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Deep learning technique is an effective mean of processing complex data that has
emerged in recent years, which has been applied to fault diagnosis of a wide range of
equipment. In the present study, three types of deep learning techniques, namely,
stacked autoencoder (SAE) network, long short term memory (LSTM) network, and
convolutional neural network (CNN) are applied to fault diagnosis of a mixed-flow
pump under cavitation conditions. Vibration signals of the mixed-flowed pump are
collected from experiment measurements, and then employed as input datasets for
deep learning networks. The operation status is clarified into normal, minor
cavitation, and severe cavitation conditions according to visualized bubble
density. The techniques of FFT and dropout algorithms are also applied to
improve diagnosis accuracy. The results show that the diagnosis accuracy based
on SAE and LSTM networks is lower than 50%, while is higher than 68% when using
CNN. The maximum accuracy can reach 87.2% by mean of a combination of CNN,
BN, MLP, and using frequency domain data by FFT as inputs, which validates the
feasibility of applying CNN in mixed-flow pumps.
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1 Introduction

Mixed pumps are widely-used equipment in various industrial processes, and are
introduced to water jet propulsion in recent years due to their better performances in high
efficiency, low vibration, and anti-cavitation. There will inevitably appear various types of faults
during the operation of mixed-flow pumps, i.e., rotation stall and severe cavitation. It is of great
significance to detect and diagnose the fault status in time, so that continuous deterioration or
serious damage due to the fault can be avoided. Generally, pressure and vibration of mixed-flow
pumps are used as signals to monitor operating status, which can reflect sufficient information
of the operation. However, the process of fault diagnosis still relies on artificial experience at
present, which is unable to adapt to the current development trend of high automation.
Therefore, it is significant to develop a more effective and efficient tool for fault diagnosis.

As pressure and vibration signals often contain a wealth of information in the time and
frequency domains, various methods based on the conversion between the time domain and the
frequency domain are introduced to the fault diagnosis of pumps. The wavelet packet
decomposition and wavelet coefficient residual analysis are applied to the health diagnosis
of hydraulic pumps by Gao and Zhang (2006). Signals of pump discharge pressure were
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measured, and then wavelet residuals were calculated to assess the
health status. It is reported that an accuracy rate higher than 90%
could be achieved. Muralidharan and Sugumaran (2013) developed a
wavelet analysis approach combined with rough set theory. Different
membership function was used for fuzzy classification, and performed
equally well. In practice, signals are often interfered by noise. Gao et al.
(2018) proposed a denoising method based on the Walsh transform
with multi-sensor strategy, and the feasibility of the proposed method
is validated by numerical and experimental investigations. In addition
tomethods based on wavelet analysis, other types of methods have also
been introduced to the fault diagnosis of pumps, i.e., Symbolic
Perceptually Important Point (SPIP) and Hidden Markov Model
(HMM) (Jia et al., 2018), Sparse Representation (Han, 2019), and
Mode Decomposition (Lan et al., 2018; Li Z. et al., 2021; Liu et al.,
2021). However, although it is effective to extract information in time
and frequency domains using these methods, the criterion to justify
whether pumps are normal or fault is often set artificially, which
restricts their further applications.

Recent years, tools based on artificial intelligence have been greatly
developed due to the significant progress on computer technology. Such
techniques including machine learning, neural networks, and deep
learning, are introduced, and applied in various aspects of engineering
practice, i.e., solar cells (Mahmood and Wang, 2021), image processing
(Hou et al., 2021). The machine learning techniques are also applied in
fault diagnosis of different machineries like high-speed trains (Chen et al.,
2022) and wind turbine generator bearings (Li H. et al., 2021). In terms of
fault diagnosis in pumps, there are also several studies. The early attempts
on intelligent diagnosis starts from Support Vector Machine. Xue et al.
(2014) developed a fault diagnosis method for centrifugal pumps using
vibration signal based on statistic filter, support vector machine, possibility
theory, and Dempster-Shafer theory. Zhou et al. (2019) proposed a
combined method of unscented Kalman filter and radial basis function
neural networks for fault diagnosis in pumping unit. It is reported that the
accuracy rate of 92.14% can be achieved with 2100 training samples and
700 test data. Sakthivel et al. (2010) developed a vibration-based fault
diagnosis based on decision tree algorithm with artificial neural networks
and fuzzy logic, and a classification accuracy higher than 99.5% can be
obtained. In order to develop the deep learning technique with better
learning ability, the wavelet transform is employed to extract signals’
feature in frequency domain, and convolutional neural network is
established for piston pumps (Tang et al., 2020) (Zhu et al., 2021). The
accuracy rate can reach up to 97% using these techniques.

