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Abstract: Recently, deep-learning (DL)-based crack-detection systems have proven to be the method 
of choice for image processing-based inspection systems. However, human-like generalization re-
mains challenging, owing to a wide variety of factors such as crack type and size. Additionally, 
because of their localized receptive fields, CNNs have a high false-detection rate and perform poorly 
when attempting to capture the relevant areas of an image. This study aims to propose a vision-
transformer-based crack-detection framework that treats image data as a succession of small 
patches, to retrieve global contextual information (GCI) through self-attention (SA) methods, and 
which addresses the CNNs’ problem of inductive biases, including the locally constrained recep-
tive-fields and translation-invariance. The vision-transformer (ViT) classifier was tested to enhance 
crack classification, localization, and segmentation performance by blending with a sliding-window 
and tubularity-flow-field (TuFF) algorithm. Firstly, the ViT framework was trained on a custom 
dataset consisting of 45K images with 224 × 224 pixels resolution, and achieved accuracy, precision, 
recall, and F1 scores of 0.960, 0.971, 0.950, and 0.960, respectively. Secondly, the trained ViT was 
integrated with the sliding-window (SW) approach, to obtain a crack-localization map from large 
images. The SW-based ViT classifier was then merged with the TuFF algorithm, to acquire efficient 
crack-mapping by suppressing the unwanted regions in the last step. The robustness and adapta-
bility of the proposed integrated-architecture were tested on new data acquired under different 
conditions and which were not utilized during the training and validation of the model. The pro-
posed ViT-architecture performance was evaluated and compared with that of various state-of-the-
art (SOTA) deep-learning approaches. The experimental results show that ViT equipped with a 
sliding-window and the TuFF algorithm can enhance real-world crack classification, localization, 
and segmentation performance. 

Keywords: crack-detection; structural-health monitoring; ViT transformer; deep learning; machine 
learning; pavement cracks; vision-based inspection 
 

1. Introduction 
The most recent advancements in computer science have enabled the utilization of 

automated image-based pavement-assessment technologies in infrastructure- and road-
maintenance organizations. The development of an effective and automatic vision-based 
pavement crack-detection system is an arduous task, because of factors such as the crack’s 
lack of contrast with the paved surface, irregular size and shape, intensity changes within 
the image, the existence of different textures, and the presence of shadows [1]. Vison-
based crack-detection and localization were performed by acquiring and analyzing 
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images of the structure. The crack-detection approaches are categorized as conventional 
image processing (IP) and machine learning (ML). The IP techniques use edge detection 
[2], thresholding [3], region growing [4], and various filters [5–8] to recognize crack areas. 
Frameworks created utilizing these techniques provide high accuracy in crack identifica-
tion; however, substantial human involvement, varying lighting conditions, and lack of 
continuity and contrast between adjacent crack pixels have hampered their widespread 
adoption. These limitations can be addressed by combining IP and ML algorithms. ML 
approaches may learn in-depth features and perform statistical inference with minimal 
human intervention, as in traditional a priori methods [9]. Machine learning algorithms 
for pavement-crack-detection include data collection, pre-processing, feature extraction, 
and classification. However, in the feature-extraction phase, in cases where the retrieved 
features do not properly describe the cracks, the classifier could be unable to identify them 
[10,11]. 

Deep-learning (DL) models have proven to be highly effective, owing to their ability 
to learn data representations using trainable filters without introducing prior knowledge 
[12]. Unlike traditional machine-learning models, DL models do not rely on handcrafted 
features, and perform end-to-end classification by learning the features internally. Nu-
merous DL models have been utilized for the inspection of various civil structures such 
as asphalt [13], concrete [14], gas turbines [15] and bridges [16]. Convolutional neural net-
works (CNNs) have been widely used across all DL models, and have shown exceptional 
performance in crack-detection in civil structures [17]. Various factors influence CNN per-
formance, including hyperparameter selection and architecture fine-tuning [18]. Initial re-
search concentrated on patch-based crack identification utilizing datasets consisting of 
crack and non-crack patches [19–24]. However, a pixel-wise crack-detection approach is 
necessary to perform crack localization and assess the crack widths, lengths, and propa-
gation directions. To achieve the aforementioned tasks, models based on CNNs have been 
deployed for semantic segmentation [25–31]. Various studies [32–36] have proposed fully 
convolutional neural networks (FCN) to classify concrete and pavement-crack types at the 
pixel level. However, when the FCN undergoes intensive upsampling, as conducted in 
several steps, detailed information is lost, resulting in erroneous results for images con-
taining small cracks. Unet overcomes the limitations associated with FCN networks by 
using skip connections, and has been extensively used in numerous crack-segmentation 
studies [37–44]. The Unet skip connections provide more local information from low-level 
data from the downsampling lane to the upsampling path. Despite U-Net-based net-
works’ outstanding accuracy in crack segmentation, background interference may result 
in erroneous detections because of duplicate recognition [45]. Chen et al. [46] addressed 
the limitations of the FCN and Unet architectures by introducing spatial pyramid pooling 
(SPP) and dilated convolution modules in DeepLabv3+ architecture. These modules facil-
itate the exploration of multi-scale contextual information and identify distinct target 
boundaries by gradually reconstructing spatial data [47]. 

