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Abstract: The accuracy of insulators and their defect identification by UAVs (unmanned aerial
vehicles) in transmission-line inspection needs to be further improved, and the model size of the
detection algorithm is significantly reduced to make it more suitable for edge-end deployment. In
this paper, the algorithm uses a lightweight GhostNet module to reconstruct the backbone feature
extraction network of the YOLOv4 model and employs depthwise separable convolution in the
feature fusion layer. The model is lighter on the premise of ensuring the effect of image information
extraction. Meanwhile, the ECA-Net channel attention mechanism is embedded into the feature
extraction layer and PANet (Path Aggregation Network) to improve the recognition accuracy of
the model for small targets. The experimental results show that the size of the improved model is
reduced from 244 MB to 42 MB, which is only 17.3% of the original model. At the same time, the mAp
of the improved model is 0.77% higher than that of the original model, reaching 95.4%. Moreover,
the mAP compared with YOLOv5-s and YOLOX-s, respectively, is improved by 1.98% and 1.29%.
Finally, the improved model is deployed into Jetson Xavier NX and run at a speed of 8.8 FPS, which
is 4.3 FPS faster than the original model.

Keywords: lightweight algorithm; YOLOv4; GhostNet; insulator; attention mechanism

1. Introduction

Insulators are important components in transmission lines, playing the role of mechan-
ical support and line insulation [1]. Since insulators are in the outdoor natural environment
for a long time, they are prone to self-destruction and defect due to temperature change,
moisture and lightning strike, etc. Therefore, target detection and defect identification of in-
sulators are important guarantees for the safe and stable operation of transmission lines [2].
Traditional methods include manual inspection, traditional image-detection methods [3],
etc. Manual inspection is dangerous and inefficient; traditional image processing mostly
combines edge detection, color features and other methods, which are less accurate for
insulator defect detection [4–6].

In recent years, deep learning algorithms have been developed for their efficiency
and convenience in the application of UAV inspection of power transmission lines [7].
Deep learning algorithms for insulator target detection and defect recognition based
on aerial images mainly include one-stage network algorithms and two-stage network
algorithms [8–17]. The two-stage algorithms include R-CNN (regions with CNN features),
Fast R-CNN, Faster R-CNN, Mask R-CNN, etc. These algorithms first generate the region
box to be selected on the image to be detected and then perform feature extraction and
classification on the image, which is slow in detection and does not meet the real-time
requirements. The one-stage algorithms include SSD (Single-Shot MultiBox Detector),
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RetinaNet, YOLO (You Only Look Once) series, etc. These algorithms can complete the
classification and regression of the anchors in one step, which improves the network de-
tection speed but, therefore, sacrifices the detection accuracy, and the detection accuracy
of the target is still lacking. Improvements in the one-stage algorithm to achieve higher
detection speed and accuracy are a current research hot topic [18–23].

Miao et al. [18] used the SSD algorithm to detect insulators on transmission lines
in aerial images, but only normal ceramic and composite insulators were detected, and
no further insulator defect was identified. To obtain high detection accuracy of insulator
defects, Jiang et al. [19] proposed an integrated multi-level perception method based on the
SSD algorithm, but it takes a longer time to process the detection images. Zhao et al. [20]
improved the scale-scaling module based on the STDN (Scale-Transferrable Detection Net-
work) algorithm, thus, enabling the identification of insulators of different scale sizes, but
lacking detection of insulator defects. At the same time, this network increases the number
of anchors and the computational effort increases, which requires further compression
of the model computation. YOLOv3 is the classic algorithm in the YOLO series, which
has great advantages in model detection accuracy and detection speed. Wang et al. [21]
proposed an insulator defect detection method combining a full convolutional network and
YOLOv3 algorithm, and the average accuracy was significantly improved over the YOLOv3
model. However, this algorithm requires segmentation of insulators and filtering them from
the background before detecting the faulty region, which is complicated. Compared with
the YOLOv3 algorithm, the YOLOv4 algorithm has more advantages. Gao et al. [22] trained
the detection model based on the YOLOv4 model by re-clustering the anchor box size, and
the average accuracy of the model detection was improved, but the number of network
layers was too great and the model was computationally complex. Han et al. [23] used an
attention mechanism based on Tiny-YOLOv4 and it was tested on an embedded device
with a great improvement in detection speed, but the accuracy of detection of insulators
and their defects is not high. The above methods either give up real time to improve the
detection accuracy of insulators and their defect or they cannot guarantee the detection
accuracy, although they meet the requirements of the embedded edge end.

