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1. Introduction 

In the present paper, we will reexamine the so-called Fourier/time transformation (FTT) that 
has been proposed by Ernst Terhardt (1985, 1992, 1998) as a tool for analysis and 
representation of audio signals such as speech and music. The main reason for suggesting 
such an approach was that Terhardt (1985) saw a different interpretation of the Fourier 
transform (as is widely used for spectrum analysis), on the one hand, and a need to develop a 
transform suited to perform time/frequency analysis comparable to that of the mammalian 
auditory system, on the other. Hence the aim of the FTT is to provide a time-to-frequency 
transformation equivalent to parameters in auditory processing as well as a “natural” approach 
to signal analysis (cf. Terhardt 1985, 1998, 78-97). In order to assess the possibilities the FTT 
approach might offer in regard to signal analysis, some other methods relevant for musical 
acoustics and psychoacoustics such as the short-time Fourier transform (STFT), 
autoregressive spectral modeling (AR) and Wavelet transform (WT) are presented in a brief 
survey, and are illustrated by some examples. Different approaches to time/frequency analysis 
are also viewed as to their power with respect to the so-called uncertainty product Δt Δf. 

Over the past decades, there has been a broad range of research directed at understanding the 
functional anatomy and physiology of the auditory system (for summaries of research, see 
Oertel, Fay & Popper 2002, Pickles 2008, Winer & Schreiner 2011). Since about 1980, 
computational models of the auditory system have been issued that were progressively taking 
neurophysiological data and results from behavioral studies into account (for an overview, see 
de Cheveigné 2005, Meddis et al. 2010). By including elements representing hair cell 
transduction and neural activity patterns in the auditory nerve (AN) as well as in some of the 
relays along the subsequent neural pathway, complexity of the models as well as realism in 
performance has been increased by far (see, e.g., Meddis & O’Mard 1997, 2006). While most 



current models are based in the time domain, there are some operating in the frequency 
domain. Traditionally, analysis in the time domain has been concerned with signal periodicity 
detection and estimation of ‘pitch’ from the repetition frequency of the envelope (f0). 
Analysis in the frequency domain typically has been done with the spectrum comprising a 
fundamental frequency f1 and higher harmonics n x f1 in view. For both approaches that have 
been pursued in auditory research for more than 150 years now (see de Boer 1976, de 
Cheveigné 2005), there are reasons at hand referring to the structure of audio signals (that can 
be represented both in the time and in the frequency domain) as well as with the functional 
anatomy and physiology of the mammalian auditory system. Considering only the first stages 
of auditory processing, and allowing for a rather schematic view, there is (1) transfer of waves 
from the environment through the ear channel to the tympanon. Then there is (2) a mechanical 
transmission line from the tympanon by means of the ossicles to the oval window where the 
pattern of vibration is transferred into (3) the cochlear fluid system in which a travelling wave 
with a relatively steep maximum for individual frequencies corresponding to sine tones is 
observed. Hence it has been concluded that a complex harmonic wave is decomposed in the 
fluid channel such that several maxima representing single partials or groups thereof will be 
observed. The cochlear partition with (4) the basilar membrane (BM) and as well as structures 
combined with the BM are regarded as a filter bank of k channels capable to decompose a 
complex signal into partials or groups thereof. (5) Inner hair cells (IHC) effect 
mechanoelectrical transduction so that the output of each of the BM channels is coded into a 
train of neural spikes that are (6) represented in fibers of the AN. Modeling transmission of 
audio signals from the pinna to the stapes (a mechanical system with impedances and 
admittances) and within the fluid ducts of the cochlea (a hydromechanical system that 
incorporates nonlinearities; see Nobili & Mammano 1996) as well as the transduction 
mechanism on the IHC and AN level is quite complex since every element in the transmission 
chain as well as their interaction must be adequately covered, that is, as close as possible to 
empirical data from (mostly, animal) experiments and behavioral studies  (cf. Meddis & 
Lopez Poveda 2010).  

In regard to such a complex transmission line that may incorporate also relays of the auditory 
pathway such as the cochlear nucleus (CN) or models for processing at even higher levels (the 
superior olivary complex and the inferior colliculus), restricting an analysis to peripheral 
filtering processes as effected in the cochlea (as is done in this paper) may seem odd. The 
point, however, is that initial analysis on the BM and IHC level seems decisive since it can be 
shown that distinctive features of complex sounds such as salient or ambiguous pitch 
structure, harmonic or inharmonic spectrum (leading to percepts classified as consonant or 
dissonant), and also phenomena such as combination and difference tones are derived from 
peripheral processing (for examples, see Schneider & Frieler 2009). In the case of the 
peripheral processing lacking sufficient precision (consequent to, for example, inappropriate 
design of BM filters), feature extraction at this stage of processing and also on higher levels of 
the auditory pathway can be significantly hampered. 

2. Uncertainty Relation and Time/Frequency Resolution 

The uncertainty relation known from quantum mechanics states that a particle can be defined 
exactly either as to its impulse p or to its place x. Since exact definition of the impulse 



precludes exact definition of the space (in regard to wavelength), a situation where both have 
to be taken into account leads to the product of place and impulse such that Δx Δp ≥ ħ/2 (ħ = 
h/2π with h = Planck’s constant). This basic equation became known as the uncertainty 
relation and has been adapted, with necessary modifications, into various fields of science 
such as communication theory and acoustics (Gabor 1946).  
According to Gabor (1946), for signals a limit for the product of time resolution and 
frequency resolution exists like 

(1) Δf Δt = 1/2  

This minimum is restricted to very few ‘ideal cases’ (see below) so that for real signals such 
as sound of a certain duration and bandwidth values above 0.5 will apply. In a general 
formulation, the uncertainty relation for acoustic phenomena such as impulses (cf. Meyer & 
Guicking 1974, 92ff.) can be given as 

(2) Δt Δf  ≥ 1   

As can be demonstrated by calculation, the lower limit of Δt Δf = 1 can be achieved for a 
Gaussian impulse while for almost every other pulse type Δt Δf > 1 applies.   

