη2} to list LH1 and returns gη2 to A1.
– If i = j∗, B adds {IDj∗ , −, gη3} to list LH1 and returns gη3 to A1.

– Otherwise, B randomly selects h1,i ∈ Zp, adds
{

IDi, h1,i, gh1,i
}

to list LH1 ,

and returns gh1,i to A1.

If the repeated queries are submitted, the answer that already exists in LH1 will
be returned.

• OH2 : Given w ∈ {0, 1}∗, B randomly selects h2 ∈ G1, adds {w, h2} to list LH2 ,
and returns h2. If the repeated queries are submitted, the answer that already
exists in LH2 will be returned.

• OH3 : Given (u1, u2, u3) ∈ {0, 1}∗ × {0, 1}∗ ×GT . B randomly selects h3 ∈ Zp,
adds {u1, u2, u3, h3} to list LH3 , and returns h3. If the repeated queries are
submitted, the answer that already exists in LH3 will be returned.

• Opk(IDi): B randomly selects xi ∈ Zp, then:

– If i 6= i∗ ∧ i 6= j∗, B callsOH1(IDi), retrieves
{

IDi, h1,i, gh1,i
}

from LH1 , sets

pki = gxi
t , pski = gη1·h1,i ,

adds {IDi, pki, pski, xi} to list Lkey, and returns pki.
– Otherwise, B calls OH1(IDi)

and sets

pki = gxi
t ,

adds {IDi, pki, −, xi} to list Lkey, and returns pki.

If the repeated queries are submitted, the answer that already exists in Lkey will
be returned.

• Opsk(IDi):

– If i = i∗ ∨ i = j∗, B aborts.
– Otherwise, B calls Opk(IDi), retrieves {IDi, pki, pski, xi} from Lkey, and

returns pski.

• Osk(IDi):

– If i = i∗ ∨ i = j∗, B aborts.
– Otherwise, B calls Opk(IDi), retrieves {IDi, pki, pski, xi} from Lkey, and

returns ski = (pski, xi).

IDi cannot occur in Osk if IDi’s public key has been replaced.
• Orpk(IDi, pk′i): B callsOpk(IDi) and replaces {IDi, pki, pski, xi}with {IDi, pk′i,

pski, −}.
• OCLPAEKS(IDs, IDr, w): B randomly selects α ∈ Zp and returns C = (c1, c2, c3):

c1 = ê(g, H2(w))α·k, c2 = gα, c3 = g
α
k ,

in which k is different based on the following cases.

– If s = i∗ ∧ r = j∗, k = H3(IDi∗ ‖ IDj∗ ‖ g
xi∗ ·xj∗
t · Z).

Information 2023, 14, 142 10 of 18

– If s = j∗ ∧ r = i∗, k = H3(IDj∗ ‖ IDi∗ ‖ g
xi∗ ·xj∗
t · Z).

– Otherwise, it means that (s 6= i∗ ∧ s 6= j∗) ∨ (r 6= i∗ ∧ r 6= j∗).

* If s 6= i∗ ∧ s 6= j∗, B retrieves
{

IDs, h1,s, gh1,s
}

from LH1 and computes

k = H3(IDs ‖ IDr ‖ gxs ·xr
t · ê(gη1 , H1(IDr))h1,s).

* Otherwise, B retrieves
{

IDr, h1,r, gh1,r
}

from LH1 and computes

k = H3(IDs ‖ IDr ‖ gxs ·xr
t · ê(gη1 , H1(IDs))h1,r).

• OT(IDs, IDr, w): B randomly selects (β, γ) ∈ Z2
p and returns td = (td1, td2, td3):

td1 = H2(w)β+ γ
k , td2 = H2(w)

k3
β −γ, td3 =

β

k
+

k
β

,

in which k is different based on the following cases.

– If s = i∗ ∧ r = j∗, k = H3(IDi∗ ‖ IDj∗ ‖ g
xi∗ ·xj∗
t · Z).

– If s = j∗ ∧ r = i∗, k = H3(IDj∗ ‖ IDi∗ ‖ g
xi∗ ·xj∗
t · Z).

– Otherwise, it means that (s 6= i∗ ∧ s 6= j∗) ∨ (r 6= i∗ ∧ r 6= j∗).

* If s 6= i∗ ∧ s 6= j∗, B retrieves
{

IDs, h1,s, gh1,s
}

from LH1 and computes

k = H3(IDs ‖ IDr ‖ gxs ·xr
t · ê(gη1 , H1(IDr))h1,s).

* Otherwise, B retrieves
{

IDr, h1,r, gh1,r
}

from LH1 and computes

k = H3(IDs ‖ IDr ‖ gxs ·xr
t · ê(gη1 , H1(IDs))h1,r).