In order to make the target detection algorithm more suitable for deployment on edge-
end devices and meet the application requirements of UAV inspection with guaranteed
detection accuracy, an improved lightweight algorithm for insulator target detection and
defect identification based on YOLOv4 is proposed in this paper. This algorithm improves
the backbone network with a lightweight network GhostNet [24] module and embeds
an attention mechanism in the feature fusion layer to improve the network’s focus on
critical information. Finally, actual aerial insulator images are used for training. The
improved model greatly reduces the number of parameters and the computational volume
while ensuring the accuracy of insulator detection and its defect identification, with an
average detection accuracy of 95.4%. The average detection accuracy is improved by 1.98%
compared to YOLOv5-s and 1.29% compared to YOLOX-s. The improved model was
eventually deployed on edge-side devices at a speed of 8.8 FPS, meeting the requirements
for real-time target detection for UAV aerial photography.

2. Model Structure of YOLOv4

The YOLO series algorithm is a typical one-stage target detection algorithm, which
directly performs classification and regression calculation of prediction boxes with good
generalization and has wide applications in industry, transportation, medical fields, etc.
Among them, the YOLOv4 algorithm model is based on YOLOv3, with improvements
in data enhancement, backbone network, feature enhancement, loss function and other
aspects, and can achieve an average detection accuracy improvement of about 10% on the
COCO (Common Objects in Context) dataset. The YOLOv4 model mainly consists of a
backbone network, a feature fusion part and a prediction layer, and its structure is shown
in Figure 1.
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The backbone network part is improved on the basis of YOLOv3′s Darknet by embed-
ding five CSP (Cross Stage Partial Network) modules to form the CSPDarknet53 structure.
One part of the CSP module is routinely processed for residuals and subsequently spliced
directly with another part to reduce computational effort while ensuring accuracy and
avoiding overfitting. The backbone part uses the Mish activation function, which is a nonlin-
ear smoothing curve that can better transfer information to the deep network and improve
the accuracy of the results. The formula of the Mish function is shown in Equation (1).

Mish = x · tanh(ln(1 + ex)) (1)

Between the backbone network and the feature fusion part, YOLOv4 is bridged with
the SPP (Spatial Pyramid Pooling) module. The SPP module performs maximum pooling
at three different scales on the last feature layer of the backbone network output and then
stitches together the obtained results. The SPP module can make the perceptual field of
the network much larger, obtain more global information and make significant separation
of important features. The feature fusion layer then uses the PANet structure to enhance
feature extraction for the three initially extracted feature layers. The FPN (Feature Pyramid
Network) passes down and fuses high-level information, and PANet adds a bottom-up
fusion layer on top of that. In YOLOv4, PANet performs feature fusion using feature
stitching to effectively fuse the high-level and underlying information fully.

The prediction part of the YOLOv4 model finally obtains three feature maps of different
scales with sizes of 13 × 13, 26 × 26 and 52 × 52, and target detection is performed for the
results of different sizes. Prediction judgments are made on each feature map using anchor
boxes to obtain the final target detection results.

3. Improved YOLOv4 Insulator Target Detection and Defect Identification Algorithm

Although the detection accuracy of YOLOv4 has been improved, the YOLOv4 model
is complex, with about 30,263 floating-point operations per second, which is not conducive
to deployment at the edge where memory and computational resources are limited. In
order to be more suitable for embedded applications while maintaining high detection
accuracy, this paper proposes an improved lightweight algorithm for YOLOv4 insulator
target detection and defect identification.
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3.1. Improved Backbone Feature Extraction Network