Taking two extremes, a Dirac-δ (with a duration approaching zero and an impulse height 
approaching infinity) and a sine wave of an arbitrary frequency fi lasting from -∞ < t < ∞, the 
impulse is defined exactly as to time t (ms), and the sine wave as to frequency f (Hz), in a 
two-dimensional time-frequency space. “Real-world” signals such as produced by musical 
instruments including the human voice are neither as short in duration as a Dirac-δ, nor 
infinite in duration as the undamped sine wave repeating itself at the same frequency. Of 
course, in regard to spectral bandwidth, the Dirac impulse and the sine tone of a given 
frequency also represent two extremes. In music as well as in other audio signals such as 
human speech or birdsong, the situation typically is that a number of complex sounds each 
comprising n harmonic or inharmonic partials occur at a certain time, and have disappeared 
due to damping forces after a duration of, in most cases, a few hundred milliseconds or 
perhaps several seconds. Hence we are dealing with sequences of complex sounds such as 
melodies, or with several such sequences played or sung more or less in parallel (in regard to 
tracks of fundamental frequencies) as well as more or less synchronous (as regards onsets of 
tones/notes) as in homophonic and polyphonic music.  

In this respect, conventional western staff notation constitutes an acceptable approximation to 
a two-dimensional time/frequency representation with the ordinate y giving frequency on a 
log scale, and the abscissa x time on a linear scale (cf. Rossing 1982, 134-135). One can 
therefore substitute staff notation with semi-logarithmic graph paper to yield a similar (but 
more precise) notation for monophonic or polyphonic music (for an example of a Bach 
chorale with four voices, see Schneider 2001). It has to be noted, in this context, that western 
staff notation in regard to ‘pitch’ information represents the fundamental frequency f1 (as is 
obvious from definitions such as standard pitch A4 = 440 Hz or “middle c” [C4] = 261.6 Hz in 
equal temperament). Whether the tone notated on staff as C4 is a pure (sine) tone or a complex 
tone cannot be gained from Western staff notation, which does not include spectral 
information. However, it is implied from A4 = 440 Hz that any complex tone played to render 



this note audible should comprise a fundamental frequency f1 at 440 Hz (though, at least in 
perception, a ‘pitch’ corresponding to 440 Hz could be realized also with an envelope 
repetition frequency f0 = 440 Hz while the fundamental of the spectrum is weak or even 
missing).  

Of course, one could further substitute staff notation with a melogram or spectrogram 
(sonogram) as a two-dimensional representation of sound and music in a time/frequency 
space. We will do this with a musical example offered recently by Florian Messner (2011) 
who, together with another singer, recorded a phrase noted down in staff notation by 
Franchino Gafori (Franchinus Gaffurius, 1451-1521), in his Practica musicae (Milan 1496, 
Gafori (Lib. III, cap. 14: de falso contrapuncto) gave us this piece of two-part music then still 
in practice in the Lombardic in vigils and in the mass for the dead because he thought it defied 
all rules of counterpoint (…ab omni modulationis ratione seiunctus est). What in fact singers 
were performing was vocal music where two voices go in parallel with dissonant intervals 
(seconds, fourths) between them. Singing styles as well as instrumental music organized as a 
diaphonia with two voices forming narrow intervals were or even still are in use in the 
Balkans (notably in areas of Bosnia and Herzegowina, Croatia, Albania, Bulgaria). Since two 
notes sung in parallel at the interval of a minor or a major second will have fundamental 
frequencies so close as to fall into one ‘critical band’ (CB), they cannot be separated by the 
auditory filter bank, and thus a sensation of roughness from the interaction of fundamental 
frequencies as well as from other partials in their respective CBs will result. In Bulgarian 
diaphonic singing, one finds two (female) voices approaching each other as close as ca. 45 - 
80 cents (cf. Schneider et al. 2009), that is, from about a quarter tone to a chromatic semitone.  

For the Lombardic contrapunctus falsus as performed by two male singers, the spectrogram 
shown in figure 1 results. 

 

Figure 1: Lombardic diaphony, two male singers, spectrogram 0 – 2 kHz 



Though the spectrogram has been calculated in the frequency domain with a rather high 
resolution as to time and frequency1, the trajectories of the fundamental frequencies for the 
two voices will be difficult to recognize. Also kind of a melogram representing the pitches 
(calculated in the time domain with a special autocorrelation algorithm, Boersma 1993) will 
give only some rough idea as to the movement of the voices (see figure 2): 

 

Figure 2: Pitch (f0) tracking for Lombardic diaphonia, autocorrelation method 

It is possible to find the fundamental frequencies for the two male voices even for narrow 
intervals with a standard frequency analysis based on FFT, provided the window of analysis is 
long enough to ensure that relevant components can be separated.  

Applying a Discrete Fourier Transform (DFT, cf. DeFatta, Lucas, Hodgkiss 1988, 238ff.) to a 
digital signal x(n) with a period of T, the frequency resolution Δf depends on the sampling rate 
Fs and the transform length (often also called ‘frame’ or ‘window’) of size N. The discrete 
frequencies fk for a spectrum X(k) of the signal can be calculated as 

(3) fk = k (Fs/N)    where k = 0,1,2,3,…, N-1 is the frequency index. 

The frequency resolution hence depends on the ratio Fs/N and can also be expressed as 

(4) Δf  = 1/T = Fs/N 

It is obvious from equation 3 that basic relations defined for analogue band pass filters hold 
likewise in the digital domain. For a narrow-band filter (cf. Küpfmüller 1968, 71f.), the 
response time τ is defined as 

(5) τ = 2π/Δω = 1/Δf (for ω = 2πf) 
                                                            
1 Settings for the analysis performed with the Praat software (Boersma & Weenink 2011) were a time window of 
30 ms with a Gaussian weighting, a time step of 2 ms from one frame to the next, an analysis bandwidth of 2 
kHz and  a frequency step of 2 Hz. The sound sample of 11.17 seconds was processed in 5253 (overlapping) 
frames.  