According to the knowledge of authors, investigation on fault
diagnosis of mixed-flow pumps using deep learning techniques is
relatively rare. It is of great importance to develop effective deep
learning tools for fault diagnosis of mixed-flow pumps with sufficient
accuracy, so that operation stability of mixed-flow pumps can be
maintained in practice.

2 Deep learning techniques

Deep learning is a machine learning method based on bionics,
which simulates human neurons conducting information and thus
builds multi-layer non-linear mappings (Alzubaidi et al., 2021).
Compared with traditional machine learning techniques, multiple
hidden layers can be established in deep learning technique, so that
the hidden features of the data can be discovered layer by layer. Totally
three types of deep learning techniques are employed in the present

study, namely, Stacked Auto-Encoder (SAE) network, Long Short
Term Memory (LSTM) network, and Convolutional Neural
Network (CNN).

2.1 Stacked autoencoder network

The structure of stacked autoencoder network is relatively
simple, where autoencoder is employed as the basic neural of
deep learning network. A typical autoencoder consists of
sequentially arranged input layers, hidden layers, and output
layers. There exist no connections between nodes in each layer,
and all nodes between adjacent layers are connected to each other.
The detailed structure of the SAE network is determined by the
connection weights. As shown in Figure 1, input and output layers
of multiple autoencoders are connected sequentially, and then
features of input data can be extracted continuously.

2.2 Long short term memory network

Long short term memory network is developed based on
Recurrent Neural Network (RNN), and it improve on the long-
term information dependence of RNN. LSTM network is adaptive
to the long-term characteristics of the data. The cell state of the LSTM
cell is controlled using three control gates: The forgetting gate, the
memory gate, and the output gate. By adjusting the cell state, the
information flowing into the LSTM cell is controlled whether it is
retained or passed to the next node, achieving the process of passing
important information and omitting secondary information. The
entire structure of LSTM network is illustrated in Figure 2.

2.3 Convolutional neural network

Convolutional neural network is a typical complex differentiated
deep learning network, which performs well in the classification of
datasets. The main components of CNN include convolution and
pooling.

As depicted in Figure 3, the process of convolution is to build
proper convolution kernels, which conducts convolution step-by-step
to the input data sequentially to obtain deeper new data, so that the
feature of the data can be extracted. The process of convolution is
reflected by the convolutional integral of the input data and the
convolution kernels. After the convolution operation, the depth of
the data deepens, and their dimensionality becomes larger, resulting in
a dataset, that is, difficult to process. The pooling operation involves
slicing the features and processing each region separately. The
maximum or the average values are often employed to reduce the
amount of data in the pooled area, enabling feature enhancement, as
show in Figure 4.

Figure 5 illustrates the schematic of convolutional neural network,
which is constituted of data slicing, convolutional layer, pooling layer,
full connect layer, and output. The convolutional layer uses
convolutional kernels to extract data sample features in different
dimensions. The pooling layer reduces the computation cost and
network complexity in different pooling regions. Finally, full
connect layer is used to connect the features in different regions to
obtain the pattern of the data.

Frontiers in Energy Research frontiersin.org02

Tan et al. 10.3389/fenrg.2022.1109214

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1109214


3 Physical model

3.1 Test rig

The dataset used in the present study is collected from experimental
measurements. The schematic diagramof the test rig is illustrated in Figure 6,
which consists of the performance test component and the signal collection

FIGURE 1
Structure of stacked autoencoder network.

FIGURE 2
Structure of LSTM network.

FIGURE 3
Convolutional operation in CNN.

FIGURE 4
Pooling operation in CNN.

FIGURE 5
Structure of convolutional neural network.

Frontiers in Energy Research frontiersin.org03

Tan et al. 10.3389/fenrg.2022.1109214

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1109214


component. The performance test component includes the tested mixed-
flowpump, vacuumpump, stainless steelwater pipe, servomotor,water tank,
ball valve. The signal collection component is composed of synchronization
trigger, multi-channel data acquisition card, high-speed camera.

The electromagnetic flowmeter is used in the present experiment
to measure the pump flow rate. Two pressure sensors are employed to
measure pressures at the inlet and the outlet of the test pump. Three
acceleration sensors are applied to measure vibrations of the tested
pump. These acceleration sensors are located on the impeller chamber
in orthogonal directions. The sampling frequency of the acceleration
sensors is set as 2048 Hz.

