
Citation: Zhu, Y.; Wang, M.; Yin, X.;

Zhang, J.; Meijering, E.; Hu, J. Deep

Learning in Diverse Intelligent Sensor

Based Systems. Sensors 2023, 23, 62.

https://doi.org/10.3390/s23010062

Academic Editor: Yang Yue

Received: 2 November 2022

Revised: 6 December 2022

Accepted: 14 December 2022

Published: 21 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Deep Learning in Diverse Intelligent Sensor Based Systems
Yanming Zhu 1 , Min Wang 2 , Xuefei Yin 2 , Jue Zhang 2, Erik Meijering 1 and Jiankun Hu 2,*

1 School of Computer Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
2 School of Engineering and Information Technology, University of New South Wales,

Canberra, ACT 2612, Australia
* Correspondence: j.hu@adfa.edu.au

Abstract: Deep learning has become a predominant method for solving data analysis problems in
virtually all fields of science and engineering. The increasing complexity and the large volume of data
collected by diverse sensor systems have spurred the development of deep learning methods and
have fundamentally transformed the way the data are acquired, processed, analyzed, and interpreted.
With the rapid development of deep learning technology and its ever-increasing range of successful
applications across diverse sensor systems, there is an urgent need to provide a comprehensive inves-
tigation of deep learning in this domain from a holistic view. This survey paper aims to contribute
to this by systematically investigating deep learning models/methods and their applications across
diverse sensor systems. It also provides a comprehensive summary of deep learning implementation
tips and links to tutorials, open-source codes, and pretrained models, which can serve as an excellent
self-contained reference for deep learning practitioners and those seeking to innovate deep learning
in this space. In addition, this paper provides insights into research topics in diverse sensor systems
where deep learning has not yet been well-developed, and highlights challenges and future oppor-
tunities. This survey serves as a catalyst to accelerate the application and transformation of deep
learning in diverse sensor systems.

Keywords: deep learning; computer vision; biomedical imaging; biometrics; remote sensing; cyberse-
curity; Internet of Things; natural language processing; audio and speech processing; control system
and robotics; information system; food; agriculture; chemistry

1. Introduction

In recent years, driven by the rapid increase in available data and computational
resources, deep learning has achieved extraordinary advances and almost become the de-
facto standard approach in virtually all fields of science and engineering. Essentially, deep
learning is a part of the field of machine learning, a subfield of artificial intelligence (AI)
concerned with learning data representations using computational methods. In traditional
machine learning algorithms, manually choosing features and a classifier is needed, while in
a deep learning algorithm, the features are extracted automatically by the algorithm through
learning from its own errors. It is this automatic feature extraction that distinguishes deep
learning from the field of machine learning.

Neural networks make up the backbone of deep learning algorithms. A neural net-
work aims to learn nonlinear maps between inputs and outputs through its elementary
computational cells (also called “neurons”). It is the number of layers (also called depth)
of neural networks that distinguishes a shallow network from a Deep Neural Network
(DNN). Typically, a network must have more than three layers to be considered a DNN.
Deep networks learn representations of the data in a hierarchical manner to simulate the
mechanism of the human brain in extracting information from given data.

The increasing complexity and the large volume of data collected by diverse sensor
systems have brought about significant developments in deep learning, which have funda-
mentally transformed the way the data are acquired, processed, analyzed, and interpreted.
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Therefore, in this paper, we provide a comprehensive investigation of deep learning in
diverse intelligent sensor based systems, covering fundamentals of deep learning models
and methods, deep learning techniques for fundamental tasks in individual sensor systems,
insights of reformulation of these fundamental tasks for broader applications in diverse
intelligent sensor based systems, and challenges of breaking through the bottleneck of
current deep learning approaches in exploring the full potential of deep learning. We
searched Google Scholar (GS) and Web of Science (WOS) with the keywords deep learning
(DL) and sensor. This resulted in 16,100 articles from 2020. We further selected, based on
the top journals and conferences, around 150 most relevant papers for careful inspection,
and traced some further relevant references from there. From these, we observed that
existing relevant surveys [1–4] have one or more of the following limitations: (1) touching
only a small subset of topics in individual domains, (2) lacking an overview of common
techniques/algorithms from different domains, and (3) lacking a holistic view based on the
individual domains of diverse intelligent sensor based systems. This survey aims to be a
catalyst for accelerating the application and transformation of deep learning across diverse
intelligent sensor based systems.

The contributions of this paper can be summarized as follows.

• This is the first paper to provide a comprehensive investigation of deep learning
in diverse sensor systems from the perspective, in a holistic view, of different data
modalities across different intelligent sensor based systems and application domains.

• This paper presents the fundamentals of deep learning and the most widely used deep
learning models and methods in a concise and high-level way, which would be very
useful for people to get a quick start in the field.

• This paper provides a comprehensive summary of deep learning implementation tips
and links to tutorials, open-source codes, and pretrained models, which can serve as an
excellent self-contained reference for deep learning practitioners and researchers. This
is a unique feature that makes it distinguishable from existing literature survey papers.

• This paper identifies the fundamental tasks in individual intelligent sensor based
systems and provides insights to reformulation of these task for broader applications
for those seeking to innovate deep learning in diverse sensor systems.

• This paper provides insights into research topics where deep learning has not yet been
well-developed, and highlights the challenges and future directions of deep learning
in diverse intelligent sensor based systems.

2. Deep Learning Basics
2.1. History of Deep Neural Networks

The origin of DNNs can be traced back to 1943, when McCulloch and Pitts proposed
the first artificial neural network [5]. Since then, deep learning has grown gradually and
achieved a few significant milestones in its development. One of them worth mentioning
is Rosenblatt’s “perceptron” introduced in 1958. It demonstrated that a perceptron will
converge when what they are trying to learn can be represented [6]. However, such a
model has obvious limitations, and multilayer perceptrons are required by complex tasks,
but at that time, it was not clear how to train these models. Subsequently, deep learning
encountered its first winter.

Until 1985, Hinton et al. proposed the back-propagation algorithm, which has greatly
stimulated the development of this field [7]. At almost the same period, the “neocogitron”
which inspired the Convolutional Neural Networks (CNNs), the Recurrent Neural Net-
works (RNNs), and the DNNs were proposed [8–10]. However, due to the limitation of
hardware, these models were hard to use for handling large data, and thus the development
of deep learning was trapped again.

By 2006, Hinton and others solved the training problem of DNNs by using a layer-
wise pretraining framework, which greatly revitalized the field [11,12]. At the same time,
algorithms for training deep AutoEncoders (AEs), and other deep architectures were
proposed [13], which allowed deep learning to develop at an exponential rate. From then,
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a variety of deep learning methods increasingly emerged, including Deep Belief Networks
(DBNs), Restricted Boltzmann Machines (RBMs), CNNs, Generative Adversarial Networks
(GANs), Graph Neural Networks (GNNs), and so on.

In recent years, two astounding deep learning applications made a global splash and
shocked the world. One is AlphaGo, which defeated the world champion Go players using
deep learning with the support of abundant hardware resources (https://www.deepmind.
com/research/highlighted-research/alphago accessed on 2 November 2022). Another
is AlphaFold, which solved the 50-year-old challenging protein folding problem. These
further stimulated the rapid development of deep learning in various domains. Nowadays,
with the advancements in Graphics Processing Units (GPUs) and High-Performance Com-
puting (HPC), deep learning has become one of the most efficient tools with outstanding
performance in almost every domain.

2.2. Fundamentals of Deep Neural Networks

DNNs try to mimic the way biological neurons send signals to each other through
numerous neurons (also called nodes). Generally, the architecture of a DNN consists of
multiple neuron layers including an input layer, an output layer, and one or many hidden
layers [14] (Figure 1). Each neuron is connected to another neuron to pass information. The
input to a DNN can be numbers, characters, audios, images, etc., which are broken down
into bits of binary data that a computer can process. The output can be continuous values,
binary values, or categorical values, depending on the tasks. A DNN relies on training data
to learn and improve its accuracy over time. During the learning, if it cannot accurately
recognize a particular pattern for a given task, an algorithm would adjust its weights until
it determines the correct mathematical manipulation to fully process the data [13].

Input Data Deep Neural Network Outputs

Input layer Output layerMultiple hidden layers 
…Numbers

Characters

Audios

Images

Videos

etc.

Continuous 

values

Binary values

Categorical 

values

etc.

Figure 1. Diagram of a DNN.

2.2.1. Neuron Perception

A neuron multiplies each of its inputs by an associated weight and then sums these
weighted inputs and adds a predetermined number called the bias (Figure 2). The neuron is
activated if its output is above a specified threshold and will pass its output to the next layer
of the DNN. That is, in a DNN, neurons in each layer get inputs from the previous layer,
learn representations, and then pass the information to the next layer. Each successive layer
of a DNN uses the output of the previous layer for its input. This way, a DNN produces an
output at the end.

Inputs

Weights Sum & Bias

Activation
Output

…

Figure 2. Diagram of the perception of a neuron.

https://www.deepmind.com/research/highlighted-research/alphago
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2.2.2. Activation Functions

The activation function is an important aspect of a DNN. It defines the output of
a node given inputs and is mainly used to generate a nonlinear relationships between
the input and the output. Currently, there are 10 types of nonlinear activation functions
(Table 1). Here, we elaborate on four most popular activation functions, namely sigmoid,
tanh, ReLU, and leaky ReLu, describe their application scenarios, and analyze their pros
and cons.

Table 1. Ten types of nonlinear activation functions.

Name Definition

Sigmoid f (x) = 1
1+e−x

Tanh f (x) = ex−e−x

ex+e−x

ReLU f (x) = max(0, x)
LeakyReLU f (x) = max(0.1x, x)
Parametric ReLU f (x) = max(ax, x)

ELU
{

x for x ≥ 0
α(ex − 1) for x < 0

Probability sig(x) = 1
1+e−x

Softmax softmax(xi) =
exp(xi)

∑j exp(xj)

Swish σ(x) = x
1+e−x

GELU f (x) = 0.5x
(

1 + tanh
[√

2
π (x + ax3)

])
with a = 0.044715

The sigmoid activation function is one of the most widely used activation functions.
It takes an arbitrary value as input and outputs a value between 0 and 1. The larger the
input, the closer the output value is to 1. This function is differentiable and provides a
smooth gradient, and is suitable for tasks that require predicting probabilities as outputs.
Its limitation is that it stops the DNN from learning and makes the DNN suffer from the
vanishing gradient problem as the gradient value approaches zero.

The tanh activation function also has an S-shape like the sigmoid function, but with the
difference in output range of −1 to 1. That is, with tanh, the larger the input, the closer the
output value is to 1. This function is widely used for hidden layers of a DNN, because it can
help to center the data and make the learning for the next layer easier. However, it also faces
the same problem of vanishing gradients as the sigmoid function. However, in practice, the
tanh activation function is more preferred than sigmoid due to its zero-centered nature.

The ReLU activation function, which stands for Rectified Linear Unit, is another most
important and popular activation function. Its main feature is that it does not activate
all the nodes at the same time, and only the nodes with an output larger than 0 will be
activated. Therefore, this function is computationally efficient, compared to the sigmoid
and tanh activation functions. In addition, it facilitates the convergence of gradient descent
towards the global minimum of the loss function. Its limitation is that it may cause possible
dead nodes due to the negative side of the curve making the gradient value zero.

Therefore, the leaky ReLU activation function, which is an improvement of ReLU,
has been proposed to solve the dying ReLU problem. It has a small positive slope for the
negative side, which enables back-propagation for negative inputs. This way, the gradient
of the negative side of the curve will be a nonzero value, and the problem of dead nodes is
solved. The limitation of this activation function is that it makes the learning of the DNN
time-consuming.

2.2.3. Stochastic Gradient Descent (SGD)

The SGD is an efficient approach for fitting linear classifiers or regressors under
convex loss functions, especially in high-dimensional optimization. Therefore, it has
been widely and successfully used as an important optimization method for training a
DNN [7,14–16]. It has the advantages of high efficiency and ease of implementation, but
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also the disadvantages of requiring some hyperparameters such as the regularization
parameter and the number of iterations, and being sensitive to feature scaling.

2.2.4. Back-Propagation (BP)

The BP, which is short for “backward propagation of errors”, is the most prominent
algorithm to train a DNN. Strictly, it refers only to the algorithm for computing the gradient,
not how to use the gradient. However, loosely and generally, it refers to using the mean
squared error and the SGD to fine-tune the weights of a DNN. Specifically, it calculates the
gradient of a loss function with respect to all the weights in the DNN by the chain rule, and
employs the SGD to decide how to use the gradient to properly tune the weights. A DNN’s
weights are iteratively tuned until the desired output is achieved.

2.3. Learning Scenarios of Deep Learning
2.3.1. Supervised Learning

Supervised learning is a learning paradigm that uses a set of labeled examples as
training data and makes predictions for all unseen points [17]. Supervised algorithms are
expected to learn the mapping between pairs of inputs and output values, also called anno-
tations or labels. This scenario includes two types of problem: classification and regression.

2.3.2. Semi-Supervised Learning

Semi-Supervised learning (SSL) aims to learn predictive models that make use of both
labeled and unlabeled data. SSL provides a feasible solution in the setting where unlabeled
data are easily accessible, but labels are difficult to obtain [18]. By exploring the pattern in
additional unlabeled data, SSL methods can improve the learning performance. Deep SSL
has dominated this research area in recent years [19–21].

2.3.3. Unsupervised Learning

In contrast to supervised learning, unsupervised learning constructs models where
only unlabeled data are available [22]. The key of unsupervised methods is to discover
hidden patterns and discriminative feature representations without human intervention.
Clustering and dimensionality reduction are examples of unsupervised learning problems.

2.3.4. Reinforcement Learning

Different from supervised learning, reinforcement learning refers to the learning
scenario where the learner receives rewards after a course of actions by interacting with
the environment, and then determines the optimal actions by maximizing the rewards to
achieve the goal [17]. With different states of the environment, the problem can be divided
into two settings: the planning problem and learning problem.

2.4. Training Strategy and Performance
2.4.1. Learning Rate

Learning rate is one of the most important hyperparameters when configuring a neural
network. It controls how much a model is changed based on the estimated error each
time the model weights are updated [23]. Choosing an appropriate learning rate is very
challenging, because a very small value may cause the training process to be too long and
get stuck, while a very large value may result in learning a suboptimal set of weights or
with an unstable training process. A typical solution to choose the appropriate learning rate
is to reduce the learning rate during training. Currently, there are three kinds of popular
ways to achieve this: constant, factored, and exponential decay.

2.4.2. Weight Decay

Weight decay is a regularization technique applied to the weights of a neural network
for shrinking the weights during back-propagation. It works by adding a penalty term,
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which is usually the L2 norm of the weights, to the loss function. It can help to prevent
overfitting and avoid exploding gradient.

2.4.3. Dropout

Dropout is widely used to prevent overfitting by randomly dropping out neural units
in a neural network. It is a strong regularization to prevent complex co-adaptations on
training data [24]. More technically, at each training stage, individual nodes are either
dropped out of the network with probability 1− p or kept with probability p, leading to
a reduced network. Dropout forces a neural network to learn more robust features and
roughly doubles the number of iterations required to converge, but the training time for
each epoch is less.

2.4.4. Early Stopping

Early stopping is a training strategy used to reduce overfitting without compromising
on model accuracy. The underlying idea behind early stopping is to stop training before a
model starts to overfit. There are mainly three strategies for early stopping: training models
on a preset number of epochs, stop when the loss function update becomes very small, and
observing the changes of training and validation errors with the number of epochs.

2.4.5. Batch Normalization

Batch normalization is a technique to standardize the inputs to a neural network for
stabilizing the learning process and reducing the number of training epochs required to
train deep networks [25]. With batch normalization, a network can use higher learning
rates, achieve better results, and the training can be faster. It also makes activation functions
viable by regulating the inputs to them, and adds noise which reduces overfitting with a
regularization effect.

2.4.6. Data Augmentation

Data augmentation refers to a set of techniques to artificially increase the amount
of training data by generating new data from existing data. It is a low-cost and effec-
tive method to improve the performance and accuracy of deep learning models in data-
constrained environments. For visual data, alterations such as cropping, rotating, scaling,
flipping, contrast changing, adding noise are effective and popular data augmentation
methods. For other kinds of data, data augmentation is not as popular as for visual data,
due to the complexity of the data. Some advanced models such as GANs are popular for
data augmentation [26–28].

2.5. Deep Learning Platforms and Resources
2.5.1. Deep Learning Platforms

The two currently most renowned end-to-end open source platforms for deep learning
are TensorFlow [29] and PyTorch [30]. They provide comprehensive and flexible ecosystems
of tools, libraries, and community resources that let engineers and researchers easily build
and deploy deep learning powered applications.

TensorFlow (https://www.tensorflow.org/ accessed on 2 November 2022) is devel-
oped by researchers and engineers at Google and was released in 2015. It is a symbolic
math library and is best suited for data flow programming across a wide variety of tasks. It
provides multiple abstraction levels for building and training a DNN. In addition, it has
adopted Keras (https://keras.io/ accessed on 2 November 2022), which is a functional
API that extends TensorFlow and allows users to easily code some high-level functional
sections. It provides system-specific functionality such as pipelining, estimators, and eager
execution, and supports various topologies with different combinations of inputs, output,
and layers.

PyTorch (https://pytorch.org/ accessed on 2 November 2022) is based on Torch and
is relatively new compared to TensorFlow. It is developed by researchers at Facebook and

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
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was released in 2017. It is well known for its simplicity, ease of use, flexibility, efficient
memory usage, and dynamic computational graphs. Due to its computation power and
native programming feeling, PyTorch is emerging as a winner. Furthermore, it has a
large community of developers and researchers who have built rich and powerful tools
and libraries to extend PyTorch. Some popular libraries include GPyTorch, BoTorch, and
Allen NLP.

Other frameworks include Caffe [31], Torch [32], DL4j (https://deeplearning4j.konduit.
ai/ accessed on 2 November 2022, Neon (https://github.com/NervanaSystems/neon
accessed on 2 November 2022, Theano [33], MXNet [34], and CNTK [35]. The choice of
which platform is superior has always been controversial, but PyTorch and TensorFlow are
undoubtedly the two most popular deep learning frameworks today.

2.5.2. Codes and Pretrained Models

While TensorFlow and PyTorch have provided official tutorials on how to use them,
topic-specific tutorials for different levels are beneficial and complementary. There are
many reputable courses online, for example, Practical Deep Learning for Coders (https://
course.fast.ai/ accessed on 2 November 2022), which provides practical programming skills
and an easy-to-use code library for most important deep learning techniques. Furthermore,
it is free and without ads, and is designed for learners with various background levels.
More useful courses can be found at the collection of AI Curriculum from top universities
(https://github.com/Machine-Learning-Tokyo/AI_Curriculum accessed on 2 November
2022). A comprehensive collection of deep learning books, videos, lectures, workshops,
datasets, tools, etc., is available on GitHub (https://github.com/ChristosChristofidis/
awesome-deep-learning accessed on 2 November 2022).

Open source code can greatly help to learn deep learning and improve the efficiency
of the learning. The distinguished Papers With Code website https://paperswithcode.
com/accessed on 2 November 2022) collects new research papers and their corresponding
open source codes, as well as the latest trending directions and state-of-the-art results across
many standard benchmarks.

As we will describe in later sections, utilizing pretrained models is an important
technique in transfer leaning and can greatly improve the efficiency of deep leaning. A
collection of pretrained models is available for both TensorFlow (https://github.com/
tensorflow/models accessed on 2 November 2022) and Pytorch (https://pytorch.org/
vision/stable/models.html accessed on 2 November 2022). The AI community Hugging
Face (https://huggingface.co/accessed on 2 November 2022) also provides a huge collec-
tion of pretrained models as well as the codes to train these models. The website Model
Zoo (https://modelzoo.co/ accessed on 2 November 2022) is also a great place to discover
pretrained models and open source deep learning codes.

2.5.3. Computing Resources

Training deep learning models requires relatively high computing resources. Therefore,
open source web-based development environments that run entirely in the cloud are very
helpful for average researchers. The two currently popular web applications for interactive
computing are Jupyter Notebook (https://jupyter.org/ accessed on 2 November 2022)
and Colab (https://colab.research.google.com/ accessed on 2 November 2022). They
are very similar, and both require zero configuration, provide access to GPUs free of
charge, and support most popular machine learning libraries. They are easy to use and to
create documents that contain live code, equations, visualizations, and text. Furthermore,
their flexible interfaces allow users easily to configure, arrange, and share workflows for
team work.

Tracking and visualizing metrics such as loss and accuracy during the model training
is a vital process of training a DNN. A predominant toolkit for this purpose is Tensorboard
(https://www.tensorflow.org/tensorboard accessed on 2 November 2022), which works
for both TensorFlow and Pytorch. In addition to the above functions, it can visualize
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https://deeplearning4j.konduit.ai/
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model graphs, views histograms of weights, biases, or other tensors as they change over
time, project embeddings to a lower dimensional space, display images, text, and audio,
and so on.

3. Deep Learning Models and Methods
3.1. Convolutional Neural Network (CNN)
3.1.1. Introduction of CNN

The design of convolutional networks was inspired by biological processes where the
pattern of connections between neurons resembles the organization of the human visual
cortex: individual cortical neurons respond only to stimuli in the receptive fields, which
partially overlap to cover the entire field of view [36].

A typical CNN consists of several convolutional layers and pooling layers followed
by fully connected layers at the end (Figure 3). The input of a CNN is a tensor arranged in
four dimensions (N × h× w× c), where N denotes the number of inputs, h and w are the
height and width of the input, and c the depth or number of channels of the input (c = 3 for
an RGB image). The convolutional layer convolves the input with k kernels/filters of size
(kh × kw × kc), where kh < h, kw < w, and kc ≤ c, and generates and passes k feature maps
to the following layer. These kernels share the same parameters and form the base of local
connections. The convolution operation performs a dot product (usually the Frobenius
inner product) of the kernel with a small region of the layer’s input matrix each time, then
an activation function (usually the ReLU function) is applied. As the kernel slides along the
input matrix, a feature map is generated. The pooling layers reduce the dimension of the
feature maps by subsampling, thus decreasing the number of parameters for training. The
pooling operation usually takes the maximum (max pooling) or average value (average
pooling) of the local cluster of neurons (local pooling) or all neurons (global pooling) in the
feature map. The last few layers of a CNN are fully connected layers, as in a multilayer
perception that connect every neuron in one layer to every neuron in the following layer.
Through these layers, the CNN extracts high-level representations from the input data, and
its final layer outputs the probabilities that the instance belongs to each class.

Figure 3. A typical CNN architecture.

CNNs improve the fully connected networks in three major aspects: (1) local connec-
tions, (2) weight sharing, and (3) subsampling. These mechanisms significantly reduce the
number of parameters, speed up convergence, and make CNN an outstanding algorithm in
the field of deep learning. CNNs are particularly popular in computer vision applications
since they fully exploit the two-dimensional structure of the input image data [37].

Since its first introduction, the CNN design has received widespread attention from
researchers, and various variant models and improvements have been proposed. Next,
we introduce several representative CNN models and their main contributions. Table 2
summarizes these models and following works.
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Table 2. Summary of popular CNN architectures.