In deep learning, overly deep network models often produce some similar feature
maps, which is the key for the network to use the input information effectively. However,
the generation of these similar feature maps causes an increase in computational effort. To
facilitate the deployment of the model at the edge, the GhostNet network can be used to
reconstruct the YOLOv4 backbone network with a simple linear transformation to produce
the same rich feature maps, making it less computationally intensive and the network more
lightweight [25]. The GhostNet network mainly has a Ghost Module, which is combined
to build the model architecture. The structure of the Ghost Module is shown in Figure 2.
First, the input feature map with a size of W × H × C is channel-reduced with normal
convolution, and then additional feature maps are obtained with depthwise separable
convolution. The results of normal convolution and depthwise separable convolution are
superimposed to obtain a similar output feature map of size W′ × H′ × N. Since the normal
convolution and linear transformation coexist in Ghost Module, the original features can
be better preserved.
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Compared with conventional convolution operations, ordinary convolution is easily
limited due to its large computational size. Depthwise separable convolution is much
less computationally intensive and can obtain feature maps with a more lightweight
operation, so it is also often applied in lightweight networks [26]. As shown in Figure 3,
the depthwise separable convolution is divided into two parts: depthwise convolution
and pointwise convolution. Firstly, the number of input image channels is a. Convolution
is performed on these channels separately using one convolution kernel, and there is
only one convolution kernel for each channel number; the number of output channels of
the obtained feature map is equal to the number of input channels, i.e., the convolution
operation is performed on each channel separately. These feature maps do not integrate the
corresponding feature information and need to be combined by pointwise convolution for
the next step of dimensionality up or down. The resulting intermediate feature map is then
convolved by 1× 1× a, and the number is the number of output feature map channels b.
In this way, the number of channels of the output feature map is b, which is the same as the
standard convolution.
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The use of depthwise separable convolution reduces the computational effort com-
pared to normal convolution. Suppose the size of the ordinary convolutional input feature
map is l × h × c, the output feature map is l′ × h′ × c′ and the convolutional kernel size is
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m×m. Then, the computational effort of ordinary convolution is C1 = l′ × h′ × c′ × m ×
m × c . In the Ghost Module, the convolution kernel size is assumed to be m1 for the first
normal convolution and m2 for depthwise separable convolution, generating n additional
feature maps. It is known that Ghost Module compresses the calculated amount to 1

n of the
original amount.

As shown in Figure 4, two Ghost Modules form Ghost Bottlenecks, with the first Ghost
Module up-dimensioning the channels and the second Ghost Module down-dimensioning
them to facilitate the connection of the input feature maps. Consider the cases stride = 1
and stride = 2.
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3.2. Incorporating Lightweight Attention Mechanism Module

The use of lightweight networks reduces the number of computational parameters
and the complexity of the algorithm model, but at the same time, causes the extraction
of effective feature information that is not rich enough, which easily causes a decrease in
detection accuracy. To improve the model’s focus on the detection target features, this paper
incorporates an attention mechanism in the network. In computer vision, the attention
mechanism enables the model to acquire more useful information and focus on the desired
target region to enhance the feature extraction capability of the network [27,28]. Among
them, the channel attention mechanism allows the network to focus on the important
channels in the input image and continuously deepen the information of features on differ-
ent channels, which facilitates the model to learn the feature information of the detection
target and, thus, locate that target, such as SE-Net (Squeeze-and-Excitation Networks) [29],
ECA-Net (Efficient Channel Attention Neural Networks), etc. Spatial attention mechanisms
complete learning and augmentation of pixel information of spatial locations, focusing on
locating key location information, allowing models to find target locations more accurately,
such as Non-Local, STN (Spatial Transformer Networks), etc. A hybrid attention mecha-
nism is a combination of both, which needs to coordinate spatial attention and channel
attention but may generate redundant information, such as CBAM (Convolutional Block
Attention Module), Coordinate Attention, etc. Among these attention mechanisms, the
smaller modules are ECA-Net, Non-Local, CBAM, etc. ECA-Net belongs to the modules
with a relatively small number of operations to obtain cross-channel information in an
efficient way.

