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Long-term memory is achieved through a consolidation process where structural

and molecular changes integrate information into a stable memory. However,

environmental conditions constantly change, and organisms must adapt their

behavior by updating their memories, providing dynamic flexibility for adaptive

responses. Consequently, novel stimulation/experiences can be integrated during

memory retrieval; where consolidated memories are updated by a dynamic

process after the appearance of a prediction error or by the exposure to

new information, generating edited memories. This review will discuss the

neurobiological systems involved in memory updating including recognition

memory and emotional memories. In this regard, we will review the salient and

emotional experiences that promote the gradual shifting from displeasure to

pleasure (or vice versa), leading to hedonic or aversive responses, throughout

memory updating. Finally, we will discuss evidence regarding memory updating

and its potential clinical implication in drug addiction, phobias, and post-

traumatic stress disorder.

KEYWORDS

recognition memory, associative learning, valence shifting, novelty and familiarity,
reconsolidation

1. Introduction

Organisms, including humans, thrive in complex heterogeneous environments by
modifying their behavior, increasing chances of survival and reproduction. Thus, memory
is an indispensable mechanism that integrates knowledge and directs future behavior. The
integrated information is preserved across different stages in which memory is encoded,
integrated, and retrieved (Squire, 2009). Organisms generally recollect information about
shelters, food sources, mate recognition and location, and dangerous situations. However,
environmental conditions are not fixed, and milieus constantly change; therefore, organisms
must adapt their behavior by modifying the previously integrated information. Hence,
memory is also a dynamic process that provides flexibility for adaptive response during
sustained environmental change. This flexibility enhances survival by updating and editing
the integrated information and redirecting behavior according to fluctuating events.
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Memory integrates various experiences for different intervals;
therefore, memory could be classified depending on the duration
and participation of discrete brain structures and circuits, resulting
in different memory systems. Memory is classified according to
its duration as short-term (STM) and long-term memory (LTM)
(Atkinson and Shiffrin, 1968; Norris, 2017). STM concerns the
maintenance of information during short periods and involves the
covalent modification of existing proteins, temporally changing the
strength of pre-existing synaptic connections, while LTM involves
persistent morphological and physiological changes yielded by de
novo protein synthesis facilitating the retention of information for
long-lasting periods, even a lifetime (Goelet et al., 1986; McGaugh,
2000; Dudai, 2004; Kandel, 2012). Memory is also classified by
the integrated information type and divided into two categories:
declarative and non-declarative (Squire, 2004). Non-declarative
memory, also named implicit memory, integrates information
acquired through repetition, such as habits or motor skills
and conditioning (Squire, 2004; Ferbinteanu, 2019). Declarative
memory is recalled consciously and subdivided into semantic
and episodic memory; semantic memory concerns information
associated with facts, whereas episodic memory is related to
experienced events (Squire, 2009; Nadel and Hardt, 2011). Episodic
memory organizes information associated with “where,” “what,”
and “when” an event occurred (Tulving, 2002), facilitating the
judgment of whether a recent experience has been previously
experienced or encountered and the identification of specific
information modalities, including faces, places, sounds, objects, or
contextual changes. Recently, emotional components broadened
the definition of these classifications, since all these kinds of
memories can be integrated under different emotional states, thus
enhancing their strength and duration.

Memory goes through different stages: encoding,
consolidation, retrieval and reconsolidation (Sara, 2000; Abel
and Lattal, 2001; Dudai, 2004; Rodriguez-Ortiz and Bermúdez-
Rattoni, 2017). Encoding is an attention-dependent process where
information is acquired (McGaugh, 2000). Then, information
is processed—through protein synthesis—in a time-dependent
stabilization mechanism that requires synaptic connectivity
modifications within local and systems circuits for LTM integration
(McGaugh, 2013, 2000; Bisaz et al., 2014). Memory retrieval refers
to the process by which interoceptive and exteroceptive cues
select and reactivate integrated information within memory
systems resulting in a behavioral outcome (Ben-Yakov et al.,
2015; Frankland et al., 2019). After retrieval, LTM can undergo
destabilization and restabilization processes conjointly referred
to as reconsolidation. Like consolidation, reconsolidation is a
time-dependent event that could be affected by amnesic treatments
(Nader et al., 2000). Nevertheless, the behavioral response is
a dispensable condition during memory retrieval to trigger
reconsolidation, since the pharmacological inhibition of memory
expression does not affect memory reconsolidation (Rodriguez-
Ortiz et al., 2012; Balderas et al., 2013; Santoyo-Zedillo et al.,
2014). In this review, we will present evidence suggesting that
reconsolidation is initiated every time information is updated,
arguing that information updating, and not retrieval, is the
crucial factor that triggers the reconsolidation process (Lee et al.,
2017; Rodriguez-Ortiz and Bermúdez-Rattoni, 2017). Moreover,
reactivated memories can be destabilized after the occurrence
of a prediction error when new information is presented
concerning previous knowledge. Afterward, LTM goes through

a consolidation-like process known as reconsolidation/updating
(Nader et al., 2000; Sara, 2000), where memory is enhanced,
restabilized, impaired, or modified; it is during this stage that
memory updating occurs (see Figure 1; Sara, 2000; Lee et al.,
2017; Rodriguez-Ortiz and Bermúdez-Rattoni, 2017). In this work,
we will focus on recognition memory editing (Squire and Zola,
1996; Tulving, 2002; Bermúdez-Rattoni, 2004; Balderas et al., 2015;
Morici et al., 2015) and valence modification (positive or negative
characteristics of the experienced stimulus) (Popik et al., 2020),
generating memory updating.