3.2 Test pump and test conditions

A mixed-flow pump with the specific number Ns �
3.65n

��

Q
√

/H0.75 of 498 is tested in the present study, where n, Q,
and H are rated rotation speed, flow rate and head, respectively. The
mixed-flow pumps are tested under cavitation conditions by reducing
the pressure at the pump inlet. According to the number of bubbles
inside flow channels, the working conditions of the tested mixed-flow
pump are clarified into normal condition, minor cavitation condition,
and severe cavitation condition. The high-speed visualization is
applied to observe the number of bubbles inside impeller passages.

4 Results and discussions

4.1 Data preprocessing

The collected data from the experiment is divided into sub-datasets
with different labels, which are them employed as the input of deep learning
techniques. In the present study, the cavitation conditions are distinguished
according to the amount and morphology of cavitations bubbles. The
condition with no bubbles is regarded as normal condition. The condition
with limited attached bubbles on blades is regarded as minor cavitation
condition. The condition with many bubbles inside impeller passages is
regarded as major cavitation condition. All the measured conditions are
divided into these three typesmanually. The physical meaning of each label
and corresponding number of data are shown in Table 1. Typical figures by
high-speed visualization and corresponding vibration signals of each label
are shown in Figures 7–9, where the acceleration is normalized by gravity g.

In order to guarantee the accuracy of fault diagnosis, the train test split
algorithm is applied here. 65% of the sub-dataset is used as the training
dataset, and the rest 35% of the sub-dataset is used as the testing dataset.

FIGURE 6
Schematic diagram of test rig.

TABLE 1 Physical meaning and number of sub-datasets.

Label Physical meaning Number of data

0 baseline, normal condition 1425

1 minor cavitation condition 3131

2 severe cavitation condition 1830

FIGURE 7
Vibration signals s under normal condition.

FIGURE 8
Vibration signals under minor cavitation condition.

FIGURE 9
Vibration signals under severe cavitation condition.
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Due to the complexity of the present experimental data, it is
relatively hard to extract data characteristics. In order to enhance
characteristics of the present data, the vibration signals in three
directions are arranged into two-dimensional datasets. Then, the Fast
Fourier Transform (FFT) is employed here to convert signals in time
domain to data in frequency domain. After data preprocessing, the deep
learning techniques described in Section 2 are employed for fault
diagnosis based on PyTorch platform. The cost functional is defined
by the sum of relative error between predicted label and actual label for
cavitation conditions, which indicates the difference the deviation
between the true and predicted results by deep learning techniques.
The accuracy is defined by the ratio of the number of correctly classified
samples by the total number of samples in dataset. When the cavitation
predictions from deep learning techniques agree with the actual results,
it is reasonable to determine whether severe cavitation has occurred
under a particular operating condition based on the predictions.
Figure 10 illustrates the flow chart of entire process from data
collection to fault diagnosis, and the key parts of deep learning
techniques are discussed in detail as follows.

4.2 Stacked autoencoder network

The stacked autoencoder network of totally seven layers is established
in the present study. The input and output parameters for each layer are
listed in Table 2. The training parameters for SAE network are as follows:
epoch = 2048, learning rate = 0.01, and batch size = 128.

Figures 11,12 show the cost function and diagnosis accuracy for
SAE network. The accuracy of training data by SAE network is within

the range of 89.6% and 90.4%, and the average accuracy is 90.1%. The
average accuracy of testing data is 47.6%, which is not available for
practical use.

FIGURE 10
Flow chart of fault diagnosis.

TABLE 2 SAE network parameters.

Layer Input parameter Output parameter

1 6000 4096

2 4096 4096

3 4096 2048

4 2048 2048

5 2048 1024

6 1024 512

7 512 3

TABLE 3 SAE-dropout network parameters.

Layer Input parameter Output parameter

1 6000 256

2 256 128

3 128 64

4 64 3

FIGURE 11
Cost function of SAE network.

FIGURE 12
Accuracy of SAE network.
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According to Figure 12, there exist significant difference between the
accuracy of training data and testing data, whichmay result fromoverfitting
during training. Therefore, the dropout algorithm is employed to simplify
the network and the parameters are listed in Table 3. The dropout
algorithm is a commonly-used regularization algorithm in deep
learning, and is also introduced to the present study. When applying
dropout algorithm, some neural are dropped randomly during training
process. Sub-networks are generated in this way. When each layer of the
neural network has n nodes, then P*2n sub-neural networks can be
generated by dropout (where P is the loss rate), and the final network
obtained is the average of the sub-neural networks, which reduces the
sensitivity of the network to data noise and reduces overfitting. The value of
loss rate is set as 0.9 in the present study.