Model Usage Main Contribution Code Year

AlexNet [37] Recognition Depth is essential X 2012
VGG [38] Recognition Small kernel size X 2013
GoogLeNet/Inception [39] Recognition Inception module (sparse connections) X 2013
ZfNet [40] Visualisation Understanding network activity X 2014
ResNet [41] Recognition Residual module (skip connections) X 2015
DenseNet [42] Recognition Dense concatenation X 2017
UNet [43] Segmentation U-shaped encoder-decoder architecture X 2015
Faster R-CNN [44] Segmentation Region proposal network X 2015
Highway Networks [45] Recognition Cross-layer connection X 2015
YOLO [46] Detection High efficiency ‘only look once’ X 2016
Mask R-CNN [47] Segmentation Object mask X 2017
MobileNet [48] Recognition/Detection Depthwise separable convolutions X 2017
Pyramidal Net [49] Recognition Pyramidal structure X 2017
Xception [50] Recognition Extreme version of Inception X 2017
Inception-ResNet [51] Recognition Inception with residual connections X 2017
PolyNet [52] Training solution Optimize networks X 2017

3.1.2. AlexNet

AlexNet [37] consists of eight layers: five convolutional layers, some of which fol-
lowed by max-pooling layers, concatenated with three fully connected layers. It uses the
ReLU activation function, which shows improved training performance over tanh and
sigmoid which are prone to the vanishing gradient problem [53] (e.g., the derivative of
sigmoid becomes very small in the saturating region, and therefore, the updates to the
weights almost vanish). A dropout layer is used after every fully connected layer, reducing
overfitting. AlexNet was one of the first deep neural networks to push ImageNet classifica-
tion accuracy up by a significant amount (a top five accuracy of 80.2%) in comparison to
traditional methods. The depth of the model was essential for its high performance, and
while computationally expensive, training was made feasible by the utilization of GPUs.

3.1.3. VGG

VGG [39] improves over AlexNet by replacing large size kernels (11 and 5 in the first
and second convolutional layer, respectively) with multiple 3× 3 kernels one after another.
The idea behind this is that with a given receptive field, stacking multiple kernels of smaller
size is better than using one kernel of larger size. This is because multiple nonlinear layers
increase the depth of the network, which enables it to learn more complex features at a
lower cost. In addition, the 3× 3 kernels help retain finer representations of the input.
In VGG-D, blocks with the same kernel size are applied multiple times to extract more
complex and representative features. This concept of blocks or modules became a common
theme in the networks after VGG. It achieved top five accuracy of 91.2% on ImageNet.

3.1.4. GoogLeNet (Inception)

GoogLeNet [38] introduces the inception module to form a sparse architecture rather
than the previous dense connection architecture to reduce the computation requirement of
training deep networks such as VGG. It builds on the idea that most of the activations in a
deep network are either unnecessary or redundant because of correlations between them.
Therefore, the most efficient architecture of a deep network will have a sparse connection
between the activations, rather than a dense connection architecture. Thus, the inception
module (Figure 4) approximates a sparse CNN with a normal dense construction. Since
only a few neurons are effective, the width and number of the convolutional filters of a
particular kernel size is kept small. Convolutions of different sizes are used to capture
features at varied scales (5× 5, 3× 3, 1× 1). A bottleneck layer (1× 1 convolutions) is
introduced for massive reduction of the computational cost. All these changes allow the
network to have a large width and depth. GoogLeNet is built on top of the inception blocks
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and it replaces the fully-connected layers at the end with a simple global average pooling
which averages out the channel values across the 2D feature map. This drastically reduces
the total number of parameters. It achieves 93.3% top five accuracy on ImageNet and is
much faster to train than VGG.

Figure 4. The inception module in GoogLeNet.

3.1.5. ResNet

ResNet [41] was proposed to solve the vanishing gradient problem [54] and degra-
dation problem. The vanishing gradient prevents the update of the weights and hinders
convergence from the beginning due to the increased depth. The degradation problem
refers to the phenomenon that as the network depth increases, accuracy gets saturated and
then degrades rapidly (this is not caused by overfitting but adding more layers leads to
higher training error) [41]. Degradation of training accuracy indicates that not all systems
are similarly easy to optimize. Hence, the residual learning framework is designed to recast
the original mapping H(x) into a residual mapping which is easier to optimize than the
original mapping. The residual module (Figure 5) creates a shortcut connection between
the input and output to the module, implying an identity mapping, thus allowing the
stacked nonlinear layers to fit a residual mapping G(x) := H(x)− x. With these shortcuts,
the residual module helps to build deeper neural networks as large as a network depth of
152. In addition, ResNet adopts a global average pooling followed by the classification layer
as in GoogLeNet. It achieves better accuracy (95.51% top five accuracy with ResNet-152)
than VGGNet and GoogLeNet while being computationally more efficient than VGGNet.

Figure 5. Illustration of a residual learning module.

3.1.6. DenseNet

DenseNet [42] is one of the new discoveries in neural networks for visual object
recognition. DenseNet is quite similar to ResNet but with some fundamental differences:
ResNet uses an additive method to merge the previous layer (identity) with the future
layer, whereas DenseNet concatenates the output of the previous layer with the future
layer. For ResNet, the identity shortcut that stabilizes training also limits its representation
capacity, while DenseNet has a higher capacity with multilayer feature concatenation.
In DenseNet, each layer obtains additional inputs from all preceding layers and passes
on its own feature maps to all subsequent layers (Figure 6). With concatenation, each
layer is receiving collective knowledge from all preceding layers. However, the dense
concatenation requires higher GPU memory and more training time.
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Figure 6. DenseNet block vs. ResNet block.

3.1.7. UNet

UNet [43] is an architecture originally developed for biomedical image segmentation
and is now one of the most popular approaches in semantic segmentation tasks. UNet
is a U-shaped encoder-decoder network architecture consisting of four encoder blocks
and four decoder blocks that are connected via a bridge (Figure 7). The encoder network
(contracting path) acts as the feature extractor and learns an abstract representation of the
input image through a sequence of the encoder blocks. It halves the spatial dimensions
and doubles the number of filters at each encoder block. The decoder network takes the
abstract representation and generates a semantic segmentation mask. It doubles the spatial
dimensions and half the number of feature channels.

Figure 7. UNet architecture.

3.1.8. Mask R-CNN

Mask Region-based CNN (mask R-CNN) [47] is the state-of-the-art in terms of image
segmentation. It detects objects in an image and generates a high-quality segmentation
mask for each instance. Mask R-CNN can deal with two types of image segmentation:
semantic segmentation separates the subjects of the image from the background with-
out differentiating object instances; and instance segmentation accentuates the subjects
by detecting all objects in the image while segmenting each instance. The R-CNN is a
type of model that utilizes bounding boxes across the object regions and then evaluates
CNNs independently on all the Regions of Interest (RoI) to classify multiple image regions
into the proposed classes. An improved version of R-CNN is Fast R-CNN [55] which
extracts features using RoI Pooling from each candidate box and performs classification
and bounding-box regression. Faster R-CNN [44] was then designed to add the attention
mechanism with a region proposal network to the Fast R-CNN architecture. Mask R-CNN
is an extension of Faster R-CNN by adding a branch for predicting an object mask in
parallel with the existing branch for bounding box recognition (Figure 8). It outputs a class
label, a bounding-box offset, and the object mask, where the mask output requires the
extraction of a fine spatial layout of an object. The key element of Mask R-CNN is the pixel-
to-pixel alignment, which is the main missing piece of Fast/Faster R-CNN. Mask R-CNN
is simple to implement and train given the Faster R-CNN framework, which facilitates
a wide range of flexible architecture designs. Additionally, the mask branch only adds a
small computational overhead, enabling a fast system and rapid experimentation.
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Figure 8. Mask R-CNN model.

3.1.9. YOLO

YOLO [46] is a popular model for real-time object detection, which concerns what and
where objects are inside a given image. The algorithm applies a single neural network to
the full image, and then divides the image into regions and predicts bounding boxes and
probabilities for each region. These bounding boxes are weighted by the predicted proba-
bilities. YOLO is popular because it achieves high accuracy while also being able to run in
real-time. The algorithm ‘only looks once’ at the image in the sense that it requires only one
forward propagation pass through the neural network to make predictions. After non-max
suppression (which makes sure the object detection algorithm only detects each object
once), it then outputs recognized objects together with the bounding boxes. With YOLO, a
single CNN simultaneously predicts multiple bounding boxes and class probabilities for
those boxes. It trains on full images and directly optimizes detection performance.

3.2. Recurrent Neural Network (RNN)
3.2.1. Introduction of RNN

The RNN is a type of artificial neural network that is especially suitable for pro-
cessing sequential information such as natural languages or time series data such as
videos [56,57]. Applications of RNNs include handwriting recognition [58], speech recogni-
tion [59], gesture recognition [60], image captioning [61], natural language processing [62]
and understanding [63], sound event prediction [64], tracking and monitoring [65–69], etc.

Unlike traditional neural networks, the RNN can exploit sequential information by
means of a connection that acts as feedback to prior layers (Figure 9). The most distin-
guished characteristic of an RNN is that it has memory, taking information from prior
inputs to influence the current input and output. Because of this unique characteristic, an
RNN can remember important information of the input, which allows it to predict with
great precision what will happen next. That is why the RNN is the method of choice for
processing sequential data. Another salient characteristic of the RNN is that it shares the
same weight parameters within each layer of the network, whereas a normal feed-forward
network has different weights on each node.

The RNN employs the back-propagation through time (BPTT) algorithm to adjust and
fit the parameters of the model [70–72]. BPTT is almost the same as the standard BP, except
that it sums errors at each time step, while BP does not need to sum errors because it does
not share parameters between each layer. This also makes the RNN have two main issues
of vanishing gradients and exploding gradients [73]. In other words, gradients may decay
or explode exponentially due to the multiplications of a large number of small or large
gradients during training over time. Therefore, the RNN tends to forget the previous inputs
as the new inputs come in. One solution to these issues is to clip the gradient and scale the
gradient. Long Short-Term Memory (LSTM) [63] (see below) is proposed to handle this
issue by providing memory blocks in its recurrent connections.
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Figure 9. Diagram of an RNN. x, y represent the input and output, respectively, t is the time, h is the
memory unit of the network, and U, V, andW are weight matrices.

3.2.2. Bidirectional Recurrent Neural Network (BRNN)

The BRNN was firstly invented in 1997 by Schuster and Paliwal for increasing the
amount of input information available to the network [74]. It is a variant architecture
of the RNN. While the classical RNN can learn only from previous layers to predict the
current state, the BRNN learns from future data to improve its accuracy. This is achieved
by a structure of connecting two hidden layers of opposite direction to the same output
(Figure 10). BRNNs are especially beneficial in cases where the context of the input is
required. For example, in handwriting recognition, performance can be improved by
knowing the letters before and after the current letter [75]. The BRNN is more common in
supervised learning rather than semi-supervised or unsupervised learning because it is
difficult to compute a reliable probabilistic model.

Figure 10. Diagram of a BRNN. x, y represent the input and output, respectively, h, h′ represent the
two bidirectional memory units, and t is the time. Solid arrows represent data forward propagation,
and dashed arrows represent data back propagation.

The training of a BRNN is similar to the BPTT algorithm. However, since there are
forward and backward passes, simultaneously updating the weights for the two processes
leads to erroneous results. Therefore, to update forward and backward passes separately,
the forward and backward states are firstly processed in the forward pass, and then the
output values are passed. Subsequently, the reverse takes place for the backward pass;
that is, the output values are processed first, and then the forward and backward states
are processed. Finally, the weights are updated after the completion of both forward and
backward passes.

3.2.3. Long Short-Term Memory (LSTM)

The LSTM was proposed by Hochreiter and Schmidhuber, and has been widely used
for many applications [76]. It is an improved version of RNN, with the memory blocks
(also called cells) able to let new information in, forget information, and give information
enough importance to affect the output. It uses a mechanism of ‘gates’ for controlling its
memory process (Figure 11). There are three gates: input gate, output gate, and forget
gate. The input gate is responsible for accepting new information and information from the
previous hidden state. The forget gate is responsible for deciding the storage or removal of
information based on the learned weights. The output gate is responsible for determining
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the value of the next hidden state. This gate mechanism regulates the flow of information
in the RNN and resolves the short-term memory issue, thus enabling an RNN to hold its
value for a sufficient amount of time.

, ,

++

tanh

+
tanh

+

Figure 11. Diagram of a LSTM memory cell. c, h are the cell state and hidden state, respectively, t is
the time, and Ft, It, Ot are the forget gate, input gate, and output gate, respectively.

The gates in the LSTM are modeled in the form of sigmoid function. To decide which
information can pass through and what information can be discarded, the short-term
memory and input pass through the sigmoid function, which transforms the values to be
between 0 and 1, where 0 indicates the information is unimportant and 1 indicates the
information is valuable. The use of the sigmoid function also guarantees that the gates can
be back-propagated. The LSTM keeps the gradients steep enough and thus solves the issue
of vanishing gradients in RNNs. This also makes its training comparatively short and its
accuracy comparatively high.

3.2.4. Gated Recurrent Unit (GRU)

The GRU, proposed by Cho et al. in 2014 [56], is also a variant of RNN and is very
similar to the LSTM and, in some cases, produces equally good results [77]. It has two
gates, an update gate and a reset gate (Figure 12), rather than three gates as in LSTM. The
reset gate is responsible for the short-term memory and controls what information goes
out or is discarded. The update gate is responsible for long-term memory and regulates
information to be retained from previous memory as well as the new memory to be added.
In addition, the GRU uses hidden states rather than separate cell states in LSTM to regulate
the flow of information. Therefore, due to the reduced number of parameters and its
simpler architecture, GRU is faster to train with high effectiveness and accuracy. The GRU
is also able to address the short-term memory problem of RNN and to effectively hold
long-term dependencies in sequential data.

tanh

+ +

+ +

1-

Figure 12. Diagram of a GRU memory cell. xandy are the input and output, respectively, h is the
hidden state, t is the time, and RtandUt are the reset gate and update gate.
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3.2.5. RNN With Attention

Introducing attention to RNNs is probably the most significant innovation in sequential
models in recent times. Attention refers to the ability of a model to focus on specific elements
in the data. As mentioned, RNNs try to remember the entire input sequence through a
hidden unit before predicting the output. However, compressing all information into one
hidden unit may lead to information loss, especially for long sequences. To help the RNN
focus on the most important elements of the input sequence, the attention mechanism
assigns different attention weights to each input element. These attention weights designate
how important or relevant a given input sequence element is at a given time step.

The first attention mechanism developed for RNNs was proposed by Bahdanau et al. [78]
in 2014, who used it for language translation. Later, several RNN variants with attention
mechanism were proposed. Examples include the dual state attention based RNN for
time series prediction [79], the attention based GRU for visual question answering [80],
and the outstanding attention-LSTM for Google’s neural machine translation system [81].
The success of attention-LSTM has inspired more research of neural networks based on
attention mechanism, and with more and more powerful computing resources becoming
available, state-of-the-art models now typically use a memory-hungry architectural style
called transformers (Section 3.7).

3.3. AutoEncoder (AE)
3.3.1. Introduction of AE

The AE is a type of artificial neural network that can learn data representation in an
unsupervised manner [13]. It is a specific type of feed-forward neural network where the
input is the same as the output. Its aim is to learn a low-dimensional representation (also
called latent-space representation or encoding) of high-dimensional data by training the
network to capture the most important elements of the inputs, usually for dimensionality
reduction. By using it as an encoding and decoding technique, and combing it with other
DNNs such as CNN and RNN, the AE concept has been extensively applied for data
(images, audio, etc.) denoising [82,83], information retrieval [84,85], image inpainting and
enhancement [86,87], and anomaly detection [88,89].

A classical AE consists of three components named encoder, code, and decoder
(Figure 13). The encoder maps the input data to the feature space and produces the
code, while the decoder then reconstructs the data by mapping this code back to the data
space. The encoder is essentially a fully-connected neural network (though other types of
networks such as CNNs can also be used), and the decoder has a similar mirror network
structure as the encoder. The code is a compressed representation of the input and is
important to prevent the AE from memorizing the input and overfitting on the data.

Input Output

Code

Encoder Decoder

Figure 13. Diagram of an AE.
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Since the goal of an AE is to get an output identical to the input, it can be trained by
minimizing a reconstruction loss formulated as:

LA(x, x̂) = ||x− x̂||2, (1)

where x is the input and x̂ is the corresponding reconstruction by the AE. It is trained the
same way as a DNN via BP, and also has the vanishing gradient problem because gradients
may become too small as they go back through many layers of the AE.

3.3.2. Sparse AE (SAE)

The SAE is a regularized AE proposed by Ranzato et al. [90] to learn sparse represen-
tations. It is used to learn latent representations instead of redundant information of the
input data, and has been shown to improve performance on classification tasks. A SAE
selectively activates regions of the network, depending on the input data. As a result, it
is restrained to memorize the input data but can effectively extract features from the data.
More specifically, a SAE adds a nonlinear sparsity between its encoder and decoder to force
the code vector into a quasi-binary sparse code. There are two ways to impose this sparsity
regularization, and both are adding a constraint term to the loss function. By adding an L1
regularization as the constraint term, the loss function is formulated as:

LS(x, x̂) = L(x, x̂) + α ∑ |ah|, (2)

where L(x, x̂) is computed using Equation (1), α is the parameter to control the regulariza-
tion strength, and a is the activation of the hidden layer h. By adding a KL-divergence as
the constraint term, the loss function is formulated as:

LS(x, x̂) = L(x, x̂) + βKL(ρ||ρ̂), (3)

where L(x, x̂) is computed using Equation (1), β is the parameter to control the regular-
ization strength, ρ̂ is the average activation of the code over the input data, ρ is a sparsity
hyperparameter, and KL(ρ||ρ̂) is the KL divergence of (ρ||ρ̂), with minimum at ρ̂ = ρ.

3.3.3. Contractive AE (CAE)

The CAE is another variant of the classical AE, which adds a contractive regularization
to the code to improve its feature representation capability [91]. Its basic principle is that
similar inputs should have similar encodings and similar latent space representations.
To this end, CAE requires the derivative of the hidden layer activations to be small with
respect to the input. Thus, the mapping from the input to the representation will converge
with higher probability. The loss function of the CAE is defined as:

LC(x, x̂) = L(x, x̂) + γ||J(x)||2F, (4)

where L(x, x̂) is computed using Equation (1), γ is the parameter to control the regular-
ization strength, J(x) represents the Jacobian matrix of the encoder, and ||J(x)||2F is the
square of the Frobenius norm of the Jacobian matrix. It is worth mentioning that these two
terms in the CAE loss function contradict each other. While the reconstruction loss L(x, x̂)
aims to distinguish the difference between two inputs and observe changes in the data,
the regularization ||J(x)||2F aims to allow the model to ignore changes in the input data.
However, a loss function with these two terms enables the hidden layers of the CAE to
capture only the most essential information.

3.3.4. Denoising AE (DAE)

The DAE was originally proposed by Vincent et al. [92,93] based on the AE for
removing noise of the input. Now, it has become an important and essential tool for feature
extraction and selection. Different from the above types of AEs, the DAE does not have
the input image as its ground truth. Its basic idea is to slightly corrupt the input data but
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still use the uncorrupted data as target output. This way, it can force the DAE to recover
a noise-free version of the input data. Furthermore, a DAE model cannot simply learn a
map that memorizes the input and overfits the data because the input and target output
are no longer the same. Essentially, a DAE gets rid of noise with the help of nonlinear
dimensionality reduction. The loss function used by the DAE is expressed as:

LD(x, x̂′) = ||x− x̂′||2, (5)

where x′ is the corrupted version of input x, and x̂′ is the reconstruction by the DAE. A
DAE can exploit the statistical dependencies inherent in the input data and remove the
detrimental effects of noisy inputs.

3.3.5. Variational AE (VAE)

While AEs can learn a representative code from the input data and reconstruct the data
from this compressed code, the distribution of this compressed code remains unknown
and cannot be expressed in a probabilistic fashion. The VAE [94] is designed to handle this
issue and learn to format the code as a probability distribution. This way, the learned code
can be easily sampled and interpolated to generate new unseen data. Therefore, the VAE is
a kind of deep generative model. The VAE makes the code to be a Gaussian distribution, so
that the encoder can be trained to return its mean µ and variance σ2. The loss function for
VAE training is defined as:

LV(x, x̂) = L(x, x̂) + KL(N(µ, σ), N(0, 1)), (6)

where L(x, x̂) is computed using Equation (1), KL(N(µ, σ), N(0, 1)) is a regularization term
on the learned code to force the distribution of the extracted code to be close to a standard
normal distribution. The reason why an input is encoded as a distribution with some
variance rather than a single point is that it expresses the latent space regularization very
naturally. Sampling from this latent distribution and feeding it to the decoder can lead to
new data being generated by the VAE.

3.4. Restricted Boltzmann Machine (RBM)

The RBM was invented by Hinton in 2007 for learning a probability distribution over
its set of inputs [95]. It is a generative stochastic artificial neural network that has wide
applications in different areas such as dimensionality reduction [96], classification [97],
regression [98], collaborative filtering [99], feature learning [100], and topic modeling [101].

A classical RBM has two layers, named visible layer and hidden layer (Figure 14). The
visible layer has input nodes to receive input data, while the hidden layer is formed by
nodes that extract feature information from the data and output a weighted sum of the
input data [102]. An important and unique characteristic of the RBM is that the output
generated by the hidden layer is further processed to become a new input to the visible
layer. This process is called reconstruction or backward pass, and is repeated until the
regenerated input is aligned with the original input. This way, an RBM is able to learn
a probability distribution over the input. In an RBM, there is no typical output layer. In
addition, every node can be connected to every other node, and there are no connections
from visible to visible or hidden to hidden nodes.

Visible Layer

Hidden Layer H

V

Figure 14. Diagram of an RBM. V, H, and W represent the state vector of the visible layer, the state
vector of the hidden layer, and the weight matrix between hidden and visible layers, respectively.
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An RBM is also a generative model. It represents a probability distribution by the con-
nection weights learned from the data. Denote the m visible nodes as V = (v1, v2, . . . , vm)
and n hidden nodes as H = (h1, h2, . . . , hn). In a binary RBM, the random variables (V, H)
take values (v, h) ∈ {0, 1}m+n, and the joint probability distribution is given by the Gibbs
distribution p(v, h) = 1/Ze−E(v,h) with the energy function defined as [103]:

E(v, h) = −
n

∑
i=1

m

∑
j=1

wijhivj −
n

∑
i=1

bihi −
m

∑
j=1

cjvj, (7)

where Z = ∑v,h e−E(v,h) is the normalization factor, i ∈ 1, 2, . . . , n and j ∈ 1, 2, . . . , m, wij is a
weight associated with the edge between nodes vj and hi, and bi and cj are biases associated
with the ith visible and the jth hidden variable, respectively. The RBM has proven to be
capable of achieving highly expressive marginal distributions [104].