2. Updating memory

2.1. Recognition and contextual memory

Integrated information within memories is not fixed and is
constantly updated because of environmental changes. Declarative
and non-declarative memories are susceptible to memory
updating and editing; the integrated information predicts the
following events. Then, a discrepancy between expectation and
reality induces memory destabilization. Declarative memories,
like recognition memories, integrate two distinctive processes:
familiarity and recollection (Brown and Aggleton, 2001; Merkow
et al., 2015). Familiarity conceives whether an event has already
been experienced (Mandler, 1980), and the recollection process
integrates the event’s specific characteristics (qualitative–valence)
(Evans and Wilding, 2012). Recollection is usually associated
with the conscious retrieval of the contextual details in which a
stimulus occurred (Yonelinas et al., 2010) and requires the integral
functionality of several brain structures, including the hippocampal
formation and prefrontal, perirhinal, entorhinal, insular, and
postrhinal cortices (Brown and Aggleton, 2001; Yonelinas, 2002;
Evans and Wilding, 2012; Bermudez-Rattoni, 2014; Merkow et al.,
2015). Our understanding of the neurobiological mechanisms
related to declarative memory, particularly recognition memory,
has been mainly obtained through the evaluation of spontaneous
object exploration paradigms. Novel object recognition (NOR)
is based on an animal’s innate tendency to explore novel stimuli,
where animals discriminate between a previously encoded object
and a novel one (familiarity) (Ennaceur, 2010). Another widely
employed paradigm is object location memory (OLM). In this
task, organisms identify a familiar object in a novel contextual
distribution (recollection) (Ennaceur and Delacour, 1988). Both
paradigms involve various behavioral sessions; initially, animals
are handled and habituated to an empty open field or exploration
arena. Then, animals freely explore one or two identical novel
objects during the sample phase; throughout the test session,
animals are reintroduced to the exploration arena. Recognition
memory is assessed either by presenting a different novel object
or changing the contextual configuration, NOR and OLM,
respectively (Ennaceur and Delacour, 1988; Moreno-Castilla
et al., 2018). Novelty demands attention, motivation, and memory
processes (Bastin et al., 2019). Thus, NOR alludes that a stimulus
has never been encountered (Kafkas and Montaldi, 2018), while
an unexpected position/location of the familiar elements is named
contextual novelty, as in OLM (Ranganath and Rainer, 2003;
Kafkas and Montaldi, 2018; Bastin et al., 2019). NOR (Kelly
et al., 2003; Akirav and Maroun, 2006; Rossato et al., 2007;
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FIGURE 1

Long-term memory stages. Exteroceptive and interoceptive information is encoded during learning and subsequently stabilized into long-term
memory through memory consolidation. Integrated memories are recalled throughout retrieval when they are reactivated and expressed.
Furthermore, memory updating occurs only when new information is integrated into the previously formed memory traces.

Balderas et al., 2013, 2015; Santoyo-Zedillo et al., 2014) and OLM
(Villain et al., 2016; Kwapis et al., 2020; Wright et al., 2020) are
susceptible to updating when new information (new object or
novel configuration) is presented during reactivation/retrieval and
is evaluated in a test session.

2.2. NOR and OLM updating

Object-related recognition memory is susceptible to
modification and editing. Evidence suggests that NOR memory is
only updated when a prediction error occurs. In a NOR updating
experiment, animals equally explored two identical objects during
the sample phase and then, during the reactivation phase, animals
were exposed to different situations. A group of rats explored
the same objects as in the sample phase (no prediction error).
In contrast, another group explored a new pair of novel objects
(totally novel information), and a third group explored a copy
of the familiar object with a novel one (prediction error). For
OLM updating, a different contextual conformation induces
a prediction error. Administration of anisomycin, a protein
synthesis inhibitor, within the perirhinal cortex (Balderas et al.,
2013) or the hippocampus (Rossato et al., 2007; Choi et al.,
2010; Huff et al., 2022) promotes retrograde amnesia, impairing
object and contextual memory updating only in the prediction
error group. To illustrate this, in an OLM updating protocol,
rodents preferred to explore the switched objects due to a novel
contextual configuration during the reactivation session. However,
if rodents had successfully updated the changed information, they
showed a similar preference for all objects, in the test session,
when re-exposed to the same contextual configuration, because of
contextual familiarity. Nevertheless, administration of anisomycin
into the hippocampus impedes memory updating because rodents
identify the familiar contextual arrangement as a novel one
(Kwapis et al., 2020; Huff et al., 2022). Recognition memory enrolls
different structures to update integrated memories depending
on the prediction error session. When a prediction error occurs

in the expected objects, the perirhinal cortex is mainly involved;
however, when the prediction error occurs in the expected context,
the perirhinal cortex and the dorsal hippocampus are implicated
(Balderas et al., 2008; Winters et al., 2011).