Figures 13,14 show the cost function and diagnosis accuracy for
SAE-dropout network. The diagnosis accuracy is improved after
introducing dropout algorithm, while there appears oscillations of
accuracy during iterations. The accuracy of training data by SAE
network is within the range of 88.4% and 96.7%, and the average
accuracy is 92.3%. The average accuracy of testing data is 47.7%, which
is still not available for practical use. The application of SAE network
indicates that, the relatively simple structure of SAE network is not
suitable for fault diagnosis of pumps under cavitation conditions.

4.3 Long short term memory network

As shown in previous section, the dropout algorithm is effective in
reducing overfitting, and hence it is also employed in LSTM network.

The parameters for LSTM network are listed in Table 4. The training
parameters of LSTM network are set as follows: epoch = 64, learning
rate = 0.01, batch size = 128.

Figures 15,16 show the cost function and diagnosis accuracy for
LSTM-dropout network. The decreasing trend of the loss function of
LSTM-dropout is not obvious. Along with the increasing of training, the
loss function oscillates, indicating that the forgetting characteristics of the
network and the features of the input data are poorly matched. The
accuracy of training data by LSTM-dropout network is within the range of
48.1% and 48.2%, and the average accuracy is 48.1%. The average accuracy
of testing data is 47.5%. The diagnosis accuracy on both training and
testing datasets are lower than 50%, which means it is not available for
practical use. In addition, the training results reflect no overfitting of the
network, as the input data is a random filtering of the vibration signals,
resulting in a chaotic order that breaks the repetitive pattern of the signals.

In order to overcome the mismatch between the input data and the
network characteristics, the signals in frequency domain by FFT is
employed as the input. The network parameters and training
parameters of FFT-LSTM-dropout network remain the same as LSTM-

FIGURE 13
Cost function of SAE-dropout network.

FIGURE 14
Accuracy of SAE-dropout network.

TABLE 4 LSTM network parameters.

Layer Input parameter Output parameter

1 3 32

2 32 32

full connect 32 3

FIGURE 15
Cost function of LSTM-dropout network.

FIGURE 16
Accuracy of LSTM dropout network.
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dropout network. Figures 17, 18 show the cost function and diagnosis
accuracy for FFT-LSTM-dropout network. The accuracy of training data by
FFT-LSTM-dropout network is within the range of 48.0% and 48.3%, and
the average accuracy is 48.2%. The average accuracy of testing data is 47.6%.
There appears slightly improvement on diagnosis accuracy compared with
LSTM-dropout network, while it is still too low for practical application.

4.4 Convolutional neural network

The convolutional neural network combined with dropout
algorithm is built here. The network parameters of the four
convolutional layer and two full connect layer are listed in Table 5.

The training parameters are set as follows: epoch = 2048, learning
rate = 0.01, batch size = 128, loss rate = 0.8.

Figures 19, 20 show the cost function and diagnosis accuracy for
CNN-dropout network. The loss function of the CNN dropout
network represents a downward trend, accompanied by a certain
range of oscillations. Comparing the training accuracy with the test
accuracy reveals that the structure of the network can be enhanced to
extract characteristics more efficiently. The accuracy of training data
by CNN-dropout network is within the range of 68.0% and 69.2%, and
the average accuracy is 68.7%. The average accuracy of testing data is
68.1%. Compared with previous models based on SAE and LSTM
network, the diagnosis accuracy based on CNN on testing datasets is
greatly improved, which indicates the potentials of CNN in the
application to fault diagnosis of mixed-flow pumps under
cavitation conditions.

Then, the vibration signals in frequency domain by FFT is
employed as the input data of CNN here. The value of learning
rate is slightly reduced to be 0.008 to reduce disturbance from noise,
and the other network and training parameters remain the same.
Figures 21, 22 show the cost function and diagnosis accuracy for FFT-
CNN-dropout network. As indicated in Figure 21, the loss function of
the FFT-CNN-dropout network decreases, and the variations of
training and test accuracy become smoother. The accuracy of
training data by FFT-CNN-dropout network is within the range of
91.4% and 92.8%, and the average accuracy is 92.6%. The average
accuracy of testing data is 85.6%. The results show that the diagnosis
accuracy on both training and testing datasets has been further
improved to be higher than 85%, which is basically effective for
fault diagnosis of mixed-flow pumps under cavitation conditions.