All the aforementioned models were constructed using CNNs; however, despite 
their remarkable representational properties, CNNs show weak performance in capturing 
long-range dependencies owing to the localized receptive fields, resulting in a significant 
false-detection rate [48]. These limitations can be addressed using new architecture called 
vision transformers (ViTs), which use SA methods for extracting and integrating GCI. The 
SA mechanism helps the model determine which area should be focused on more [48]. 
Currently, transformer architecture, which uses self-attention modules to learn the rela-
tionships between these embedded patches, is the most popular paradigm in the field of 
natural language processing (NLP). This paper proposes a ViT-based crack-detection ap-
proach to enhance crack-detection using a custom dataset of 45K pavement images in an 
effort to contribute to the advancement of crack-detection. The ViT approach is also inte-
grated with the SW approach and TuFF algorithm for crack localization and segmentation 
in pavement structures. The following are the primary contributions of the proposed re-
search: 
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• The creation of a custom dataset consisting of 45K 224 × 224 pixel images of crack and 
non-crack diverse pavement surfaces for the crack-detection task; 

• The use of ViTs for crack analysis and exploring the feasibility of using self-attention-
based networks for crack-image classification. The proposed ViT model is integrated 
with a sliding window and TuFF algorithm for crack segmentation in pavement sur-
faces; 

• A comparison of the ViT approach with different CNN models on a custom pave-
ment dataset and publicly available concrete dataset (utilized in our earlier work 
[12]); 

• A discussion based on experimental findings that emphasize the significance of ViTs 
for crack identification in pavement structures. Researchers interested in crack iden-
tification and localization using deep-learning methods will find this debate useful. 
The rest of this article is structured as follows. In Section II, the proposed system 

overview is described. The outcomes of the experiment are summarized in Section III. 
Finally, Sections IV and V, respectively, contain the discussion and conclusions. 

2. Overview of the System 
Figure 1 presents a generalized view of the system. Three key modules constitute the 

system. The first module represents the data-creation phase, whereas the implementation 
of ViT for crack-detection is explained in the second module. The integration of the ViT 
model with the sliding-window approach and TuFF algorithm for crack mapping on 
pavement surfaces is shown in the third module. The system uses an image as its input 
and produces an image with mapped cracks as its output.  

 
Figure 1. Overview of the proposed system. 

2.1. Database Creation 
In the current study, the ViT transformer was trained on a custom dataset collected 

from diverse pavement structures of the UAE using a camera with resolution, pixel size, 
sensor size and sensor ratio of 12 MP, 1.4µm, 1/2.55” and 4:3, respectively. The obtained 
dataset was made up of 470 images with a resolution of 3042×4032. These images included 
differences in lighting, shadows, and other variations of the images. To create the dataset, 
224×224 tiny patches were created from the acquired photos. Manual labeling was per-
formed on the patches, and a dataset of 45K data samples for both classes (crack and non-
crack) were selected in a proportion of 0.5. The surface texture, shadowing, and crack pat-
terns all contributed to the variation in the presented data samples. Random selection was 
used to select the patches in the datasets, and a split ratio of 60:20:20 was maintained for 
the training, validation, and testing sets: that is, 60% of the patches were utilized for train-
ing, 20% for validation, and the remaining 20% for testing the ViT system, as shown in 
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Table 1. The testing data consisted of images that were not included in either the training 
or validation sets. For the concrete structure, the proposed system was trained on a dataset 
created in our previous study [12], consisting of 8.4K with a resolution of 256 × 256. Both 
datasets were provided to the ViT for training purposes. A sample pavement dataset is 
depicted in Figure 2. 

 
Figure 2. Samples of crack and non-crack patches. 

Table 1. Representation of images split in pavement and concrete datasets. 

Surface Type Dataset 
Train Data Val Data Test Data 

Crk Patches NCrk Patches Crk Patches NCrk Patches Crk Patches Crk Patches 
Pavement Crack45K 13.5K 13.5K 4.5K 4.5K 4.5K 4.5K 
Concrete work [12] 2520 2520 840 840 840 840 
Concrete work [12] 7500 7500 2500 2500 2500 2500 

Crk = Crack, NCrk = Non-Crack, Val = Validation. 