3. Challenge: A1 selects IDs∗ , IDr∗ , and two keywords (w∗0 , w∗1) for the challenge, with
the following restrictions: (1) Neither IDs∗ nor IDr∗ has been submitted to Opsk;
(2) Neither IDs∗ nor IDr∗ has been submitted to Osk; (3) Neither (IDs∗ , IDr∗ , w∗0)
nor (IDs∗ , IDr∗ , w∗1) has been submitted to OT . If ¬(s∗ = i∗ ∧ r∗ = j∗) ∧ ¬(s∗ =
j∗ ∧ r∗ = i∗), B aborts and randomly returns ζ ′ ∈ {0, 1}. Otherwise, B randomly
selects b ∈ {0, 1} and sends C∗ = (c∗1 , c∗2 , c∗3) to A1, in which

α∗ ∈ Zp, k∗ = H3(IDs∗ ‖ IDr∗ ‖ gxs∗ ·xr∗
t · Z),

c∗1 = ê(g, H2(w∗b))
α∗ ·k∗ , c2 = gα∗ , c3 = g

α∗
k∗ .

4. Phase 2: A1 is allowed to access the oracles as in Phase 1, with the following restrictions:

• Neither IDs∗ nor IDr∗ can be submitted to Opsk.
• Neither IDs∗ nor IDr∗ can be submitted to Osk.
• Neither (IDs∗ , IDr∗ , w∗0) nor (IDs∗ , IDr∗ , w∗1) can be submitted to OT .

5. Guess: A1 submits b′. If b = b′, A1 wins, and B returns ζ ′ = 0. Otherwise, A1 loses,
and B returns ζ ′ = 1.

If ζ = 0, B perfectly simulates Section 3.3.1, andA1’s probability of winning is ε + 1/2.
Otherwise, C∗ is independent of w∗b , and A1’s probability of winning is 1/2. B aborts and
randomly returns ζ ′ ∈ {0, 1} if its guess of the identities selected by A1 for challenge is
wrong. Denote B’s abortion with abt, we have

Pr[ζ ′ = ζ|abt] =
1
2

,

Pr[ζ ′ = ζ|abt] = (ε +
1
2
) · 1

2
+

1
2
· 1

2
=

ε

2
+

1
2

,

Pr[abt] ≥ 1
C2

qH1

=
2

qH1(qH1 − 1)
.

Information 2023, 14, 142 11 of 18

B’s advantage in solving the DBDH problem is

AdvDBDH

=

∣∣∣∣Pr[ζ ′ = ζ]− 1
2

∣∣∣∣
=

∣∣∣∣Pr[ζ ′ = ζ ∧ abt] + Pr[ζ ′ = ζ ∧ abt]− 1
2

∣∣∣∣
=

∣∣∣∣Pr[ζ ′ = ζ|abt] · Pr[abt] + Pr[ζ ′ = ζ|abt] · Pr[abt]− 1
2

∣∣∣∣
=

∣∣∣∣(ε

2
+

1
2
) · Pr[abt] +

1
2
· (1− Pr[abt])− 1

2

∣∣∣∣
=

ε

2
· Pr[abt]

≥ ε

qH1(qH1 − 1)
.

ε is negligible due to the intractability of the DBDH problem. This completes the
proof.

5.2. CT-IND-CKA against Type-2 Adversary

Theorem 2. Our scheme satisfies CT-IND-CKA against Type-2 adversary in the random oracle
model if the DDH assumption in GT holds.

Proof. Suppose that AdvCT−IND−CKA
A2

= ε. Given a DDH instance (gt, gη1
t , gη2

t , Z) ∈ G4
T .

Denoted by ζ = 0 that Z = gη1·η2
t , and by ζ = 1 that Z is random. In the following, we

construct a simulator B that runs A2 as a subroutine to correctly guess the value of ζ.

1. Setup: B sends pp and msk = y to A2.
2. Phase 1: A2 is allowed to access the following oracles:

• OH1(IDi): B randomly selects h1,i ∈ Zp, adds
{

IDi, h1,i, gh1,i
}

to list LH1 , and

returns gh1,i . If the repeated queries are submitted, the answer that already exists
in LH1 will be returned. Suppose that there are qH1 distinct queries to OH1 . B
randomly selects (i∗, j∗) ∈ {1, · · ·, qH1} as its guess of the identities selected by
A1 for challenge.

• OH2 : Same as OH2 in the proof of Theorem 1.
• OH3 : Same as OH3 in the proof of Theorem 1.

• Opk(IDi): B calls OH1(IDi) and retrieves
{

IDi, h1,i, gh1,i
}

from LH1 , then:

– If i = i∗, B sets
pki = gη1

t , pski = gy·h1,i ,

adds {IDi, pki, pski, −} to list Lkey, and returns pki to A2.
– If i = j∗, B sets

pki = gη2
t , pski = gy·h1,i ,

adds {IDi, pki, pski, −} to list Lkey, and returns pki to A2.
– Otherwise, B randomly selects xi ∈ Zp, sets

pki = gxi
t , pski = gy·h1,i ,

adds {IDi, pki, pski, xi} to list Lkey, and returns pki to A2.