Therefore, memories are reactivated and destabilized after a
prediction error during memory retrieval to integrate updated
information. Another characteristic of memory retrieval is the
behavioral expression. However, memory expression is not essential
for memory editing and updating. The pharmacological inhibition
of the perirhinal cortex by the administration of muscimol—
a GABA receptor agonist—before the reactivation/retrieval
session hinders recognition memory expression, leaving memory
destabilization and updating intact (Balderas et al., 2013).
Muscimol administration impaired memory expression during
the reactivation/retrieval session, since rats had no preference
for the novel object, indicating that they could not differentiate
between novel and familiar objects. However, in the test session,
rats showed preference for a novel object, revealing that the
original object-related memory was unimpaired despite the
inhibition of memory expression. Moreover, administration of a
protein synthesis inhibitor after the reactivation/retrieval session
promotes object-related retrograde amnesia, since rats could not
differentiate between the familiar and the novel object during the
test session. The combined administration of muscimol (before
reactivation/retrieval session) and a protein synthesis inhibitor
(after reactivation/retrieval session) within the perirhinal cortex
inhibits memory expression during the reactivation/retrieval
session and induces object-related amnesia (Balderas et al., 2015,
2013; see Figure 2). Likewise, administration of CNQX (before the
reactivation/retrieval session), an AMPA receptor antagonist, into
the perirhinal cortex interferes with memory expression, observed
as a failure to recognize the novel object during the reactivation
phase, but maintaining original object-related memory; while
the inhibition of N-methyl D-aspartate (NMDA) receptors (after
reactivation/retrieval session) with APV or MK-801 leaves NOR
expression intact but generates retrograde amnesia (Winters et al.,
2009; Santoyo-Zedillo et al., 2014). Conversely, pharmacological

Frontiers in Systems Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnsys.2023.1103770
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-17-1103770 February 16, 2023 Time: 8:11 # 4

Osorio-Gómez et al. 10.3389/fnsys.2023.1103770

blockade of muscarinic receptors or inhibition of protein
degradation within the hippocampus prevents destabilization
of recognition memory during retrieval, arresting the amnesic
effect induced by the administration of a protein synthesis
inhibitor stimulus (Choi et al., 2010; Huff et al., 2022). Altogether,
these results indicate that NOR destabilization and updating are
independent processes from memory expression during retrieval
(Figure 2). Although recognition memory updating is usually
evaluated by administering amnesic agents, memory updating
could also be assessed by its enhancement during the reactivation
session. For example, a systemic nicotine administration during
the NOR reactivation session promotes better performance during
LTM (Tian et al., 2015), indicating that memory strengthening is
also a kind of memory updating (Figure 1). Thus, discrepancies
between the expected and experienced promote recognition
memory destabilization and subsequent integration of the updated
information, enabling the editing and modification of existing
memories.

Prediction error is commonly associated with dopamine
when a discrepancy between the expected and received rewards
occurs (Schultz, 2016). However, dopaminergic activity is also
involved in other cognitive processes beyond rewards. Dopamine
is a modulatory neurotransmitter associated with the regulation
of perceptual salience. This memory process modulates the
integration of inconspicuous stimuli into a relevant memory
facilitating the transition from novelty to familiarity without
enhancing the initial sensory perception in recognition memory
(Gil-Lievana et al., 2022; Osorio-Gómez et al., 2022). In this
regard, the integral functionality of the dopaminergic inputs from
the ventral tegmental area and the locus coeruleus is required
for novelty detection, comparing the presented information to
previously integrated memories (Lisman and Grace, 2005; Lisman
et al., 2011). Thus, it has been postulated that dopamine is a general
mechanism for predictive processing; this activity signals the
prediction error and the difference between the expected value of
consequences and the received value (Diederen and Fletcher, 2021).
Dopaminergic activity within the hippocampus and insular and
perirhinal cortices promotes the consolidation and persistence of
familiarity in recognition memory. Howbeit, the evidence related to
catecholaminergic activity during NOR updating is limited. D1/D5
receptors pharmacological blockade through administration of
SCH 23390 within the hippocampus prevents amnesia caused by
the administration of a protein synthesis inhibitor during the
reactivation session; these results suggest that D1/D5 receptors
are involved in the destabilization process induced by the novel
stimulus presented during the reactivation phase (Rossato et al.,
2015; Gonzalez et al., 2021). Recently, we demonstrated that
optogenetic inhibition of catecholaminergic projections arriving at
the dorsal CA1 hippocampus, coming from the locus coeruleus
but not from the ventral tegmental area, impedes object location
memory updating. Significantly, the pharmacological blockade
of hippocampal β-adrenergic receptors with propranolol hinders
memory expression without altering memory updating, whereas
D1/D5 receptors blockade, by SCH 23390 administration, impairs
memory expression and updating (Gálvez-Márquez et al., 2022).
These results suggest that dopaminergic activity arising from the
locus coeruleus modulates both memory expression and updating
when new contextual information is presented. More data are
still necessary to comprehend the involvement of dopamine
and noradrenaline in the transition of novelty to familiarity in

recognition memory. Nevertheless, the gradual transition from
novelty to familiarity usually requires several exposures to the
novel stimulus, facilitating new information learning (Henson
and Gagnepain, 2010) and neural plasticity changes (Lisman
et al., 2011). This process suggests that every presentation induces
progressive memory updating through reconsolidation processes
until complete familiarization is accomplished (Rodriguez-Ortiz
et al., 2005).