2.2. Vision Transformer (ViT) 
The ViTs introduced by Dosovitskiy et al. [48] performed better in image-classifica-

tion challenges than modern CNNs. ViTs treat image data as a succession of small patches 
(16 × 16) to acquire GCI using a multi-head self-attention (MHSA) mechanism. In order to 
overcome the CNNs’ problem of inductive biases, including the regionally confined re-
ceptive fields and translation invariance, the ViT model may concentrate on diverse image 
areas and understand the long-term links between multiple patch-embeddings. The ViT 
is depicted diagrammatically, in Figure 3. 

The ViT flattened the input image (𝑖 ∈ ℝ௛×௪×௖) into a sequence of 2D patches (𝑖௣௜ = ℝ௡×(௉మ.஼) | 𝑖 = 1,2, , , , , , , 𝑁 ), where ℎ , 𝑤 , (𝑃, 𝑃) , and 𝑐  stand for the relevant picture 
height, width, patch size, and channel count, respectively. The output number of patches 
is denoted by 𝑁 = ℎ × 𝑤 𝑝ଶ⁄ , and is the effective length of the input sequence of the trans-
former. After converting the input image into patches, the feature is converted into feature 
vectors of size 𝐷, using linear projection. Patch embedding (𝐸 ∈  ℝ൫௉మ.஼൯×஽) and positional 
embedding 𝐸௣௢௦௜௧௜௢௡ ∈  ℝ(ேାଵ)×஽ are blended to encode the spatial data of their input im-
ages, as shown in Equation (1): 𝑌଴ =  ൣ 𝑖௣ଵ𝐸; 𝑖௣ଶ𝐸; … … 𝑖௣ே𝐸൧ + 𝐸௣௢௦௜௧௜௢௡ (1)
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Figure 3. Vision-transformer architecture [48]. 

The encoder modules use several self-attention heads and multilayer perceptron 
blocks to encode the image information efficiently, as shown in Equations (2) and (3). The 
acquired information is then fed into the multilayer-perceptron classifier for the classifi-
cation task. 
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𝑦௟ᇱ =  𝑀𝑆𝐴൫𝑁𝑜𝑟𝑚(𝑦௟ିଵ)൯ + 𝑦௟ିଵ (2)𝑦௟ =  𝑀𝐿𝑃൫𝑁𝑜𝑟𝑚(𝑦௟ᇱ)൯ + 𝑦௟ᇱ (3)

In the above equations, the term 𝑁𝑜𝑟𝑚 denotes the normalization operator of the 

layer, and the term 𝑦௟ ∈ ℝ೓×ೢುమ ×஽ represents the acquired encoded feature-vectors. Equa-
tion (4) shows the mathematical formulation of a single self-attention block: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐼) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥௞ ቆ 𝑄𝐾்ඥ𝑑௞  ቇ 𝑉 = 𝑦௟ᇱ (4)

Query (Q) represents important features; the key (K) represents the feature relevant to Q, 
the dot product of both variables is normalized by 𝑑௞ which is the dimension of K, and T 
represents the transpose of the matrix. Equations (5)–(7) show the mathematical represen-
tations of the query, key, and value, respectively: 𝑄 =  𝐼𝑊௤ (5)𝐾 =  𝐼𝑊௞ (6)𝑉 =  𝐼𝑊௩ (7)

In Equations (5)–(7), the terms 𝑊௤, 𝑊௞, and 𝑊௩ denote the learnable matrices used to pro-
ject the features from the patches onto the Q, K, and V embeddings, respectively. The ac-
quired information is then fed into the multilayer-perceptron classifier for the classifica-
tion task. The output of the ViT classifier was integrated with the sliding-window ap-
proach to determine crack locations. 

2.3. Sliding-Window Approach 
The sliding-window method involves moving a window over a high-resolution im-

age, while simultaneously feeding every patch into a trained ViT model for classification. 
Until the entire image has been scanned, the window travels with fixed-size pixels in hor-
izontal and vertical directions. When the ViT classifier determines that a given patch is a 
crack, a rectangle is drawn around it, as shown in Figure 4: 

 
Figure 4. Representation of sliding-window approach. 