If the repeated queries are submitted, the answer that already exists in Lkey will
be returned.

Information 2023, 14, 142 12 of 18

• Opsk(IDi): B calls Opk(IDi), retrieves {IDi, pki, pski, xi} from Lkey, and returns
pski to A2.

• Osk(IDi):

– If i = i∗ ∨ i = j∗, B aborts.
– Otherwise, B calls Opk(IDi), retrieves {IDi, pki, pski, xi} from Lkey, and

returns ski = (pski, xi).

• OCLPAEKS(IDs, IDr, w): B randomly selects α ∈ Zp and returns C = (c1, c2, c3):

c1 = ê(g, H2(w))α·k, c2 = gα, c3 = g
α
k ,

in which k is different based on the following cases.

– If s = i∗ ∧ r = j∗, k = H3(IDi∗ ‖ IDj∗ ‖ Z · ê(H1(IDi∗), H1(IDj∗))
y).

– If s = j∗ ∧ r = i∗, k = H3(IDj∗ ‖ IDi∗ ‖ Z · ê(H1(IDi∗), H1(IDj∗))
y).

– Otherwise, it means that (s 6= i∗ ∧ s 6= j∗) ∨ (r 6= i∗ ∧ r 6= j∗).

* If s 6= i∗ ∧ s 6= j∗, B retrieves {IDs, pks, psks, xs} from Lkey and
computes k = H3(IDs ‖ IDr ‖ pkxs

r · ê(H1(IDs), H1(IDr))y).
* Otherwise, B retrieves {IDr, pkr, pskr, xr} from Lkey and computes

k = H3(IDs ‖ IDr ‖ pkxr
s · ê(H1(IDs), H1(IDr))y).

• OT(IDs, IDr, w): B randomly selects (β, γ) ∈ Z2
p and returns td = (td1, td2, td3):

td1 = H2(w)β+ γ
k , td2 = H2(w)

k3
β −γ, td3 =

β

k
+

k
β

,

in which k is different based on the following cases.

– If s = i∗ ∧ r = j∗, k = H3(IDi∗ ‖ IDj∗ ‖ Z · ê(H1(IDi∗), H1(IDj∗))
y).

– If s = j∗ ∧ r = i∗, k = H3(IDj∗ ‖ IDi∗ ‖ Z · ê(H1(IDi∗), H1(IDj∗))
y).

– Otherwise, it means that (s 6= i∗ ∧ s 6= j∗) ∨ (r 6= i∗ ∧ r 6= j∗).

* If s 6= i∗ ∧ s 6= j∗, B retrieves {IDs, pks, psks, xs} from Lkey and
computes k = H3(IDs ‖ IDr ‖ pkxs

r · ê(H1(IDs), H1(IDr))y).
* Otherwise, B retrieves {IDr, pkr, pskr, xr} from Lkey and computes

k = H3(IDs ‖ IDr ‖ pkxr
s · ê(H1(IDs), H1(IDr))y).

3. Challenge: A2 selects IDs∗ , IDr∗ , and two keywords (w∗0 , w∗1) for the challenge,
with the following restrictions: (1) Neither IDs∗ nor IDr∗ has been submitted to
Osk; (2) Neither (IDs∗ , IDr∗ , w∗0) nor (IDs∗ , IDr∗ , w∗1) has been submitted to OT . If
¬(s∗ = i∗ ∧ r∗ = j∗)∧¬(s∗ = j∗ ∧ r∗ = i∗), B aborts and randomly returns ζ ′ ∈ {0, 1}.
Otherwise, B randomly selects b ∈ {0, 1} and sends C∗ = (c∗1 , c∗2 , c∗3) to A2, in which

α∗ ∈ Zp, k∗ = H3(IDs∗ ‖ IDr∗ ‖ Z · ê(H1(IDs∗), H1(IDr∗))
y),

c∗1 = ê(g, H2(w∗b))
α∗ ·k∗ , c2 = gα∗ , c3 = g

α∗
k∗ .

4. Phase 2: A2 is allowed to access the oracles as in Phase 1, with the following restrictions:

• Neither IDs∗ nor IDr∗ can be submitted to Osk.
• Neither (IDs∗ , IDr∗ , w∗0) nor (IDs∗ , IDr∗ , w∗1) can be submitted to OT .