3.5. Generative Adversarial Network (GAN)
3.5.1. Introduction of GAN

The GAN was firstly proposed by Goodfellow et al. [105] and has become one of the
most popular generative adversarial models. Its purpose is to learn the distribution of input
data and thus enable the network to generate new data from that same distribution. Since
the GAN was proposed, it has gained much attention in various areas such as synthetic
training data [106], image and audio style transfer [107], music generation [108], text
to image generation [109], super-resolution [110], semantic segmentation [111], natural
language processing [112], and predicting the next frame in a video [113].

A GAN is basically composed of two neural networks, named generator and discrimi-
nator (Figure 15). The generator takes a random vector sampled from a noise distribution
as input and generates samples. The discriminator takes the generated samples and real
samples as input and tries to distinguish them as real or fake. These two networks compete
with each other. The goal of the generator is to generate fake samples that are hard for the
discriminator to distinguish from real samples. The goal of the discriminator is to beat the
generator by identifying whether its received samples are fake or real. This competition
between the generator and discriminator goes on until the generator manages to generate
fake samples that the discriminator cannot distinguish from real ones.

Discriminator

Real or Fake

Generator

Real data

Generated fake dataLatent variable

Figure 15. Diagram of a GAN.

This zero-sum game is modeled as an optimization problem by:

min
G

max
D

L(D, G), (8)

where D and G denote the generator and discriminator, respectively, and

L(D, G) = Ex∼pdata(x)[log(D(x))]−Ex∼pz(z)[1− log(D(G(z)))], (9)

where x is the input data, pdata(x) is the distribution of input data, and z is noise from a
distribution pz(z). The GAN is trained in an alternative way of firstly maximizing the dis-
criminator loss and then minimizing the generator loss. Both generator and discriminator
employ independent back-propagation procedures. In this way, GANs have the ability to
learn the data distribution in an unsupervised manner.
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3.5.2. Deep Convolutional GAN (DCGAN)

The DCGAN, proposed by Radford et al. [114], is a convolution-based GAN. It is
one of the most powerful and successful types of GAN, and has been widely used in
many convolution-based generation-based techniques. Compared to GAN, the DCGAN
uses convolutional and convolutional-transpose layers to implement its generator and
discriminator, and this is the origin of its name. Another interesting characteristic of
DCGAN is that, unlike the typical neural networks to map input to a binary output, or a
regression output, or even a categorical output, the generator of a DCGAN can map from
random noise to images. For example, the generator of the DCGAN in [114] takes in a noise
vector of size 100× 1 and maps it into an output image of size 64× 64× 3 (Figure 16). The
DCGAN can be used to generate images as ‘real’ as possible from a distribution.
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Figure 16. Diagram of a DCGAN.

3.5.3. Conditional GAN (cGAN)

The cGAN (Figure 17) is a type of GAN whose generator and discriminator are
conditioned on some auxiliary information from other modalities [115]. As a result, it can
learn multimodal mapping from inputs to outputs by feeding it with different contextual
information. In other words, a cGAN allows us to guide the generator to generate the kind
of fake samples we want. The input to the auxiliary layer can be class labels or some other
properties we expect from the generated data. As the cGAN uses some kind of labels for
it to work, it is not a strictly unsupervised learning algorithm. The advantages of using
additional information are (1) the convergence will be faster and (2) the generator can
generate specific output given a certain label.

Discriminator

Real or Fake

Generator

Real data

Generated fake dataLatent variable

ConditionCondition

Figure 17. Diagram of a cGAN.

3.5.4. Other Types of GANs

Other well-known types of GANs include Info GAN (also called iGAN) [116], Auxi-
lary Classifier GAN (ACGAN) [117], Stacked GAN [118], Wasserstein GAN [119], Cycle
GAN [120], and Progressive GAN [121].

(1) The Info GAN is a modified GAN that aims to learn interpretable and meaningful
representations. To this end, it splits the input of the generator into two parts: the typical
noise and a new “latent code” which is composed of control variables. The code is then
made meaningful by maximizing the mutual information between the code and the gener-
ated output. This way, the generator can be trained by using the control variables to affect
specific properties of the generated outputs.
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(2) The ACGAN is similar to the cGAN because both their generators take noise and
labels as input. However, the ACGAN has an auxiliary class label output compared to the
cGAN. Therefore, the ACGAN can be seen as an extension of the cGAN. It has the effect of
stabilizing the training process and allowing the generation of large, high-quality images,
while learning representations in a latent space independent of class labels.

(3) The Stacked GAN is an extension of the GAN for generating images from text by a
hierarchical stack of cGANs. Its architecture is composed of a set of text-conditional and
image-conditional GANs. More specifically, the first-level generator is conditioned on text
and generates a low-resolution image. The second-level generator is conditioned on both
the text and the low-resolution image and outputs a high-resolution image.

(4) The Wasserstein GAN is an advanced GAN that aims to better approximate the
distribution of data observed in a given training dataset. To this end, it uses a critic rather
than a discriminator to scores the realness or fakeness of a given image. Its underlying
idea is to let the generator minimize the distance between the distribution of the data
in the training dataset and the distribution of the generated samples. The advantage of
Wasserstein GAN is that its training process is more stable and less sensitive to model
architecture and hyperparameter configurations.

(5) The Cycle GAN is an advanced GAN proposed for image-to-image translation.
Its outstanding characteristic is that it learns mapping between inputs and outputs using
an unpaired dataset. The Cycle GAN simultaneously trains two generators and two
discriminators. One generator is responsible for generating images for the resource domain
learned from, and the other is responsible for generating images for the target domain.
Each generator has a corresponding discriminator.

(6) The Progressive GAN is proposed for stable training and large-scale high-resolution
image generation. Similar to a GAN, the Progressive GAN consists of a generator and
a discriminator, which are symmetrical to each other. Its key feature is to progressively
grow the generator and discriminator, starting from a low resolution, and then adding new
layers to increase the model’s fine details as training progresses. As a result, training is
faster and more stable, producing images of unprecedented quality.

3.6. Graph Neural Network (GNN)

Graph neural networks are a class of neural networks that operate on the graph
structure, where data are generated from non-Euclidean domains and represented as
graphs with complex relationships and interdependencies between nodes [122]. Examples
of graph data include social networks, citation networks, molecular structures, and many
other types of data that are organized in a graph format.

A graph is represented as G = (V, E), where V is the set of vertices or nodes, and E is
the set of edges. Let vi ∈ V denote a node and eij = (vi, vj) ∈ E denote an edge pointing
from vi to vj. The neighborhood of a node v is defined as N(v) = {u ∈ V|(v, u) ∈ E}.
The adjacency matrix A is an n× n matrix with Aij = 1 if eij ∈ E and Aij = 0 if eij /∈ E.
A graph may have node attributes X, where X ∈ Rn×d is a node feature matrix with
xv ∈ Rd representing the feature vector of a node v. Furthermore, a graph may have edge
attributes Xe, where Xe ∈ Rm×c is an edge feature matrix with xe

v,u ∈ Rc representing
the feature vector of an edge (v, u). A directed graph is a graph with all edges directed
from one node to another. An undirected graph is considered as a special case of directed
graphs, where there is a pair of edges with inverse directions if two nodes are connected. A
graph is undirected if and only if the adjacency matrix is symmetric. A spatial–temporal
graph is an attributed graph where the node attributes change dynamically over time. The
spatial–temporal graph is defined as G(t) = (V, E, X(t)) with X(t) ∈ Rn×d.

There are three general types of analytics tasks on graphs: graph-level, node-level,
and edge-level. In a graph-level task, the goal is to predict a single property for an
entire graph [123]. This is often referred to as a graph classification task, as the entire
graph is associated with a label. To obtain a compact representation on the graph level,
GNNs are often combined with pooling and readout operations [124–126]. Node-level
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tasks are concerned with predicting the identity or role of each node in a graph [127],
and therefore, the model outputs relate to node regression and node classification tasks.
Recurrent GNNs and convolutional GNNs can extract high-level node representations by
information propagation and graph convolution. With a multiperceptron or a softmax layer
as the output layer, GNNs are able to perform node-level tasks in an end-to-end manner.
Similarly, an edge-level task predicts the property or presence of edges in a graph, hence
the outputs relate to the edge classification and link prediction tasks. With two nodes’
hidden representations from GNNs as inputs, a similarity function or a neural network can
be utilized to predict the label/connection strength of an edge.

Based on the model architectures, GNNs can be categorized into recurrent graph
neural networks, convolutional graph neural networks, graph autoencoders and generative
graph neural networks, and spatial-temporal graph neural networks.

3.6.1. Recurrent Graph Neural Network (RecGNN)

RecGNNs aim to learn node representations with recurrent architectures. A repre-
sentative model in this class is the GNN proposed by Scarselli et al. [128], which updates
the states of nodes by exchanging neighborhood information recurrently until a stable
equilibrium is researched, as in the following equation:

h(t)
v = ∑

u∈N(v)
f
(

xv, xe
(v,u), xu, h(t−1)

u

)
, (10)

where f (·) is the parametric function and h(0)
v is the initial state randomly set. Other

popular RecGNNs include the GraphESN [129] which extends echo state networks to
improve the training efficiency of GNN, and the Gated GNN [130] which employs a gated
recurrent unit as the recurrent function that reduces the recurrence to a fixed number of
steps. RecGNNs are conceptually important and inspired later research on ConvGNNs. In
particular, the idea of information passing is inherited by spatial-based ConvGNNs.

3.6.2. Convolutional Graph Neural Network (ConvGNN)

ConvGNNs generalize the operation of convolution from grid data to graph data. The
main idea is to generate a representation of a node v by aggregating its own features xv and
neighbors’ features xu, where u ∈ N(v). Different from RecGNNs, ConvGNNs stack multi-
ple graph convolutional layers to extract high-level node representations. ConvGNNs play
a central role in building up a great deal of other complex GNN models. ConvGNNs can be
further divided into spectral-based methods and spatial-based methods: the first category
defines graph convolutions by introducing filters from the perspective of graph signal
processing [131], and the latter inherits ideas from RecGNNs to define graph convolutions
by information propagation.

Spectral-based methods have a solid mathematical foundation in graph signal process-
ing, and they are based on the normalized graph Laplacian matrix which is a mathematical
representation of an undirected graph, defined as L = In − D−1/2 AD−1/2, where D is a
diagonal matrix of node degrees. This normalized Laplacian matrix can be factored as
L = UΛUT , where Λ and U denote the ordered diagonal matrix of eigenvalues and the
corresponding eigenvector matrix, respectively. The graph convolution of an input signal x
with a filter g ∈ Rn is then defined as:

x ∗G g = F−1(F (x)�F (g)) = U(UTx�UT g) (11)

where � denotes the element-wise product, and F (x) is the graph Fourier transform of the
signal x. Let gθ = diag(UT g) denote a filter, the spectral graph convolution is simplified as:

x ∗G gθ = UgθUTx. (12)
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Popular spectral-based GNNs inlcude the Spectral CNN [132], ChebNet [125] and GCN [127],
where the key difference lies in the design of the filter gθ .

The spatial-based graph convolution is defined on the nodes’ spatial relations, and it
convolves a node’s representation with its neighbors’ representations to derive the updated
representation, inheriting the idea of information propagation of RecGNNs. Representative
spatial-based GNNs include the Diffusion CNN [133], message-passing neural network
(MPNN) [134], GraphSage [135], and graph attention network (GAT) [136] (which brings
in attention mechanisms), mixture model network (MoNet) [137], and FastGCN [138].
Since GCN [127] bridged the gap between spectral-based approaches and spatial-based
approaches, spatial-based methods have developed rapidly recently due to their attractive
efficiency, flexibility, and generality.

3.6.3. Graph Autoencoder (GAE) and Other Generative Graph Neural Networks

GAEs and generative GNNs are unsupervised learning frameworks that encode nodes
into a latent vector space and decode graph information from the latent representations.
GAEs are used to learn network embeddings and graph generative distributions. A net-
work embedding is a low-dimensional vector representation of a node that preserves a
node’s topological information. For network embedding, GAEs learn latent node represen-
tations through reconstructing graph structural information, such as the graph adjacency
matrix. Representative GAEs for network embedding include the DNGR [123], SDNE [139],
GAE [140], Variational GAE [140], and GraphSage [135]. These models combine different
AEs and other models such as ConvGNNs and LSTM. With multiple graphs, GAEs are able
to learn the generative distribution of graphs by encoding graphs into hidden representa-
tions and decoding a graph structure given hidden representations. The majority of GAEs
for graph generation are designed to solve the molecular graph generation problem [141],
which has a high practical value in drug discovery. These methods either propose a new
graph sequentially, such as DeepGMG [142] and GraphRNN [143], or in a global manner,
such as GraphVAE [144]. GNNs are also integrated with the architecture and training
strategy of GANs, resulting in MolGAN [145] and NetGAN [146].

3.6.4. Spatial–Temporal Graph Neural Network (STGNN)

Graphs in many real-world applications are dynamic, both in terms of graph structures
and graph inputs. STGNNs occupy important positions in capturing the dynamics of
graphs. The task of STGNNs can be forecasting future node values or labels, or predicting
spatial–temporal graph labels. STGNNs capture spatial and temporal dependencies of
a graph simultaneously. Current approaches integrate graph convolutions to capture
spatial dependence with RNNs or CNNs to model temporal dependence. Most RNN-
based approaches capture spatial–temporal dependencies by filtering inputs and hidden
states passed to a recurrent unit using graph convolutions [147]. As alternative solutions,
CNN-based approaches tackle spatial–temporal graphs in a non-recursive manner with
the advantages of parallel computing, stable gradients, and low memory requirements.
CNN-based approaches interleave 1-D-CNN layers with graph convolutional layers to
learn temporal and spatial dependencies, respectively, as in the CGCN [148].

3.6.5. Training of GNNs

Given a single network with part of the nodes labeled and others unlabeled, Con-
vGNNs can be trained in a semi-supervised manner to learn a robust model that effectively
identifies the class labels for the unlabeled nodes [127]. To this end, an end-to-end frame-
work can be built by stacking a couple of graph convolutional layers followed by a softmax
layer for multiclass classification. In addition, GNNs can be trained in a supervised manner
for graph-level classification, which is achieved by applying the graph pooling layers and
readout layers [123]. Finally, GNNs can learn graph embedding in a purely unsupervised
manner in an end-to-end framework (e.g., an AE framework [140]).
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3.7. Transformer

The transformer [149] is a prominent type of deep learning models that has achieved
impressive advances on various tasks such as computer vision and audio processing.
Originally proposed for natural language processing, the transformer mainly relies on deep
neural networks and the self-attention mechanism, emphasizing the global dependencies
between the input and output, thereby providing strong representation capability and
state-of-the-art performance. Due to the significant improvement made by the transformer
model, several variants have been proposed for either improving model performance or
adapting the model to specific tasks in recent years.

3.7.1. Vanilla Transformer

The transformer follows the encoder-decoder structure (Figure 18). The encoder is
composed of a stack of identical blocks with two modules: the multihead self-attention
layers and the position-wise fully connected feed-forward network (FFN). A residual skip
connection, followed by a batch normalization layer, is applied to each submodule. Besides
the two modules in the encoder block, the decoder block inserts an additional masked
multihead attention layer, which is specially modified to avoid positions from attending to
subsequent positions. In the following, we introduce the two modules in more detail.

Figure 18. The model architecture of the Transformer.

(1) The multihead attention layer adopts the self-attention mechanism with the Query-
Key-Value (Q-K-V) model. The inputs are first projected into three kinds of vectors: the
query vector q, the key vector k with dimension dk, and the value vector v with dimension
dv. After packing a set of these vectors together into three matrices, namely queries
Q ∈ RN×Dk , keys K ∈ RN×Dk , and values V ∈ RN×Dv , the scale dot-product attention can
be computed as follows:

Attention(Q, K, V) = softmax

(
Q · K>√

dk

)
· V = AV . (13)

In this process, Q ·K> computes a score between each pair of input vectors and yields
the degree of attention. The produced scores are divided by

√
dk to avoid the vanishing

gradient problem and improve the stability of training. The softmax operator transforms
the divided scores into probabilities A, which is also called the attention matrix. After
multiplying values V with the attention matrix, vectors with higher probabilities receive
more attention from the subsequent layers.
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Rather than using a single self-attention operation, multihead attention learns h dif-
ferent linear projections and transforms the queries, keys, and values into h sets with
Dk, Dk, Dv dimensions. Then, the self-attention operation can be implemented in parallel
and produce different output values, which are subsequently concatenated and projected
linearly back to Dm-dimension feature.

Multihead(Q, K, V) = concat(head1, . . . , headh)W
O

where headi = Attention
(

QW Q
i , KWK

i , VWV
i

) (14)

where W Q
i ∈ RDmodel ×Dk , WK

i ∈ RDmodel ×Dk , WV
i ∈ RDmodel ×Dv denote the parameters for

linear projections for the Q, K, V branches, respectively. WO
i ∈ RhDv×Dmodel denote the

parameters for linear projections after concatenation. In the vanilla transformer, Dk = Dv =
Dmodel /h = 64 and h = 8.

(2) The fully connected feed-forward network consists of two linear transformations
with a RelU activation function in between.

FFN(x) = max(0, xW1 + b1)W2 + b2 (15)

3.7.2. Transformer Variants

Motivated by the impressive success of the transformer, researchers have devoted
numerous efforts to make further progress in a variety of tasks. Improvements have been
achieved from three perspectives: using pretrained models (PTM), modifying the vanilla
transformer architecture, and adapting to new tasks.

(1) Using pretrained models: Compared with training a model from scratch, using
pretrained transformer models has been revealed to be beneficial for building up universal
feature representations. Powerful PTMs help reduce the need for task-specific architectures
by simple fine-tuning on the downstream datasets. Bidirectional Encoder Representations
from Transformers (BERT) [150] is the first fine-tuning based model with transformer
architecture for natural language understanding and pushed the performance frontier of 11
NLP tasks. Generative Pretrained Transformer (GPT) series [151,152] show that massive
PTMs with large-scale parameters can help achieve strong universal representation ability
and provide state-of-the-art performance on different types of tasks, even without the fine-
tuning process. Bidirectional and Auto-Regressive Transformers (BART) [153] generalized
the pretraining scheme and built a denoising auto-encoder model to further boost the
capacity in language understanding.

(2) Modifying the vanilla transformer architecture: As self-attention is considered
to be the fundamental component of the transformer, various architecture modifications
have been proposed to address its limitations including computational complexity and
ignorance of prior knowledge. Representative modifications including Low-rank based
Sparse attention [154], linearized attention [155], improved multihead attention [156], and
prior attention [157] have been designed to reduce complexity and make the most of the
structural prior. Another branch of important modifications is adapting the architecture
to be lightweight in terms of model size and computation, such as Lite Transformer [158],
Funnel Transformer [159] and DelighT [160].

(3) Adopting to new tasks: Besides NLP, the transformer concept has been adapted
in various fields, including computer vision [161–166] and multimodal data processing.
For vision tasks, the transformer architecture has been extensively explored. ViT [161]
is the first vanilla transformer architecture applied to image classification tasks without
any alternation. It directly reshapes the image patches and flattens them into a sequence
as the input. Experiments on large datasets such as ImageNet and JFT-300M show that
the transformer has great potential in capturing long-range dependency and suits vision
tasks well. Researchers also attempted to modify the network architecture and make it
more feasible to vision tasks. Transformer in Transformer (TNT)[165], iGPT [162], and Swin
Transformer [166] are representative models in this regard.
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3.8. Bayesian Neural Network (BNN)

While DNNs have been shown to achieve great success in different applications, they
are unable to deal with the uncertainty of a given task due to model uncertainty. This is due
to their essence of using BP to approximate a minimal cost of point estimates of the network
parameters, while discarding all other possible parametrizations of the network [167]. The
BNN is proposed to mitigate this by providing a strict framework to train an uncertainty-
aware neural network [168,169]. The application domains of BNN are very wide, including
recommender systems [170], computer vision [171], natural language processing [172],
speech recognition [173], biomedical applications [174], and so on.

The BNN is essentially a stochastic neural network trained using a Bayesian
method [175,176]. A stochastic neural network is a type of DNN involving stochastic
components into its network. The stochastic component is used to simulate multiple pos-
sible models with their associated probability distribution. The main aim of a stochastic
neural network is to obtain a better idea of the uncertainty associated with the model.
This is achieved by comparing the predictions of multiple models obtained by sampling
the model parameterization. The uncertainty is low if these models generate consistent
predictions, otherwise the uncertainty is high. This process can be formulated as:

y = Φθ(x) + ε, (16)

where θ = (W , b) are the parameters of the neural network which follow the probability
distribution p(θ), and ε is the random noise used to ensure the function Φ represented by
the network is only an approximation. This way, a BNN can be defined as a stochastic
neural network trained using Bayesian inference [177].

The uncertainty of a neural network is a measure of how certain a model is with its
prediction. With BNNs, there are two kinds of uncertainty: aleatoric uncertainty and epis-
temic uncertainty. The aleatoric uncertainty refers to the noise inherent in the observations,
and cannot be reduced by collecting more data. The epistemic uncertainty is also known
as model uncertainty and is caused by the model itself. It can be reduced by collecting
more data. The BNN usually solves this issue by placing a probability distribution on the
network weights or by learning a mapping from input to probabilistic outputs to derive
the estimation of uncertainty. More specifically, the epistemic uncertainty is modeled by
placing a prior distribution on the network weights and then capturing the degree of
change of these weights over the data. The aleatoric uncertainty is modeled by placing a
distribution on the outputs of the model.

One problem of BNNs is that they are hard to train. In practice, the Bayes by Backprop
algorithm proposed by Blundell et al. [178] is used for learning a probability distribution on
the network weights. Another problem of using BNNs is that they rely on prior knowledge,
and it is challenging to derive insights about plausible parametrization for a given model
before training. However, BNNs have become promising due to the following advantages.
Firstly, thanks to its stochastic component, BNNs can quantify uncertainty, which means
the uncertainty is more consistent with the observed errors. Moreover, BNNs are very
data-efficient because they can learn from a small dataset without overfitting. This is due
to the fact that they can distinguish the epistemic and aleatoric uncertainty. Finally, BNNs
enable the analysis of learning methods, which is important for many fields such as traffic
monitoring and medicine.

3.9. Fuzzy Deep Neural Networks (FDNN)
3.9.1. Introduction of FDNN

Typical DNNs are trained by minimizing the loss or error given an input through
gradient descent-based weight update [179]. This is a calculus-based method that iteratively
computes the minimum of the error function. However, obvious disadvantages of this
method are that it is computationally intensive and may not find the global minimum [180].
To address this issue, multiple FDNNs have been proposed, for example, the fuzzy RBM
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[181] and the Takagi Sugeno fuzzy deep network [182]. As an emerging method, FDNNs
have been applied in distributed systems [183], cloud computing [184], traffic control [185],
healthcare [186], image processing [187], and various other areas.

A FDNN is a hybridization of DNNs and fuzzy logic methods, to solve various
complex problems involving high-dimensional data. The key benefit of a DNN is its
ability to learn from data, but it cannot clarify how its final output is achieved. Combined
with fuzzy logic, a FDNN can interpret the results generated by the network [188]. More
specifically, a FDNN introduces an additional fuzzy inference into a DNN to create an
explainable rule-based structure. This way, through this rule-based structure, how a
decision is made by the network is understandable.