Hence the response time and bandwidth of the filter are in reciprocal relation. For any 
frequency resolution Δf designed for the filter, a corresponding response time τ can be 
calculated; since τ in this respect defines Δt of the filter (taken as an ideal, non-dispersive 
band pass; cf. Meyer & Guicking 1974, 92ff., 346ff.), the product Δf Δt ≥ 1 applies equivalent 
to Equ. (1)2. The uncertainty relation that, as a general principle, needs to be adopted for 
specific areas, underlies also digital sampling and frequency analysis (Equ. 2, 3) where a 
signal x(n) of period T sampled at Fs can be determined in regard to its spectrum X(k) the 
better the longer the transform size N is chosen. This, however means that good frequency 
resolution Δt can be achieved only at the cost of rather poor time resolution Δt.  

With respect to our example, the Lombardic diaphonia, the sample rate of 44100 per second 
will require a window size or transform length of at least 212 = 4096 to ensure a frequency 
resolution Δf  ~ 10.77  Hz. As can be easily checked, the exact value for Δf  is 10.7666 Hz;  Δt 
is determined by the transform of length N = 4096 samples = 92.8798 ms. If we leave out 
windowing and other effects, the product of time and frequency achieved in FFT-based 
analysis indeed would be unity3. For the analysis of the sound example, FFT windows of 212, 
213 and 214 samples were employed together with a spectral peak estimation algorithm. 
Frequency readings were confined to full frequency values (e.g, 195 Hz, 222 Hz) averaged 
over the window of length N. The results of the time/frequency analysis have been tabled and 
then plotted as shown in figure 3. For reasons of readability, a linear frequency scale 
(ordinate) was chosen. The movements up and down (melodic contour) as well as musical 
intervals formed between the two voices by their fundamental frequencies over time are 
clearly visible. However, the relatively poor time resolution of the analysis is also quite 
obvious since the ‘pitches’ sung (represented by their respective fundamental frequencies f1) 
are indicated according to the transform size that has been employed. For example, at Fs = 
44100 samples, a window of 8192 samples means a time interval of 185.76 ms for which a 
spectrum is calculated that contains information as to the ‘average pitch’ that, in our example, 
was realized by two singers within this span of time. In reality, there can be marked shifts of 
fundamental frequency within one frame or window of length N. In fact, the intonation 
practiced by the two singers in recording this piece of music shows far more subtle 
fluctuations than shown in figures 2 and 3 as became obvious in a more detailed analysis 
carried out with high resolution tools (Wigner transform and FFT combined with LPC pitch 
tracking and very small hop ratios). 

                                                            
2 A formal proof can be given on the basis of the Cauchy-Bunjakowski-Schwarz inequality (cf. Meyer & 
Guicking 1974, 95, 108; Papoulis 1962, 63). 
3 Applying no specific windowing function means a rectangular window is chosen for which the so-called 
Equivalent Noise Bandwidth (ENBW [Bins], see DeFatta, Lucas, Hodgkiss 1988, 262ff.) is 1.0.  



 

Words:   Do – o – o – o – o – mi – ne,         mi –   se –  r e –   r e   

Figure 3: Lombardic diaphonia, 2 male voices, tracks of fundamental frequencies ./. time  

What is evident from figure 3 is that the two singers didn’t start in unison (what the notation 
provided by Gafurius would have demanded) but at an interval of about a semitone (193 : 180 
Hz ~ 122 Cents). Also, one can see that at the end of the phrase (from 7.5” to 10.7” on the 
time scale) a long dissonant interval, namely a major second based on the notes G3 and A3 
occurs. While singing their respective notes/tones forming the major second, the singers 
adjust their intonation several times (the interval size varies from an initial 233/234 cents to 
ca. 201 and even 193 cents towards the end). There are some more details one can study with 
the data condensed in figure 3 at hand. Figure 3 can be regarded as kind of a descriptive 
‘notation’ derived ex post from an actual performance. This notation, by the way, could be 
transformed back into a symbolic notation (e.g., western staff notation). 

If one would need to improve temporal resolution of the analysis, there are methods at hand in 
digital signal processing (DSP) which permit to achieve this goal without suffering adequate 
frequency resolution. One of the most basic and at the same time most efficient procedures is 
to overlap consecutive frames of analysis (what has been done to some degree also for the 
present analysis). In case overlap is almost complete and the so-called ‘hop ratio’ therefore 
very small, a sequence of signal spectra will result following one another at a short delay of n 
samples while the frequency resolution of each spectrum is determined by N. Such an analysis 
technique is well suited for transients where the rate of change in the signal per time often is 
significant. We will show an example for such an analysis below. The point of interest with 
respect to choosing a certain method of analysis of course is this: what is the degree of 
exactitude necessary in regard to (a) auditory perception and relevant psychoacoustic 
parameters? Further, which technique should be used if (b) the study of musical structure is an 
issue (e.g., when studying music not well documented yet)?  In addition, signal analysis could 
also be pursued in regard to (c) acoustics of certain instruments where the aim often is to 
investigate processes of vibration, sound production and sound radiation. The precision 
needed under (c) is certainly much higher than that required for (a) or wanted for (b).  



Taking figure 3 as an example, one may call the analysis plausible in regard to musical 
structure since the melodic contours of the two voices and the intervals formed between them 
can be followed with ease. What is less accessible to intuitive understanding in this plot, 
though, is the exact size of the intervals realized by the two voices. Of course, musicians and 
musicologists will have an idea as to the fundamental frequencies of notes in a diatonic scale 
(at least in regard to main intervals). However, a number of deviations in intonation that were 
documented in the signal analysis are difficult to read from the tracks in figure 3. In regard to 
auditory perception, the precision achieved in the plot in figure 3 probably is above that 
ordinary listeners might achieve by using their ears only for analysis (even trained musicians 
might find it difficult to separate the two voices which are quite close in register, and in the 
recording at hand do not differ much as to their respective timbre). In sum, one could argue 
that the analysis as shown in figure 3 is sufficient to illustrate a  musical structure as was put 
to sound by two male singers, and it represents about the result trained listeners might obtain 
from an aural analysis of the musical phrase as recorded on CD. 