4.5 Summary and comparison

By comparing diagnosis accuracies based on various deep learning
techniques, CNN shows the best performance, and using signals in
frequency domain by FFT is effective in improving diagnosis accuracy.
Then, FFT-CNN-dropout network is further improved in this section.
The techniques of batch normalization (BN) and maximum pooling
(MPL) are employed. BN is used to simplify the convolution
operation, and MPL is used to extract data characteristics. The
network parameters of FFT-CNN-MPL are listed in Table 6. The
training parameters are set as follows: epoch = 2048, learning rate =
0.006, batch size = 0.006, loss rate = 0.9.

Figures 23, 24 show the cost function and diagnosis accuracy for
FFT-CNN-MPL network. The accuracy of training data by FFT-CNN-
MPL network is within the range of 96.4% and 96.5%, and the average

FIGURE 17
Cost function of FFT-LSTM-dropout network.

FIGURE 18
Accuracy of FFT-LSTM-dropout network.

TABLE 5 CNN-dropout network parameters.

Layer Input parameter Output parameter Convolution kernel Step size

convolution 1 1 16 (3, 3) 2

convolution 2 16 32 (3, 3) 2

convolution 3 32 64 (2, 2) 2

convolution 4 64 64 (2, 2) 2

full connect 1 64 × 126 10

full connect 2 10 3
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accuracy is 96.5%. The average accuracy of testing data is 87.2%.
Compared with previous FFT-CNN-dropout network, the diagnosis
accuracy on both training and testing datasets has been improved. In
addition, since the structure of the network is simplified, the
computational cost has also been reduced.

So far, totally seven deep learning networks have been built for
fault diagnosis of mixed-flow pumps under cavitation conditions.
Their accuracies are summarized in Table 7. SAE network is based on
layer-by-layer characteristic extraction, while it is not suitable for fault
diagnosis of mixed-flow pumps under cavitation conditions. The
characteristics of input data in time domain can be extracted by

means of LSTM network, but the application of FFT algorithm plays
an insignificant effect. One possible reason is that the random
algorithm used in data processing is negative for memorability, and
the FFT algorithm that converts the time domain signal to the
frequency domain signal breaks the repetitive feature. CNN
algorithm is originally applied to computational vision-related
fields, and its convolutional characteristics make CNN has good
adaptability in dealing with signal-related problems. It is verified
that CNN is also adaptive to fault diagnosis in the present
research. The diagnosis accuracy can be further improved when
using data in frequency domain as the input, which agrees with

FIGURE 19
Cost function of CNN-dropout network.

FIGURE 20
Accuracy of CNN-dropout network.

FIGURE 21
Cost function of FFT-CNN-dropout network.

FIGURE 22
Accuracy of FFT-CNN-dropout network.

FIGURE 23
Cost function of FFT-CNN-MPL-dropout network.

FIGURE 24
Accuracy of FFT-CNN-MPL-dropout network.
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conclusions from previous studies that FFT facilitates convolution (Fu
et al., 2020) (Rahimi et al., 2020) (Ding et al., 2021).

5 Conclusion

In the present study, various deep learning techniques are employed
for fault diagnosis of a mixed-flow pump under cavitation conditions,
including SAE, LSTM, and CNN networks. Experimental measurements
are conducted to record vibration signals, which is used as input datasets
for deep learning. Cavitation bubbles inside impeller passages are
visualized by high-speed photography, and operation status of the
pump is clarified into normal, minor cavitation, and severe cavitation
conditions according to bubble density. The techniques of FFT algorithm
and dropout algorithm are also applied in the present study.

Totally seven types of deep learning networks are built. The
average diagnosis accuracy in testing datasets based on SAE and
LSTM networks are lower than 50% which is not of practical value.
By comparison, the average diagnosis accuracy in testing datasets
based on CNN networks are higher than 65%. The maximum
diagnosis accuracy of 87.2% can be achieved by a combination of
CNN, BN, MLP, and using frequency domain data by FFT as inputs.
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TABLE 6 FFT-CNN-MPL network parameters.

Layer Input parameter Output parameter Convolution kernel/pooling area Step size

convolution 1 1 16 (3, 3) 2

batch normalization 16 16

maximum pooling 16 16 (2, 2) 2

full connect 1 16 × 500 10

full connect 2 10 3

TABLE 7 Comparison among different networks.

Networks Average accuracy in training datasets Average accuracy in testing datasets

SAE 90.1% 47.6%

SAE-dropout 92.3% 47.7%

LSTM-dropout 48.1% 47.5%

FFT-LSTM-dropout 48.2% 47.6%

CNN-dropout 68.7% 68.1%

FFT-CNN-dropout 92.6% 85.6%

FFT-CNN-MPL 96.5% 87.2%
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