5. Guess: A2 submits b′. If b = b′, A2 wins, and B returns ζ ′ = 0. If b 6= b′, A2 loses,
and B returns ζ ′ = 1.

If ζ = 0, B perfectly simulates Section 3.3.2, andA2’s probability of winning is ε + 1/2.
Otherwise, C∗ is independent of w∗b , and A2’s probability of winning is 1/2. B aborts and
randomly returns ζ ′ ∈ {0, 1} if its guess of the identities selected by A2 for challenge is
wrong. Denote B’s abortion with abt, we have

Pr[ζ ′ = ζ|abt] =
1
2

,

Information 2023, 14, 142 13 of 18

Pr[ζ ′ = ζ|abt] = (ε +
1
2
) · 1

2
+

1
2
· 1

2
=

ε

2
+

1
2

,

Pr[abt] ≥ 1
C2

qH1

=
2

qH1(qH1 − 1)
.

B’s advantage in solving the DDH problem in GT is

AdvDDH

=

∣∣∣∣Pr[ζ ′ = ζ]− 1
2

∣∣∣∣
=

∣∣∣∣Pr[ζ ′ = ζ ∧ abt] + Pr[ζ ′ = ζ ∧ abt]− 1
2

∣∣∣∣
=

∣∣∣∣Pr[ζ ′ = ζ|abt] · Pr[abt] + Pr[ζ ′ = ζ|abt] · Pr[abt]− 1
2

∣∣∣∣
=

∣∣∣∣(ε

2
+

1
2
) · Pr[abt] +

1
2
· (1− Pr[abt])− 1

2

∣∣∣∣
=

ε

2
· Pr[abt]

≥ ε

qH1(qH1 − 1)
.

ε is negligible due to the intractability of the DDH problem in GT . This completes the
proof.

5.3. S-TD-IND-CKA against Type-1 Adversary

Theorem 3. Our scheme satisfies S-TD-IND-CKA against Type-1 adversary in the random oracle
model if the DBDH assumption holds.

Proof. Suppose that AdvS−TD−IND−CKA
A1

= ε. Given a DBDH instance (G1,GT , ê, g, gη1 ,
gη2 , gη3 , Z). Denoted by ζ = 0 that Z = ê(g, g)η1·η2·η3 , and by ζ = 1 that Z is random. In
the following, we construct a simulator B that runs A1 as a subroutine to correctly guess
the value of ζ.

1. Setup: B sets mpk = gη1 , implying that msk = η1, in which η1 is unknown to B. Then
sends pp to A1.

2. Phase 1: Same as Phase 1 in the proof of Theorem 1.
3. Challenge: A1 selects IDs∗ , IDr∗ , and two keywords (w∗0 , w∗1) for the challenge, with

the following restrictions: (1) Neither IDs∗ nor IDr∗ has been submitted to Opsk;
(2) Neither IDs∗ nor IDr∗ has been submitted to Osk; (3) Neither (IDs∗ , IDr∗ , w∗0) nor
(IDs∗ , IDr∗ , w∗1) has been submitted to OCLPAEKS. If ¬(s∗ = i∗ ∧ r∗ = j∗) ∧ ¬(s∗ =
j∗ ∧ r∗ = i∗), B aborts and randomly returns ζ ′ ∈ {0, 1}. Otherwise, B randomly
selects b ∈ {0, 1} and sends td∗ = (td∗1 , td∗2 , td∗3) to A1, in which

(β∗, γ∗) ∈ Z2
p, k∗ = H3(IDs∗ ‖ IDr∗ ‖ gxs∗ ·xr∗

t · Z),

td∗1 = H2(w∗b)
β∗+ γ∗

k∗ , td∗2 = H2(w∗b)
(k∗)3

β∗ −γ∗ , td∗3 =
β∗

k∗
+

k∗

β∗
.

4. Phase 2: A1 is allowed to access the oracles as in Phase 1, with the following restrictions:

• Neither IDs∗ nor IDr∗ can be submitted to Opsk.
• Neither IDs∗ nor IDr∗ can be submitted to Osk.
• Neither (IDs∗ , IDr∗ , w∗0) nor (IDs∗ , IDr∗ , w∗1) can be submitted to OCLPAEKS.

5. Guess: A1 submits b′. If b = b′, A1 wins, and B returns ζ ′ = 0. Otherwise, A1 loses,
and B returns ζ ′ = 1.

Information 2023, 14, 142 14 of 18

If ζ = 0, B perfectly simulates Section 3.3.3, andA1’s probability of winning is ε + 1/2.
Otherwise, td∗ is independent of w∗b , and A1’s probability of winning is 1/2. B aborts and
randomly returns ζ ′ ∈ {0, 1} if its guess of the identities selected by A1 for challenge is
wrong. Denote B’s abortion with abt, we have

Pr[ζ ′ = ζ|abt] =
1
2

,

Pr[ζ ′ = ζ|abt] = (ε +
1
2
) · 1

2
+

1
2
· 1

2
=

ε

2
+

1
2

,

Pr[abt] ≥ 1
C2

qH1

=
2

qH1(qH1 − 1)
.