2.3. Taste recognition memory

Novelty detection is crucial since it has been suggested that
the novelty-familiarity transition modulates overall recognition
memory performance (Parker et al., 1998). Recognition memory
is evaluated through different strategies; however, it has also
been estimated through evolution-related paradigms, like taste
recognition memory, referred to as the ability to identify a
particular taste and its relation to post-ingestive consequences
(Bermúdez-Rattoni, 2004). Organisms differentiate between novel
and familiar food, reducing the ingestion of potentially harmful
foods. This behavior is known as taste neophobia; if the tastant
stimulus is not associated with positive/negative post-ingestive
consequences, the taste becomes familiar, promoting attenuation
of neophobia, observed as a gradual augmentation of the stimulus
ingestion (Domjan, 1976). Accordingly, novelty detection induces
a maximum behavioral response that is gradually diminished
after the following presentations, suggesting that taste recognition
memory is progressively updated until complete familiarization is
accomplished (Rodriguez-Ortiz et al., 2005). Thus, neophobia and
its attenuation assess the recognition of memory events necessary
to transition from novel to familiar tastes (Osorio-Gómez et al.,
2018). Moreover, neophobia and its attenuation are vulnerable to
perirhinal and hippocampal lesions (Morillas et al., 2017), like the
deficits observed in NOR. This evidence suggests that attenuation
of neophobia employs brain structures involved in declarative
memories (Moron et al., 2002; Manrique et al., 2009; Grau-Perales
et al., 2019).

Another widely used taste recognition paradigm is conditioned
taste aversion (CTA). Unlike neophobia and its attenuation, where
there are no evident post-ingestive consequences, in CTA, the
novel taste is associated with gastric malaise, preventing the
animals from consuming the taste in future events (Garcia et al.,
1955; Bermúdez-Rattoni, 2004). Hence, aversive taste recognition
memory is essential to reject illness-associated tastes. This memory
also requires updating and has been evaluated by promoting CTA
strengthening through several training sessions (Rodriguez-Ortiz
et al., 2012) or changing the expected consequence as in extinction
(Garcia-Delatorre et al., 2010) or latent inhibition (Rodriguez-Ortiz
et al., 2005). Taste recognition memory comprises two aspects:
familiarity and relation to post-ingestive consequences. Therefore,
taste recognition memory integrates the information related to
the specific characteristics of taste, such as identity, intensity
or valence (Breslin, 2013; Wang et al., 2018). Cooperatively,
familiarity integrates the information to remember if a taste has
been previously experienced. In this regard, results show that
novel and familiar stimuli induce the graded activation of several
brain regions (Kafkas and Montaldi, 2014). Novel taste exposure
promotes catecholaminergic activity within several brain structures
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FIGURE 2

Memory expression is not essential for memory editing and updating. The administration of an expression blocker (a GABA receptor agonist or an
AMPA receptor antagonist) before the reactivation/retrieval session impairs recognition memory, since rats could not differentiate between the
novel (N) and familiar objects (F). However, rats showed preference for a novel object in the test session, revealing that the original object-related
memory remained intact despite inhibition of memory expression. Moreover, the administration of an amnesic agent (a protein synthesis inhibitor)
after the reactivation/retrieval session promotes object-related retrograde amnesia, since rats could not differentiate between the familiar and novel
objects during the test session. The combined administration of an expression blocker (before reactivation/retrieval session) and an amnesic agent
(after reactivation/retrieval session) blunts memory expression during the reactivation/retrieval session and induces object-related amnesia (Based
on Balderas et al., 2015).

(Royet et al., 1983; Dunn and Everitt, 1987; Steketee et al., 1989;
Bassareo et al., 2002), including the amygdala (Guzmán-Ramos
et al., 2012) and insular cortex (Guzmán-Ramos et al., 2010;
Moreno-Castilla et al., 2016; Osorio-Gómez et al., 2021). When
the taste becomes familiar, catecholaminergic response is reduced
within the nucleus accumbens (De Luca, 2014), amygdala (Osorio-
Gómez et al., 2017, 2016), and insular cortex (Osorio-Gómez et al.,
2017). Similarly, exposure to a new taste elevates extracellular
cholinergic levels within the insular cortex (Miranda et al., 2000;
Rodríguez-García and Miranda, 2016); after the taste stimulus
becomes familiar, these cholinergic levels decrease and are inversely
related to the consumption of the familiar taste stimulus (Miranda
et al., 2000).

Consequently, novelty detection induces a maximum response
that is gradually diminished after the following presentations,
suggesting that attenuation of neophobia can be assessed from a
reconsolidation and updating perspective; every time animals are
exposed to the taste stimulus, recognition memory is reactivated
until complete familiarization is achieved, promoting memory
destabilization and facilitating the integration of new information

(familiarity) for memory updating (Rodriguez-Ortiz et al., 2005).
The administration of a protein synthesis inhibitor into the insular
cortex during the initial retrieval sessions of neophobia attenuation
hinders memory reconsolidation and updating, generating the
familiar taste that is recognized as novel again. However, when the
stimulus is familiar, memory is no longer vulnerable to the amnesic
effect (Rodriguez-Ortiz et al., 2005). Similarly, administering a
muscarinic receptor antagonist within the insular cortex before
a second taste familiarization session retards the attenuation of
neophobia, and the taste is recognized as novel again (Gutiérrez
et al., 2003), impeding memory updating.