Therefore, to learn the features of insulators and their defect while ensuring overall
light weight, this paper introduces a lightweight channel attention mechanism, ECA-Net,
which makes the network extract the more important information in the input image
using a small number of parameters [30]. ECA-Net can be seen as an improved SE-Net.
SE-Net is a typical channel attention mechanism that captures the different weights of
different channels and makes the network pay more attention to the important channels.
The structure is shown in Figure 5, where W, H and C denote the length, width and the
number of channels of the feature map, respectively, GAP denotes global average pooling,
FC denotes fully connected and sigmoid denotes the sigmoid function.
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The SE module obtains the weights of each channel via Formula (2):

ω1 = σ(µ2r(µ1z)) (2)

where z denotes the result of global averaging pooling of the input features, µ1 = C× C
r

µ2 = C
r × C, σ is the Sigmoid function and r is the ReLu function.

The ECA module is based on the SE module. It avoids the complex correlation of
different channels brought about by the dimensionality reduction in channel attention. Its
structure is shown in Figure 6. After global average pooling, a one-dimensional convo-
lutional (Conv1D) kernel of size k is used instead of the fully connected layer to achieve
cross-channel interaction between channels and obtain the weights of different channels
in the feature map. The weights are multiplied with the input feature map to obtain the
output feature map.

The ECA module obtains the weights of each channel via Formula (3):

ω2 = σ(C1Dk(z)) (3)

The convolution kernel size k is calculated by Equation (4):

k = ψ(C) =
log2(C) + 1

2
(4)

Since the weights obtained by the SE module correspond to each channel indirectly,
its attention effect is not optimal. In contrast, the ECA module completes the information
interaction between the channels locally, which helps to improve the efficiency of the model
to capture the attention of the channels.
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The attention mechanism can be embedded in different locations in the model, and
different effects may occur in different parts. In this paper, we propose two fusion methods:
fusing the ECA module into the Ghost Bottleneck module of the backbone network or the
feature fusion stage of the model to further adjust the model and improve its ability to
extract important information.

1. As an example, when stride = 1 in the Ghost Bottleneck module, the ECA module
is embedded in the Ghost Bottleneck module after the first Ghost Module, and the
improved ECA–Bottleneck module is used to form the ECA–GhostNet backbone
network to improve the feature extraction capability of the network. The structure of
the improved ECA–Bottleneck module is shown in Figure 7.
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2. In the feature fusion part, the ECA module can be considered to be embedded after
the three feature layers have already been extracted to further improve the attention
of the model to the feature information. The attention mechanism is also embedded
after the up-sampling of PANet to enhance the global information fusion and make
the interaction of model contextual information more effective.

3.3. Improved YOLOv4 Algorithm Model

The improved YOLOv4–GhostNet–ECA structure is shown in Figure 8. The backbone
network of YOLOv4 is reconstructed into the GhostNet network, and the feature fusion
stage is improved by depthwise separable convolution, resulting in a reduced number of
model parameters. To ensure the accuracy of detection results and enhance the feature ex-
traction capability, the ECA-Net attention mechanism is embedded after the three effective
feature layers are extracted by the backbone network. The same ECA-Net attention mech-
anism is also embedded in PANet to enhance the local information extraction capability
after up-sampling. The final prediction was obtained by YOLO Head.
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4. Experimental Results and Analysis
4.1. Dataset and Experimental Environment

The model training selection is a PyTorch deep learning framework with CUDA = 11.2
and the platform configuration is Intel Xeon Platinum 8171 M@ 2.60 GHz CPU with
6 × 16 GB RAM and NVIDIA RTXA6000 graphics card configuration. The configuration
for the test on the local computer is Windows 11, NVIDIA GeForce GTX 3060 GPU.