B’s advantage in solving the DBDH problem is

AdvDBDH

=

∣∣∣∣Pr[ζ ′ = ζ]− 1
2

∣∣∣∣
=

∣∣∣∣Pr[ζ ′ = ζ ∧ abt] + Pr[ζ ′ = ζ ∧ abt]− 1
2

∣∣∣∣
=

∣∣∣∣Pr[ζ ′ = ζ|abt] · Pr[abt] + Pr[ζ ′ = ζ|abt] · Pr[abt]− 1
2

∣∣∣∣
=

∣∣∣∣(ε

2
+

1
2
) · Pr[abt] +

1
2
· (1− Pr[abt])− 1

2

∣∣∣∣
=

ε

2
· Pr[abt]

≥ ε

qH1(qH1 − 1)
.

ε is negligible due to the intractability of the DDH problem. This completes the
proof.

5.4. S-TD-IND-CKA against Type-2 Adversary

Theorem 4. Our scheme satisfies S-TD-IND-CKA against Type-2 adversary in the random oracle
model if the DDH assumption in GT holds.

Proof. Suppose that AdvS−TD−IND−CKA
A2

= ε. Given a DDH instance (gt, gη1
t , gη2

t , Z) ∈ G4
T .

Denoted by ζ = 0 that Z = gη1·η2
t , and by ζ = 1 that Z is random. In the following, we

construct a simulator B that runs A2 as a subroutine to correctly guess the value of ζ.

1. Setup: B sends pp and msk = y to A2.
2. Phase 1: Same as Phase 1 in the proof of Theorem 2.
3. Challenge: A2 selects IDs∗ , IDr∗ , and two keywords (w∗0 , w∗1) for the challenge, with

the following restrictions: (1) Neither IDs∗ nor IDr∗ has been submitted to Osk;
(2) Neither (IDs∗ , IDr∗ , w∗0) nor (IDs∗ , IDr∗ , w∗1) has been submitted to OCLPAEKS.
If ¬(s∗ = i∗ ∧ r∗ = j∗) ∧ ¬(s∗ = j∗ ∧ r∗ = i∗), B aborts and randomly returns
ζ ′ ∈ {0, 1}. Otherwise, B randomly selects b ∈ {0, 1} and sends td∗ = (td∗1 , td∗2 , td∗3)
to A2, in which

(β∗, γ∗) ∈ Z2
p, k∗ = H3(IDs∗ ‖ IDr∗ ‖ Z · ê(H1(IDs∗), H1(IDr∗))

y),

td∗1 = H2(w∗b)
β∗+ γ∗

k∗ , td∗2 = H2(w∗b)
(k∗)3

β∗ −γ∗ , td∗3 =
β∗

k∗
+

k∗

β∗
.

4. Phase 2: A2 is allowed to access the oracles as in Phase 1, with the following restrictions:

• Neither IDs∗ nor IDr∗ can be submitted to Osk.

Information 2023, 14, 142 15 of 18

• Neither (IDs∗ , IDr∗ , w∗0) nor (IDs∗ , IDr∗ , w∗1) can be submitted to OCLPAEKS.

5. Guess: A2 submits b′. If b = b′, A2 wins, and B returns ζ ′ = 0. If b 6= b′, A2 loses,
and B returns ζ ′ = 1.

If ζ = 0, B perfectly simulates Section 3.3.4, andA2’s probability of winning is ε + 1/2.
Otherwise, td∗ is independent of w∗b , and A2’s probability of winning is 1/2. B aborts and
randomly returns ζ ′ ∈ {0, 1} if its guess of the identities selected by A2 for challenge is
wrong. Denote B’s abortion with abt, we have

Pr[ζ ′ = ζ|abt] =
1
2

,

Pr[ζ ′ = ζ|abt] = (ε +
1
2
) · 1

2
+

1
2
· 1

2
=

ε

2
+

1
2

,

Pr[abt] ≥ 1
C2

qH1

=
2

qH1(qH1 − 1)
.

B’s advantage in solving the DDH problem in GT is

AdvDDH

=

∣∣∣∣Pr[ζ ′ = ζ]− 1
2

∣∣∣∣
=

∣∣∣∣Pr[ζ ′ = ζ ∧ abt] + Pr[ζ ′ = ζ ∧ abt]− 1
2

∣∣∣∣
=

∣∣∣∣Pr[ζ ′ = ζ|abt] · Pr[abt] + Pr[ζ ′ = ζ|abt] · Pr[abt]− 1
2

∣∣∣∣
=

∣∣∣∣(ε

2
+

1
2
) · Pr[abt] +

1
2
· (1− Pr[abt])− 1

2

∣∣∣∣
=

ε

2
· Pr[abt]

≥ ε

qH1(qH1 − 1)
.

ε is negligible due to the intractability of the DDH problem in GT . This completes the
proof.