Regarding catecholaminergic activity, optogenetic activation
of the ventral tegmental area increases the neophobic response.
However, optogenetic stimulation of dopaminergic terminals
arriving at the insular cortex spares neophobia (Gil-Lievana
et al., 2022). Moreover, pharmacological manipulation of the
dopaminergic receptors within the nucleus accumbens (shell)
or the amygdala impairs taste recognition memory updating.
Blockade of D1/D5 receptors in both structures exacerbates the
neophobic response even when the stimulus is becoming familiar
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(second exposure to the stimulus), but attenuation of neophobia
is hindered only after the blockade of amygdalar D1/D5 receptors.
Nevertheless, activation of D1/D5 receptors within the amygdala
diminishes the neophobic response and impedes the attenuation
of neophobia updating (Grau-Perales et al., 2020). Therefore,
dopaminergic activity requires modulation of the neophobic
response and its updating during attenuation of neophobia.

Like object recognition, taste recognition memory updating
only occurs when new information is aggregated. Gradual
presentation of new information occurs during the novel-familiar
transition, but also, novel information is incorporated when
the stimulus’ learned characteristics (valence) are changed. In
this regard, taste recognition memory is again vulnerable to
updating when a familiar stimulus is now associated with post-
ingestive consequences, such as gastric malaise, generating a clear
taste aversion even after complete attenuation of neophobia has
occurred, indicating memory updating (Rodriguez-Ortiz et al.,
2005). Inhibition of protein synthesis spares memory updating
when the stimulus is familiar since no new information is added.
Nevertheless, new information is integrated when the familiar taste
is now followed by gastric malaise, making memory vulnerable
again to the amnesic effect of protein synthesis inhibition,
preventing the incorporation of updated information, i.e., taste
aversion (Rodriguez-Ortiz et al., 2005). Taste aversion memory
is updated through strengthening. Administration of a protein
synthesis inhibitor into the insular cortex or central amygdala
impairs aversive memory strengthening during repeated training
sessions (García-DeLaTorre et al., 2009). However, when the taste
becomes strongly familiar and aversive, due to several conditioning
trials, memory is no longer vulnerable to destabilization and
memory updating (García-DeLaTorre et al., 2009).

Taste aversion memory updating is an independent process
from memory expression. The blockade of D1 dopaminergic
receptors within the amygdala spares memory expression but
impedes taste aversion updating (Osorio-Gómez et al., 2016).
Furthermore, the pharmacological blockade of AMPA receptors
within the amygdala (Garcia-Delatorre et al., 2014) impairs
conditioned aversive response but spares memory updating,
whereas inhibition of protein synthesis (Rodriguez-Ortiz et al.,
2012) or the blockade of NMDA (Garcia-Delatorre et al., 2014)
within the insular cortex hinders memory updating without
interfering with memory expression. In this regard, there is a
functional interaction between the amygdala and the insular
cortex for taste aversion establishment (Escobar and Bermúdez-
Rattoni, 2000; Guzmán-Ramos et al., 2010; Osorio-Gómez et al.,
2019) and memory expression and updating (Osorio-Gómez
et al., 2017). Through pharmacological manipulations, behavioral
analysis, and microdialysis in freely moving rats, we observed
that the administration of an AMPA receptor antagonist into
the amygdala impairs aversive taste memory expression and
prevents norepinephrine and dopamine release within the insular
cortex. In contrast, the blockade of NMDA receptors within the
amygdala spares aversive taste expression but hinders changes
in glutamatergic levels within the insular cortex (Osorio-Gómez
et al., 2017). These results suggest that the amygdala modulates
memory expression by regulating catecholaminergic activity in the
cortex. This was confirmed since blockade of D1 and β-adrenergic
receptors within the insular cortex impairs aversive taste memory
expression (Osorio-Gómez et al., 2017). However, glutamatergic

activity via NMDA receptor activation in the amygdala and insular
cortex is necessary for memory strengthening through updating
(García-DeLaTorre et al., 2009; Garcia-Delatorre et al., 2010;
Osorio-Gómez et al., 2016).

Memory updating happens after the appearance of a prediction
error, inducing memory destabilization to integrate the new
information into the previously formed memory. This process
happens during extinction when animals expect that taste will
be followed by illness. However, when taste is not followed by
gastric malaise, this event promotes memory extinction updating
taste information. Inhibition of protein synthesis within the
hippocampus or the insular cortex hinders memory extinction
since animals still recognize the tastant as aversive, even though the
taste is no longer associated with gastric malaise, suggesting that the
new information is not integrated into the memory trace (Garcia-
Delatorre et al., 2010). Regardless, memory updating induces
memory destabilization via activation of the ubiquitin-proteasome
system; the pharmacological inactivation of this system impairs
memory updating, avoiding destabilization and the subsequent
integration of new information (Rodriguez-Ortiz et al., 2011).
Altogether, if new information is presented during retrieval
sessions, memories are destabilized, promoting the integration
of the updated information. Taste recognition memory can be
updated by familiarizing the taste stimulus when no post-ingestive
consequences occur, throughout strengthening memory sessions or
when there is a modification in the stimulus’ learned characteristics
(valence).