In regard to time and frequency resolution as are most relevant for signal analysis, it should be noted 
at this point that the ‘uncertainty relation’ (or ‘relation of indeterminacy’) yields Δf Δt ≥ 1 for linear 
systems such as analogue band filters4. For the auditory system, it has been shown in 
experiments based on biophysical cochlea models (cf. Mammano & Nobili 1993, Nobili & 
Mammano 1996) that time/frequency analysis of the cochlea for the range of speech signals 
above 200 Hz already for a passive model comes close to  Δf Δt ≈ 0.55 (Russo, Rožić & Stella 
2011), that is, very close to the theoretical limit of 0.5 as defined by Heisenberg’s ‘uncertainty 
relation’ or the equivalent formulation Gabor (1946) has given for time/frequency resolution 
as a relevant parameter for communication systems. The general concept Gabor advanced was 
that for every type of resonator a characteristic rectangle of about unit area can be defined in 
a time/frequency plane. For a sharp resonator such as a narrowband filter Δf Δt ≈1 can be 
assumed. From mathematical considerations as well as from properties of some elementary 
signals (sine or cosine wave, Dirac-δ) Gabor (1946, 435) concluded that the signal for which 
Δf Δt = 1/2 applies is the modulation product of a harmonic oscillation of any frequency with 
a pulse of the form of a probability function. (For an ‘ideal’ bandpass filter he calculated the 
value 0.571). Gabor suggested that a time/frequency space (understood as an information 
diagram with the axes time and frequency) can be divided into rectangles which have sides 
defined by Δf and Δt, respectively. According to Gabor, each area Δf Δt represents one 
elementary quantum of information; he therefore proposed to call such an area a logon. 

Remarkably, Gabor (1946, Part 2) included hearing into his study, where he is making 
reference to several empirical studies on difference limens for pitch and time (as had been 
published by Shower and Biddulph in 1931, and by Bürck, Kotowski and Lichte in 1935; see 
below). Gabor argued that the ear (or, rather, the sense of hearing) disposes of a threshold 
information area in regard to frequency (pitch) and time, and of an adjustable time constant 

                                                            
4 There are several definitions as to ‚linear‘. In electronics, linear refers to circuits (like LRC filters) in which 
linear relations exist between physical magnitudes (induction, capacity, resistance, gain) and where all voltages 
and current are proportional to the electromotive force driving the system (cf. Küpfmüller 1968, 12f.). In signals 
and systems theory, linearity is defined by Bachmann (1992, 9) like this: superposition at the input has the same 
effect as superposition at the output. 



at least between 20 and 250 ms. Thus he regards hearing a most relevant field where his 
concept of time/frequency areas or logons is of practical significance.  

It is obvious that basic ideas as formulated by Gabor for signal and systems theory also 
underlie some other approaches, notably wavelet analysis (cf. Dutilleux et al. 1988, Mertins 
1999, ch. 7, Evangelista 1997). In fact, it can be demonstrated that, in regard to fundamental 
mathematical concepts, formal equivalence exists for the Wigner transforms, Gabor 
coefficients, and Weyl-Heisenberg wavelets (see Dellomo & Jacyna 1991). Gabor’s concept 
and related concepts by Eugene Wigner and J. Ville have led to a systematic treatment of 
linear and non-linear time/frequency analysis of signals (see Cohen 1995, Flandrin 1999, 
Mertins 1999). Application of the Wigner transform (WiT) to acoustical signals is possible 
with some modification of the original formulation (cf. Yen 1987) and can yield high-
resolution time/frequency representations. For a complex-valued signal s(t), WiT can be 
calculated according to 

(6) ( , ) ( ) ( )
2 2

jW t e s t t d   
 


    , 

where * denotes the complex conjugate. For practical applications in DSP, the integral comes 
down to a summation, and a window function is applied since the WiT is a bilinear transform 
that produces cross terms between spectral energy peaks resulting from a real-valued signal.  
The cross spectrum appears in the time and in the frequency representation and contains sum 
and difference of the original spectral components. The window function helps to cancel out 
cross terms. Also, a good comprise solution suited to suppress spurious spectral components 
is a combination of FFT and WiT for which parameters can be set so as to cancel out most of 
the unwanted cross terms while improved resolution (as compared to FFT alone) is 
maintained.  

As an example … 

3. Time/frequency analysis: some applications and examples 

There are … 

 4. ‘Perceptually adequate’ Analysis and the Fourier-Time-Transform (FTT)   

In the following, some fundamentals of psychoacoustics will be considered and compared to 
parameters found in DSP-based analysis and auditory modeling. The latter aims at a realistic 
‘emulation’ of the auditory system in regard to basic functions and actual performance (cf. 
Meddis et al. 2010). Signal-analysis tools such as WT and FTT are less complex than full-
grown auditory models (e.g. Meddis & Lopez-Poveda 2006), however, they can be viewed as 
representing the initial stage of BM filtering and thus are important as auditory 
‘preprocessors’ (cf. Solbach, Wöhrmann, Kliewer 1998, Terhardt 1998) that generate output 
used further in pitch and loudness perception as well as in auditory scene analysis. It should 
be underpinned that effective neural processing of complex sound naturally depends on the 
quality of (peripheral) BM filtering; the faster and the more precise this stage operates, the 
better neural processing along the auditory pathway can be achieved.  