6. Performance Evaluation and Discussion

We compare our scheme with two related schemes [23,24]. The comparison includes
storage overhead, computation overhead, and security. For simplicity, we only consider
the following time-consuming operations:

• E: An exponentiation operation in G.
• E1: An exponentiation operation in G1.
• ET : An exponentiation operation in GT .
• P: A bilinear pairing operation.
• H: A Hash-To-Point operation.

The comparison of storage overhead, computation overhead, and security is shown in
Table 2, Table 3 and Table 4, respectively. Our scheme has higher storage and computation
overhead. However, our scheme achieves stronger security. Besides, in practice, users may
not need to encrypt all files but only a small part of files that contain sensitive information.
Therefore, we consider that the storage and computation overhead paid for stronger security
is affordable.

Information 2023, 14, 142 16 of 18

Table 2. Storage overhead comparison.

Pakniat et al.’s [23] Shiraly et al.’s [24] Ours

|C| 2|G1| 2|G| 2|G1|+ 1|GT |
|td| 1|Zp| 1|Zp| 2|G1|+ 1Zp

|C|, |td|: Size of the ciphertext and the trapdoor, respectively; |G|, |G1|, |GT |, |Zp|: Size of an element in G, G1, GT ,
and Zp, respectively.

Table 3. Computation overhead comparison.

Pakniat et al.’s [23] Shiraly et al.’s [24] Ours

Ciphertext generation 3E1 + P + H 5E 2E1 + 2ET + 2P + 2H
Trapdoor generation E1 + P + H 3E 2E1 + ET + P + 2H

Test E1 E ET + 2P

Table 4. Security comparison.

Pakniat et al.’s [23] Shiraly et al.’s [24] Ours

CT-IND yes yes yes
S-TD-IND no no yes

Model ROM ROM ROM
Assumption GBDH & CDH GDH DBDH & DDH

CT-IND: Ciphertext indistinguishability; S-TD-IND: Strong trapdoor indistinguishability; ROM: Random oracle
model.

7. Conclusions and Future Works

In this paper, we proposed an improved security model, in which a stronger version
of trapdoor indistinguishability is defined. Then we proposed a new CLPAEKS scheme,
which differs from the existing CLPAEKS schemes mainly in that the trapdoor is generated
using two random elements in Zp. As far as we know, this is the first CLPAEKS scheme
with provable security under the improved security model.

In the future, we will try to extend our scheme to make it support multi-receiver set-
tings in order to cope with the scenario of group chat. Besides, considering that a file may
contain multiple keywords, it would be valuable to extend our scheme to make it support
multi-keyword settings. Furthermore, as quantum computing is emerging, traditional
intractable problems, e.g., discrete logarithm problems, could be solved with a powerful
quantum computer. Some quantum-safe cryptographic primitives were proposed (e.g.,
lattice-based cryptography, code-based cryptography, multivariate-based cryptography,
and hash-based cryptography). Among the mentioned candidates, lattice-based cryptogra-
phy is an attractive choice because it offers provable security and a good trade-off between
efficiency and security [26–28]. Therefore, it is advisable to design a lattice-based CLPAEKS
scheme to resist quantum computing attacks.

Author Contributions: Conceptualization, J.L., H.L., J.H. and Q.H.; methodology, J.L., H.L. and J.H.;
writing—original draft preparation, J.L.; writing—review and editing, Q.H., S.M. and M.H.A.A.;
supervision, Q.H., S.M. and M.H.A.A.; project administration, Q.H. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (No. 62272174,
61872152), Major Program of Guangdong Basic and Applied Research (No. 2019B030302008), Science
and Technology Program of Guangzhou (No. 201902010081).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Information 2023, 14, 142 17 of 18

Abbreviations
The following abbreviations are used in this manuscript:

PEKS Public key encryption with keyword search
CLPAEKS Certificateless public key authenticated encryption with keyword search
KGA Keyword guessing attacks
DDH Decisional Diffie–Hellman (assumption)
DBDH Decisional Bilinear Diffie–Hellman (assumption)
GBDH Gap Bilinear Diffie–Hellman (assumption)
CDH Computational Diffie–Hellman (assumption)
GDH Gap Diffie–Hellman (assumption)
IBEKS Identity-based encryption with keyword search
PPT Probabilistic polynomial time
KGC Key generation center
CT-IND-CKA Ciphertext indistinguishability under adaptive chosen-keyword attacks
S-TD-IND-CKA Strong trapdoor indistinguishability under adaptive chosen-keyword attacks
ROM Random oracle model

References
1. Boneh, D.; Crescenzo, G.D.; Ostrovsky, R.; Persiano, G. Public Key Encryption with Keyword Search. In Proceedings of the

Advances in Cryptology—EUROCRYPT 2004, International Conference on the Theory and Applications of Cryptographic
Techniques, Interlaken, Switzerland, 2–6 May 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 506–522.