3. Emotional valence in memory
updating

3.1. Integration of interoceptive and
exteroceptive information

Several pieces of evidence indicate that the insular cortex
translates and integrates external cues into interoceptive states that
regulate a broad range of physiological and cognitive processes
(Craig, 2009). Consequently, the insular cortex could be postulated
as an integrative hub due to the vast reciprocal connections that
exist between it and an extensive network of cortical and subcortical
structures (Saper, 1982; Craig, 2009; Nguyen et al., 2016; Benarroch,
2019). Thus, as the insular area is responsible for the interoceptive
processing of multisensory information, this region could play a
vital role in the extensive processing of internal states involved
in memory updating (Gu et al., 2013). This hypothesis could
be sustained with the established role of the insular cortex in
pain processing (Starr et al., 2009; Lu et al., 2016) and negative
affective states like anxiety (Paulus and Stein, 2006). According to
recent research, the insular cortex participates in mediating several
processes related to craving and drug-seeking (Contreras et al.,
2007; Naqvi and Bechara, 2009; Moschak et al., 2018) through
the upregulation of opioidergic signaling, leading to an altered
subcortical function and downstream activity (Pina et al., 2020).
Thus, the insular cortex seems to be involved in the integration
of multimodal information, including interoceptive and contextual
information.
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In this regard, contextual information is essential for several
learning and memory processes. In a more direct contextual
paradigm, the conditioned place preference model, where rodents
are trained to associate a rewarding stimulus with contextual cues,
memory could be destabilized when mice are re-exposed to the
training context without the rewarding stimulus (Milekic et al.,
2006; Gil-Lievana et al., 2020). This destabilization makes memory
vulnerable to disruption through blockade of NMDA receptors in
the insular cortex, inducing amnesia and facilitating the association
of new contextual cues with a rewarding stimulus (Gil-Lievana
et al., 2020). Interestingly, memory could be re-stabilized when no
amnesic agents are given; thus, the original contextual memory
is maintained and competes with the new contextual association,
even after extinction trials (see Figure 3). Besides, contextual
information is gradually incorporated by updating mechanisms
that are dependent of protein synthesis. Administration of
a protein synthesis inhibitor into the hippocampus impairs
memory updating in partially trained animals, whereas the same
manipulation in well-trained animals spares spatial memory
(Rodriguez-Ortiz et al., 2008). This memory impairment is only
observed after new memory encoding at the time of memory
destabilization, including memory strengthening, updating or
extinction (Morris et al., 2006; Rodriguez-Ortiz et al., 2008).

3.2. Salient experiences

During learning, and memory retrieval, specific neural circuits
transduce salient experiences (e.g., rewarding and aversive as
emotional valence) into instructive neural signals integrated into
the memory circuitries (Schultz, 2015). Therefore, salient and
emotional experiences processing during learning and memory
is a multi-step phenomenon initiated by forming an association
between a given stimulus and a related positive or negative
consequence every time the stimuli and context are similar. After
learning, experience is followed by the development or increase of
attention, motivation and/or anticipation, generating a prediction
of the event and defined by some as a “state of readiness for a
consequence” (Kring and Barch, 2014; Rizvi et al., 2016). Moreover,
there is feedback based on consequences and learning during
memory retrieval, where a proper sequence of events is required for
balanced integration between the expected value of a given stimulus
and the predicted consequence (e.g., updating). The consummatory
phase of reward or aversive avoidance processing occurs when the
goal is achieved, leading to a hedonic (Kring and Barch, 2014; Rizvi
et al., 2016) or aversive response (Ozawa and Johansen, 2018).

As expected, several systems that regulate positive or negative
valence during emotional/affective processing also interact
during associative learning, retrieval and updating. Research
of the negative valence role in aversive processing during
learning and memory provides insight into the complexity of
numerous neurotransmitter pathways that simultaneously impact
during aversive vs. hedonic memory. Pharmacological findings
demonstrate that noradrenergic activity within the amygdala
during aversive and emotional arousal training experiences
enhances memory consolidation (Ellis and Kesner, 1983; Liang
et al., 1990, 1986; Hatfield and McGaugh, 1999). It is known
that aversive experiences produce a surge of noradrenaline in
the amygdala (Quirarte et al., 1998; Guzmán-Ramos et al., 2012;

Osorio-Gómez et al., 2016). This noradrenergic surge promotes
aversive associative learning and memory by activating β-
adrenergic receptors (Uematsu et al., 2017). The noradrenergic
response arises from the locus coeruleus, which projects to the
hippocampus, amygdala and insular cortex, eliciting noradrenaline
release (Guzmán-Ramos et al., 2012, 2010; Robertson et al., 2013;
McCall et al., 2017; Osorio-Gómez et al., 2021, 2016). Particularly,
the noradrenergic modulation of amygdalar activity promotes
aversive association since it receives nociceptive information
(Bernard et al., 1993, 1992; Bester et al., 1997), improving pain-
induced associative learning (Watabe et al., 2013; Han et al.,
2015; Sato et al., 2015) and anxiety-related responses (Galvez
et al., 1996; Quirarte et al., 1998). Consequently, stress is argued
to impact several stages of consolidation and memory updating
during complex experiences where an emotional valence induces
changes in the allostatic state (e.g., interoceptive and nociceptive
modulation) that forms the growing motivational changes in the
learned and updated behavior. In healthy humans, the β-adrenergic
receptor antagonist propranolol blocks memory reconsolidation
in a fear conditioning test (Kindt et al., 2009) and lasts at least
1 month resisting fear reinstatement (Lonergan et al., 2013).
Viewing emotional memory updating as a process that includes
an allostatic mechanism provides critical insights into how
dysregulated neurocircuitry involved in basic motivational systems
can transition into pathophysiology. Recent findings (Xue et al.,
2017) demonstrate that the administration of propranolol disrupts
memory reconsolidation in rats and humans in a nicotine disorder
study (Lin et al., 2021). Similarly, propranolol impaired long-term
alcohol context-related memory reconsolidation in a rat model
(Wouda et al., 2010). Furthermore, some evidence suggests the
efficacy of β-blockers in reducing post-traumatic stress disorder
(PTSD) symptoms. Thus, blocking memory reconsolidation with
propranolol reduced drug addiction and several anxiety/stress
disorders (Brunet et al., 2018; Roullet et al., 2021). β-blockers
could prevent the associations between environmental stimuli
and the effects of self-administered drugs with their respective
aversive emotional states. β-blockers decrease the aversive states
that include interoceptive nociceptive signals associated with
states of anxiety and stress due to the lack of the consumption
of substances of abuse (Koob and Schulkin, 2019). Altogether,
the evidence indicates the influence of noradrenaline on memory
consolidation and memory updating in pathological and salient
aversive experiences (Pigeon et al., 2022).