In the training process, the model may have the problem of good effect on the training
set but poor generalization effect on the test set, which is called over-fitting. After data
expansion, richer datasets can be used in training, thus, reducing over-fitting. The insulator
dataset used in the experiment was collected from the aerial images of the UAV site and
the images were pre-processed. After rotating, stitching, flipping, adjusting the brightness
and other operations to expand the samples, there were 1588 insulator images. In view of
the redundant data that may be produced by aerial images, this paper removes the low-
quality images with serious occlusion and inconspicuous features, so as not to affect the



Sensors 2023, 23, 1216 8 of 15

training results. At the same time, some defects are appropriately added to reduce sample
imbalance. Labeling software was used to label the dataset images, and the locations of
insulators and defects in the images were labeled in the VOC dataset format, noted as
insulator and defect, respectively. Some of the insulators with defect images are shown in
Figure 9, with red boxes marked as insulators and yellow boxes marked as defects.
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Generally, datasets are divided into training set, validation set and test set. The training
set can be used to train the model, which is convenient to adjust the parameters. When the
model is updated with different parameters, the effect of the model is evaluated on the
validation set to continuously improve the stability of the model. Finally, the generalization
effect of the model is obtained on the test set. Randomly dividing the dataset can ensure
the uniform distribution of image samples, prevent a small number of similar images taken
in repeated positions from being trained, be beneficial to model training and evaluation
and reduce over-fitting. Therefore, the dataset is randomly divided into a ratio of 8:1:1,
which contains 1286 images for the training set, 143 images for the validation set and the
remaining 159 images for the test set. It is convenient to train with the improved lightweight
YOLO4 network afterward.

4.2. Experimental Procedure

In the training process, pre-trained weight obtained by training on large datasets is
used in conjunction with migration learning. The training is first frozen for 50 rounds to
freeze the backbone feature extraction network and speed up the network training. The
learning rate is set to 0.001 and the batch size is set to 16. Subsequently, 150 rounds of
training were unfrozen, the learning rate was adjusted to 0.0001, the batch size was set
to 8 and, in total, 200 rounds were trained. The size of batch_size will affect the data
processing effect of Batch Normalization. As a normalization method, Batch Normalization
can accelerate the convergence speed of the network in the training process, improve the
generalization ability of the model and avoid over-fitting. Since too-deep training will lead
to the lack of learning of common laws in the model, 200 rounds of training are chosen to
prevent over-fitting.

Since the anchor size of the original YOLOv4 network was not suitable for the insulator
dataset, nine anchors were regenerated using the K-means clustering algorithm with sizes
of (22,23), (48,21), (22,51), (88,31), (42,101), (116,48), (270,78), (99,280) and (279,128) to make
it easier for the anchors to match the target features, which were used on the feature maps
on three scales: large, medium and small.

Figure 10 shows the training loss profiles of the YOLOv4–GhostNet network and the
YOLOv4–GhostNet network after embedding the ECA attention mechanism; the horizontal
coordinate is the number of network iterations and the vertical coordinate is the loss value.
It can be seen that the net loss is stable after 150 rounds of training, and the net loss is
smaller after embedding the ECA-Net attention mechanism.
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4.3. Evaluation Indicators

To evaluate the target detection network performance, the experimental results were
analyzed and evaluated with the appropriate metrics. The model strengths and weaknesses
were chosen to be measured in terms of the average precision (AP) for each category of
detected targets, the average precision for all categories (mAP), the model detection speed,
i.e., the number of frames per second FPS, the model size and the miss detection rate, where
AP is the area under the precision and recall curves, representing the average of the model
under different recall rates, which can be used to more comprehensively assess how good
the model is. The higher the AP, the more accurate the model identifies the target; the larger
the FPS, the faster the model detects; the smaller the miss detection rate, the fewer targets
are not detected. The formulae for calculating the accuracy, recall and miss detection rates
are as follows.

Pre =
TP

TP + FP
(5)

Re =
TP

TP + FN
(6)

Mr =
FN

TP + FN
(7)

TP means that the prediction is correct for a positive sample and is actually positive
as well; FP means the prediction is a positive sample, but the prediction is wrong and the
actual sample is negative; FN indicates a negative predicted sample and a positive actual
sample, i.e., a positive sample that is not detected.

AP and mAP are calculated as follows. There are n categories in total.

AP =
∫ 1

0
P(r)dr (8)

mAP =

n
∑

i=1
APi

n
(9)

4.4. Comparison and Analysis of Results

To verify the effectiveness of incorporating the ECA-Net attention mechanism, the
results of the two improved model structures were compared and analyzed with those of
the original YOLOv4 model, as shown in Table 1.
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Table 1. Comparison of the effects of improved attention mechanisms.