Buildings 2023, 13, 55 7 of 20 
 

2.4. Tubularity-Flow-Field (TuFF) Algorithm 
Mukherjee et al. [49] proposed TuFF, a technique for segmenting filamentous struc-

tures in digital images. The TuFF algorithm generates segmentation maps by using a level 
set. The level sets were automatically initialized using the Otsu global-thresholding ap-
proach [50]. Noise removal was performed using a morphological algorithm (an area-
opening operation proposed by [51]). The binary distance-transform was then used to cal-
culate the level-set function from these initialized subsegments. In TuFF, two vector fields, 
referred to as the tubularity flow field, impact the growth of contour 𝐶(𝑥, 𝑦), as depicted 
in Figure 5a. TuFF can overcome different discontinuities, as illustrated in Figure 5b. Con-
tour propagation can be represented using a partial differential equation, as shown in 
Equation (8): 𝜕𝐶𝜕𝑡 = ∝ଵ<  𝑉𝐹ଵ, 𝑁 ≫ 𝑁 +  ∝ଶ<  𝑉𝐹ଶ, 𝑁 ≫ 𝑁 (8)

At each position along the curve, 𝐶(𝑥, 𝑦), 𝑁 are the unit normal vectors. The vessel ori-
entation and direction orthogonal to it are represented by the axial (𝑉𝐹ଵ) and normal 
components (𝑉𝐹ଶ) of the TuFF. The contour 𝐶(𝑥, 𝑦) moves such that it spreads outward 
in two directions: along the vessel axis (caused by 𝑉𝐹ଵ) and across the vessel thickness 
(caused by 𝑉𝐹ଶ), with the speed of spread determined by the coefficients ∝ଵand ∝ଶ > 0. 
Interested readers are referred to [49] for more details on the TuFF algorithm. TuFF algo-
rithms work well for concrete structures, which is also evident from the literature [52]; 
however, the complex texture of the pavement makes the crack segmentation task more 
challenging. Therefore, the localization map obtained by the SW-based ViT was combined 
with the findings of the TuFF algorithm to perform efficient crack segmentation in the 
current study, as depicted in Figure 6. 

 
Figure 5. (a) Representation of tubularity-flow vector field; (b) representation of 2 types of discon-
tinuities, Type A and Type B. 
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Figure 6. Representation of the Crack-Segmentation result after combining the TuFF result with 
localization mapping obtained from the sliding-window-based ViT. 

3. Experiments 
3.1. Environmental Setup 

The Alienware Arura R8 desktop computer, which has 32 GB of RAM and an 
NVIDIA GeForce RTX 2080 GPU, was used to train the suggested model. The ViT model 
was trained using Python 3.8, the TensorFlow library, and Windows 10. Different assess-
ment indicators were used to assess the model’s performance, each of which is discussed 
in more detail in the next section. The TensorFlow DL framework is used to implement 
the ViT-base model using settings adapted from [48]. The model was trained on a patch 
size of 28 × 28, and the learning rate, transformer layers, batch size, and number of epochs 
were set to 0.001, 16, 16, and 300, respectively, during the hyperparameter tuning stage. 
A smaller patch-dimension result is considered, as it leads to an improvement in the over-
all accuracy of the model [53]. An early stopping criterion was considered, to avoid over-
fitting of the model. 

3.2. Evaluation Metrics 
The proposed research compares the obtained experimental outcomes using several 

assessment criteria, including accuracy, precision, recall, F1 score, and computing time. 
The accuracy illustrated in Equation (9) is the measure of the number of patches out 

of all the input patches correctly identified as either cracks or non-cracks. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁  (9)

True Positive, True Negative, False Positive, and False Negative are each denoted by the 
letters TP, TN, FP, and FN, respectively, in the equation above. Precision, sometimes re-
ferred to as the positive predictive value (PPV) as described in Equation (10), is the per-
centage of correctly anticipated positive outcomes. The accurate model detects only per-
tinent objects, and generates no false positives (FP). 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃  (10)
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The true positive rate, also known as sensitivity, is a measure that determines how many 
crack patches were actually present and how many were identified. Equation (11) depicts 
the mathematical expression of recollection: 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁  (11)

The F1 score, as defined in Equation (12), can be calculated by combining precision and 
recall scores: 𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  (12)

The computational time of the model can be defined as the the amount of time needed by 
the model to classify a single patch. 

3.3. Classification Results 
The ViT classifier model was trained on pavement and concrete datasets. The pro-

posed pavement dataset consists of 45K images with dimensions of 224 × 224, while the 
concrete dataset consists of the base dataset (25K images) and its seven subsets (20.8K, 
15.6K, 13.4K, 10.4K, 8.4K, 5.6K, and 2.8K. The proposed ViT model showed promising 
accuracy after training on the pavement dataset. The performance of ViT was compared 
with various DL networks, that is, customized CNN [12], VGG16 [54], VGG19 [54], Res-
Net50 [55] and Inceptionv3 [56], to prove its effectiveness in performing crack-detection 
tasks. Table 2 contains a list of each model’s parameters, model size, and input-patch size. 
In spite of the fact that the ViT transformer has fewer parameters and is smaller in size 
compared to the customized CNN model, its complexity is lower than that of the pre-
trained deep-learning models. The model performance was assessed based on new test 
data that was not utilized during the previous phases of training and validation. A sum-
mary of the overall results of all the models used in this study can be found in Table 3. 
The ViT classifier and customized CNN model outperformed the other pretrained DL 
models in terms of all evaluation metrics. The ViT classifier achieved a validation accuracy 
of 0.968, testing accuracy of 0.960, precision of 0.971, recall of 0.950, and an F1 score of 
0.960. The validation accuracy and loss curve (training and validation) of ViT is depicted 
in Figure 7a,b. No divergence can be observed in either the training or validation graphs 
of accuracy and loss, which demonstrates that the model possesses superior generaliza-
tion capacity and is not susceptible to overfitting. As depicted in Figure 7, at the 300th 
epoch, the ViT model loss stabilized, and subsequent epochs showed no additional im-
provement in accuracy. 