Regarding glutamatergic activity, nociceptive stimuli promote
glutamate release, increasing responsiveness, enhancing the
aversive response, and inducing the association between
nociception and the experienced context (LeDoux, 2000;
Bornhövd et al., 2002; Cardinal et al., 2002; Baliki et al., 2006).
Furthermore, a recent study reports an increase in calcineurin,
an essential plasticity protein, within the basolateral amygdala
during fear memory updating (extinction); this protein is
modulated via NMDA glutamate receptors (Merlo et al., 2014).
Consequently, changes in the aversive/negative valence may
be related to an increase in glutamatergic activity, through
AMPA receptors (Cheng et al., 2011) and NMDA receptor
activation, inducing plasticity reeling upon the synthesis of
new proteins (Nader et al., 2000) favoring memory updating.
Along with it, corticosteroids activate projections from the
locus coeruleus to the amygdala, promoting the release of
norepinephrine (McCall et al., 2017). Thus, glutamate and

Frontiers in Systems Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnsys.2023.1103770
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/


fnsys-17-1103770 February 16, 2023 Time: 8:11 # 8

Osorio-Gómez et al. 10.3389/fnsys.2023.1103770

FIGURE 3

Contextual memory updating. Animals were trained to prefer a compartment (CS1) with a rewarding stimulus (ventral tegmental area
photo-stimulation; unconditioned stimulus, US). During the extinction training sessions, control animals are exposed to the conditioned stimulus
(CS) without US, initiating extinction learning. The group of treated animals (red) received an amnesic treatment in the insular cortex (NMDA receptor
antagonist) and place preference conditioning was extinguished. Then, both groups of animals were counter-trained in the other compartment
(CS2) with the same rewarding stimulus. In the retrieval session, the control group maintains the original contextual memory that competes with the
new contextual association (blue and orange-dashed line), indicating memory updating. However, the amnesic treatment disrupted the original
memory, facilitating the association of new contextual cues with a rewarding stimulus (orange solid line) (Based on Gil-Lievana et al., 2020).

norepinephrine modulation of the amygdala enhances aversive
memory acquisition and consolidates aversion-related tasks
(Roozendaal and McGaugh, 1996; Roozendaal, 2002), and perhaps
modulates memory updating. Particularly, noradrenergic and
glutamatergic transmission could play an essential role in these
pathologies, giving a crucial function to the amygdala-cortical
pathways. These findings (see below) suggest that pharmacological
intervention in cue-exposure therapies for addictive behaviors
and anxiety disorders may be potentiated in understanding the
mechanisms involved during new learning, memory retrieval, and
memory updating.

Furthermore, emerging evidence gives insights into how acute
modulation of opioids can influence memory consolidation and
memory updating. Recent reports highlight the importance of the
opioid system in regulating not just aversive experiences but also
motivation and the sense of hedonic impact (e.g., “liking,” the
pleasurable/hedonic impact or various expressions of subjective
pleasure induced by rewarded appetitive experience) (Peciña and
Smith, 2010; Baldo, 2016). In this regard, several neural circuits
that are thought to orchestrate feeding behavior overlap with the
reward circuitry (Rossi and Stuber, 2018). Some reports agree that
opioid peptide neurotransmission causes a shift in the valuation
of the “hedonic gradient,” ranging from displeasure to pleasure,
which is not limited to the liking of stimuli (Eippert et al., 2008;
Haaker et al., 2017). Moreover, micro-stimulation with opioid
peptides increases motivation for different cue-triggered seeking
responses and innate reward stimuli in rodents (Wassum et al.,
2009; Mahler and Berridge, 2012); this data could be linked with
growing evidence in animal models and human studies on the
involvement of reconsolidation processes in related memories upon
their reactivation during relapse to an addictive substance or after
traumatic experiences or pathologies.