4.1 Frequency and time resolution; discrimination and recognition tasks 

The Fourier integral (see Bracewell 1978, ch. 2, Meyer & Guicking 1974, 70ff.) which is 
fundamental to Fourier analysis can be viewed as presenting a time function x(t) in terms of 
frequency (or, rather, angular frequency ω). The Fourier integral considers frequency in an 
infinite interval (-∞ ≤ T ≤ ∞) and thus, as Gabor (1946, 431) has put it, sub specie aeternitatis. 
In musical signal analysis, however, one has to work with sounds that change over time, and 
often abruptly so. The answer to this situation was to consider applicability of Fourier theory 
to signals of definite length as well as to signals that lack clear periodicity and which are 
inharmonic in spectral composition. For practical reasons, techniques such as STFT (see 
Mertins 1996, ch. 4; 1999, ch. 7) were developed. The basic concept for STFT is to multiply a 
sound signal x(t) by an analysis window g(t) and then compute the Fourier transform. For the 
analysis of a time signal, typically windows of length N = 2n, n = 8, 9,…, k are chosen. If the 
signal to be analyzed is longer than N, the signal is processed frame by frame (with an overlap 
of 50% or more to ensure continuity). Hence the window “slides” along the time axis by an 
amount defined by a shift parameter τ. The result thus obtained can be displayed in 2D or in 
(quasi) 3D-images such as figure 5 above. Though the STFT is regarded a good analysis tool 
that has been widely applied in acoustics and in particular in musical acoustics, it has a certain 
disadvantage in that conventional Fourier-transform algorithms operate on fixed values for N, 
which defines both Δf and Δt in a two-dimensional time/frequency plane (with f [Hz] as 
ordinate and t [ms] as the abscissa). Hence, time and frequency resolution are constant over 
the total bandwidth of analysis. In terms of Gabor’s logons (see above), a uniform rectangle as 
“analysis box” results for low as well as for high frequency bands. An analysis window of 
constant length N = 2n samples applied to the full bandwidth of human auditory perception 
(ca. 25 Hz – 16 kHz) seems unfortunate because our auditory system apparently needs a 
certain number of signal periods rather than a fixed time interval for pitch analysis (see 
below). Since the period duration T (ms) varies with frequency, the analysis window (either 
expressed in ms or in the number of samples) should be longer for low frequencies as 
compared to middle and high frequency bands.  

In regard to temporal resolution relevant to hearing, a range of ‘time constants’ basic to 
temporal integration has been issued. It has been critically remarked that “time constants” 
estimated from different experimental tasks range over three order of magnitude, from 250µs 
to 200.000µs (Eddins & Green 1995, 207). In fact, there are different time constants relevant 
for different perceptual tasks as well as in regard to triggering motor responses, etc. In view of 
acuity achieved in discrimination tasks, minimum integration time in hearing appears to be 2-
5 ms, depending to some extent on types of stimuli and conditions (see, e.g. Bilsen & Kievits 
1989 who used so-called white flutter pulses). The data, which have been obtained in gap 
detection as well as in other experiments, are uneven (cf. Moore 2008, ch. 5). Among relevant 
factors, time-intensity trades have to be taken into account (temporal integration depends on 
intensity or sound level; see Eddins & Green 1995). If minimum integration time of ca. 2-5 
ms is interpreted in terms of response time of the auditory filter (as has been done), it appears 
that the response time perhaps plays a small role at low frequencies (100 < fgr < 500 Hz) but 
not for frequencies above 1 kHz. 



Other ‘time constants’ refer to noticeable asynchronies in the onset of the same tone played by 
two instruments (typical values seem to be 10 < t < 20 ms), to “smearing” of several discrete 
echoes that occur in a room within a certain time span (t < 50 ms) into a sensation of quasi-
continuous reverberation, and to temporal integration of energy in the sensation of loudness 
(most experimental data suggest an interval of 100 < t < 200 ms). In regard to such ‘time 
constants’, one of course has to distinguish between discrimination and identification tasks, 
not to forget temporal organization of sound objects on a higher level such as grouping and 
chunking in music cognition (see Snyder 2000). Discrimination for example in 2fc-
experiments simply calls for responding if a certain ‘event’ did happen or not irrespective of 
what the informational ‘content’ of such an event may be. A very short pulse or noise burst 
will be sensed as a ‘knack’ but is not accessible for detailed auditory analysis. Even decisions 
subjects have to make whether a stimulus presented in a pair of sine tones is ‘higher’ or 
‘shorter’ than the other (a design typical of experiments directed to difference limens for Δt 
and Δf relative to frequency bands) might just require a modicum of information on the side 
of the subject as to the nature of the stimuli. In contrast, identification of a stimulus in regard 
to one or several properties needs considerably more time since sound input that has been 
transformed into neural spike trains must be processed along several stages of the auditory 
pathway before, for example, a certain ‘pitch’ can be assigned to a stimulus. If one accepts 
periodicity detection and temporal processing for pitch as the predominant principle 
(notwithstanding significant evidence for rate-place representations and tonotopicity), the 
periods of time signals that might occur in musical sound are roughly from 33 ms (30 Hz) to 
0.067 ms (15 kHz). Therefore, as maximum lag of 33 ms has been implemented in an ACF 
model suited to account for very low frequencies down to 30 Hz (Pressnitzer, Patterson, 
Krumbholz 2001). In addition, time needed for arbitrary pitch  estimates has been suggested 
as being 66 ms, with possibly less time down to about 40 ms or even 20 ms needed for such 
signals where subjects have a certain knowledge as to their likely pitch range in beforehand 
(cf. de Cheveigné 2005, 205). If 66 ms is a correct ‘time constant’, for most of musical 
relevant frequencies it would cover several or even many periods. In some early experiments, 
the time needed for developing a clear sensation of pitch for a sine tone varied from about 60-
100 ms for very low frequencies (50 Hz) and ca. 30 ms for 300 Hz to about 15 ms for a 
frequency range of ca. 0.5 to ca. 5 kHz (Bürck, Kotowski, Lichte 1935). From the empirical 
data as well as from considerations concerning the physics of the signal (that was switched on 
and off in an electronic circuit) and conditions of measurement, Bürck and colleagues 
calculated curves of tone recognition times as a function of frequency where about 80-100 ms 
would be required for a sine tone of 100 Hz but only ca. 5-10 ms for a sine tone in the range 
1-5 kHz. Taking these approximate figures, one may hypothesize that pitch estimates for sine 
tones require about 5-8 periods of the time signal. The estimate figures mentioned above (to 
which several more from various experiments can be added) can be taken as tentative time 
constants in computational models of auditory perception. 