Table 2. Model specifications used in the proposed study. 

Model Model Size Number of Parameters (Millions) Patch Size 
Customized CNN Model [12] 10.3 MB 2.70 224 × 224 

VGG-16 Model [54] 528 MB 138 224 × 224 
VGG-19 Model [54] 549 MB 143.67 224 × 224 

ResNet-50 Model [55] 98 MB 23.78 224 × 224 
Vision Transformer 44.0 MB 11.46 224 × 224 

Inception-V3 Model [56] 92 MB 21.80 229 × 229 
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Table 3. All models’ experimental outcomes on pavement dataset (45K images). 

Models 

Dataset Size 
Vision Transformer 

Confusion Matrices Val_ACC Test_ACC PRE REC F score 

45K 

Class Crk (0) NCrk (1) 
0.968 0.960 0.971 0.950 0.960 Crk (0) 4410 130 

NCrk (1) 229 4231 
Customized CNN Model 

Class Crk (0) NCrk (1) 
0.947 0.940 0.945 0.938 0.941 Crk (0) 4310 250 

NCrk (1) 287 4150 
VGG16 Model 

Class Crk (0) NCrk (1) 
0.908 0.906 0.895 0.913 0.904 Crk (0) 3992 468 

NCrk (1) 376 4164 
VGG19 Model 

Class Crk (0) NCrk (1) 
0.912 0.895 0.902 0.888 0.895 Crk (0) 4023 437 

NCrk (1) 508 4032 
ResNet50 Model 

Class Crk (0) NCrk (1) 
0.725 0.704 0.599 0.754 0.688 Crk (0) 2671 1789 

NCrk (1) 871 3669 
InceptionV3 Model 

Class Crk (0) NCrk (1) 
0.915 0.905 0.924 0.888 0.906 Crk (0) 4120 340 

NCrk (1) 518 4022 
Crk = Crack, NCrk = Non-Crack, Val_ACC = Validation Accuracy, Test_ACC = Testing Accuracy, 
PRE = Precision, REC = Recall. 

(a) (b) 

Figure 7. ViT model training and validation (45K pavement images): (a) accuracy graph; (b) loss 
graph. 
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Owing to its slow initial convergence, the ViT classifier requires a large number of 
iterations before producing reliable results. Figure 8 depicts the ViT model’s receiver-op-
erating-characteristic (ROC) curve. Based on the ROC curve, sensitivity (or true positive 
rate) and specificity (1-false positive rate) are weighed against each other. Almost reaching 
the upper left-hand corner of the diagram, the obtained curve is good for the model, as it 
indicates better performance. The proposed model’s false positive rate is 0.03 and its area 
under the ROC curve (AUC) is 0.97. This suggests that the algorithm can distinguish sam-
ples with cracks from those without, with an accuracy of 97%. 

 
Figure 8. ROC curve of the ViT Model. 

However, DL models do not require a high number of epochs, because doing so 
would lead to overfitting of the models. The CNN model obtained a desirable perfor-
mance in terms of the evaluation metrics. The model achieved 0.947 validation accuracy, 
0.940 testing accuracy, 0.945 precision, 0.938 recall, and a 0.941 F1 score. The high accuracy 
of the customized CNN model at lower epochs was achieved using an activation function, 
dropout function, and hyperparameter optimization, all of which allowed the model to 
skip undesirable features at lower epochs. Among the pretrained models, the VGG16, 
VGG19, and InceptionV3 models showed comparable performance, while the ResNet50 
model did not show promising performance, achieving a testing accuracy of 0.704 on the 
proposed crack 45K dataset, as illustrated in Table 3. VGG16, Inceptionv3, and VGG19 
achieved testing accuracies of 0.906, 0.905, and 0.895, respectively. 