2. Byun, J.W.; Rhee, H.S.; Park, H.; Lee, D.H. Off-Line Keyword Guessing Attacks on Recent Keyword Search Schemes over
Encrypted Data. In Proceedings of the Secure Data Management, Third VLDB Workshop, Seoul, Korea, 10–11 September 2006;
Springer: Berlin/Heidelberg, Germany, 2006; pp. 75–83.

3. Yau, W.; Heng, S.; Goi, B. Off-Line Keyword Guessing Attacks on Recent Public Key Encryption with Keyword Search Schemes.
In Proceedings of the Autonomic and Trusted Computing, 5th International Conference, Oslo, Norway, 23–25 June 2008; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 100–105.

4. Rhee, H.S.; Park, J.H.; Susilo, W.; Lee, D.H. Trapdoor security in a searchable public-key encryption scheme with a designated
tester. J. Syst. Softw. 2010, 83, 763–771. [CrossRef] [CrossRef]

5. Song, D.X.; Wagner, D.A.; Perrig, A. Practical Techniques for Searches on Encrypted Data. In Proceedings of the 2000 IEEE
Symposium on Security and Privacy, Berkeley, CA, USA, 14–17 May 2000; IEEE Computer Society: Washington, DC, USA; Los
Alamitos, CA, USA, 2000; pp. 44–55.

6. Rhee, H.S.; Park, J.H.; Lee, D.H. Generic construction of designated tester public-key encryption with keyword search. Inf. Sci.
2012, 205, 93–109. [CrossRef] [CrossRef]

7. Fang, L.; Susilo, W.; Ge, C.; Wang, J. Public key encryption with keyword search secure against keyword guessing attacks without
random oracle. Inf. Sci. 2013, 238, 221–241. [CrossRef] [CrossRef]

8. Wang, C.h.; Tu, T.y. Keyword search encryption scheme resistant against keyword-guessing attack by the untrusted server.
J. Shanghai Jiaotong Univ. Sci. 2014, 19, 440–442. [CrossRef] [CrossRef]

9. Huang, Q.; Li, H. An efficient public-key searchable encryption scheme secure against inside keyword guessing attacks. Inf. Sci.
2017, 403, 1–14. [CrossRef] [CrossRef]

10. Zheng, Y. Digital Signcryption or How to Achieve Cost(Signature & Encryption) << Cost(Signature) + Cost(Encryption). In
Proceedings of the Advances in Cryptology—CRYPTO 1997, 17th Annual International Cryptology Conference, Santa Barbara,
CA, USA, 17–21 August 1997; Springer: Berlin/Heidelberg, Germany, 1997; pp. 165–179.

11. Noroozi, M.; Eslami, Z. Public key authenticated encryption with keyword search: Revisited. IET Inf. Secur. 2019, 13, 336–342.
[CrossRef] [CrossRef]

12. Qin, B.; Chen, Y.; Huang, Q.; Liu, X.; Zheng, D. Public-key authenticated encryption with keyword search revisited: Security
model and constructions. Inf. Sci. 2020, 516, 515–528. [CrossRef] [CrossRef]

13. Pan, X.; Li, F. Public-key authenticated encryption with keyword search achieving both multi-ciphertext and multi-trapdoor
indistinguishability. J. Syst. Archit. 2021, 115, 102075. [CrossRef] [CrossRef]

14. Cheng, L.; Meng, F. Security analysis of Pan et al.’s “Public-key authenticated encryption with keyword search achieving both
multi-ciphertext and multi-trapdoor indistinguishability”. J. Syst. Archit. 2021, 119, 102248. [CrossRef] [CrossRef]

15. Abdalla, M.; Bellare, M.; Catalano, D.; Kiltz, E.; Kohno, T.; Lange, T.; Malone-Lee, J.; Neven, G.; Paillier, P.; Shi, H. Searchable
Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and Extensions. In Proceedings of the Advances in
Cryptology—CRYPTO 2005, 25th Annual International Cryptology Conference, Santa Barbara, CA, USA, 14–18 August 2005;
Springer: Berlin/Heidelberg, Germany, 2005; pp. 205–222.

16. Boneh, D.; Franklin, M.K. Identity-Based Encryption from the Weil Pairing. In Proceedings of the Advances in Cryptology—
CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara, CA, USA, 19–23 August 2001; Springer:
Berlin/Heidelberg, Germany, 2001; pp. 213–229.