4. Clinical implications of memory
updating

Drug addiction and substance abuse disorders are related to the
leading causes of mortality and morbidity worldwide (Ritchie and
Roser, 2019; Shield et al., 2020; Roser et al., 2021). Some current
treatments involve behavioral and pharmacological strategies that
acknowledge the psychobiological processes underlying addictions.
These can be considered maladaptive reward memories, and
the modification or updating of such memories, especially the
cue/context reinforcer association, has been addressed through
the manipulation of memory reconsolidation (Torregrossa and
Taylor, 2013; Liu et al., 2019). Cumulative evidence indicates
that propranolol, a β-adrenergic blocker, could be a valuable
pharmacological agent to achieve long-lasting results affecting
drug-related memories by altering the stability of the memory
trace. For instance, in animal models, post-retrieval propranolol
administration reduces alcohol-seeking behavior and impairs
alcohol-associated memory (Wouda et al., 2010; Schramm et al.,
2016). A similar effect was observed with cocaine (Bernardi et al.,
2006) and morphine-associated memories (Robinson and Franklin,
2010). In human studies, the administration of propranolol after
cocaine cue exposure (memory reconsolidation) decreases craving
and physiological responses during a test session. However, this
does not indicate memory erasure (Saladin et al., 2013). A small
pilot study had similar results over craving severity in patients
diagnosed with substance dependence when drug-related memory
retrieval took place under propranolol effects (Lonergan et al.,
2016). A recent study found a decrease in craving after propranolol
reconsolidation disruption in smokers (Lin et al., 2021).

Another process explored to achieve drug-related memory
modification is the modulation of the extinction process via
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the glutamatergic system. NMDA receptor agonists (D-serine
and D-cycloserine) facilitate the extinction of drug-induced
conditioned place preference and reduce reinstatement (Botreau
et al., 2006; Myers and Carlezon, 2012; Hammond et al., 2013).
In humans, D-cycloserine has been assessed prior to extinction
sessions, with poor results in alcohol-dependent subjects and
cocaine addicts (Hofmann et al., 2012; Price et al., 2013; Santa
Ana et al., 2015) and promising results in smokers (Santa Ana
et al., 2009; Kamboj et al., 2012; Otto et al., 2019). Clinical
studies have used cue exposure therapy based on the extinction
of the conditioned responses elicited by environmental stimuli.
The effectiveness of this therapy is limited in a lab-controlled
environment (Franken et al., 1999; Marissen et al., 2007; Germeroth
et al., 2017), which stresses that the relevance of extinction is mainly
context dependent, challenging new therapies to prevent relapse
under natural environments.

Emotional memories can be altered through the modulation
of integrated information during reconsolidation, opening a
possibility for treatment of other types of maladaptive memory
traces that trigger undesirable symptoms affecting life quality like
the ones associated with PTSD. Propranolol has been assessed
as a safe pharmacological strategy to decrease these symptoms
(Pigeon et al., 2022). A study reported positive effects after memory
reconsolidation under propranolol administration (Brunet et al.,
2018). The subjects showed decreased PTSD symptoms under
propranolol influence, but other studies failed to produce memory
trace destabilization that would allow complete or long-lasting
remission (Wood et al., 2015; Roullet et al., 2021). Psychological
interventions that aim to disrupt memories during reconsolidation
by decreasing the intrusive symptoms have shown some positive
effects (Astill Wright et al., 2021); for instance, traumatic memory
reconsolidation, a cognitive-behavioral treatment focused on PTSD
symptoms, expressed as immediate phobic-like responses triggered
by stimuli over a series of treatment sessions where the memory is
reactivated and destabilized with a narrative to modify that memory
(for details on the treatment see Gray et al., 2019).

Phobias are considered anxiety disorders (American Psychiatric
Association [APA], 2013) and are formed by aberrant emotional
memories that have a profound and persistent impact on behavior.
Different therapeutic approaches have explored the manipulation
of memory destabilization-dependent processes (Vaverková et al.,
2020). Several reconsolidation-based interventions in animal
models of anxiety disorders have successfully used propranolol
(Villain et al., 2016). A recent meta-analysis indicated that
propranolol administration reduced cue-elicited emotional
responses in healthy humans. In contrast, in clinical samples
of aversive memories reactivated under propranolol, symptom
severity was significantly reduced (Pigeon et al., 2022). This
study contrasts with others reporting a lack of post-reactivation
propranolol effect on fear of public speaking treatment (Elsey
et al., 2020) and arachnophobia (Elsey and Kindt, 2021). Due
to the heterogeneity of protocols and environmental conditions
of memory reactivation, it has been complicated to reach a clear
consensus on the efficacy of propranolol as a treatment tool for any
anxiety disorder. A key question is whether the extensive evidence
compiled on animal models can be translated as part of a successful
treatment of maladaptive memories underlying some psychiatric
disorders, given the significant number of confounding factors and
limitations.

5. Conclusion

Memory editing and updating involve the dynamic and
flexible information integration required to thrive under constant
environmental alterations. This memory updating modifies the
previously integrated information redirecting behavioral response
for proper adaptive behavior. Memories are established by
consolidation mechanisms that promote morphological and
physiological neural changes that subserve memory persistence.
Notably, after learning, information integration is accompanied
by developing the prediction and expectation of the event and
its consequences. Discrepancies between the expected and the
experienced promote memory reactivation and destabilization
during retrieval, encouraging the integration of new information
that adjusts the previously integrated information. Memory
updating is necessary for a novel to familiar transition, gradually
shifting from displeasure to pleasure, or when a stimulus is
no longer followed by a consequence like in extinction trials.
Several neurotransmitter systems have been involved in the
expression, destabilization, and updating of memories; however,
the catecholaminergic system is mainly implicated in memory
expression and destabilization, while the glutamatergic system
allows the integration of the updated information. After memory
destabilization, there is a temporal window where memories are
vulnerable to interference. Thus, there is a particular interest in
gaining more knowledge about the neurobiological mechanisms
involved in destabilization and memory updating. Studying the
neurobiological underpinning of memory updating will have
potential implications for treating maladaptive memories such as
addiction, phobias, and PTSD.
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