In regard to frequency discrimination in hearing, for frequencies of two pure (sine or cosine) 
tones presented one after another, and with constant sound pressure level (SPL), the 
difference limen (DL) or just noticeable difference (jnd) has been estimated to be of the order 
of 1/30 of the Critical Bandwidth (CB). The concept of CB (see Moore 1995, Zwicker & Fastl 
1999, ch. 6) refers to BM excitation and filtering. From empirical data, a cochlear tonotopic 



frequency map has been proposed (cf. Greenberg 1990) where one CB corresponds to ca. 0.89 
mm of BM. Hence, 1/30 of this unit would have to be considered as the jnd in regard to place 
theories of pitch and BM excitation patterns. However, one has to see that hearing is a 
dynamic process based on feedback regulation and fast adaptation to stimulus conditions 
(otherwise, extremely sharp frequency discrimination as observed in trained musicians and 
very short recognition times for pitch and timbre of complex sounds would not be possible). 
Therefore, it seems only natural to see that center frequencies, bandwidths and shape of 
auditory filters (AF) vary with BM excitation level and bandwidth of input signals. Further, it 
is obvious that CB models such as have been proposed for loudness summation and place 
theories of pitch should be taken as a basic concept that must be validated with empirical data 
since a number of assumptions pertaining to CB models do not hold in a strict sense (cf. 
Moore 1995). Empirical data on CBs indicate that the Bark scale comprising 24 or 25 (in 
theory: non-overlapping) filter bands is not quite appropriate in particular for low frequencies 
(fc < 500 Hz) since the bandwidth of the AF increases significantly with decreasing frequency. 
This effect is most prominent for fc < 200 Hz (cf. Jurado & Moore 2010, Schneider & 
Tsatsishvili 2011). Compared to the Bark scale (cf. Zwicker & Fastl 1999), the so-called ERB 
scale (ERB = Equivalent Rectangular Bandwidth) comprising about 40 filter bands fits better 
to perceptual data though it does not fully account for pronounced increase of bandwidth at 
low frequencies. Each ERB is calculated by taking 4 fc/p, where fc is the center frequency and 
p is a filter parameter that determines the passband and the slope of the filter. In regard to 
modeling, the “effective bandwidth” for each AF along the BM depends on place and center 
frequency (that apparently is not fixed yet variable within a certain range), on sound level as 
well as on spectral energy distribution and spectral flux within audio signals. Very roughly, 
one can approximate CBs by 1/3 octave band pass filters. In reality, the “effective bandwidth” 
of AFs seems to vary from about one octave at very low frequencies to close to 250 cent 
around 1-3 kHz.  

4. 2 Wavelets and FTT 

Wavelet analysis is one of several methods that have been developed to account for Gabor’s 
logon concept and to provide equally good time and frequency resolution over the bandwidth 
of auditory perception. Wavelet analysis basically can be viewed as a Fourier approach where 
the window of analysis g(t) is shifted in frequency by Ω0, that is, multiplied in the time 
domain by eiΩ0t. Similar to STFT, a sliding process along the time axis is part of the analysis 
with an increment of τ. Wavelet analysis (cf. Dutilleux, Grossmann, Kronland-Martinet 1989) 
further includes a part equivalent to the ‘window’ g(t), namely the analyzing wavelet h(t) = 
eiΩ0t g(t) that is dilated in frequency by a parameter a so that 
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The wavelet transform (WT) of a continuous time signal s(t) then is 

(10) 
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The wavelet transform is computed by convolving the signal with a time-reversed and scaled 
wavelet (see Evangelista 1997). In regard to sound analysis, WT can be considered as a kind 
of band pass filter where the center frequency and the bandwidth of the filter can be varied by 
different values for the parameter a (cf. Mertins 1999, ch. 9). In this respect, WT effectively 
computes a constant-Q filter analysis as has been employed in the gammatone filter analysis 
shown above (figure 9) where WT was performed for a frequency band of 0 – 1.6 kHz 
divided into four octaves each of which was subdivided into four bands of 250 cents to 
approximate the bandwidth of the auditory filter (AF) with respect to CB concepts.  

A concept similar to STFT as well as to WT in certain respects is the Fourier-Time-Transform 
(FTT) as proposed by Terhardt (1985). In an article in which he considered properties of 
several different Fourier transforms, Terhardt argued that Fourier transforms are not restricted 
to periodic signals, and that the actual analysis window must not be identical with a period (or 
several periods) of a time signal p(x) to yield valid spectral representations (a criterion to 
check validity of course is whether or not restoration of the time signal from the spectral data 
by an inverse transform can be achieved). Without going into details (many of which relate to 
linear systems theory rather than to “plain” spectral analysis), the argument put forward by 
Terhardt is that, for causal systems and signals, analysis of a physical signal such as sampled 
sound can be confined to time intervals from t = 0 to t so that the FTT for one-sided signals is 
given by  

(11)  
0
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The spectrum P(w, t) for every instant t represents the time signal within a time interval that is 
defined as -∞ < x ≤ t.  Also, p(x) = 0 for x < 0. For practical applications, signal values that 
are far in the past are of little relevance as to the current state of a system or signal5; therefore, 
the signal is multiplied by an exponential weighting function exp(-a(t – x)) where a ≥ 0 is a 
damping factor that can have values of 0 to 1. Consequently, with the exponential weighting 
included, Equ. 8 becomes 

(12) 
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FTT applied to one-sided signals yields two parts, one steady-state and one transient (cf. 
Terhardt 1985, equations 32 and 33)6; the transient part vanishes with ongoing time; also, 
amplitude density distribution narrows with time passing, and approaches a steady-state 
bandwidth of Δω = a (3 dB cutoff frequency). After signal onset, the steady-state is reached at 
about t = 1/a (1/a is also the time constant of the exponential weighting). The damping factor 
a can be employed to control the steady-state bandwidth (that can be narrowed, however at 
the cost that the time needed to attain the steady-state proportionally increases). For simple 
cosine signals of sufficiently high frequency, the FTT magnitude spectrum according to 

                                                            
5 The same consideration was made in “running” autocorrelation algorithms, which typically “slide” along a time 
signal and include a weighting function to successively discard past sample values so that ACF in fact is 
computed from an “effective time window” of N samples up to the sample point t moving with time. As to the 
equivalence of “running” ACF and FTT, see Terhardt 1998, 94f. 
6 A more detailed analytic formulation of the FTT is given by Mummert 1997. 



Terhardt (1985, 254) is largely similar to the output of a simple-resonance filter for which the 
3dB bandwidth is B = a/π. Given that the boundary between transient part and steady-state 
part can be taken as the “effective time window” of the analysis defined by 1/a, the product of 
the effective time window and the steady-state bandwidth would be as small as 1/π = 0.3183. 