3.9.2. Types of FDNN

A FDNN can be comprised by a broad category of DNNs and fuzzy inference systems
in different architectures. Current architectures in the literature can be classified into three
categories: sequential FDNN, parallel FDNN, and cooperative FDNN [189].

A sequential FDNN has a structure that passes the data through the DNN and the
fuzzy inference system sequentially (Figure 19a). It is suitable for solving problems in-
volving high linearity, such as text documents, time-series data, video classification, and
speech recognition.

Input Data

Fuzzy System Deep Neural Network

Output Data

Input Data

Fuzzy System Deep Neural Network

Output Data

(a) (b)

Input Data Fuzzification Deep Neural Network Defuzzification Input Data

Learning Algorithm

(c)

Figure 19. Diagram of three types of FDNN. (a) Sequential FDNN, (b) Parallel FDNN, and (c) Coop-
erative FDNN.

A parallel FDNN has a structure that passes the data separately through the DNN and
the fuzzy inference system, and fuses the results to generate the output (Figure 19b). This
kind of FDNN has been used for multiple classification tasks [190].

A cooperative FDNN has a structure where the input data are firstly passed through a
fuzzy interface block to generate fuzzy values, which are subsequently input to a DNN
followed by a defuzzification block to convert the fuzzy values into output data (Figure 19c).
An example application of the cooperative FDNN is fuzzy classification [191].

3.10. Deep Reinforcement Learning (DRL)

A reinforcement learning (RL) agent executes a sequence of actions and observes states
and rewards, with major components being the value function, policy and model. A RL
problem may be formulated as a prediction, control or planning problem, and solution
methods may be model-free or model-based, with value function and/or policy [192].
Exploration-exploitation is a fundamental trade-off in RL. Knowledge would be critical
for RL. DRL, integrating deep learning and RL, represents a step forward in building
autonomous systems with a higher-level understanding.
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3.10.1. Deep Q-Network

Value function is a fundamental concept in reinforcement learning, and temporal dif-
ference learning [193] and its extension, Q-learning [194], are classic algorithms for learning
state and action value functions respectively. Q-learning learns the action-value function
Q(s, a), i.e., how good it is to take an action a at a particular state s, to build a memory
table Q[s, a] that stores Q values for all possible combinations of s and a. However, if the
combinations of states and actions are large, the memory and computation requirement for
Q is very high. Deep Q-learning addresses this problem by generalizing the approximation
of the Q-value function rather than remembering the solutions. The challenge in RL is
that both the input and target change constantly during the process, which makes training
unstable. Deep Q-Network (DQN) [195] ignited the field of DRL, making an important
contribution in stabilizing the training of action value function approximation with DNNs
using experience replay. In addition, it designs an end-to-end RL approach, with only the
pixels and the game score as inputs, so that only minimal domain knowledge is required.
Important extensions of DQN are the Double DQN [196] which addresses the over-estimate
issue in Q-learning, and Dueling DQN [197] which uses two separate heads to compute the
state value function V(s) and associated advantage function A(s, a) (Figure 20).

Figure 20. Deep Q-Network and Dueling Deep Q-Network architectures.

3.10.2. Asynchronous Advantage Actor-Critic (A3C)

A3C [198] uses multiple agents with each agent having its own network parameters
and a copy of the environment. These agents interact with their respective environments
asynchronously, learning with each interaction. Each agent is controlled by a global
network. As each agent gains more knowledge, it contributes to the total knowledge of
the global network. The presence of a global network allows each agent to have more
diversified training data. An actor-critic algorithm predicts both the value function V(s)
and the optimal policy function π(s). The learning agent uses the value of the value
function (critic) to update the optimal policy function (actor). It determines the conditional
probability P(a|s; θ), the parameterized probability that the agent chooses the action a when
in state s. Different from most deep learning algorithms, asynchronous methods can run
on a single multi-core CPU.

3.10.3. Trust Region Policy Optimization (TRPO)

A policy maps the state to action. Policy optimization is to find an optimal mapping
from state to action. Policy gradient methods are popular in RL. The basic principle uses
gradient ascent to follow policies with the steepest increase in rewards. However, large
policy changes can destroy training, and it is not easy to map changes between policy and
parameter space and to deal with the vanishing or exploding gradient problems and poor
sample efficiency. The challenge is to have an accurate optimization method to limit the
policy changes and guarantee any change will lead to improvement in rewards. A more
commonly used method is to use a trust region, in which optimization steps are restricted
to lie within a region where the approximation of the true cost function still holds. By
preventing updated policies from deviating too wildly from previous policies, the chance
of a catastrophically bad update is lessened, and many algorithms that use trust regions
guarantee or practically result in monotonic improvement in policy performance. The
idea of constraining each policy gradient update, as measured by the Kullback–Leibler
(KL) divergence between the current and proposed policy, has a long history in RL [199].
TRPO [200] is an algorithm in this line of work that has been shown to be relatively robust
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and applicable to domains with high-dimensional inputs. To achieve this, TRPO optimizes a
surrogate objective function—specifically, it optimizes an (importance sampled) advantage
estimate, constrained using a quadratic approximation of the KL divergence. It avoids
parameter updates that change the policy too much with a KL divergence constraint on the
size of the policy update at each iteration. The generalized advantage estimation (GAE)
proposed several more advanced variance reduction baselines [201]. The combination of
TRPO and GAE remains one of the state-of-the-art RL techniques in continuous control.

3.11. Deep Transfer Learning (DTL)

Deep learning has a strong dependence on massive training data compared to tra-
ditional machine learning methods. Having sufficient training data is a prerequisite for
a deep learning model to understand the latent patterns of the data. However, this is
quite a challenge itself since the collection of data is time consuming and expensive. It
is difficult to build a large-scale and high-quality annotated dataset in many fields. In
addition, the training of deep learning models relies on intensive computation, which in
practice can be challenging due to limited resources (e.g., high performance GPUs) and
time constraints. Transfer learning is a concept of reusing a pretrained model on a new
problem, which is an efficient way to tackle the insufficient training data problem and
reduce the computational resource requirement and training time. It is very common in
deep learning to use a pretrained model as a feature extractor in a new task or fine-tune the
pretrained model (or some high-level parts of the model) to a new learning task.

Let Ds and Dt denote the source domain and target domain, and Ts and Tt denote
two learning tasks (Ds 6= Dt or Ts 6= Tt), respectively. Transfer learning can be defined as
the process of enhancing the learning of the target predictive function fT(·) in Dt using
knowledge derived from Ds and Ts. It is a deep transfer learning task when fT(·) is a
nonlinear function that reflects a DNN. There are three forms of transfer learning: inductive
transfer learning [202], transductive transfer learning [203], and unsupervised transfer
learning [204]. In the first, Ts and Tt are different, and some labelled data in Dt are required
to induce fT(·) for use in Dt. In the second, we have the same Ts and Tt but different Ds
and Dt, while no labelled data in Dt are available but labelled data in Ds are available.
Finally, in the last setting, Tt is different from but related to Ts, and there are no labelled
data in both Ds and Dt during training. The focus is on solving unsupervised learning
tasks in Dt, such as clustering, dimensionality reduction, and density estimation.

According to the content to be transferred, transfer learning methods can be cate-
gorised into four cases: (1) instance-based approaches try to reweight the samples in Ds for
learning in Dt [205]; (2) feature-based approaches encode knowledge into feature represen-
tations which are transferred across domains to help improve the performance of Tt [202];
(3) parameter-based approaches transfer knowledge across tasks through the shared param-
eters of the Ds and Dt learning models [206]; and (4) relational-based approaches, which
transfer the knowledge through learning the common relationships between Ds and Dt.
Recently, statistical relational learning techniques dominate this context [207].

3.12. Federated Learning (FL)

FL is applied in a situation where a group of clients wants to collaboratively train a
global model without sharing their private local dataset [208]. Compared with conven-
tional machine learning methods which require gathering different datasets, clients in FL
collaboratively train a global model by exchanging local model weights/gradients without
sharing their local dataset. There are typically two key players in FL: (1) the clients holding
the local dataset and training the local model, and (2) the central server coordinating the
training process and updating the global model. In general, FL contains three phases [209]:

Phase 1: FL initialization. The central server initializes the FL training model and sets
the hyperparameters, including the number of FL training iterations, the total
number of participating clients, the number of clients selected at each training
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iteration, and the local batch size used in each training iteration. Then, the
central server broadcasts the global model to the selected clients.

Phase 2: Local model training and updating. In each FL training iteration, clients first
update the local model using the shared global model and train the local model
using the local dataset. Then, clients send the local model weights or gradients
to the central server for model aggregation.

Phase 3: Global model aggregation. The central server aggregates the model weights or
gradients from the participating clients and shares the aggregated model to the
clients for the next training iteration.

Algorithm 1 shows the pseudocode of an FL system proposed in [210]. According to
the characteristics of training data, FL methods are usually classified into two categories:
horizontal FL and vertical FL [208,211].

Algorithm 1 FedAvg [210]
Input:

Nglobal: Maximum number of global iterations, n: the total number of participating clients, m: the
number of clients used in each global iteration, Nlocal: the number of local epochs, and η: the
local learning rate.

Output:
Global model weight wG

Processing:
1: [Central Server]
2: Initialize w0

G
3: for each iteration t from 1 to Nglobal do
4: Mt includes m clients randomly selected from the n clients
5: for each client i ∈ Mt in parallel do
6: wt

i , Ni ← LocalTraining(i, wt
G)

7: end for
8: wt+1

G = 1
∑m

j=1 Nj
∑m

i=1 Niwt
i

9: end for
10: [Each Participating Client]
11: LocalTraining(i, w):
12: Bi is the set of batches for the local dataset Di
13: for each epoch j from 1 to Nlocal do
14: for each batch b ∈ Bi do
15: w← w− η∇L(w; b)
16: end for
17: end for
18: return the weights w and Ni = |Di|

3.12.1. Horizontal FL (HFL)

HFL is used in scenarios where the datasets of the clients share the identical feature
space but a different sample ID space [210,212]. For example, the electricity usage held by
different electricity supplier companies may have the same feature space but different ID
space. The communication protocols in FL can be divided into two classes: client-server
protocol [210,213] and peer-to-peer protocol [212,214,215]. The client-server protocol de-
ploys a central server to coordinate the training process, whereas the peer-to-peer protocol
randomly selects a client as the server for the coordination work in each iteration.

In the client-server protocol, the clients are assumed honest and the server is assumed
honest but curious. To avoid private information leakage, the exchanged model parameters
are usually encrypted or masked by clients. The key steps are summarized as follows:

Step 1: The central server initializes the model and hyperparameters and allocates com-
putation tasks to named clients.

Step 2: The participating clients train their local models on their local dataset, encrypt
the model weights/gradients, and transmit them to the central server.

Step 3: The server conducts model aggregation, for example by averaging.
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Step 4: The server broadcasts the updated model to all clients.
Step 5: The clients decrypt the model and update their local models.

In the peer-to-peer protocol, as there is no central server, two approaches are usually
adopted to coordinate the training process:

(1) Cyclic Setting: All clients form a circular chain, denoted by {C1, C2, . . . , Cn}. Client
Ci transmits its local model to client Ci+1. Client Ci+1 aggregates the received model
with its local model which is trained on its local dataset and then transmits the
updated model along the chain to client Ci+2. The training process stops once the
termination condition is met.

(2) Random Setting: Client Ct randomly picks a client Ci from all participants with
equal chance and sends its model information to another client Ci. Ci aggregates
the received model with its local model which is trained on its local dataset, then
randomly picks another client Cj with equal chance and sends the updated model to
it. The training process stops once the termination condition is met.

3.12.2. Vertical FL (VFL)

VFL is used in scenarios where datasets between participating clients share the iden-
tical sample ID space but a different feature space. For example, a bank and an online
shopping company may have the same customers but provide different services. The
communication protocols for VFL can be divided into two classes: communication with a
third-party coordinator [216] and communication without a third-party coordinator [217].
Assume that two clients, C1 and C2, plan to train a global model using their local datasets,
and that samples from C1 are labeled. In addition, C1 and C2 are assumed honest but
curious to each other.

To protect the private data, the communication protocol with a third-party coordinator
is designed as follows [216]:

Step 1: As the two datasets of C1 and C2 contain samples with different IDs, it is neces-
sary to extract the common samples sharing the same IDs [218].

Step 2: The coordinator C3 produces a pair of public and private keys and broadcasts
the public key to C1 and C2.

Step 3: C1 and C2 compute encrypted gradients and add a mask. In addition, C1 com-
putes the encrypted loss. C1 and C2 then transmit the encrypted results to C3.

Step 4: C3 decrypts the received results and broadcasts them back to C1 and C2. C1 and
C2 then update their local model using the received information.

To protect the private data, the communication protocol without a third-party coordi-
nator is designed as follows [217]:

Step 1: A sample ID alignment process [219] is first employed to select the shared IDs
between C1 and C2. Samples sharing the same IDs are confirmed to train a
vertical FL model.

Step 2: C1 produces an encryption key pair and transmits its public key to C2.
Step 3: The two clients initialize their model weights and compute their partial predic-

tion results. C2 then transmits its result to C1.
Step 4: C1 computes the model residual, encrypts the residual, and transmits it to C2.
Step 5: C2 computes the encrypted gradient and transmits the masked gradient to C1.
Step 6: C1 decrypts the masked gradient and transmits it back to C2. Then, C1 and C2

update their model locally.

3.13. Multiple Instance Learning (MIL)
3.13.1. Introduction of MIL

The concept of multiple instance learning was firstly proposed by Dietterich et al. [220]
for investigating the problem of drug activity prediction. It is a type of weakly supervised
learning where the training set is composed of many bags and each bag contains many
instances, and a label is provided for the entire bag rather than each individual instance
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in it. This problem occurs when dealing with a lack of detailed annotation for large
quantities of data. For example, it emerges when developing computer-aided diagnosis
algorithms where medical images have only a patient-level diagnosis label rather than
costly local labels annotated by experts [221]. Furthermore, it naturally occurs in a number
of real-world learning scenarios, including image and video classification [222], document
classification [223], and sound classification [224].

Generally, there are two assumptions in multiple instance learning: the standard and
the collective assumption. The former assumes only negative instances are contained in
negative bags, while one or more positive instances are contained in positive bags. This
means that as long as there is one positive instance in the bag, the bag is positive. On the
contrary, the collective assumption refers to cases where more than one positive instance is
needed to identify a positive bag. These two assumptions are applied to different problem
domains. For example, the standard assumption works well for drug activity prediction,
while the collective assumption is more suitable for traffic jam detection.

3.13.2. Training Mechanism of MIL

The MIL problem under the standard assumption can be solved through alternate
optimization. Specifically, the labels of all instances are assumed to be known at first, then
a classification model can be obtained through supervised learning. Subsequently, this
model is used to make predictions for each training instance, and the labels of the training
instances are updated accordingly, and then this classification model can be retrained with
the updated labels again, and this process repeats until convergence. Thus, the optimization
process has mainly two parts: supervised learning and label updating.

When training the supervised learning model, only the predicted “most correct” (i.e.,
the highest classification score) is selected from the positive instance bag, and other in-
stances in the positive instance bag are discarded, regardless of whether the prediction
is positive. This is because, under the standard assumption, the MIL can only consider
the “most correct” instance in the positive instance bag. Therefore, this selection strategy
is exactly in line with the problem definition. In addition, if there are enough negative
instances, only the instance that is predicted to be “most correct” in each negative instance
bag can be used for training. Such a negative instance is also called hard instance or most
violated sample. In practice, they are most effective for fast model convergence.

3.13.3. Challenges of Using MIL

The unique challenges of using MIL arise from four aspects: the level of prediction, the
composition of bags, the ambiguity of instance labels, and the distribution of the data [225].
These factors affect the choice and the performance of MIL algorithms.

(1) The level of prediction refers to whether a network makes the prediction on a bag-
level or an instance-level. These two kinds of tasks employ different loss func-
tions, and thus algorithms designed for bag classification are not optimal for in-
stance classification. Cheplygina et al. [226] details how to choose algorithms for
different problems.

(2) The composition of bags refers to the ratio of instances from each class or the relation
between instances. The proportion of positive instances in positive bags is generally
defined as witness rate (WR). If the WR is very high, which means positive bags
contain only a few negative instances, the problem can be solved in a regular su-
pervised framework. However, if the WR is very low, which means a serious class
imbalance problem because a few positive instances have a limited effect on training
the network, many algorithms will have a poor performance. Several MIL algorithms
have been proposed for this problem [227–229].

(3) The ambiguity of instance labels refers to label noise or instances not belonging
to a class clearly. This is inherent to weakly supervised learning. Some MIL algo-
rithms impose strict requirements on the correctness of bag labels, such as the DD
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algorithm [230]. For practical problems where positive instances may be found in
negative bags, algorithms working under the collective assumption are needed [231].

(4) The distributions of positive and negative instances also affect MIL algorithms. This
has two sides. First, the positive instances can either be located in a single cluster
in feature space or be corresponding to many clusters, which leads to different
applicable MIL algorithms [230,232]. Second, the distribution of the training data
can or cannot entirely represent the distribution of negative instances in the test data,
which also leads to different applicable MIL algorithms [233,234].

4. Deep Learning in Diverse Intelligent Sensor Based Systems
4.1. General Computer Vision Sensor Systems

A well-known application domain of deep learning is general computer vision, where
the processed data are images and videos acquired from camera-based sensor systems.
The research in this domain focuses on enabling computers to gain an understanding like
that of human vision from images or videos. Deep learning is used for a wide range of
important tasks in this domain, as described next.

4.1.1. Image Classification

Conceptually, image classification is one of the simplest yet most fundamental prob-
lems in computer vision. It refers to the process of predicting information classes from
an image. CNNs are the most commonly employed techniques for solving this problem.
Specifically, the CNNs take an image as input and aim to output the class of the input
image. Since AlexNet [37] achieved remarkable classification performance in the ImageNet
challenge, many types of CNN models have been proposed for image classification, such
as VGG [39], ResNet [41], and DenseNet [42]. In 2017, Xie et al. proposed ResNeXT [235],
which is an extension of ResNet and VGG, and achieved the state-of-the-art performance of
3.03% top-five errors. Around the same time, the problem of supervised image classification
was regarded as “solved”, and the ImageNet classification challenge concluded. However,
in many applications, the tasks cannot be formulated as plain vanilla image classification
problems. Many object classes may be present in a single image. Therefore, more research
efforts are being made toward object detection and segmentation.

4.1.2. Object Detection

Object detection is also a fundamental problem in computer vision. Its aim is to
identify and localize different objects in an image. Therefore, deep learning models for this
problem usually consist of two components: the backbone component, which is similar to
an image classification model, and the region proposal component, for predicting bounding
boxes. Region-proposal and Region-based CNN (R-CNN) is a pioneering work for object
detection [236]. However, it requires much computing time and memory for training.
Therefore, several improved variants of R-CNN have been proposed, such as the renowned
Fast R-CNN [55] and Faster R-CNN [44]. Another kind of models for object detection is
represented by YOLO (You Only Look Once), which achieved reasonable performance
for real-time object detection [46]. Other advanced models include Region-based Fully
Convolutional Networks (R-FCNs) [237], which use ResNet as an object detector and are
faster than the Faster R-CNN, and the Single-Shot MultiBox Detector (SSD) [238], which
is even faster than YOLO and has comparable accuracy to Faster R-CNN. Most object
detection methods mentioned above incur a high computational cost due to their bounding
box processing. More architectures addressing this issue and achieving higher accuracy
can be found in recent overview articles [239,240].

4.1.3. Semantic Segmentation

Semantic segmentation refers to the process of dividing an image into meaningful
types of regions. It is a vital step for many image processing and analysis tasks. Its aim is
to label an image at the pixel level, or more accurately to assign each pixel to the class it
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most likely belongs to. A predominant and outstanding architecture particularly for the
semantic segmentation problem is U-Net [43]. Due to the huge success of U-Net, many
variants have been proposed to fit specific applications and achieved great results [241–245].
U-Net was originally proposed for addressing medical image segmentation. Similarly,
other domain-oriented deep neural networks have been developed, including SegNet [246],
PSPNet [247], and DeepLab [248]. More detailed discussions of semantic segmentation can
be found in various surveys [249–251]. In a way, semantic segmentation can be seen as a
rough classification, for example two different dog objects being segmented as one entity,
but in many applications we need a finer segmentation, where each dog is segmented out
separately. Hence, instance segmentation methods are important.

4.1.4. Instance Segmentation

Instance segmentation is essential for many real-world application scenarios such
as autonomous driving, medical imaging, robot vision, and so on. It refers to detecting
instances of objects and, more challenging, demarcating their boundaries. Because in-
stance segmentation involves both the detection of different objects and their per-pixel
segmentation, networks for solving it can be either R-CNN driven or FCN driven. Mask
R-CNN [47] is one of the representative networks. Its overall structure is the two-stage
object detection network Faster R-CNN, where the box head is used for detection and
the mask head for segmentation. Fundamentally, these instance segmentation networks
employ object detection networks in identifying the object bounding boxes, while an extra
component mask head is used to further extract the foreground of the bounding boxes.
Other reputable networks include YOLACT [252] and SOLO [253] inspired by YOLO, and
PolarMask [254] and AdaptIS [255] inspired by the object detection network FCOS [256].
See several recent reviews of instance segmentation for more details [257–259].

4.1.5. Pose Estimation

Pose estimation refers to the problem of inferring the pose of a person or an object in
an image or video. In other words, it concerns determining the position and orientation
of the camera relative to a given person or object of interest. This is typically achieved by
identifying, locating, and tracking a number of key points of the person or object. This
problem is basic and important because it occurs in many real-world applications such
as object/person tracking. Deep learning is often employed to detect and track these key
points. There are many specific neural network architectures for this purpose, and the most
robust and reliable ones that make good places to start include Stacked-Hourglass networks
[260], Mask R-CNN, and PoseNet [261]. Key factors in designing DNNs for pose estimation
include using dilation convolution, upsampling operations, and skip connections. This is
because pose estimation requires a higher-resolution feature map and is more sensitive
to the location of keypoints compared to classification/detection tasks. More advanced
networks have been described in various reviews [262–264].

4.1.6. Style Transfer

Style transfer refers to the computer vision task of blending two input images, named
content image and style reference image, and producing an output image that maintains
the core elements of the content image while following the style of the style reference image.
It can power practical applications such as photo and video editing, gaming, virtual reality,
and so on. Neural networks have become the state-of-the-art method for style transfer.
Generally, CNNs are the mainstream approaches for this problem, and a style transfer
model usually consists of two networks, namely a pretrained feature extraction network
and a transfer network. Significant networks that are good starting points include the
model proposed by Johnson et al. [265] for single style transfer, the model proposed by
Dumoulin et al. [266] at Google for multiple style transfer, and the model proposed by
Huang et al. [267] for arbitrary style transfer. Detailed explorations and more advanced
architectures can be found in recent surveys [107,268,269].
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4.1.7. Video Analytics

Video analytics refers to generating descriptions of the content of, or events in the
video, which involves tasks of object (persons, cars, or other objects) detection, tracking, as
well as calculating their appearance and movements. It is also an important and essential
computer vision technique and has significant practical benefits such as monitoring video
for security incidents helps prevent crime, intelligent traffic systems, and more [270,271].
While its tasks overlap beyond image analysis tasks, they are more challenging because
they involve both spatial and temporal information.