A comparison of the ViT and DL models proposed in our earlier study [12] based on 
a concrete dataset comprised of 8K images, is summarized in Table 4. The testing accura-
cies of the models were all greater than 0.90, and their other performance measures were 
comparable. The testing accuracy, precision, recall, and F1 score for the ViT model were 
0.974, 0.993, 0.957, and 0.975, respectively; these numbers were superior to those of the 
CNN model [12]. The InceptionV3 model performance is comparable with that of the pro-
posed ViT model, achieving a testing accuracy of 0.982; however, it requires twice as much 
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computation time and twice as many parameters. The VGG model complexity was 12–13 
times greater than that of the ViT model, and it demonstrated a slightly lower perfor-
mance. The VGG16 and VGG19 models achieved a test accuracy of 0.986 and 0.960, re-
spectively. The capability acquired by the VGG16 and 19 models is easily transferable to 
other types of structures. The ResNet classifier fared poorly on the concrete data, with an 
overall testing accuracy of 0.916, which is similar to the performance on the pavement 
dataset. Both concrete and pavement offer a sufficient degree of variation between the 
samples, and obtain the greatest performance possible in the crack-detection task utilizing 
the ViT transformer. 

Table 4. Results of ViT and DL models [12] on the Concrete 8K dataset. 

Models 

Dataset Size 
Vision Transformer 

Confusion Matrices Val_ACC Test_ACC PRE REC F score 

8K 

Class Crk (0) NCrk (1) 
0.992 0.974 0.993 0.957 0.975 Crk (0) 2459 17 

NCrk (1) 114 2411 
Customized CNN Model 

Class Crk (0) NCrk (1) 
0.967 0.958 0.993 0.930 0.960 Crk (0) 2449 16 

NCrk (1) 192 2343 
VGG16 Model [12] 

Class Crk (0) NCrk (1) 
0.987 0.986 0.976 0.996 0.986 Crk (0) 2396 69 

NCrk (1) 128 2407 
VGG19 Model 

Class Crk (0) NCrk (1) 
0.960 0.960 0.972 0.949 0.960 Crk (0) 2396 69 

NCrk (1) 128 2407 
ResNet50 Model 

Class Crk (0) NCrk (1) 
0.923 0.916 0.868 0.979 0.920 Crk (0) 2433 369 

NCrk (1) 50 2148 
InceptionV3 Model 

Class Crk (0) NCrk (1) 
0.985 0.982 0.972 0.992 0.982 Crk (0) 2463 71 

NCrk (1) 18 2448 
Crk = Crack, NCrk = Non-Crack, Val_ACC = Validation Accuracy, Test_ACC = Testing Accuracy, 
PRE = Precision, REC = Recall. 

A test image with dimensions of 2240 × 2240 pixels was used to evaluate the single-
patch computational time of all algorithms. This image contained a hundred patches of 
224 × 224 pixels. Using the Inception-V3 model, a 2290 × 2290 test image with 100 × 229 × 
229 patches was chosen. The single-patch computation time was calculated by dividing 
the total time required to process the entire image by 100. Table 5 shows the computational 
times of all the algorithms. The CNN model had the least single-patch computing time, of 
0.0048 s, followed by the ViT model. Compared to the VGG pretrained models, ViT clas-
sifies a patch in 0.0380 s, which is five times faster than ResNet50, two times faster than 
VGG, but eight times slower than the CNN model. Compared to VGG16 and VGG19, 
ResNet-50’s single-patch classification time of 0.0662 s is slower, but faster than those of 
the Inception V3, custom CNN and ViT models. Compared to other models, VGG19’s 
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patch-classification-time requirement of 0.2093 s was the longest. The time required to 
infer the whole image was recorded as 0.48 s for the customized CNN model, 3.80 s for 
the ViT model, 19.95 s for the VGG19 model, 6.62 s for the ResNet50 model, and 3.85 s for 
the InceptionV3 model. In general, the ViT model achieved a lower inference-time and 
complexity, and fewer parameters, in comparison with the pretrained DL models consid-
ered in the proposed study. 

Table 5. Comparison of models’ computational time. 

Model Patch Inference-Time (Sec) Entire Image Inference-Time 2240 × 2240 (Sec) 
Customized CNN Model 0.0048 0.480 

Vision Transformer 0.0380 3.800 
Inception-V3 Model [26] 0.0385 3.850 

ResNet-50 Model [27] 0.0662 6.620 
VGG-16 Model [25] 0.1995 19.95 
VGG-19 Model [25] 0.2093 20.93 