If this product would be viewed in terms of the uncertainty relation in regard to signals and 
systems, it would clearly be far below Gabor’s theoretical limit of Δf Δt = ½. In this context, 
it might be noted that, for signals of given (rms) duration and energy (set to a value of 1), the 
uncertainty product has been calculated by Papoulis (1962, 62f., Equations 4-39 to 4-46) as   

(13) 2tD D
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where the equality holds for Gaussian signals (i.e., the product numerically yields 1.2533). 
The difference between products Δf Δt ≥ 1 (Equ. 2) postulated from mathematical analysis 
and values much smaller than 1 calculated for FTT and other filter models results from the 
3dB bandwidth parameter, which is common to filter design and performance tests yet must 
not necessarily apply to auditory perception. The bandwidth of the AF as determined in 
hearing experiments involving subjects of different age (Patterson et al. 1982) can be roughly 
given as 11% of the center frequency for young adults who have not yet suffered hearing loss. 
For a fc of 0.5, 2 kHz and 4 kHz (as were employed in the experiments of Patterson et al. 
1982), this means a relative filter bandwidth of ca. 191 cents (corresponding to the musical 
interval of a major second). Alternatively, the normalized width of the equivalent rectangular 
filter (roex[p, r]) has been given as BWER/fc = 4/25 = 0.16 (Patterson et al. 1982, 1801). 

In FTT analysis, parameter values for bandwidth B and damping factor a can be set so as to 
simulate performance of the auditory periphery. To this end, the bandwidth should be that of 
the CB (cf. Zwicker & Fastl 1999, ch. 6) divided by 25, which would not be too far away 
from the jnd for pure tones7. Referring to analytical expressions designed to approximate 
critical-band rate and critical bandwidth (Zwicker & Terhardt 1980), Terhardt suggested that 
an “audio FTT” could be performed with the parameters set like 

(14) B = a/π = 1 + 3(1 + 1.4(f/kHz)2)0.69 Hz 

Assuming that there are 24 CBs (expressed as a Bark scale), the frequency resolution for the 
FTT is 24 x 25 = 600 frequency samples per spectrum deemed sufficient and necessary to 
model peripheral auditory analysis (cf. Terhardt 1985, 255). In regard to the effective window 
length (i.e., the analysis interval TA) relative to frequency bands, Terhardt (1992, 378) has 
given these figures: 

f/kHz  0.1 0.5 1 2 4 8 

TA/ms  24 22 16 8 2.7 0.74 

                                                            
7 For example, one CB included in the table given by Zwicker & Terhardt 1980, 152 ranges from 920 to 1080 Hz 
with fc = 1000 Hz and is 160 Hz wide; divided by 25, the frequency step would be 160/25 = 6.4 Hz as compared 
to the jnd at 1ooo Hz, which is ca. 3 Hz. 



Numerically, for a sampling rate at 44.1 kHz, an effective window length of 24 ms would 
correspond to 1058 samples falling into this time interval. A cosine signal of f = 0.1 kHz and a 
period of 10 ms would cover 441 samples per period so that the analysis interval will have 
access to, on the average (as the analysis window slides along the time signal), two periods of 
the signal. The ratio is much better at higher signal frequencies and shorter periods where the 
analysis window would hold (at best, if no truncation occurs) 16 periods at 1 k 
Hz as well as at 2 kHz. The effective window length of the FTT has been calculated 
(Vormann & Weber 1995, 1191) as 

(15) T(ω) = 2.988/a(ω)  

where a(ω) is the frequency-dependent transformation parameter. Correspondingly, the 
bandwidth is given as 

(16) 
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whereby an uncertainty product T x B ≈ 0.61 has been calculated. This of course would 
outperform a conventional Fourier transform analysis by far so that time/frequency resolution 
close to the cochlear filter bank can be expected from the FTT analysis (see below).  In some 
of the relevant publications (Heldmann 1993, Vormann 1995), values as to T and B as well as 
to their product differ somewhat; parameter values as found in the literature for the 1st and 2nd 
order as well as estimates for the 4th order are given in table 1: 

Table 1: FTT parameters 

Order   1   2   4 

Window function e^-ax   x e^-ax   x³/6 e^-ax 

Resolution dT  1 / a   2,988 / a  4,990 / a 

Bandwidth (B) a / π   0,6436  a / π  0,4350  a / π 

dT * B   1 / π   1,923 / π  2,171 / π 

In this table, a denotes the scaling factor a(ω), and t denotes the time axis. For practical 
reasons, parameter values may be rounded like 

Order   1   2   4 

Window function ate    atet      atet 
6

3

 

dT   1 / a   3 / a   5 / a 

B   a /    0,644  a / π  0,435  a / π 

dT * B   1 / π ≈ 0,32  1,93 / π  ≈ 0,61 2,17 / π  ≈ 0,69 



 

The bandwidth B for any order of analysis n can be calculated according to 

(17) 12
1
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

   

The original FTT algorithm (see Terhardt 1985) has been improved later on in regard to the 
weighting function (cf. Schlang & Mummert 1990, Terhardt 1998, 97) where a form a t e-at 
has been proposed. Also, weighting of the form h(t) = t3e-at has been introduced for a 4th order 
FTT (as h(t) in this case is equivalent to the Laplace transform of a 4th order low-pass filter, 
see von Rücker 1997).  

For comparison of conventional Fourier transform and FTT analysis, a number of natural 
sounds were chosen; in addition some complex sounds based on FM and AM processes were 
generated with Mathematica. In the following, the results for the organ sound (Quintadena 
16’, pipe/note C2) on which a bell sound has been superimposed (see figs. 4, 5, 6) will be 
presented. 

In the FTT algorithm applied to analysis, a 4th order weighting function had been 
implemented. Since the effective time window for the standard FTT has been given as 24 ms 
at 0.1 kHz, corresponding to 1058 samples at 44.1 kHz sampling (see above), a comparison to 
an FFT of 1024 sample points seems a reasonable choice. However, the FFT also employed a 
weighting function for which a Blackman window was chosen8.  