The object detection problem in video is associated with the object segmentation
problem, because an accurate object segmentation facilitates object detection, and ro-
bust object detection in turn facilitates object segmentation. Recent neural networks for
this problem are based on recurrent convolution neural networks (RCNN). For example,
Donahue et al. [272] firstly proposed a long-term RCNN, where a set of CNNs is employed
for visual understanding and then their outputs are fed to a set of RNNs for analyzing
temporal information. Other representative RCNN based models include the one proposed
by Ballas et al. [273], MaskRNN [274], and MoNet [275]. For comprehensive discussions of
video analytics we refer to recent surveys [270,271,276,277].

4.1.8. Codes, Pretrained Models, and Benchmark Datasets

Various implementation codes and pretrained models of many of the above intro-
duced methods can be found in the references provided in Section 2.5.2. Some renowned
benchmark datasets that are widely used in general computer vision to evaluate different
deep learning methods are listed as follows.

(1) MNIST: http://yann.lecun.com/exdb/mnist/ (accessed on 2 November 2022).
(2) CIFAR-10 and CIFAR-100: https://www.cs.toronto.edu/kriz/cifar.html (accessed

on 2 November 2022).
(3) ImageNet: https://image-net.org/challenges/LSVRC/ (accessed on 2 November 2022).
(4) COCO: https://cocodataset.org/#home (accessed on 2 November 2022).
(5) PASCAL VOC: http://host.robots.ox.ac.uk/pascal/VOC/ (accessed on 2 Novem-

ber 2022).
(6) OpenImages: https://storage.googleapis.com/openimages/web/index.html (ac-

cessed on 2 November 2022).
(7) MIT pedestrian: http://cbcl.mit.edu/software-datasets/PedestrianData.html (ac-

cessed on 2 November 2022).
(8) Youtube-8M: https://research.google.com/youtube8m/ (accessed on 2 Novem-

ber 2022).
(9) SVHN: http://ufldl.stanford.edu/housenumbers/ (accessed on 2 November 2022).
(10) Caltech: http://www.vision.caltech.edu/datasets/ (accessed on 2 November 2022).

4.2. Biomedical Sensor Systems

Deep learning has fundamentally converted the way we process, analyze, and interpret
data, including in biology and medicine. We discuss deep learning in biomedical sensor
systems from the perspective of three different biomedical domains: biomedical imaging,
omics data analysis, and prognostics and healthcare.

4.2.1. Biomedical Imaging

Biomedical image analysis is one of the most important and fundamental areas in
biomedical science and has become a cornerstone of modern healthcare. Automatic biomed-
ical image analysis involves a set of basic tasks introduced in Section 4.1, such as image
reconstruction and registration, image or object classification, object detection, segmenta-
tion, and tracking. According to the different image types and their unique characteristics,
we further divide biomedical imaging into four subareas and discuss the application of
deep learning in each, as in [278].

http://yann.lecun.com/exdb/mnist/
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https://image-net.org/challenges/LSVRC/
https://cocodataset.org/#home
http://host.robots.ox.ac.uk/pascal/VOC/
https://storage.googleapis.com/openimages/web/index.html
http://cbcl.mit.edu/software-datasets/PedestrianData.html
https://research.google.com/youtube8m/
http://ufldl.stanford.edu/housenumbers/
http://www.vision.caltech.edu/datasets/
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(1) Medical Imaging. Medical images are typically acquired using devices such as
X-ray CT (computed tomography), MRI (magnetic resonance imaging), and US
(ultrasound). With the advancement of medical imaging devices, the quality of
medical images has improved over the years, but their automated analysis is still a
challenging task. DNNs can provide powerful solutions to this problem. For example,
U-Net [43] and UNet++ [279] are two most reputable and popular architectures for
medical image segmentation. In fact, U-Net has become the de facto standard method
in medical image segmentation due to its huge success in the field. Various CNN-
based architectures have achieved top performance for brain tumor analysis [280].
For a more in-depth discussion of DNN architectures in medical imaging, we refer to
recent overview and survey papers [281–283].

(2) Pathological Imaging. Pathological images are generated from specimen slides by
virtual microscopy, also called whole-slide imaging. Their visual interpretation is
more challenging than for medical images due to the large size and high resolution of
the images. As in medical imaging, deep learning brings great potential in providing
reliable image interpretation in this subarea. For example, Zhu et al. [284] proposed a
DeepConvSurv model based on CNN for survival analysis with pathological images.
Li et al. [285] proposed a DenseNet based solution for pathological image classifi-
cation. A recent trend in pathological image processing is to incorporate multiple
instance learning to deal with the high resolution and weak labels of pathological
images. More advanced models can be found in a recent survey paper [286].

(3) Preclinical Imaging. Preclinical imaging refers to the visualization of small living
animals for conducting in-vivo studies for clinical translation. Preclinical images can
be obtained by micro-US, MRI, and CT for anatomical imaging, or bioluminescence,
PET (positron emission tomography), and SPECT (single photon emission computed
tomography) for molecular visualization. Employing deep learning for interpreting
these images is comparatively under-researched. A few related DNN-based methods
are discussed in recent works [287,288].

(4) Biological Imaging. Biological images capture various aspects of organisms and
biological systems that are not visible to the naked eye. Automated analysis and in-
terpretation of these images is challenging, as they are typically very noisy and highly
variable depending on experimental conditions, and they can be quite large. DNNs
have proven to be very suitable for biological image analysis and have empowered
biological research [289,290]. Moreover, to facilitate the design of DNN architectures
for this purpose, neural architecture search-based solutions have been proposed for
cell segmentation [291,292]. Architectures for deep learning-based biological image
analysis have been discussed in several recent papers [293–295].

4.2.2. Omics Data Analysis

Omics data are complex, heterogeneous, and high-dimensional, and deep learning
methods are specially suitable to analyze them. According to the different types of data,
we introduce deep learning in omics data analysis from the following aspects.

(1) Genomics. Deep learning methods have been applied to genomics data analysis for
several years, and have achieved impressive results. For example, CNNs have been
employed for single-nucleotide polymorphisms and indels detection [296]. SAEs
have been successful in predicting the effect of genetic variants on gene expres-
sion [297]. Both have achieved better results than traditional methods. A review of
more architectures can be found in a recent survey paper [298].

(2) Transcriptomics. Analysis of transcriptomics data may yield an estimate of the ex-
pression level of each gene or transcript across several samples [299]. Therefore, it can
be seen as a typical deep learning problem. Various deep learning methods have been
proposed for addressing this problem. For example, a RAN-based solution for de-
tecting long ncRNAs achieved a remarkable 99% accuracy [300]. For comprehensive
introductions and discussions we refer to various survey papers [301,302].
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(3) Proteomics. Protein data analysis mainly centers around two topics: protein struc-
ture prediction (PSP) and protein interaction prediction (PIP) [303]. For PSP, deep
learning-based methods have been used to solve problems such as backbone angles
prediction [304], protein secondary structure prediction [305], and protein loop mod-
eling and disorder prediction [306]. Moreover, due to the success of deep learning in
generating higher-level representations and ignoring irrelevant input changes, deep
learning methods have become the technology of choice to help PSP. For PIP, deep
learning-based methods have been used to analyze protein–protein interactions [307],
drug–target interactions [308], and compound–protein interactions [309]. A latest
trend in PSP is using GNNs to better learn complex relationships among protein
interaction networks for PSP.

4.2.3. Prognostics and Healthcare

Clinical data and electronic medical records are vital for prognostics and healthcare
management. Deep learning to handle these kinds of data is also rapidly
growing [310,311]. For example, deep learning-based methods have been used for de-
tecting cardiac arrhythmia from electrocardiograms [312] and for phenotype discovery
using clinical data [313]. There are also examples of using DNNs and topic modeling
techniques to learn effective representations from electronic health records [314,315]. A key
challenge in this area is the efficient utilization of temporal information for achieving high
performance [316]. Hybrid DNNs such as those incorporating RNN and CNN components
are promising in addressing this challenge.

4.2.4. Codes, Pretrained Models, and Benchmark Datasets

Various implementation codes and pretrained models of many of the above intro-
duced methods can be found in the references provided in Section 2.5.2. In addition,
the implementation of nnU-net [317], which is a powerful self-adapting neural network
framework that can automatically configure itself, including selecting the optimal prepro-
cessing, architecture, training, and post-processing for any new task, is publicly available
(https://github.com/MIC-DKFZ/batchgenerators accessed on 2 November 2022). Some
renowned benchmark datasets that are widely used in the biomedical domain to evaluate
different deep learning methods are listed as follows.

(1) Decathlon: http://medicaldecathlon.com/ (accessed on 2 November 2022)
(2) MedPix: https://medpix.nlm.nih.gov/home (accessed on 2 November 2022)
(3) NIH Pancreas-CT: https://academictorrents.com/details (accessed on 2 November

2022)
(4) AMRG Cardiac Atlas: http://www.cardiacatlas.org/studies/amrg-cardiac-atlas/

(accessed on 2 November 2022)
(5) Cancer Imaging Archive: https://wiki.cancerimagingarchive.net (accessed on 2

November 2022)
(6) OASIS Brains: http://www.oasis-brains.org/ (accessed on 2 November 2022)
(7) ADNI: https://adni.loni.usc.edu/data-samples/access-data/ (accessed on 2 Novem-

ber 2022)
(8) DDSM: http://www.eng.usf.edu/cvprg/ (accessed on 2 November 2022)
(9) CTC: http://celltrackingchallenge.net/ (accessed on 2 November 2022)
(10) ISIC Archive: https://www.isic-archive.com/#!/onlyHeaderTop/gallery (accessed

on 2 November 2022)

4.3. Biometric Sensor Systems

Biometrics deals with recognizing people by using their physical and behavioral
characteristics. Biometric recognition can be formulated as a verification or identification
problem. The verification task aims to verify whether a person is who they claim to be
by comparing the person’s biometric template with the reference template of the claimed
identity. The identification task compares a person’s biometric template with references of
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http://celltrackingchallenge.net/
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all identities in the database to establish the person’s identity. In either task, the system
needs to collect the biometric data, extract features, and perform comparison or classifi-
cation. Deep learning has a big impact on biometrics in terms of feature extraction and
classification, which primarily involves supervised learning. Recent advances in this field
also applied generative models with unsupervised learning to enhance the learning of
features and improve recognition performance. In this section, we review deep learning
approaches for biometric applications and discuss how the methods can benefit the field of
biometrics and the open research questions.

4.3.1. Automatic Face Recognition

Faces are one of the most commonly used biometrics in surveillance, forensics, security,
access control applications scenarios. Acquisition of face biometrics is based on cameras
and the collected data are in the format of images or videos. While being noninvasive and
convenient, face biometrics are subject to imaging conditions and physical factors related
to illumination, pose, expression, aging, and other appearance changes.

Conventional methods for automatic face recognition can be categorized into feature-
based approaches and appearance-based approaches, which extract local features and
global representations, respectively. With a hierarchical structure, deep learning simultane-
ously extracts local and global representations while handling nuisance factors. Among
different architectures, CNN-based models show the most significant impact in this field.
For example, CNNs with different architectures and loss functions [318] were trained to
learn DeepID features in joint identification-verification tasks. Verification essentially deals
with the similarity between two faces, and therefore, metric learning such as joint Bayesian
and triplet loss are adopted. Identification, on the other hand, is a multiclass classification
problem, hence the cross-entropy is usually used in the loss function. Facebook proposed
DeepFace [319], which is a nine-layer CNN trained on four million Facebook images from
four thousand subjects. DeepFace addresses the alignment issue and learns effective face
representations with high transferability. Google proposed FaceNet, a deep CNN with
triplet loss [320] to learn direct embeddings of images, which are effective in face veri-
fication, identification and clustering tasks. In addition, various CNN frameworks are
proposed to handle the pose and illumination variations. For example, the face identity-
preserving framework [321] integrates feature extraction layers with a reconstruction layer
to reconstruct face images in a canonical view. An ensemble of pose-aware CNNs [322]
was proposed for face recognition, where each model is trained for a specific pose using
pose-specific images generated by 3D rendering.

To improve the efficiency of training deep neural networks, researchers have proposed
different learning strategies. For example, a sparse network can be trained iteratively from
a denser model using correlations between neural activations of consecutive layers [323].
A face alignment network [324] trained jointly with the face recognition network can
reduce the number of training samples needed. Furthermore, hybrid discriminative and
generative models were proposed to learn identity-specific representations that are pose-
invariant [325]. Generative models such as AEs and GANs are also used to generate
identity-bearing facial images [326]. In addition, the recognition of facial attributes such
as age and gender [327] is an important task because it helps narrow down candidate
matches, which can then facilitate face recognition. Hierarchical representations from a
CNN or an ensemble of CNNs have been used for this purpose via classification [327] or
regression [328]. CNN with different constructs have been adopted, including the residual
network [329]. Training such models requires crowdsourcing to get the age and gender
labels, which usually results in small datasets not sufficient to train deep neural networks.
Therefore, models such as VGGNet and GoogleNet pretrained on large datasets such as
ImageNet are often adopted and fined-tuned for age and gender estimation [330].
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4.3.2. Periocular Region and Iris

The periocular region presents salient traits for face and facial attribute recognition,
which is helpful when the lower half of a face is occluded. Researchers have used CNN and
RBM models trained with unsupervised learning to learn representations from periocular
image patches and transferred the representations to recognition tasks [331]. Deep learning
models were also used with conventional handcrafted methods to enhance performance.
For example, autoencoders were used to learn latent representations from the texture
features extracted by handcrafted filters [332], and CNNs were trained on both face images
and the SIFT features to gain higher recognition accuracy [333].

The iris is a highly distinctive biometric trait. However, the acquisition of iris images
often suffers low user acceptance. Iris recognition relies on random texture information in
the irises and the quality of the extracted information depends on the preprocessing steps,
including iris segmentation, off-axis gaze correction and removal of eyelashes. Gabor filter-
ing is the classic method widely used in real-world applications for capturing iris texture
information [334]. Deep learning replaces the Gabor filters with neural network modules.
For example, CNNs were used to learn source-specific filters for iris images from visible
and near-infrared sources [335]. Deep CNNs integrating inception layers were proposed
for iris recognition, providing robust performance in terms of segmentation and alignment.
Sparse autoencoders were also trained for feature extraction in mobile applications where
iris images were collected by mobile devices [336]. Moreover, representations learned by
CNNs were fused with handcrafted features to improve recognition accuracy.

4.3.3. Fingerprint and Palmprint

Fingerprints are one of the most established biometric modalities. The acquisition of
fingerprints uses cameras and the collected data are images. Two types of features are used,
one is global features in terms of loop, delta, and whorl, and the other is local features in
terms of ridge, valley, and minutiae. The major challenges of fingerprint recognition are
the intra-subject variations caused by displacement, distortion, pressure, skin condition,
and other noises. Applying deep learning to fingerprint recognition aims to extract deep
global and local representations, as well as enhancing the fingerprint images.

CNNs are the most popular models in fingerprint biometric applications. With differ-
ent designs in the neural network structures and training strategies, CNNs have been used
for identification [337], authentication [338], liveness detection [339], double-identity detec-
tion [340], fingerprint alteration detection [341], spoofing detection [341], latent fingerprint
recognition [342], cancellable recognition systems [343], and fingerprint segmentation [344],
enhancement [345], and indexing [346]. Recent work also started to explore the use of
CNNs for contactless and partial 3D fingerprint recognition [347–351]. DBNs are also used
for fingerprint liveness detection, anti-spoofing, and enhancement [352]. One of the biggest
challenges for most fingerprint recognition systems is the spoofing attack, which tries to
circumvent a recognition system using artificial replicas of human characteristics similar to
the legitimate enrolled trait. Models based on AEs such as stacked AEs and sparse AEs [353]
were proposed to defend against spoofing attacks on fingerprint recognition systems and
to perform liveness detection. Moreover, generative models based on GANs are widely
used to generate fingerprint images [354]. The generation of high-quality fingerprints is
used for fingerprint recovery [355] and presentation attack detection [356]. Furthermore,
hybrid deep learning models or ensemble DL methods have been proposed to perform
multiple tasks at once. For example, the Inception, MobileNet, and GAN are integrated
in one framework [357] for localization and detection of altered fingerprints in order to
address obfuscation presentation attack.

Palmprint and hand geometry share similar traits as fingerprints. Classic features
include the hand/palm shape, principal lines, wrinkles, delta points, and minutiae features.
Deep learning is used to learn these multiscale features from the palmprint and hand
images. Various models based on CNN and RBM [358] have been used for palmprint
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recognition. The models are trained with either the whole palmprint images or regions of
interest [359].

4.3.4. Voice-Based Speaker Recognition

Application scenarios of speaker recognition can be classified into speaker verifi-
cation, speaker identification, speaker diarization (which is used for automated speech
transcription systems where dialogue is generated along with the speaker’s information),
and speaker recognition in-the-wild (which refers to real-world scenarios where conditions
are unknown or even corrupted with noise, echo and cross-talk). The in-the-world scenario
is one of the major challenges targeted by researchers. The general types of speaker recogni-
tion are text-dependent and text-independent, and their difference lies in whether specific
phrases are required or not. Deep learning methods are currently the state-of-the-art in the
above-mentioned application scenarios and types. These methods process voice inputs
in two patterns: raw sound waves and preprocessed data. Although some methods (e.g.,
the SincNet [360], RawNet [361], and AM-MobileNet [48]) are directly trained using raw
speech data, most methods rely on signal preprocessing, which segments the signal into
frames, performs normalization, converts signals to the frequency domain, and extracts
spectrogram, mel-filterbank and mel-frequency cepstral coefficients (MFCC).

Based on the learning strategies, existing DL methods for speaker recognition can be
categorized into stage-wise approaches and end-to-end systems. The stage-wise strategy
involves two stages: speaker-specific feature extraction and classification of speakers.
The i-vector [362] is a classic method for speaker recognition, consisting of a feature
extractor based on Gaussian mixture models (GMM) and universal background models
(UBM) and a classifier based on linear discriminant analysis. Inspired by i-vector, DL
architectures are proposed to dig deeper representations, resulting in DL-based speaker
embedding systems, d-vectors [363] (deep vector), x-vectors [364] (time-delay), and t-
vectors [365] (triplet network). End-to-end systems do not require a multistage network.
However, pretraining steps such as extraction of spectogram, MFCC, and mel-filterbank, or
automatic feature learning with AEs, are employed to enhance recognition performance.
Residual networks are widely used in feature extraction and end-to-end speaker recognition
systems. Representative methods include the DeepSpeaker [192] (which integrates CNN
with residual network), RawNet [361] (which consists of convolutional layers and gated
recurrent unit layers with residual block constructs), and AM-MobileNet [48]. Some
architectures adopted speech specific layers to facilitate speech signal processing. For
example, the SincNet [360] uses a parameterized Sinc function to perform convolutions,
which results in a smaller number of parameters and achieves better performance and faster
convergence than standard CNNs. Autoencoders have also been widely used in speaker
recognition for data encoding, feature dimension reduction, and data denoising [366].
Furthermore, generative models based on GANs are used for data augmentation and
generation in speaker recognition systems to help extend short utterances into long speeches
to enhance recognition performance [367]. An example is the SpeekerGAN [368] which is a
variant of conditional GAN trained on inadequate speech data.

4.3.5. Behavioral Biometrics

Handwritten signature is the most popular behavioural biometrics that has been
widely used in various applications in legal, medical, and banking sectors. Based on how
the signature is acquired, signature verification can be operated in two scenarios, including
offline methods that use static signature images as inputs and online methods that further
take into account the dynamics of the signing process (such as the pressure and velocity).
Various deep learning models have been proposed to extract deep representations from the
signature images and the signing process to improve verification accuracy for both offline
and online applications. Popular models include the RNNs [369] (LSTM, gated recurrent
unit), CNNs [370], DBN [371], and the combination of these models with AEs [372]. Classic
methods such as the length normalized path signature descriptors [373], direction features,
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and wavelet features [371] are also used as inputs to train deep nets, instead of raw images,
to improve performance. A Siamese network structure with contrastive loss was used for
writer-independent verification [374], which measures how likely two given signatures are
written by the same writer without knowledge of the writer’s identity.

Gait and keystrokes are two other popular behavioral biometrics which use the shape
and motion cues of a person’s walking style and the typing patterns respectively for person
recognition. There are two ways to acquire gait data: one is to use cameras or motion
sensors to capture image/video [375] during the gait phases and the transition periods
between phases, the second is to use sensors such as accelerators [376] to capture the signal
variations of the person during walking. Deep learning methods for image/video-based
gait recognition share great similarities with those in computer vision applications. The
major difference lies in the input images, where models for gait recognition are usually
silhouette shape-based and are trained with gait energy images [375] or chrono-gait im-
ages [377]. In terms of models, CNNs, LSTM, AEs, and their combinations are popular. In
particular, 3D CNNs with temporal information in gait sequences considered provide a
significant improvement in performance [378].

4.3.6. Physiological Signals-Based Biometrics

Brain biometrics and heart biometrics are the major modalities in this category, which
are an emerging branch of biometric technology. Brain biometrics are based on EEG (elec-
troencephalogy) signals, which are recordings of the electrical pulses of the brain activity
collected from a person’s scalp using electrodes. Similarly, the heart signals are collected
from the chest, finger, or arm using electrical, optical, acoustic and mechanical sensors.
The resultant signals are referred to as ECG (electrocardiography), PPG (photoplethys-
mography), PCG (phonocardiogram), and SCG (seismocardiogram), respectively. Other
physiological signals used for biometric applications include the EMG (electromyography),
EDA (electrodermal activity), and EOG (electrooculogram). Deep learning contributes to
brain, heart, and other physiological signals-based biometrics in two aspects: automatic
representation learning and classification. Various models based on MLPs, LSTM, and
CNNs [379] are proposed to directly learn deep representations from the physiological
signals for biometric recognition for end-to-end systems. In addition, since the salient fea-
tures of these signals are usually in the frequency domain, pretraining steps such as Fourier
transform and wavelet package decomposition were adopted in many works to convert the
signal into the frequency or time-frequency domain [380]. Other pretraining steps include
constructing functional connectivity networks using multichannel EEG signals, followed
by CNNs [381] or GCNNs [382] to learn structural representations from the networks. The
acquisition of physiological data from human subjects is a difficult and time-consuming
task, and therefore, the datasets are usually small. To address this issue, generative mod-
els based on AEs [383,384] and GANs [385] were proposed for data augmentation and
incomplete data reconstruction. The results show a significant improvement in recognition
performance with data augmentation. We refer to [386] for a comprehensive survey in
this area.

4.3.7. Databases

Databases commonly used for biometric performance evaluation are summarized in
Table 3. We separate the databases for different biometric modalities.
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Table 3. Databases for biometric applications.