The ViT model performance was compared with the DL approaches that are cur-
rently accessible in the literature and are based on the CCIC [57] and SDNET [58]datasets. 
Both datasets were combined in our earlier work [12], to produce a new dataset consisting 
of 25K images that had a sufficient level of variation among the samples. We do not pro-
vide a comparison using the recommended self-created Crack45 dataset, because in the 
absence of a unified analysis, it is difficult to compare algorithms accurately. The model 
comparison on the concrete dataset is presented in Table 6. It is evident from the table that 
the ViT model shows better performance than the DL models in terms of various assess-
ment metrics. Using 18K images from the SDNET [57] dataset, the authors in [59] trained 
a DCNN model, which resulted in an accuracy of 0.97 and an F1 score of 0.800. Similarly, 
in [60–62], the authors used a DCNN to detect cracks in a variety of civil infrastructures 
by using the SDNET and CCIC datasets. The results showed that all models attained a 
promising level of performance. Lu et al. [63] introduced the MSCNet architecture, which 
comprises feature aggregation and enhancement modules. On a combined dataset of 30K 
images from SDNET [57] + CCIC [58], the MSCNet architecture was evaluated in compar-
ison to a number of different DL models, and showed promising performance. Zheng et 
al. [64] used 30K images from the SDNET and CCIC datasets to train their newly sug-
gested ISSD architecture, with impressive results. In [12], the authors proposed a CNN 
model and compared its performance to that of a variety of pretrained architectures by 
employing 25K images taken from the CCIC and SDNET datasets. The proposed CNN 
model surpassed the pretrained models, based on various assessment metrics. In contrast, 
the proposed ViT was trained on the same 25K dataset, and it achieved 0.974 accuracy, 
0.993 precision, 0.955 recall, and a 0.974 F1 score. The model demonstrated greater perfor-
mance than the DL model in concrete-crack-detection. 

Table 6. Comparison of ViT model with SOTA DL models. 

Work Dataset Algorithm NOE NOI ACC PREC REC F1 
[59] SDNET [57] DCNN 30 18K 0.970 NA NA 0.800 
[60] CCIC [58] DCNN <20 1000K NA 0.869 0.925 0.896 
[61] SDNET [57] DCNN 100 5.2K 0.85 NA NA NA 
[62] SDNET [57] + CCIC [58,59] DCNN 20 184K NA 0.184 0.943 0.307 
[63] SDNET [57] + CCIC [58] MSCNet [63] 300 30K 0.927 0.935 0.942 0.938 
[65] SDNET [57] + CCIC [58] ISSD 400 30K 0.915 0.905 0.911 0.908 
[64] SDNET [57] + CCIC [58] SE-Inception-ResNet-18 100 3K 0.948 0.979 0.916 0.946 
[12] SDNET [57] + CCIC [58] Custom CNN 20 25K 0.967 0.997 0.850 0.918 

Ours SDNET [57] + CCIC [58] Vision Transformer 20 25K 0.974 0.993 0.955 0.974 
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ACC = Accuracy, REC = Recall, PREC = Precision, F1 = F1 score, NOI = Number of Images, * NOE = 
Number of epochs. 

3.4. Localization Results 
In the proposed study, the ViT model was integrated with the SW technique to create 

a crack-localization map. A new batch of images not used in training or validation was 
fed to the model in order to evaluate its performance in determining crack locations, as 
shown in Figure 9a,d. A window with dimensions of 224 × 224 was slid across the entire 
image, and the ViT model was used to classify each window patch. The window was 
moved from left to right by 224 pixels and up and down by 224 pixels, until the entire 
image was scanned. The areas indicated by the classifier with cracks are denoted by the 
areas within the black bounding-boxes. The crack-localization results of the ViT model are 
shown in Figure 9b,e, whereas Figure 9c,f illustrate the scanning findings for the FP and 
FN, respectively. The FN patches are indicated by dark blue boxes and the FP patches are 
indicated by red boxes. The results of the scanning show that the false positives are higher 
than the false negatives, owing to the fact that the region is similar to cracks. In general, 
fewer FP and FN patches were observed in the scanned images, demonstrating the capa-
bility of the model to perform crack identification in an effective manner. 

 
Figure 9. (a,d) original images, (b,e) crack localization results of the ViT model, (c,f) scanning for FP 
and FN. 

3.5. Segmentation Results 
In the proposed study, the binary localization map obtained from the sliding-win-

dow-based ViT was merged with the segmentation map acquired from the TuFF algo-
rithm to obtain the segmentation results, as shown in Figure 10. The original images and 
localization mapping achieved from the sliding-window-based ViT are shown in Figure 
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10a,b. The mapping acquired from the TuFF approach is depicted in Figure 10c, and con-
sists of unwanted pixels which are unrelated to the crack regions. The TuFF algorithm did 
not perform well on the pavement surface, owing to the complex nature and irregularity 
of the cracks. Therefore, to filter out the noise (the unwanted regions) surrounding the 
cracks, the results of the TuFF algorithm were multiplied with the localized map obtained 
from the ViT transformer. After multiplication, the output was passed through a bilateral 
filter for any existing noise, and morphological operations are performed. The outcomes 
of these operations are depicted in Figure 10d. Most of the unwanted pixels were removed 
after the multiplication of the results from both algorithms; however, the final crack map 
still consists of unwanted pixels, which are due to the oily regions in the input images that 
resemble cracks. These noisy regions were due to the FP patches classified by the ViT 
classifier. These regions can be removed by further enhancing localization mapping by 
reducing the number of FP patches in the ViT results. 