.
http://doi.org/10.1016/j.jss.2009.11.726
.
http://dx.doi.org/10.1016/j.ins.2012.03.020
.
http://dx.doi.org/10.1016/j.ins.2013.03.008
.
http://dx.doi.org/10.1007/s12204-014-1522-6
.
http://dx.doi.org/10.1016/j.ins.2017.03.038
.
http://dx.doi.org/10.1049/iet-ifs.2018.5315
.
http://dx.doi.org/10.1016/j.ins.2019.12.063
.
http://dx.doi.org/10.1016/j.sysarc.2021.102075
.
http://dx.doi.org/10.1016/j.sysarc.2021.102248

Information 2023, 14, 142 18 of 18

17. Li, H.; Huang, Q.; Shen, J.; Yang, G.; Susilo, W. Designated-server identity-based authenticated encryption with keyword search
for encrypted emails. Inf. Sci. 2019, 481, 330–343. [CrossRef] [CrossRef]

18. Yanguo, P.; Jiangtao, C.; Changgen, P.; Zuobin, Y. Certificateless public key encryption with keyword search. China Commun.
2014, 11, 100–113. [CrossRef] [CrossRef]

19. Al-Riyami, S.S.; Paterson, K.G. Certificateless Public Key Cryptography. In Proceedings of the Advances in Cryptology—
ASIACRYPT 2003, 9th International Conference on the Theory and Application of Cryptology and Information Security, Taipei,
Taiwan, 30 November–4 December 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 452–473.

20. He, D.; Ma, M.; Zeadally, S.; Kumar, N.; Liang, K. Certificateless Public Key Authenticated Encryption With Keyword Search for
Industrial Internet of Things. IEEE Trans. Ind. Inform. 2018, 14, 3618–3627. [CrossRef] [CrossRef]

21. Wu, L.; Zhang, Y.; Ma, M.; Kumar, N.; He, D. Certificateless searchable public key authenticated encryption with designated
tester for cloud-assisted medical Internet of Things. Ann. Telecommun. 2019, 74, 423–434. [CrossRef] [CrossRef]

22. Liu, X.; Li, H.; Yang, G.; Susilo, W.; Tonien, J.; Huang, Q. Towards Enhanced Security for Certificateless Public-Key Authenticated
Encryption with Keyword Search. In Proceedings of the Provable Security—13th International Conference, Cairns, Australia, 1–4
October 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 113–129.

23. Pakniat, N.; Shiraly, D.; Eslami, Z. Certificateless authenticated encryption with keyword search: Enhanced security model and a
concrete construction for industrial IoT. J. Inf. Secur. Appl. 2020, 53, 102525. [CrossRef] [CrossRef]

24. Shiraly, D.; Pakniat, N.; Noroozi, M.; Eslami, Z. Pairing-free certificateless authenticated encryption with keyword search. J. Syst.
Archit. 2022, 124, 102390. [CrossRef] [CrossRef]

25. Icart, T. How to Hash into Elliptic Curves. In Proceedings of the Advances in Cryptology—CRYPTO 2009, 29th Annual
International Cryptology Conference, Santa Barbara, CA, USA, 16–20 August 2009; Springer: Berlin/Heidelberg, Germany, 2009;
pp. 303–316.

26. Ni, Z.; Kundi, D.; O’Neill, M.; Liu, W. A High-Performance SIKE Hardware Accelerator. IEEE Trans. Very Large Scale Integr. Syst.
2022, 30, 803–815. [CrossRef] [CrossRef]

27. Bisheh-Niasar, M.; Azarderakhsh, R.; Kermani, M.M. High-Speed NTT-based Polynomial Multiplication Accelerator for
CRYSTALS-Kyber Post-Quantum Cryptography. IACR Cryptol. EPrint Arch. 2021, 2021, 563.

28. Tian, J.; Wu, B.; Wang, Z. High-Speed FPGA Implementation of SIKE Based on an Ultra-Low-Latency Modular Multiplier. IEEE
Trans. Circuits Syst. I Regul. Pap. 2021, 68, 3719–3731. [CrossRef] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

.
http://dx.doi.org/10.1016/j.ins.2019.01.004
.
http://dx.doi.org/10.1109/CC.2014.7004528
.
http://dx.doi.org/10.1109/TII.2017.2771382
.
http://dx.doi.org/10.1007/s12243-018-00701-7
.
http://dx.doi.org/10.1016/j.jisa.2020.102525
.
http://dx.doi.org/10.1016/j.sysarc.2021.102390
.
http://dx.doi.org/10.1109/TVLSI.2022.3152011
.
http://dx.doi.org/10.1109/TCSI.2021.3094889

	Introduction
	Related Works
	Motivation and Contribution

	Preliminaries
	Bilinear Pairing
	Decisional Diffie–Hellman (DDH) Assumption in GT
	Decisional Bilinear Diffie–Hellman (DBDH) Assumption

	Definition of CLPAEKS
	System Model
	Algorithms
	Security Model
	Game G1
	Game G2
	Game G3
	Game G4

	The Proposed CLPAEKS Scheme
	Security Analysis
	CT-IND-CKA against Type-1 Adversary
	CT-IND-CKA against Type-2 Adversary
	S-TD-IND-CKA against Type-1 Adversary
	S-TD-IND-CKA against Type-2 Adversary

	Performance Evaluation and Discussion
	Conclusions and Future Works
	References