Model mAP (%) Insulator AP (%) Defect AP (%) Size (MB) FPS

YOLOv4 94.63 95.83 93.44 244.32 41
YOLOv4–GhostNet 93.95 95.76 92.13 42.40 74

YOLOv4-ECA-Bottleneck 94.76 95.35 94.17 42.50 68
YOLOv4–GhostNet–ECA 95.40 95.15 95.65 42.40 70

As can be seen from Table 1, the average detection accuracy of the original YOLOv4
for both insulator and insulator defect targets is 94.63%. After reconfiguring the backbone
network of YOLOv4 into the lightweight GhostNet, the average detection accuracy de-
creases slightly to about 0.7%, in which the detection accuracy for insulator defect decreases
by about 1.3%, but the model complexity achieves a significant reduction, the model size is
only 17.4% of the original one and the detection speed is increased from 41 FPS to 74 FPS,
which meets the requirements of embedded edge-end devices.

The average detection accuracy is not significantly improved after incorporating the
Ghost Bottleneck of the backbone network GhostNet into the ECA-Net attention mechanism
compared to improving only the backbone network, indicating that the ECA-Net attention
mechanism does not focus more useful information in the feature extraction stage of the
network. Based on the YOLOv4–GhostNet network, the ECA-Net attention mechanism is
incorporated in the feature fusion stage, and the average detection accuracy of the model
increases by about 1.5% compared with that without the attention mechanism, especially
the recognition accuracy of insulator defect, which is improved by nearly 3.5%, indicating
that the ECA-Net attention mechanism is useful for improving the target attention and
extracting more required feature information is more helpful. Therefore, this paper finally
chooses to embed the attention mechanism into the feature fusion part.

The results of comparing the algorithm in this paper with embedding other lightweight
attention mechanisms are shown in Table 2.

Table 2. Comparison of cross-sectional effects of attentional mechanisms.

Model mAP (%) Insulator AP (%) Defect AP (%) Size (MB) FPS

Non-Local 93.70 95.26 92.14 42.60 68
CBAM 94.33 95.28 93.37 42.60 60
ECA 95.40 95.15 95.65 42.40 70

As can be seen from Table 2, the average detection accuracy is only 93.70% when using
the spatial attention mechanism Non-Local. When using the hybrid attention mechanism
CBAM, the average detection accuracy is 94.33%. However, due to the complex structure
of CBAM, the channel features need to be extracted first and then the weights of the spatial
domain are obtained, and the detection speed is only 60 FPS. The YOLOv4–GhostNet–ECA
algorithm achieves a balance between detection accuracy and detection speed and achieves
95.65% detection accuracy for insulator defects while maintaining a detection speed of
70 FPS, indicating that ECA-Net can effectively improve the model’s ability to detect small
targets.

To ensure the reliability of this algorithm when deployed in edge-end devices, the
algorithm in this paper is compared with Tiny-YOLOv4, improved Tiny-YOLOv4 [23] and
the lightweight YOLOv5-s, YOLOX-s algorithms and other mainstream algorithms, as
shown in Table 3.

From Table 3, it can be seen that Faster R-CNN and SSD algorithms cannot meet the
detection of insulator defects; Tiny-YOLOv4 has the fastest detection speed, but due to the
simple structure, the detection accuracy is sacrificed, and the average detection accuracy
is only 89.14%, especially the insulator defect recognition accuracy, which is only 85.43%
and cannot well meet the requirements of target detection and defect recognition. The
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algorithm proposed in the literature [23] effectively improves the detection accuracy of
insulator defects, but the average detection accuracy is still low; the model size of the
YOLOv5-s and YOLOX-s algorithms is reduced compared with the improved algorithm in
this paper, but the detection accuracy of insulator defect is reduced in both; the algorithm
in this paper can guarantee a high detection accuracy and meet the real-time requirements
at the same time.