Modality Database

Face Labeled Faces in the Wild http://vis-www.cs.umass.edu/lfw/ (accessed on 2 November 2022)
Face YouTube Faces http://www.cs.tau.ac.il/wolf/ytfaces/ (accessed on 2 November 2022)
Face AR Face database [387]
Face MORPH https://uncw.edu/oic/tech/morph.html (accessed on 2 November 2022)
Iris VSSIRIS https://tsapps.nist.gov/BDbC/Search/Details/541 (accessed on 2 November 2022)
Iris Mobile Iris Challenge Evaluation http://biplab.unisa.it/MICHE/ (accessed on 2 November 2022)
Iris Q-FIRE [388]
Iris LG2200 and LG4000 https://cvrl.nd.edu/projects/data/ (accessed on 2 November 2022)
Fingerprint FVC-onGoing https://biolab.csr.unibo.it/FVCOnGoing/UI/Form/Home.aspx (accessed on 2 November 2022)
Fingerprint NIST SD27 https://www.nist.gov/itl/iad/image-group/nist-special-database-2727a (accessed on 2 November 2022)
Palmprint PolyU Palmprint database http://www4.comp.polyu.edu.hk/csajaykr/database.php (accessed on 2 November 2022)
Voice Google Audioset https://research.google.com/audioset/ (accessed on 2 November 2022)
Voice VoxCeleb https://www.robots.ox.ac.uk/vgg/data/voxceleb/ (accessed on 2 November 2022)
Signature GPDS-960 corpus https://figshare.com/articles/dataset/GPDS960signature_database/1287360/1 (accessed on 2 November 2022)
Signature Signature verification competition 2004 [389]
Gait CASIA-B http://www.cbsr.ia.ac.cn/english/Gait20Databases.asp (accessed on 2 November 2022)
Gait OU-ISIR LP dataset http://www.am.sanken.osaka-u.ac.jp/BiometricDB/GaitLPBag.html (accessed on 2 November 2022)
Keystroke CMU Benchmark Dataset https://www.cs.cmu.edu/keystroke/ (accessed on 2 November 2022)
EEG EEG Motor Movement/Imagery Dataset https://physionet.org/content/eegmmidb/1.0.0/ (accessed on 2 November 2022)
EEG BED [390]
ECG ECG-ID https://physionet.org/content/ecgiddb/1.0.0/ (accessed on 2 November 2022)
ECG PTB https://www.physionet.org/content/ptbdb/1.0.0/ (accessed on 2 November 2022)

4.4. Remote Sensing Systems

In general, remote sensing refers to non-contact and long-distance detection tech-
nology, which uses remote sensors to capture the radiation and reflection characteristics
of objects on the earth’s surface [391]. Remote sensors, typically mounted on airborne
and satellite platforms, are the core component in any remote sensing system, and can be
classified into two types: passive and active sensors. Passive sensors measure energy that
is naturally available, and are usually optical and camera-based, such as panchromatic and
multispectral sensors, providing images in the visible range. Different from passive sensors,
active sensors such as radar sensors receive the reflection of the impulse they emitted and
are less influenced by the environment.

With the availability of remote sensing imagery, DL methods have seen a rapid surge
of interest from the remote sensing community and made a remarkable breakthrough. Deep
learning in remote sensing confronts some new challenges:

(1) Multiple image modalities. Multimodality remotely sensed datasets, such as multi-
and hyperspectral data, light detection and ranging (LiDAR) data, and synthetic
aperture radar (SAR) data differ from each other not only in the imaging mechanism
but also in the imaging geometries and contents. Different data modalities are
often complementary. The design of deep models is crucial in making the most of
these data.

(2) Growing importance of prior knowledge. Remote sensing data presents the real
geodetic measurements for the earth surface, with each data point containing geo-
physical or biochemical information. Hence, minimizing distortion and improving
data quality are especially crucial to remote sensing tasks. Pure data-driven models,
without any prior knowledge, will lead to possible misinterpretation or blind trust.

In the following sections, we will investigate how deep learning models are modified
to cope with these two challenges from the perspective of image classification, scene
classification, object detection and segmentation, and multimodal data fusion.

http://vis-www.cs.umass.edu/lfw/
http://www.cs.tau.ac.il/ wolf/ytfaces/
https://uncw.edu/oic/tech/morph.html
https://tsapps.nist.gov/BDbC/Search/Details/541
http://biplab.unisa.it/MICHE/
https://cvrl.nd.edu/projects/data/
https://biolab.csr.unibo.it/FVCOnGoing/UI/Form/Home.aspx
https://www.nist.gov/itl/iad/image-group/nist-special-database-2727a
http://www4.comp.polyu.edu.hk/ csajaykr/database.php
https://research.google.com/audioset/
https://www.robots.ox.ac.uk/ vgg/data/voxceleb/
https://figshare.com/articles/dataset/GPDS960signature_database/1287360/1
http://www.cbsr.ia.ac.cn/english/Gait20Databases.asp
http://www.am.sanken.osaka-u.ac.jp/BiometricDB/GaitLPBag.html
https://www.cs.cmu.edu/ keystroke/
https://physionet.org/content/eegmmidb/1.0.0/
https://physionet.org/content/ecgiddb/1.0.0/
https://www.physionet.org/content/ptbdb/1.0.0/
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4.4.1. Image Classification

Image classification is one of the most active research topics in remote sensing, which
aims to assign semantic labels to every pixel in the image. Various works used machine
learning algorithms such as random forest (RF) and support vector machine (SVM) to
improve the accuracy. The advent of deep learning pushed the boundary even further.
Chen et al. [392] proposed the first deep learning-based classification model, which uses a
stacked AE to extract hierarchical spectral information. Soon afterwards, DBN [393], and
sparse SAEs [394] were introduced to learn stable and effective features for hyperspectral
data classification. Makantasis et al. [395] proposed to use CNNs as feature extractor and
a multiLayer perceptron (MLP) responsible for the classification task. Santara et al. [396]
constructed an end-to-end CNN-based framework and generated band specific spectral-
spatial features for classification. In [397], Li et al. proposed a pixel-pair strategy for CNN-
based classification, and achieved state-of-the-art performance even with limited training
samples. Recent improvements can be attributed to (1) specially designed architectures
such as Siamese CNNs [398], the capsule network [399], and Transformer [400], and (2)
improved feature representation [401,402].

4.4.2. Scene Classification

Scene classification, which aims to automatically classify the image into the category
it belongs to, has become one of the most active areas of high-resolution remote sensing
image understanding, and attracted growing attention in the past decade [403]. It is a
relatively challenging task because even different scenes may contain objects with similar
features. Such variations make scene classification considerably difficult. Compared with
traditional approaches based on bag-of-visual-words (BoVW), deep models have distinct
advantages in learning more abstract and discriminative features, thereby providing much
better classification accuracy. Hence, most of the recent works paid much attention to
building a robust and informative scene representation. Using PTMs [404,405] is a popular
technique in scene classification, as it is difficult and time-consuming to train a CNN
model from scratch with a limited number of training samples. Fine-tuning [406] also
helps the PTMs adapt to the specific task and learn oriented feature representation for
remote sensing images. Another family of methods focuses on feature selection [407],
features aggregation [402,408,409], and fusion [410–412]. For example, Lu et al. [409]
proposed a supervised feature encoding module and a progressive aggregation strategy
to make full use of intermediate features. To cope with large intra-class variance caused
by large resolution variance and confusing information, Zhao et al. [412] proposed a
multigranularity multilevel feature fusion branch to extract structural information and
fine-grained features.

4.4.3. Object Detection

With the rapid development of intelligent earth observation, automatic interpretation
of remote sensing data has become increasingly important. Object detection in remote
sensing aims to identify ground objects of interest such as vehicles, roads, buildings or
airports from images and correctly classify them. In recent years, DL-based methods have
been dominating this research area and made remarkable progress.

Preliminary work for object detection in remote sensing images [413–415] borrows
the coarse-localization-fine-classification pipeline and CNN models from the computer
vision community. Zhu et al. [416] introduced AlexNet CNN [37] to extract robust features,
combined them with an image segmentation method for localization, and finally employed
an SVM classifier for detection. Chen et al. [413] presented a hybrid DNN (HDNN) for
vehicle detection, which used a DNN as feature extractor and a MLP as classifier. To
further adapt CNN models to remote sensing object detection, researchers also take the
rotation-invariant characteristic and context information into consideration. Cheng et al.
[417] used and a newly proposed rotation-invariant layer to cope with object rotation
variations. To cope with performance drop resulting from object appearance differences,
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Zhang et al. [418] proposed to use attention-modulated features as well as global and local
contexts to detect objects from remote sensing images.

The advent of two-stage models such as RCNN [236] and faster RCNN [44], and one-
stage methods such as YOLO series [46,419,420], made another leap in detection accuracy.
By adapting two-stage models, most work focuses on improving the quality of region
proposals [421–423]. More recently, advanced deep architectures such as Transformer[424]
have also been introduced to advance the performance.

4.4.4. Multimodal Data Fusion

Data fusion, as a fundamental task in the field of remote sensing, has been exten-
sively studied for decades. With the availability of multimodal remote sensing data, data
fusion techniques are expected to integrate complementary information and help boost
the performance of downstream tasks. We briefly discuss two main topics in this area:
(1) pansharpening, and (2) task-specific data fusion.

The goal of pansharpening is to integrate panchromatic (PAN) images and multispec-
tral (MS) images, which are two types of optical remote sensing images with inevitable
trade-off between spectral diversity and spatial resolution [425]. In general, PAN images
provide high spatial resolution but contain limited spectral information, while MS images
have much higher spectral resolution with less spatial details. The key point in pansharp-
ening is that while ensuring the spatial increment, the detail injection implemented should
preserve the unified spatial–spectral fidelity for fusion products [426]. The first DL-based
pansharpening was proposed by Huang et al. [427], in which a modified sparse denoising
autoencoder (MSDA) algorithm was used to learn the relationship between high-resolution
(HR) and low-resolution (LR) image patches. Masi et al. [428] utilized a shallow CNN to
upsample the intensity band after the intensity–hue–saturation (IHS) transform. As pan-
sharpening aims to maximize the spatial injection and minimize spectral distortion, much
effort has been devoted to making network architectures good at extracting spatial details
while preserving spectral information [429,430]. To this end, Yuan et al. [431] proposed
a multiscale and multidepth CNN to better fulfill spatial detail extraction and improve
the fusion quality. Yang et al. [432] designed structural and spectral preservation mod-
ules and trained the network in the high-pass domain for more effective spatial injection.
Zhang et al. [426] introduced saliency analysis as a measure to indicate the demand for
spectral and spatial details, and treated them differently in the CNN based fusion process.

Unlike pansharpening aiming only at producing high-quality fusion products, task-
specific data fusion usually leverages feature-level or decision-level fusion with specific
downstream tasks such as land cover mapping and object detection in a unified frame-
work [433]. A simple way of utilizing multimodal data for training a NN-based model
is to concatenate them into an N-dimensional input. In [434], Lagrange et al. found that
combining a digital surface model channel with RGB data in the training process can help
retrieve some specific classes. For the image classification task, Hong et al. [433] designed
an extraction Network (Ex-Net) and a fusion Network (Fu-Net) to learn from two different
types of modality. Experiments on HS-LiDAR and MS-SAR data reveal the superiority of
multimodal data fusion. Irwin et al. [435] combined SAR, optical imagery and airborne
LiDAR data for surface water detection, in which a multilevel decision tree is developed to
synthesize the results from a single data source.

4.4.5. Codes, Pretrained Models, and Benchmark Datasets

To fulfill the demand of training deep learning-based models, a number of datasets are
proposed by research groups in the earth observation community. Details of the publicly
available datasets are shown in Table 4.
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Table 4. Databases for remote sensing applications.

Database Task Imagery Resolution Channels

UCMerced LandUse [436]
Image classification

Multispectral - 115
University of Pavia [437] Hyperspectral 1.3 m 11

Salinas [437] Hyperspectral 3.7 m 224

WHU RS19 [438]

Scene classification

Aerial up to 0.5 m 3
AID [439] Aerial - 3

NaSC-TG2 [440] Multispectral 100 m 4
NWPU-RESISC45 [403] Multispectral 30–0.2 m 3

NWPU VHR-10 [441]

Object detection

- 0.5–2 m 3
UCAS-AOD [416] Aerial - 3
HRSC2016 [442] - 2–0.4 m 3

DOTA [443] Aerial - 3
DIOR [444] Aerial - 3

HRSID [445] SAR 0.5–3 m -

4.5. Intelligent Sensor Based Cybersecurity Systems

Cybersecurity is the practice of protecting critical systems and sensitive information
from digital attacks, such as intrusion attacks and malware attacks. This section briefly
reviews deep learning applications used in the detection of the four types of attacks:
intrusion detection, malware detection, phishing detection, and spam detection.

4.5.1. Intrusion Detection

Intrusion detection has become an essential task in the cybersecurity field. The objec-
tive of an intrusion detection system (IDS) is to distinguish malicious activities in network
traffic and protect sensitive information. The following is a summary of the common attack
types used in intrusion attacks.

(1) Denial-of-Service (DoS) attacks, such as botnet and smurf, aim to crash a machine or
network service by flooding it with traffic, rendering it inaccessible to its users.

(2) Distributed DoS (DDoS) attacks aim to interrupt the regular traffic of a targeted
network by flooding the target or its surrounding infrastructure with huge quantities
of network traffic.

(3) User-to-Root (U2R) attacks attempt to get root access as a normal user by exploiting
system weaknesses.

(4) Remote-to-Local (R2L) attacks are attempts by a remote system to obtain unautho-
rized access to the root.

(5) Password-based attacks attempt to obtain access to a system by attempting to guess
or crack passwords.

(6) Injection attacks use well-designed instructions or queries to steal sensitive informa-
tion or obtain unauthorized access to a system.

Deep learning-based techniques have demonstrated exceptional performance for
intrusion detection in complicated, large-scale traffic conditions. For example, several recent
methods [446–448] have introduced neural networks based on DBNs to achieve improved
detection accuracy on the NSL-KDD dataset [449]. However, DBNs-based methods have
the drawback that they are computationally unfeasible to train in an end-to-end supervised
manner. AEs are widely used as a preprocessing step in intrusion detection, followed by the
application of a deep learning classifier. For example, Abolhasanzadeh et al. [450] proposed
an AE-based model with seven layers to extract compact and discriminant representations
of the input data, and achieved high detection accuracy on the NSL-KDD dataset. In
addition, several recent methods based on AEs have considered using stacked AEs for
intrusion detection [451–454]. Vu et al. [455] proposed combining variational AEs [94] with
several classifiers, such as naive Bayes, SVM, decision tree, and random forest classifiers
for intrusion detection, and achieved good results on the NSL-KDD and UNSW-NB15
datasets. These AEs-based methods have the drawback of requiring an additional model
to perform classification in additional to the AEs. To address this drawback, recent deep
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learning-based methods increasingly use CNNs for intrusion detection systems [456,457].
Especially, the LSTM networks have proven very useful because they have the strong
ability to process data in intrusion detection that is often structured as sequences of features
evolving over time. Several intrusion detection methods in the literature are based on LSTM
networks [458]. Among these methods, the one proposed in [459] adopts a three-layer
LSTM network, which achieves high detection accuracies on the ADFA-LD and UNM
datasets. Similarly, the method proposed in [460] adopts a cascade of three LSTM network
modules, which achieve an impressive intrusion detection accuracy by combining them
through a voting mechanism. In addition, to take full advantage of LSTMs in processing
time series data and CNNs in extracting spatial patterns, several recent methods consider
combinations of LSTMs and CNNs for intrusion detection. For example, the method
described in [461] uses both a CNN and a hybrid LSTM-CNN to perform the intrusion
detection. The method developed in [462] uses a hybrid LSTM-CNN model based on
the LeNet. GANs have been used for intrusion detection because their advantage of
learning in an unsupervised manner is very suitable for learning the characteristics of data
distributions in specific situations (e.g., under normal conditions) in the IDS context. For
example, Schlegl et al. proposed a CNN-based GAN [463] to learn the characteristics of data
captured under normal conditions, which is then used to detect anomalies by computing
the distance between freshly captured data and normal data. In addition, Zenati et al. [464]
proposed to further improve the computational efficiency of the GAN in [463] to achieve a
faster detection.

4.5.2. Malware Detection

Malware is a malicious software that is disseminated to compromise a system’s se-
curity, integrity, and functioning. The types of malware include viruses, worms, trojans,
backdoors, spyware, botnets, and so on. Deep learning in this field is mainly concentrated
on malware detection and analysis. The developed techniques can be generally classified
into two categories: PC-based and Android-based malware detection.

(1) PC-based malware detection. Deep learning can be used to learn the language of
malware through the executed instructions, and thus to help extract resilient features.
To achieve this goal, Pascanu et al. [465] firstly proposed a method based on the Echo
State Network (ESN) and RNN to classify malware samples. Later, David et al. [466]
proposed a DeepSign to automatically generate malware signatures, which does not
rely on any specific aspect of the malware. This model uses stacked denoising AE
(SDAE) and creates an invariant compact representation of the general behavior of
the malware. In 2017, Yousefi-Azar et al. [467] proposed a generative feature learning-
based method for malware classification and achieved a network-based anomaly
detection using AE. Recently, two GAN-based methods for malware detection have
been proposed [468,469]. Specifically, in [468], Kim et al. adopted a transferred
deep convolutional GAN (tDCGAN) to generate the fake malware and learn to
distinguish it from the real one, which achieves robust zero-day malware detection.
In [469], latent semantic controlling GAN (LSCGAN) is proposed to detect obfuscated
malware, where features are first extracted using a VAE and then transferred to a
generator to generate virtual data from a Gaussian distribution.

(2) Android-based malware detection. Malicious Android apps detection is vital and highly
demanded by app markets. Deep learning models can automatically learn features
without any human interference. The first investigation of applying deep learn-
ing to Android malware detection was Droid-Sec [470], which learns more than
200 features from both the static and dynamic analysis of Android apps for malware
detection. Later, Hou et al. [471] proposed DroidDelver to deal with Android mal-
ware threats, which firstly categorizes the API calls of the Smali code into a block and
then applies a DBN for newly unknown Android malware detection. Su et al. [472]
proposed the DroidDeep for Android malware detection, which is also a DBN-based
model. In 2017, CNN was firstly applied to Android malware detection context
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by McLaughlin et al. [473]. They used CNN to extract raw opcode sequences from
disassembled code, with the purpose of removing the need to count the vast number
of distinct n-grams. Later, Nix et al. [474] proposed a CNN-based framework for An-
droid malware classification, which gets help from API-call sequences. Specifically,
a pseudo-dynamic program analyzer is firstly used to generate a sequence of API
calls along the program execution path. Then, the CNN learns sequential patterns
for each location by performing convolution alongside the sequence and sliding the
convolution window down the sequence. Recently, Jan et al. [475] employed a Deep
Convolutional GAN (DCGAN) for investigating the dynamic behavior of Android
applications.

4.5.3. Phishing Detection

Phishing is a form of fraud in which the attacker tries to learn sensitive information
such as login credentials or account information by sending emails or other communication
messages. Therefore, phishing detection is a vital task in cybersecurity. Deep learning has
also been researched to facilitate the solving of this task. For example, Zhang et al. [476]
proposed to detect phishing email attacks by using a 3-layer FCN which consists of one
input layer, one hidden layer, and one output layer. In addition, in this network, tanh
and sigmoid activation functions are used to better fit the data. Mohammad et al. [477]
proposed a self-structuring neural network for detecting phishing website attacks. It can
automate the process of structuring the network, which is important for extracting the
dynamic phishing-related features. Benavides et al. [478] investigated a variety of networks
for cyber-attacks classification and found that the most regularly utilized are DNN and
CNN. Although diverse deep learning-based methods have been presented and analyzed,
there is still a research gap in the application of deep learning in cyber-attacks recognition.

4.5.4. Spam Detection

The research of spam detection can be basically classed into text spam detection and
multimedia spam detection.

(1) Text Spam Detection. Text-based spam content generally includes malicious URLs,
hashtags, fake reviews/comments, posts, SMS, chat messages, etc. Wu et al. [479]
developed a deep learning-based method to identify spam on Twitter, which employs
MLP classifiers to learn the syntax of many tweets to perform pre-processing and
create high-dimensional vectors. It outperforms the traditional feature-based ma-
chine learning methods such as random forest. Jain et al. [480] proposed a semantic
CNN (SCNN) that employs a CNN with an additional semantic layer for malicious
URL detection, where the semantic layer is a Word2Vec network used to map the
word. Thejas et al. [481] proposed a hybrid deep network for click fraud detection,
which involves an ANN and auto-encoders (AEs). The ANN is used to gain learning
and pass knowledge to the other layers in the hybrid neural network, while the AEs
are used to acquire the distribution of human clicks. The proposed hybrid network
achieved high accuracy on a real-time dataset of ad-clicks data. Singh et al. [482]
proposed using a CNN to classify the aggressive behavior on social networks, which
achieved significant accuracy. Ban et al. [483] proposed using a Bi-LSTM network to
extract features from Twitter text for spam detection.

(2) Multimedia Spam Detection. Deepfake is a currently famous technology that synthe-
sizes media to create falsified content by replacing or synthesizing faces, speech,
and manipulating emotions. It uses deep neural networks to learn from large and
real samples to simulate human behavior, voices, expressions, variations, etc., and
thus, its generated content seems genuine [484]. This technology can be valued in
many applications such as movies, games, education, etc. However, it can seriously
eradicate trust due to giving forged reality [485]. It also brings many challenges for
the spam detection, as its synthetic media is generated by deep learning techniques.
Therefore, an arms race between Deepfake techniques and spam detection algorithms
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has begun. For example, Hasan et al. [485] proposed employing a blockchain-based
Ethereum smart contract framework to deal with media content authenticity. This
system can preserve all historical information related to the creator and publisher of
the digital media, and then it checks the authenticity of video content by tracking
whether it is from some reliable or trustworthy source or not. Fagni et al. [486] pro-
posed a TweepFake to detect deepfake tweets, which involves CNN and bidirectional
gate recurrent unit (GRU). For more advanced neural networks for multimedia spam
detection we refer to the survey paper [487].

4.5.5. Codes, Pretrained Models, and Benchmark Datasets

Various implementation codes and pretrained models of many of the above introduced
methods can be found in the references provided in Section 2.5.2. The popular benchmark
datasets for intrusion detection are summarized in Table 5.

Table 5. Benchmarks for cybersecurity intrusion detection.

Dataset Year Main Attack Types

AWID3 [488] 2021 Flooding, injection, Botnet
CIC-IDS2017 [489] 2017 DoS/DDoS, port scan, web attacks
AWID2 [490] 2016 Flooding, injection, web attack
UNSW-NB15 [491] 2015 DoS, worms, back-doors, generic
ADFA-LD [492] 2013 Password, web attacks
NSL-KDD [449] 2009 DoS, Probe, U2R, R2L

4.6. Internet of Things (IoT) Systems

With the development of commodity sensors and increasingly powerful embedded
systems, the research of IoT is rapidly emerging and developing. According to the different
sensor systems in the IoT, we describe deep learning in this domain from four aspects:
smart healthcare, smart home, smart transportation, and smart industry.

4.6.1. Smart Healthcare

Deep learning and IoT in smart healthcare systems can be researched in the following
two aspects.