The analysis obtained with a FFT of 1024 and Blackman weighting is shown in figure 10: 

 

 

Figure 10: organ (Quintadena 16’ C2) plus bell, FFT 1024 pts, Blackman 

                                                            
8 The ENBW for the Blackman window is 1.73 bins in DFT and the 3.0dB bandwidth is 1.68 bins. 



The same sound subjected to 4th order FTT analysis is displayed in figure 11: 

 

 

Figure 11: organ (Quintadena 16’ C2) plus bell, 4th order FTT 

From a comparison of both analyses presented as 3D-plots (were the abscissa [x] is in 
Bark[z], the ordinate [y] is in dB, and time (ms) is in the z-dimension) one can see that time 
and frequency resolution for the FTT at low frequencies is considerably better than with the 
1024 point FFT subjected to Blackman weighting. Note that with a FFT length of N = 1024 
and sampling at 44.1 kHz, frequency resolution (Equ. 3) nominally is ca. 43 Hz. As this is the 
constant bandwidth of the FFT analysis (a DFT can be viewed as equivalent to a filter bank), 
the signal is under a fine-grain analysis at higher frequencies (Bark[z] 10-20) so that the FFT 
analysis picks many small spectral components corresponding to higher modes of vibration of 
the bell while the FTT analysis is more condensed since it relates to the concept of CBs, and 
therefore integrates such components which are closely spaced in frequency into broader 
“spectral ridges” (figure 10). A similar picture would be obtained with a WT-based analysis. 
One can argue that auditory perception of complex sounds basically is directed at picking 
spectral peaks that are present during a reasonable time interval (relevant as ‘integration 
constant’ in regard to hearing). In this respect, a limited number of clearly expressed “spectral 
ridges” may be more relevant to actual hearing as this must be performed in quasi-real time, 
and consequently calls for some temporal as well as spectral integration (as reflected in CBs 
and ‘integration constants’). Algorithms directed to finding peaks in spectral envelopes are 
quite common as in LPC (see fig. 4) or similar source-filter analysis models (cf. Rodet & 
Schwarz 2007); if a sequence of frames is processed so that spectral envelope peaks can be 
separated and extracted, the next step is to connect such peaks from one frame to the next so 
that ‘tracks’ for harmonic partials or inharmonic components result over time. Such tracks 
then can be used for finding quasi-continuous pitch contours or for separation of ‘sound 
objects’ in a computational auditory scene approach (cf. Kostek 2005).   



Comparison of the two types of analysis (“plain” Fourier, FTT) may indicate an advantage on 
the side of the FTT as one would expect from uncertainty products reported in the literature. 
However, the difference obtained in several analyses (of which but one example is included in 
the present article) seems gradual rather than principal. To optimize analysis, one often has to 
experiment with parameter settings. In addition, it is always revealing to apply different 
methods and models to the analysis of particular sound samples because in this way one can 
try to extract as many distinctive features as is needed for a certain problem, and at the same 
time the results obtained with one method can be tested for validity and reliability by using a 
second or even a third tool. 

As far as ‘perceptually adequate’ analysis is concerned, comparison of several models 
including Gabor filtering, a linear, simplified but functional cochlear model (first published 
by Netten & Duifhuis 1983), WT and gammatone filtering tested for their impulse responses 
resulted in kind of a ranking (Hut, Boone, Gisolf 2006) where Gabor filtering was leading in 
regard to the uncertainty product, but also the linear cochlea model performed well. WT was 
judged to be unsuited to auditory modeling because an ‘auditory wavelet’ would not exist, 
and, therefore, Hut et al. (2006, 633) concluded that wavelet analysis methods cannot be used 
in perception research. The gammatone filter (implemented in many auditory models) 
according to these tests did well in terms of general purpose linear time-frequency filtering, 
but does not give a good cochlear representation (Hut et al. 2006, 635). Since an advanced 
cochlear model (Mammano & Nobili 1993, Nobili & Mammano 1996) seems to provide 
extremely good resolution in both time and frequency (Russo, Rožić, Stella 2011) with Δf Δt 
≈ 0.55, and hence close to the Gabor limit of 0.5, this approach perhaps could be the most 
promising to approximate performance of the auditory system even further (for recent 
developments, see Meddis et al. 2010). It should be noted, in this respect, that known values 
for the ‘uncertainty relation’ have been questioned to hold for the human auditory system 
(see, e.g. Kral & Majérnik 1996). The reason for such an assessment based on empirical data 
in most cases was that the performance of the auditory system in discrimination tasks (where 
stimuli were varied in frequency, level, and duration) was better than accepted values for the 
‘uncertainty product’, on the one hand, and the relation between bandwidth and duration 
apparently was not linear, on the other. An explanation for this system behaviour can be found 
on the level of functional neuroanatomy and neurophysiology since hearing is effected by a 
complex network involving ascending and descending pathways as well as feedback 
regulation loops (as in OHC motility and BM/TM adjustment necessary for sharp frequency 
discrimination and ‘pitch’ processing; OHC = outer hair cell, BM = basilar membrane, TM = 
tectorial membrane; see Pickles 2008).     

5. Conclusion 

The present article intends to shed light on several approaches to digital sound analysis that 
are viewed (a) as tools useful for research in musical acoustics and organology, and (b) in 
regard to auditory perception. Besides the proven Fourier analysis techniques such as STFT, 
especially for the study of transient or impulsive sounds other methods such as WT (see Zhu 
& Kim 2006) or AR can be applied for time/frequency representations. To account for 
characteristics of the auditory systems, namely different resolution power relative to the 
period length (ms) of nearly periodic as well as  quasi-periodic sound signals (meaning 



spectral structures ranging from harmonic to inharmonic; see Schneider 1997, 2001), 
algorithms simulating peripheral filtering must be designed which offer appropriate filter 
bandwidth and time constants. WT and gammatone filter banks are among such algorithms 
that can be applied to many sounds, and can thus be considered versatile tools. If an approach 
is needed which is closer to functions found implemented in the auditory system, 
computational models such as developed by Meddis and O’Mard (1997, 2006) should be 
applied to the study of musical sound in regard to psychoacoustics and perception (see 
Schneider & Frieler 2009). The FTT model that was proposed already in 1985 still can be a 
useful method for time/frequency analysis that is close to basic parameters of the auditory 
periphery.   
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