 
Figure 10. (a) Original images; (b) localization-mapping result from sliding window-based vision-
transformer; (c) mapping results from TuFF; (d) integration of results from sliding-window-based 
ViT and the TuFF algorithm. 
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4. Discussion 
In this study, an integrated framework of a ViT and an SW approach is proposed, to 

detect and localize cracks in pavement and concrete surfaces. The patch-based classifica-
tion technique was utilized by the integrated architecture to achieve a crack-localization 
map, which was then combined with the TuFF algorithm to effectively segment the crack 
region. The performance of the ViT framework was compared with that of various DL 
models on concrete and pavement datasets. The results shows that the model’s perfor-
mance is comparable for both datasets, and the ViT model outperformed the other DL 
models, based on different assessment metrics. This is because the transformer structure 
can globally extract spatial features from the input image, which is the same as having a 
large receptive field. It is also clear from the results that the concrete- and pavement-da-
tasets had sufficient variance between samples to maximize the ViT transformer’s effec-
tiveness in a crack-detection task. Additionally, it is evident that the ViT framework re-
quires more training epochs than the DL modes, because of its delayed convergence in the 
earlier epochs. Early epochs showed faster convergence for the DL models, and high-scor-
ing results did not require additional iterations. The experimental results in Tables 4 and 
5 show that the ViT model surpasses the pretrained DL-models considered in this study 
in terms of inference time and computational complexity, both of which have significant 
effects on the performance of the model. We further demonstrated the higher performance 
of the ViT model by comparing it to earlier CNN-based investigations that used the same 
publicly available concrete-dataset, as shown in Table 6. 

Figure 9’s localization mapping, in which a relatively small number of FP and FN 
patches can be seen, demonstrates that the combination of the ViT transformer and slid-
ing-window approach can effectively localize crack locations. The FP patches, of which 
there are more than the FN patches, can be found in the oily region that resembles the 
crack, and can be reduced by adding more images that contain the oily patches, to the 
training. In addition, it is demonstrated that combining the localization-mapping findings 
with those from the TuFF algorithms can further improve crack-mapping results. Com-
bining the outcomes of the two algorithms facilitates the elimination of irrelevant pixels, 
and makes the process of crack-segmentation more accurate. It is also clear from the re-
sults that the effectiveness of the final crack-mapping relies heavily on the localization-
mapping from the ViT transformer. The fewer FPs in the localization, the more effective 
the final crack-mapping. The results from Figure 10 also show that the combined approach 
can be used as an automatic tool for crack-segmentation dataset labeling, to overcome the 
problem of manual labeling, which is labor-intensive and time-consuming. However, fur-
ther improvement is required in both approaches to remove the unwanted pixels shown 
in Figure 10d. 

5. Conclusions 
From the above discussion, it can be concluded that the ViT transformer in combina-

tion with the sliding-window approach and the TuFF algorithm can be used to perform 
crack-detection, localization, and segmentation tasks, efficiently. It can also be concluded 
that the transformer architecture can extract global-scale spatially-associated information, 
making it possible to detect cracks in digital images of various sizes. In addition to the DL 
approaches, ViT can be used to detect and localize cracks in civil structures. The ViT 
model has superior accuracy across training, validation, and testing, and its learned fea-
tures ensure an optimal efficiency. It is also feasible to conclude that the combined tech-
nique (sliding-window-based ViT + TuFF) has the potential to replace the conventional 
manual labeling of segmentation datasets with one that is less arduous and requires less 
time to complete. Overall, the proposed method shows the effectiveness of ViTs in auto-
matic crack-detection on pavement and concrete surfaces. The model ensures that civil 
structures are inspected regularly and automatically, by providing information about 
their condition from the data they store. The key benefit of the system is its capacity to 
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automatically locate cracks and segment them with little processing. As more data are 
provided from a wider variety of structures, the system can be upgraded to identify vari-
ous problems in concrete buildings. However, the system is not yet able to segment cracks 
effectively. In the future, we plan to investigate other ViT variants [66–68] for crack-detec-
tion in civil structures. Additionally, the performance of TuFF algorithms will be en-
hanced to perform initial crack-mapping efficiently. Moreover, the crack-segmentation re-
sults are compared with various SOTA DL-based segmentation algorithms, which is a 
limitation of the proposed method. 
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