(1) Health Monitoring. Sensor-equipped mobile phones and wearable sensors enable a
number of mobile applications for health monitoring. In these applications, human
activity recognition is used to analyze health conditions [493]. However, extracting
effective representative features from the massive raw health-related data to recog-
nize human activity is one of the significant challenges. Deep learning is employed
for this purpose in these applications. For example, Hammerla et al. [494] proposed
to use CNNs and LSTM to analyze the movement data and then combine the analy-
sis results to make a better freezing gaits prediction for Parkinson disease patients.
Zhu et al. [495] proposed using a CNN model to predict energy expenditure from
triaxial accelerometers and heart rate sensors, and achieved promising results to
relieve chronic diseases. Hannun et al. [496] proposed using a CNN with 34 layers
to map from a sequence of ECG records obtained by a single-lead wearable monitor
to a sequence of rhythm classes, and achieved higher performance than that of board
certified cardiologists in detecting heart arrhythmias. Gao et al. [497] proposed a
novel recurrent 3D convolutional neural network (R3D), which can extract efficient
and discriminating spatial-temporal features for action recognition through aggre-
gating the R3D entries to serve as an input to the LSTM architecture. Therefore,
with wearable devices, it can monitor health state and standardize the way of life at
any time. Deploying deep learning-based methods on low-power wearable devices
can be very challenging because of the limited resources of the wearable devices.
Therefore, some research works employing deep learning for health monitoring focus
on addressing this issue. For example, Ravi et al. [498] utilized a spectral domain
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preprocessing for the data input to the deep learning framework to optimize the
real-time on-node computation in resource-limited devices.

(2) Disease Analysis. Using the comparatively cheap and convenient mobile phone-based
or wearable sensors for disease analysis is increasingly important for healthcare.
Deep learning has been widely used in assisting this. For example, CNNs have
been used to automatically segment cartilage and predict the risk of osteoarthritis by
inferring hierarchical representations of low-field knee magnetic resonance imaging
(MRI) scans [499]. Another work using CNNs is to identify diabetic retinopathy
from retinal fundus photographs [500], which has achieved both high sensitivity and
specificity over about 10,000 test images with respect to certified ophthalmologist
annotations. Other examples of employing deep learning for disease analysis include
the work of Zeng et al. [501], where a deep learning-based pill image recognition
model is proposed to identify unknown prescription pills using mobile phones. In ad-
dition, Lopez et al. [502] proposed a deep learning-based method to classify whether
a dermotropic image contains a malignant or benign skin lesion. Chen et al. [503]
proposed a ubiquitous healthcare framework UbeHealth for addressing the chal-
lenges in terms of network latency, bandwidth, and reliability. Chang et al. [504]
proposed a deep learning-based intelligent medicine recognition system ST-MedBox,
which can help chronic patients take multiple medications correctly and avoid taking
wrong medications.

4.6.2. Smart Home

Smart home enables the interconnection of smart home devices through home net-
working for better living. In recent years, a variety of systems has been developed with the
application of deep learning techniques. Two main kinds of smart home applications are
indoor localization and home robotics, described below.

(1) Indoor Localization. With the spread of mobile phones, indoor localization has become
a critical research topic because it is not feasible to employ Global Positioning System
(GPS) in an indoor environment. Indoor localization covers several tasks such as
baby monitoring and intruder detection. However, there are a lot of challenges to
achieve these task, e.g, the multi-path effect, the delay distortion, etc. In addition,
high processing speed and accuracy are essential for indoor localization systems.
Fingerprinting-based indoor localization is a powerful strategy to address these
challenges. For example, Gu et al. [505] proposed a semisupervised deep extreme
learning machine (SDELM), which takes advantage of semi-supervised learning,
deep learning, and extreme learning machine, and achieves a satisfactory localization
performance while reducing the calibration effort. Mohammadi et al. [506] proposed
a semisupervised DRL model, which uses VAEs as the inference engine to generalize
the optimal policies. Wang et al. [507] proposed using an RBM with four layers to
process the raw CSI data to obtain the locations. One challenge of applying deep
learning in this field is the lack of suitable databases for large indoor structures
such as airports, shopping malls, and convention centers. In addition, DRL-based
fingerprinting is another area that has not received much attention. However, DRL is
gaining enormous momentum and may push the boundaries of performance.

(2) Home Robotics. Equipped with commodity sensors, home robots can perform a variety
of tasks in home environments. For example, popular tasks include localization,
navigation, map building, human–robot interaction, object recognition, and object
handling. However, case-specific strategies are needed for guiding a mobile robot
to any desired locations when GPS is not available. In [508], a deep learning-based
method for autonomous navigation to identify markers or objects from images and
videos is proposed, which uses pattern recognition and CNNs. Levine et al. [509]
proposed to train a large CNN to achieve successful grasps of the robot gripper
using only monocular camera images. This method can predict the probability of
the task-space motion of the gripper, and is independent of the camera calibration or
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the current robot pose. Therefore, it greatly improves the hand-eye coordination of a
robot for object handling, and thus improve human–robot interaction. Reinforcement
learning and unsupervised learning will be promising in this area because it is
inefficient to manually label data that may change dramatically depending on the
user and environment in a smart home.

4.6.3. Smart Transportation

Nowadays, intelligent transportation systems heavily depend on the historical and
real-time traffic data collected from all kinds of sensors, such as inductive loops, cameras,
crowd-sourcing, and social media. Deep learning in various smart transportation systems
currently has the following focuses.

(1) Traffic Flow Prediction. Traffic flow prediction is a basic and essential problem for trans-
portation modeling and management in intelligent transportation systems. Deep
learning has been increasingly used in this area to exploit the rich amount of traffic
data and thus extract highly representative features. For example, Huang et al. [510]
proposed using a DBN to capture effective features from each part of road traffic net-
works, and then these features from related roads and stations are grouped to explore
the nature of the whole road traffic network to predict traffic flow. Lv et al. [511]
proposed a stack of AEs model to extract features from historical traffic data to make
the prediction. In addition, there are a lot of works focused on using deep learning for
traffic and crowd flow prediction [512,513]. Most current methods to predict traffic
flow are for short-term prediction while long-term prediction horizons can reduce
costs and provide better intelligent transportation system management. Research
in this field is very challenging due to the difficulty of achieving high accuracy of
long-term prediction. A promising solution is using data-driven methods.

(2) Traffic Monitoring. Traffic monitoring is one of the most popular research fields in
smart transportation. Its aim is to both reduce the workload of human operators and
warn drivers of dangerous situations. Therefore, traffic video analytics is a key part
of traffic monitoring. One of the key tasks in traffic monitoring is object detection,
which includes pedestrian detection, on-road vehicle detection, unattended object
detection, and so on. As in other tasks (Section 4.1), deep neural networks for object
detection have also played an important role here, and have significantly improved
the accuracy and speed of traffic monitoring. For example, Ren et al. [44] proposed
using a region proposal network (RPN), which shares full-image convolutional fea-
tures with the detection network and can achieve nearly cost-free region proposals.
Redmon et al. [46] proposed to formulate frame object detection as a regression prob-
lem, which separates the processes of recognizing bounding boxes and computing
class probabilities. Another important task in traffic monitoring is object tracking,
which plays a significant role in surveillance systems, including tracking suspected
people or target vehicles for safety monitoring, urban flow management, and au-
tonomous driving. Deep learning has also been widely in this area. For example,
Vincent et al. [451] proposed building deep networks based on stacking layers of
denoising AEs for this purpose. Li et al. [514] proposed a robust tracking algorithm
based on a single CNN to learn effective feature representations for the target object.
Ondruska et al. [515] proposed an end-to-end object tracking approach, which uses
RNN to directly map from raw sensor input to object tracks in sensor space.

(3) Autonomous Driving. Autonomous driving is crucial to city automation. Vision-
based autonomous driving systems have two main paradigms: mediated perception-
based and behavior reflex-based. The underlying idea of mediated perception-based
methods is to recognize multiple driving-relevant objects, such as lanes, traffic
signs, traffic lights, cars, and pedestrians. However, most of these systems rely on
highly precise instruments and thus bring unnecessarily high complexity and cost.
Therefore, current autonomous driving systems focus more on real-time inference
speed, small model size, and energy efficiency [516]. Deep learning is adopted here to
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learn a map from input images/videos to driving behaviors, or to construct a direct
map from the sensory input to a driving action. For example, Bojarski et al. [517]
trained a CNN to map raw pixels from a single front-facing camera directly to steering
commands. Xu et al. [518] proposed using an end-to-end FCN-LSTM network to
predict multimodal discrete and continuous driving behaviors. Readers interested in
finding more deep learning-based methods for this topic are referred to the survey
paper [519]. Currently, most papers on deep learning for self-driving cars focus
on perception and end-to-end learning. Although deep learning has made great
progress in the accuracy of object detection and recognition, the level of recognition
detail still needs to be improved to perceive and track more objects in real time in the
autonomous driving scene. In addition, the gap between image-based and 3D-based
perception needs to be filled.

4.6.4. Smart Industry

Smart industry, also known as industry 4.0, represents the latest trend of the manufac-
turing revolution. In the era of smart industry, explosive data produced in manufacture
can be analyzed by deep learning to empower the manipulators with human-like abilities.
Deep learning in several main research topics are described as follows.

(1) Manufacture Inspection. Manufacture inspection refers to inspecting and assessing the
quality of products. Various deep learning-based visual inspection methods have
been proposed and become a powerful tool to extract representative features and
thus to detect product defects in large scale production. For example, Li et al. [520]
proposed a CNN-based classification model to implement a robust inspection system,
which significantly improves the efficiency. Park et al. [521] proposed a generic CNN-
based method to extract patch features and predict defect areas through thresholding
and segmenting for surface integration inspection. Deep learning based methods
have achieved the best experimental results so far in this domain, with accuracies
ranging from 86.20% up to 99.00%.

(2) Fault Assessment. Fault assessment is crucial to building smart factories. Specific
application tasks include machinery conditions monitoring, incipient defects identi-
fication, root cause of failures diagnosis, fault detection of rotating machines with
vibration sensors, bearing diagnosis, tool wear diagnosis, and so on. This information
can then be incorporated into manufacturing production and control. Deep learning
has also been used here to solve these tasks. For example, Cinar [522] proposed
using transfer learning models for equipment condition monitoring. Chen et al. [523]
investigated the latest deep learning based methods for machinery fault diagnostics.
Wang et al. [524] proposed a wavelet-based CNN to achieve automatic machinery
fault diagnosis. Specifically, a wavelet transform is used to transfer a one-dimensional
vibration signal into a two-dimensional one which is then fed into the CNN model.
Wang et al. [525] proposed a continuous sparse auto-encoder (CSAE), which incor-
porates a Gaussian stochastic unit into its activation function to extract nonlinear
features of the input data. Lei et al. [526] proposed a sparse filtering based two-layer
neural network model, which is used to learn representative features from the me-
chanical vibration signals in an unsupervised manner. Generally, AE fits well with
high-dimensional data and thus is a good technique of choice for fault assessment.

(3) Others. Deep learning has also been used in many sectors of renewable power
systems. For example, Alassery et al. [527] proposed using neural networks for solar
radiation prophesy models for green energy utilization in the energy management
system. Another promising application of deep learning in the smart industry field
is smart agriculture. For example, Khan et al. [528] proposed an optimized smart
irrigation system for effective energy management, which overcomes the problems of
transmitting data failure, energy consumption, and network lifetime reduction in the
field of IoT-based agriculture. DNNs have also been applied in waste management.
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For example, Kshirsagar et al. [529] proposed using a customized LeNet model to
classify garbage into cartons and plastics.

4.6.5. Codes, Pretrained Models, and Benchmark Datasets

Implementation codes and pretrained models of many of the above introduced ap-
plications can be found in the references provided in Section 2.5.2. In addition, some
commonly used datasets suitable for building deep learning applications in IoT are listed
as follows.

(1) CGIAR Dataset: http://www.ccafs-climate.org/ (accessed on 2 November 2022)
(2) Educational Process Mining: https://archive.ics.uci.edu/ml/datasets/mining (ac-

cessed on 2 November 2022)
(3) Commercial Building Energy Dataset: https://combed.github.io/ (accessed on 2

November 2022)
(4) Electric Power Consumption: https://archive.ics.uci.edu/ml/datasets/power (ac-

cessed on 2 November 2022)
(5) AMPds Dataset: http://ampds.org/ (accessed on 2 November 2022)
(6) Uk-dale Dataset: https://jack-kelly.com/data/ (accessed on 2 November 2022)
(7) PhysioBank Databases: https://physionet.org/data/ (accessed on 2 November 2022)
(8) T-LESS: http://cmp.felk.cvut.cz/t-less/ (accessed on 2 November 2022)
(9) Malaga Datasets: http://datosabiertos.malaga.eu/dataset (accessed on 2 November

2022)
(10) ARAS Human Activity Datasets: https://www.cmpe.boun.edu.tr/aras/ (accessed

on 2 November 2022)

4.7. Natural Language Processing (NLP)

NLP is a crucial and widely researched field. It is a subfield of AI that is concerned
with enabling computers to understand text and spoken language in much the same way
humans do. Due to the ambiguities of human language, NLP is a very challenging problem.
Some involved popular tasks include speech recognition, sentiment analysis, machine
translation, and question answering, introduced in the following.

4.7.1. Speech Recognition

Speech recognition, also called speech-to-text, refers to the task of enabling a computer
to translate human speech into text. There are many algorithms for speech recognition,
but deep learning provides more advanced solutions. This is because DNNs can combine
several aspects of the voice signals such as grammar, syntax, structure, and composition
to understand and process human speech. The initial success in speech recognition was
achieved by Zweig et al. [530] on a small-scale dataset with an error rate of 34.8%. After
that, more advanced neural networks were proposed to improve recognition accuracy such
as the representative networks Segmental RNN, EdgeRNN, and Quanaum CNN [531–533].
Comprehensive introductions of architectures for speech recognition can be found in recent
survey papers [534–536].

4.7.2. Sentiment Analysis

Sentiment analysis refers to the task of determining the attitude of reviewers, more
specifically, the task of determining whether data are positive, negative, or neutral. It
focuses on the polarity of a text but also aims to detect specific feelings and emotions
such as happy and sad, and intentions such as interested and not interested. Popular
types of sentiment analysis include graded sentiment analysis, emotion detection, and
multilingual sentiment analysis. When applying deep learning to sentiment analysis, it is
usually formulated as a classification problem, where DNN takes texts as input and outputs
a category representing the sentiment class. For example, the Bag-of-Words (BoW) model
is one of the most reputable methods for document level sentiment classification [537]. The
Recursive AE (RAE) network proposed by Socher et al. is the first model for sentence level

http://www.ccafs-climate.org/
https://archive.ics.uci.edu/ml/datasets/Educational+Process+Mining+%28EPM%29%3A+A+Learning+Analytics+Data+Set
https://combed.github.io/
https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
http://ampds.org/
https://jack-kelly.com/data/
https://physionet.org/data/
http://cmp.felk.cvut.cz/t-less/
http://datosabiertos.malaga.eu/dataset
https://www.cmpe.boun.edu.tr/aras/
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sentiment classification [538]. The Adaptive RNN (AdaRNN) is a renowned model for
aspect-level sentiment classification [539]. More introductions and discussions of DNNs
for sentiment analysis are given in other review papers [540,541].

4.7.3. Machine Translation

Machine translation refers to the process of automatically translating text from one
language to another without human involvement. This is one of the first applications of
computing power, starting in the 1950s. Deep learning is well suited for this problem
because DNNs can consider the whole input sentence at each step for generating the output
sentence. This way, it can address the limitations of traditional methods that need to break
an input sentence into words and phrases, and thus provide better translation quality.
Basically, DNNs for machine translation have an encoder-decoder structure, where the
encoder learns to extract the important features from its input sentence, and the decoder
processes the extracted features and outputs the target sentence. For example, Kalchbren-
ner et al. [542] proposed a model with a CNN encoder and RNN decoder, which is the
most original and classic structure of machine translation. More advanced architectures for
machine translation are discussed in recent survey papers [543,544].

4.7.4. Question Answering

Question answering refers to building systems that can answer questions posed in
a natural language by humans. For this problem, a DNN takes a specific question and a
paragraph of text as input and aims to output an answer to this question based on the given
text. Such DNNs need to understand the structure of the language and have a semantic
understanding of the context and the question, thus, attention-based DNNs are needed to
handle the complex training. More specifially, attention-based RNNs are suitable for this
task. One of the most famous networks for question answering is R-Net [545], which em-
ploys a gated attention-based RNN. Other renowned architectures include FusionNet [546]
and the recently emerging Transformer. For comprehensive introductions and discussions
on question answering we refer to recent surveys [547,548].

4.7.5. Codes, Pretrained Models, and Benchmark Datasets

In addition to the references provided in Section 2.5.2, we refer to a survey of pretrained
models for NLP [549]. A collection of renowned benchmark datasets that are widely used
in NLP to evaluate different deep learning methods can be found at https://github.com/
niderhoff/nlp-datasets/blob/master/README.md accessed on 2 November 2022. In
addition, we list the most advanced pretrained language models as below.

(1) BERT: https://github.com/google-research/bert (accessed on 2 November 2022)
(2) GPT2: https://github.com/openai/gpt-2 (accessed on 2 November 2022)
(3) XLNet: https://github.com/zihangdai/xlnet (accessed on 2 November 2022)
(4) RoBERTa: https://github.com/facebookresearch/roberta (accessed on 2 Novem-

ber 2022)
(5) ALBERT: https://github.com/google-research/albert (accessed on 2 November 2022)
(6) T5: https://github.com/google-research/T5 (accessed on 2 November 2022)
(7) GPT3: https://github.com/openai/gpt-3 (accessed on 2 November 2022)
(8) ELECTRA: https://github.com/google-research/electra (accessed on 2 Novem-

ber 2022)
(9) DeBERTa: https://github.com/microsoft/DeBERTa (accessed on 2 November 2022)
(10) PaLM: https://github.com/lucidrains/PaLM-pytorch (accessed on 2 November 2022)

4.8. Audio Signal Processing

Audio signal processing was an early application of deep learning and is still one
of its major application domains. Before deep learning, conventional methods for audio
signal processing relied on handcrafted feature extraction, including the mel frequency
cepstral coefficients (MFCCs), discrete cosine transform, and mel filter bank. Deep learning

https://github.com/niderhoff/nlp-datasets/blob/master/README.md
https://github.com/niderhoff/nlp-datasets/blob/master/README.md
https://github.com/google-research/bert
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https://github.com/facebookresearch/fairseq/blob/main/examples/roberta/README.md
https://github.com/google-research/albert
https://github.com/google-research/text-to-text-transfer-transformer
https://github.com/openai/gpt-3
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https://github.com/microsoft/DeBERTa
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improves the processing performance by learning hierarchical representations from the
audio signal using various models such as CNNs, RNNs, and GANs. These models are
either trained using raw audio signals or classical features extracted from audio signals.
This section briefly reviews the application of deep learning in the main scenarios of audio
signal processing, including speech recognition, music and environmental sound analysis,
localization and tracking, source separation, audio enhancement, and synthesis.

4.8.1. Speech Recognition

Different from the speech recognition in Section 4.7.1, here speech recognition refers
to converting speech into sequences of words in the context, which is the base for any
speech-based interaction system. It is widely used in virtual assistance systems such as
Google Home, Apple Siri, and Microsoft Cortana, and speech transcriptions such as the
YouTube caption function. For a long time, the modeling of speech was dominated by
methods based on Gaussian mixture models and hidden Markov models due to their math-
ematical elegance. However, deep learning models dramatically reduced the word error
rate on various recognition tasks, and hence became mainstream [550]. Popular models for
speech recognition include LSTMs, GRUs [551], and a combination of LSTM layers with
convolutional layers [552]. RNN blocks (including LSTM and GRU) are widely used to
model the temporal correlations in speech sequences. Sequence-to-sequence models such
as CTC (connectionist temporal classification) [553] and LAS (listen, attend and spell) [554]
were also proposed. Transfer learning also plays an important role to enhance systems
on low resource language with data from rich resources languages [555]. In addition to
speech recognition, other applications related to speech are voice activity detection, speaker
recognition (see Section 4.3.4), speech translation, and language detection [556].

4.8.2. Music and Environmental Sound Analysis

Music analysis involves low-level tasks such as onset/offset detection, fundamen-
tal frequency estimation, rhythm analysis, and harmonic analysis, and high-level tasks
such as instrument detection, separation, transcription, segmentation, artist recognition,
genre classification, discovery of repeated themes, music similarity estimation, and score
alignment. These tasks were previously done by handcrafted features and conventional
classifiers, and are now addressed by deep learning algorithms such as LSTMs, CNNs, and
RNNs [557]. Modern systems integrate temporal modeling [558], applying 2D convolution
on spectro-temporal inputs before doing 1D convolution to fuse representations across
frequencies, followed by GRU to capture the sequence dependencies.

Environmental sound analysis is often used in multimedia indexing and retrieval,
acoustic surveillance, and context-aware devices. In terms of recognition tasks, deep
learning models are mainly used for acoustic scene classification [559] (the scene labels
can be home and street), acoustic event detection [560] (detect the start and end time of an
event and assign a label to the event) and tagging [561] (predict multiple sound classes at
the same time).

4.8.3. Source Separation, Enhancement, Localization and Tracking

Source separation aims to recover one or several source signals from a given mixture
signal. It is an important task in audio signal processing in real-world environments, and is
often performed before speech recognition to improve the data quality. In single-channel
setups (only one microphone is used), deep learning aims to model the single-channel
spectrum or the separation mask of a target source [562]. Convolutional and recurrent
layers are often used in such models. Furthermore, some methods integrate supervised
learning and supervised learning for source separation. For example, deep clustering [563]
performs supervised learning to estimate embedding vectors for each time-frequency point,
then cluster them in an unsupervised manner for separation. In multi-channel setups (e.g.,
audio data are collected from multiple microphones), the separation can be improved by
taking into account the spatial locations of sources or the mixing process. In this case, the
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input of DNNs contains spatial features as well as spectral features, and the DNNs are used
to estimate the weights of a multi-channel mask [564].

Audio enhancement aims to reduce noise and improve the audio quality. It is a critical
component for robust systems. Deep learning in audio enhancement is mainly designed
for reconstructing clean speech [565] or estimating masks [566] from noisy signals. To this
end, researchers have proposed various models based on GANs [112], denoising AEs [567],
CNNs [567] and RNNs [568].

For localization and tracking, deep neural networks are often trained on the phase
spectrum [569], magnitude spectrum [570], and cross-correlation between channels [567].
The key is to design an architecture, e.g., a CNN, in a way that can learn the inter-channel
information while extracting within-channel representations.