Figure 11 shows a comparison of the detection results using the original YOLOv4
algorithm and the YOLOv4–GhostNet–ECA algorithm proposed in this paper in different
scenarios. Figure 11a shows that the original YOLOv4 misses the detection of small
targets such as insulator defects and fails to detect overlapping insulators when there
are overlapping targets. The original YOLOv4 network misses detection when there are
multiple insulators. The detection effect of the YOLOv4–GhostNet–ECA algorithm is shown
in Figure 11b, which can detect insulator defects and overlapping insulators. When there
are multiple insulators, the algorithm in this paper can detect seven insulators. Among
them, the Mr of the YOLOv4 algorithm is 3.2% for insulators and 9.1% for broken insulators;
the Mr of this paper’s algorithm is 2.3% for insulators and 5.2% for broken insulators, which
better reduces the miss detection rate of the target.
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Table 3. Comparison of different models.

Model mAP (%) Insulator AP (%) Defect AP (%) Size (MB) FPS

Faster R-CNN 85.74 95.82 75.67 521.00 21
SSD 83.77 91.96 75.59 91.10 77

Tiny-YOLOv4 89.14 92.85 85.43 22.46 149
Han et al. [23] 92.69 93.97 91.42 24.97 121

YOLOv5-s 93.42 96.66 90.18 27.10 83
YOLOX-s 94.11 96.35 91.88 34.30 67

YOLOv4–GhostNet–ECA 95.40 95.15 95.65 42.40 70

In order to verify the effectiveness of the ECA-Net attention mechanism for improving
the attentional goals of the network, a heat map visualization was chosen for the analysis.
The brighter regions in the graph represent the areas where the network pays more attention.
As shown in Figure 12a, the YOLOv4–ghostnet algorithm does not pay enough attention to
insulator defects has missed the detection of smaller insulators. In the complex background,
only three insulators can be detected. Figure 12b shows that the YOLOv4–GhostNet–ECA
algorithm can focus on defects more accurately and detect insulators in overlapping cases.
Five insulators can be detected in the complex background.
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4.5. Hardware Device Deployment Test

The algorithms in this paper are ported to Jetson Xavier NX edge devices, and the
improved YOLOv4–GhostNet–ECA model is verified to be suitable for deploying edge-
side devices by invoking real-time camera detection. Jetson Xavier NX can provide a
good operating environment for AI models on embedded devices and facilitate UAV
development and deployment.

Table 4 shows the comparison of the operation results of other models and this paper’s
algorithm in edge-end devices. From Table 4, we can see that the FPS of the YOLOv5-s
model is 10.5, but the detection accuracy is not as good as the algorithm in this paper. The
FPS of the YOLOX-s model is 6.8 and the detection speed is slower. The improved YOLOv4–
GhostNet–ECA model doubles the detection speed compared to the original YOLOv4
model, reaching 8.8 FPS, which meets the UAV aerial photography detection requirements.

Table 4. Results of edge-end device operation.

Model mAP (%) Size (MB) FPS

YOLOv4 94.63 244.32 4.5
YOLOv5-s 93.42 27.10 10.5
YOLOX-s 94.11 34.30 6.8

YOLOv4–GhostNet–ECA 95.40 42.40 8.8

Figure 13a shows the embedded device unit; Figure 13b shows the detection effect of
running this paper’s algorithm on a Jetson Xavier NX device.
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5. Conclusions

This paper proposes a lightweight insulator target detection and defect-recognition
algorithm based on improved YOLOv4, which reconfigures the backbone network in
the YOLOv4 network from DarkNet53 to GhostNet and extracts the features of input
images with a more lightweight approach. In the feature fusion stage, depthwise separable
convolution is used to improve the efficiency of network calculation; in order to ensure that
important information can be identified, the ECA-Net attention mechanism is embedded.
Comparing the proposed algorithm with the original YOLOv4, the experiment shows that
mAP is improved from 94.63% to 95.40%. The model size is compressed from 244 MB to
42 MB, and the detection speed is increased from 41 FPS to 70 FPS. Tested on Jetson Xavier
NX equipment, the detection speed is 8.8 FPS, which is convenient for the deployment of
edge devices. In this paper, the algorithm meets the requirements of accuracy and speed in
detecting insulator defects by UAV, and the network is lightweight. Later, the identification
of other faults, such as pollution and flashover burns, will be further studied.
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