4.8.4. Sound Synthesis

Sound synthesis can be used to generate realistic sound samples, speeches [571],
music and art [572]. It is achieved by generative models which learn the characteristics
of sound from a database and output desired sound samples. When the deep learning
model is operated to generate fake speeches for a given person, it is often referred to as
DeepFake. Popular deep learning models used for sound synthesis include VAEs and
GANs [573], where the sound is synthesized and upsampled from a low-dimensional
latent representation. Autoregressive approaches such as LSTM and GRU, on the other
hand, generate new samples iteratively based on previous samples [574]. With multiple
stacked layers, such methods are able to process sound at different temporal resolutions.
The WaveNet [575] is a popular model in this regard. It stacks dilated convolutional
layers, providing context windows of reasonable size to allow the model to learn context
information (e.g., speaker identity). Furthermore, the problem of autoregressive sample
prediction is cast into a classification problem. Follow-up models such as the parallel
WaveNet [576] further improve the computational efficiency during the training stage.

4.9. Robotic Systems

Applications of deep learning in robotics are mainly aimed at addressing the challenges
in learning complex and high-dimensional dynamics, learning control policies in dynamic
environments, advanced motion manipulation, object recognition and localization, human
action interpretation and prediction, sensor fusion, and task planning. In terms of deep
learning architectures and strategies, existing methods for robotics can be classified into
discriminative models, generative and unsupervised models, recurrent models, and policy
learning models trained with reinforcement learning. This section briefly reviews how
these models are used in different tasks.

4.9.1. Learning Complex Dynamics and Control Policies

Robots often need to cope with states with high-level uncertainty, which requires the
system to be able to quickly and autonomously adapt to new dynamics. This is important
in tasks such as grasping new objects, traveling over surfaces with unknown or uncertain
properties, managing interactions with a new tool or environment, and adapting to system
degradation. Discriminative models, such as CNNs, were trained to assess the possibility
of a specific robot motion for successfully grasping common office objects from image
data [509]. DeepMPC [577] is a recurrent conditional deep predictive dynamics model
for robotic food-cutting which is a controlling task with complex nonlinear dynamics.
Transforming recurrent units were adopted to handle the time-dependent dynamics by inte-
grating long-term information while allowing transitions in dynamics. Generative models
such as AEs and GANs were also used to model the nonlinear dynamics of simple physical
systems [578] and inverse dynamics of a manipulator [579]. Reinforcement learning plays a
significant role in robotic control tasks. It is useful in learning to operate dynamic systems
from partial state information. For example, it has been used to learn deep control policies
for autonomous aerial vehicles control [580].
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4.9.2. Motion Manipulation

It remains elusive to find robust solutions for robotic motion tasks such as grasping
deformable or complex geometries, using tools, and actuating in dynamic environments.
The corresponding challenges approached with deep learning methods are grasp detection,
path and trajectory planning, and motion control. Deep learning models based on recurrent
units, CNNs [581,582], and deep spatial AEs [583] have been used for learning visuomotor
and manipulation action plans.

4.9.3. Scene/Object Recognition and Localization

Scene and object recognition as well as localization are critical tasks for robot systems,
since knowing what kind of objects are there in the environment and the locations of those
objects is a prerequisite for performing other tasks. Deep learning methods have shown
promising performance in recognizing and classifying objects for grasp detection [581,584],
including advanced applications such as recognizing deformable objects and estimating
their state and pose for grasping [585], semantic tasks [586], and path specification [587].

4.9.4. Human Action Interpretation and Prediction

Effective human–robot interaction requires the robot to have social skills, hence, the
robot needs to be capable of inferring the intentions of humans and giving corresponding
responses or actions accordingly. Such skills are critical in human–robot collaborative
applications such as social robots, manufacturing, and autonomous vehicles. Interpreting
and predicting human social behavior is a complex task, and it is difficult to formulate
handcrafted solutions. Deep learning methods present great potential in this area. Learning
by demonstration [581] is one way to solve the problem, where deep learning models are
trained to learn manipulation action plans by watching unconstrained videos from the
World Wide Web. In another study, a recurrent model was trained for the robot to learn
grasping actions from a human collaborator [588].

4.9.5. Sensor Fusion

The use of multiple sources of information is necessary in robotic systems, as it pro-
vides a plethora of rich representations of the environment and brings proper redundancy
to the system to deal with uncertainties. The challenge is how to construct meaningful and
useful representations from the various data sources. Due to the hierarchical structures,
deep learning models naturally support the processing and integration of high-level repre-
sentations learned from different data streams. For example, generative models [589] and
recurrent models [590] with unsupervised learning were proposed for integrating multi-
modal sensorimotor data, including video, audio, and joint angles, for robotic systems. The
level of abstraction depends on the application specifics.

4.9.6. Knowledge Adaptation in Robotic Systems

Training deep learning models can be time-consuming and data demanding. A robotic
system should be crafted in a way that is easy to adapt to a similar task. Transfer learning
plays an important role in leveraging the knowledge gained by previous solutions of similar
problems to solve new problems. To this end, researchers have used pretrained models [236]
and proposed sim-to-real approaches [591] to facilitate the learning process and improve
efficiency. For example, AlexNet, GoogleNet, and VGG models pretrained on the ImageNet
dataset have been used for extracting high-level representations from image data for object
recognition in robotic systems. The sim-to-real approaches offer a way to create the solution
in a simulation environment and apply it to the real-world problem, which is a safer and
more economical way than the traditional trial-and-error approaches. Furthermore, some
works focused on extraction of domain invariant features [592] to transfer knowledge
across domains. Other works proposed learning by imitation/demonstrations approaches
to help robots to learn manipulation skills [593]
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4.10. Information Systems

Deep learning has received increasing attention in information systems. Major appli-
cations include social network analysis, information retrieval, and recommendation.

4.10.1. Social Network Analysis

Social network analysis is an important problem in data mining. It targets social
media networks such as Facebook, Twitter and Instagram to analyze their patterns and
infer knowledge from them. Network representation learning is an important task in social
network analysis. It encodes network data into low-dimensional representations, namely
network embeddings, which effectively preserves network topology and other attribute
information, facilitating subsequent tasks such as classification [594], link prediction [595],
semantic evaluation [596], anomaly detection [597], and clustering [598].

Semantic evaluation helps machines understand the semantic meaning of users’ posts
in social networks and infer the users’ opinions. Examples of sentiment classification
are the SemEval [599] and Amazon purchase review [596]. Link prediction is widely
used in recommendation and social ties prediction applications, where deep learning
models are trained to learn robust representations to enhance prediction performance and
deal with the scalability issue [595]. Popular models for link prediction include RBMs,
DBNs [600], and GNNs [601]. In some studies, transfer learning with pretrained models
(e.g., RBMs) was applied to improve the training efficiency and address the insufficient
data issue [600]. Anomaly detection aims at spotting malicious activities in social networks,
such as spamming and fraud. Such activities can be interpreted as outliers that deviate from
the majority of normal activities. Deep learning approaches based on network embedding
techniques are receiving increasing attention in this field [597]. Anomaly detection is
also related to crisis response [602] which focuses on detecting natural and man-made
disasters, where deep learning models are trained to identify information from the posts
and classify them into classes such as bushfire and earthquake. It is worth noting that
attention mechanisms have been widely adopted in sequence-based tasks to allow the
deep learning models to focus on relevant parts of the input during the learning process.
Attention layers are also used for aggregating important features from the local neighbors
of nodes, as in graph attention networks [136].

4.10.2. Information Retrieval

Deep learning approaches are also employed in document retrieval and web search
applications [603]. A representative work is the deep-structured semantic modeling
(DSSM) [603] which adopts a DNN for latent semantic analysis. A following work im-
proved DSSM by applying convolutional layers to integrate representations extracted from
each word in the sequence in order to generate representations for a subset of words [604].
Moreover, deep stacking networks were proposed for general information retrieval tasks,
where multiple network blocks were stacked on top of each other to extract high-level,
low-dimensional abstractions in the final feature space.

4.10.3. Recommendation Systems and Others

Recommender systems play an important role in online shopping services by helping
users discover items of interest from a large resource collection. A memory augmented
graph neural network (MA-GNN) can capture both the long- and short-term user inter-
ests. Ma et al. [605] proposed memory augmented graph neural networks for sequential
recommendation. Specifically, a GNN was used to model the item contextual informa-
tion within a short-term period, a shared memory network was designed to capture the
long-range dependencies between items, and co-occurrence patterns of related items were
captured to model the user interests. Furthermore, a heterogeneous information network
containing different types of nodes and links is a powerful information model in this
field. Hence, researchers have proposed embedding methods to represent the network
for recommender systems [606]. Other applications include bibliometric analysis such as
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citation prediction [607] and co-authorship network analysis. In such works, deep learning
models, especially graph neural networks, were proposed to learn patterns from the citation
networks, co-authorship networks, and heterogeneous bibliometric networks [608].

4.11. Other Applications
4.11.1. Deep Learning in Food

Deep learning has recently been introduced in food science and engineering and has
proved to be an advanced technology. The research of deep learning in food mainly focuses
on the following topics.

(1) Food Recognition and Classification. Food analysis is important for the health of human
beings. As image sensing has become an easy and low-cost information acquisition
tool, food analysis based on images of food has become popular. Food images
contain important information of food characteristics, which can be used to recognize
and classify food to help people record their daily diets. Currently, with the great
success of CNN in various recognition and classification tasks, several CNN variants
have been adopted for food recognition and classification [609–611]. These methods
achieve relatively good results, yet there is still room for improvement in accuracy
and efficiency.

(2) Food Calorie Estimation. Food calorie estimation is widely adopted in many mobile
apps to help people monitor and control nutrition intake, lose weight, and improve
dietary habits to stay healthy. An image-based food calorie estimation method has
been proposed and become popular [612]. It uses a multitask CNN and outperforms
the traditional search-based methods. Following this, more CNN-based methods
have been proposed for this task and proved that CNNs are effective for image-based
food calorie estimation [613,614].

(3) Food Quality Detection. Food quality is vital for the health of human beings. Food
quality detection can be further divided into subtopics of vegetable quality detec-
tion, fruit quality detection, and meat and aquatic quality detection. Among them,
vegetables and fruits quality detection are currently hot and challenging topics.
Stacked sparse AE and CNN were adopted for detecting vegetable quality based
on hyperspectral imaging [615], where the diversity of surface defects in size and
color are problematic for traditional methods based on the average spectrum of the
whole sample. DNNs coupled with spectral sensing methods have been proposed
for addressing problems of varieties classification, nutrient content prediction, and
disease and damage detection in fruit quality detection [616,617].

(4) Food Contamination. Food contamination is a serious threat to human health, and
thus has received great attention from all over the world. Several deep learning
based methods have been proposed for predicting, monitoring, and identifying food
contamination. For example, Song et al. [618] proposed using DNNs to predict the
morbidity of gastrointestinal infections by food contamination. Gorji et al. [619]
proposed using deep learning to automatically identify fecal contamination on meat
carcasses. We refer to the survey paper [620] for more works and discussions. Gener-
ally, CNNs and their variants are still the most widely used and effective methods in
this field.

4.11.2. Deep Learning in Agriculture

Since the concept of precision farming was proposed, it has brought new problems and
challenges. Deep learning has been adopted to develop agricultural intelligent machinery
equipment due to its strong ability of extracting features from image and structured data.

(1) Plant Diseases Detection. Detecting diseases of crop is important for improving pro-
ductivity. There are many types of disease species to be inspected. Deep learning
technologies have been applied to crop disease classification or detection. For ex-
ample, Ha et al. [621] proposed a deep learning based method to detect radish
disease, where the radish was classified into diseased and healthy through a CNN.
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Ma et al. [622] also proposed using a CNN to recognize the four types of cucumber
diseases. Lu et al. [623] proposed using CNNs to identify ten types of rice diseases,
which proved the superiority of CNN-based methods in identifying rice diseases.

(2) Smart Animal Breeding Environment. Deep learning technologies have been adopted
for monitoring and improving animal breeding environment. The currently most
popular research in this domain is face recognition and behavior analysis of pigs and
cows. For example, Yang et al. [624] proposed using a CNN combined with spatial
and temporal information to detect nursing behaviors in a pig farm. Qiao et al. [625]
proposed using a Mask R-CNN to settle cattle contour extraction and instance seg-
mentation in a sophisticated feedlot surrounding. These works demonstrated the
effectiveness of CNNs in automatic recognition of nursing interactions for animal
farms. In addition, Hansen et al. [626] proposed a CNN-based method to recognize
pigs. Tian et al. [627] proposed using CNN to count pigs.

(3) Land Cover Change Detection. Land cover change is vital for the natural basis of human
survival, the Earth’s biochemical circle, and the energy and material circulation of
the Earth system. One of the fundamental tasks in land cover change is cover
classification. Deep learning techniques have been adopted for addressing this task.
For example, Kussul et al. [628] proposed a multilevel deep learning architecture to
classify the land cover and crop types using remote sensing data. Gaetano et al. [629]
proposed a two-branch CNN for land cover classification. In addition, several CNN
variants and transfer learning are adopted in the literature to validate land cover and
classify wetland classes. See the survey papers [630,631] for details.

4.11.3. Deep Learning in Chemistry

Deep learning has been actively and widely used in computational chemistry in the
past few years. Several hot and popular research topics are discussed as follows. To build a
molecule with a particular property would first require developing methods to accurately
correlate any given structure to the property. These can then be used to intelligently design
a molecule that maximizes the desired property. The final step is to design an efficient
synthesis from readily available starting materials.

(1) Materials Design. Advanced materials are fundamental for many modern technologies
such as batteries and renewable energy. Deep learning in this field is comparatively
new, but there has been a rapid growth in the past few years. Xie et al. [632]
proposed using a crystal CGNN to capture the crystalline structure for accurate and
interpretable prediction of material properties. In addition, CGNNs and several
CGNN variants have been proposed to predict the properties of bulk materials [633],
optimize polymer properties [634], and explore chemical materials space [635]. These
works demonstrated great potential of deep learning in exploring properties of
materials. In addition to this, deep learning has been used to optimize synthesis
parameters [636] and perform defect detection [637].

(2) Drug Design. Drug design is one of the most important applications of chemistry.
Its aim is to identify molecules that achieve a particular biological function with
maximum efficacy. Deep learning has been used to optimize the properties of
molecules to improve potency and specificity, while decrease side effects and pro-
duction costs. Specifically, AEs, GANs, and RNNs have been used to generate potent
drug molecules [638–640]. More deep learning based methods are reviewed and
discussed in recent papers [641–643].

(3) Retrosynthesis. The underlying challenge of retrosynthesis is similar to that of board
games such as Chess and Go [644]. It can be solved by formulating the retrosynthesis
as a tree search, where the branching factor is how many possible steps can be taken
from a particular point. Therefore, inspired by AlphaGo, one of the predominant
retrosynthetic AI was proposed by Segler et al. [645], which adopted the AlphaGo
methodology of Monte Carlo Tree Search with deep neural network. This method
has shown great potential. However, assessing synthesis plans is a challenging task.
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Other research has been using RNNs and AE to perform retrosynthetic analysis of
small molecules [646].

(4) Reaction Prediction. Reaction prediction refers to taking a set of known reagents and
conditions and predicting the products that will form. Deep learning has been used
in this field to reduce the high computational cost in chemical space exploration.
A representative work using DNNs to predict which products can be formed is
presented by Wei et al. [647]. RNN variants and Siamese architectures have also been
proposed for reaction prediction [648,649]. Emphasizing interpretability by using
GCNN to predict reaction in a manner similar to human intuition is currently a hot
research direction in this field [650].

5. Deep Learning Challenges and Future Directions
5.1. Efficiency

One of the growing problems of deep learning is computing efficiency. With the
increasing volume of data and increasing complexity of DNNs, the requirement for comput-
ing power is increasingly high. This can be solved to some extent by advanced multicore
GPUs, and tensor processing units (TPUs). However, more efficiency is often needed when
optimizing deep learning architectures for embedded devices applications. This can be
achieved through codesigning model architectures, training algorithms, software, and
hardware to allow multimachine parallelism and scalable distributed deep learning [278].
For example, using compression techniques to compress the layers and thus optimize the
model architecture; trimming the number of parameters to achieve a smaller footprint or
a more efficient model; designing layers and architectures specifically with efficiency to
save the number of parameters and avoid over-parameterization. Another challenging
and promising direction is to design programmable computational arrays, bare-hardware
implementation, and stochastic computation mechanisms [1].

5.2. Explainability

A major problem that affects the deployment of deep learning in various areas is the
lack of transparency, which also called the “black box” problem. Deep learning algorithms
learn from data to find patterns and correlations that human experts would not normally
notice, and their decision-making processes often confuse even the engineers who created
them. This might not be a problem when deep learning is performing a trivial task where a
wrong result will cause little or no damage. However, when it comes to medical diagnosis or
financial trades, a mistake can have very serious consequences. Therefore, the transparency
issue is a potential liability when applying deep learning. Various visual analysis tools
have been proposed to dissect DNNs and reveal what they actually learn, as investigated
in the paper [651]. In addition, there are some techniques such as LIME [652] and Deep
Lift [653] that can be used to explain the model using feature importance. However, the
transparency issue has been well solved now. A promising way is to link neural networks
to the existing well-known physical or biological phenomena [1]. This will help to develop
a metaphysical relationship to demystify the DNN’s “brain”.

5.3. Generalizability

Generalizability is an important concern when applying a trained deep learning
model in practice. It is challenging to demonstrate a deep learning model’s generalizability
before implementing the model. To address the problem of model generalizability, many
researchers try to use as much and as diverse data as possible to train a deep learning model.
However, this is very challenging for some applications such as clinical scenarios where
obtaining sufficient training samples with labels is extremely expensive and labor-intensive.
Some researchers work on optimization algorithms that minimize the training error to
achieve generalization. For example, Neyshabur et al. [654] proposed Path-SGD for better
generalization, which is invariant to rescaling of weights. Hardt et al. [655] proposed to use
stochastic gradient descent to ensure uniform stability, and thus to improve generalization
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for convex objectives. However, these are based on the assumption of having a “closed set”
where the possible conditions in the test data are exactly the same as those in the training
data. For many practical applications, the scenario is that “incomplete knowledge of the
world is present at training time, and unknown classes can be submitted to an algorithm
during testing” [656]. Therefore, a possible and promising research direction is using more
generalizable or “open set” approaches to develop and evaluate deep learning models,
such as open-set recognition [657].

5.4. Ethical and Legal Issues

Though deep learning has been widely deployed in many fields and has gained great
success, some ethical and legal issues are emerging. There are two prominent issues. The
first is the biased learning issue, where the model will provide a biased and prejudiced
prediction/recommendation. One typical real-life example is the COMPAS (Correctional
Offender Management Profiling for Alternative Sanctions) algorithm, which is used in US
court systems to predict the probability that a defendant would become a recidivist [658].
This algorithm produced two times as many false positives for recidivism for black criminals
(45%) than white criminals (23%). Another critical issue is the privacy of the deep learning
training data. For example, social network face images could be used for training the deep
learning model without the prior consent of the subjects. The lack of relevant governing
frameworks on the regulation of these ethical and legal issues affects the wide application of
deep learning in sensitive areas such as healthcare, finance, security, and law enforcement.
The community is in desperate need of developing a relevant code of ethics and legal
frameworks for addressing those issues.

5.5. Automated Learning

Deep learning has achieved great success in automatically learning representative
features and performing recognition of these learned features. Although this has greatly
eliminated the cumbersome process of handcrafting features, the development of deep
learning models is resource-intensive, requiring significant domain knowledge and time to
produce and compare dozens of models. Various software tool kits have been developed
for getting production-ready deep learning models with great ease and efficiency [659,660].
However, these are not satisfactory enough for developing high-level and user-friendly
platforms that are easy also for non-experts to adopt existing DNNs or to design their own
solutions. Automated machine learning (AutoML) is a research field for this purpose. For
deep learning, a variety of neural architecture search (NAS) methods have been proposed
to automate the network designing process [291,661], which will be a promising way to
solve the automated learning problem.

5.6. Distributed Learning

With the development of IoT and smart-world applications, massive numbers of smart
mobiles and embedded devices are incorporated into the computing, resulting in network
congestion and latency. Recent research in edge computing and in-device computing has
provided solutions to this problem by utilizing IoT devices and some novel mechanisms
within centralized and distributed computing frameworks [662,663]. Despite the achieve-
ments, several critical issues have yet to be well solved, and significant work still needs to
be done. For example, the training of deep learning models in IoT devices is a problem that
needs to be further solved. A possible way is to locally train the distributed and partial
neural network input in IoT devices through offloading pretrained feature output for addi-
tional training at higher layers. In addition, developing appropriate paradigms to analyze
data in a timely manner is another challenging problem requiring further research. Possible
and promising research can be undertaken in the following directions: (1) distributed deep
learning at the network edge, and more specifically, developing and optimizing parallel
simultaneous edge network architectures for self-organization and runtime; and (2) in-
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device deep learning, and more specifically, implementing deep networks in IoT devices by
considering the limited hardware and computational capabilities.

5.7. Privacy-Preserving Federated Learning

Nowadays, increasing privacy concerns have emerged along with the aggregation
of distributed computing results. Privacy-preserving federated learning has become a
solution for privacy-preserving deep learning [208,664]. By training deep learning models
on separate datasets that are distributed across different devices or parties, it can preserve
the local data privacy to a certain extent. However, despite the achievements, the challenge
of protecting data privacy while maintaining the data utility through deep learning still re-
mains. Potential and promising research problems and directions are: (1) how to effectively
apply the privacy-preserving mechanisms [665,666] to federated learning frameworks for
better privacy preservation; (2) develop efficient solutions to defend the final model against
inference attacks extracting sensitive information from it; and (3) how to efficiently handle
data memorization in federated learning to prevent privacy leakage.

5.8. Multimodal Learning

With the development of various sensor system, increasing numbers of data modalities
can be obtained. Different modalities are characterized by different statistical properties,
and thus it is important to discover the relationship between different modalities. Research
in many application areas needs to be based on data from multiple modalities to achieve
a more complete picture of the task, for example, biomedical studies typically involve
both image and “omics” data. Therefore, multimodal learning, which can represent the
joint representations of different modalities, is required for taking full advantage of all
available data in such studies. This has been well recognized in several works [667,668]
but deserves more attention. Potential research problems and directions are: (1) designing
new learning frameworks with more powerful computing architectures to effectively learn
feature structures of the multimodal data of increasing volume; (2) developing new deep
learning models for multimodal data that take semantic relationships into consideration
to mine the intermodality and crossmodality knowledge; and (3) designing online and
incremental multimodal deep learning models for data fusion to learn new knowledge
from new data without much loss of historical knowledge.

6. Conclusions

Deep learning has become a predominant method for solving data analysis problems
in virtually all fields of science and engineering. The increasing complexity and the large
volume of data collected by diverse sensor systems have brought about a significant
development of deep learning, which has also fundamentally transformed the way data
are acquired, processed, analyzed, and interpreted. In this paper we have provided a
comprehensive investigation of deep learning in diverse sensor systems, starting from the
fundamentals of deep learning models and methods, to mapping specific deep learning
methods with individual suitable sensor systems. This paper also provides a comprehensive
summary of implementation tips and links to tutorials, open-sourced codes, and pretrained
models for new deep learning practitioners and those seeking to innovate deep learning in
diverse sensor systems. In addition, this paper provides insights into research topics where
deep learning has not yet been well-developed, but may have potential, and highlights the
challenges and future of deep learning in diverse sensor systems. We hope this survey will
provide an excellent self-contained and comprehensive reference for industry practitioners
and researchers in the field.
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