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Abstract—Radon Transform (RT) becomes a mathematical 

basis for solving computerized tomography, and finds application 

in medical imaging and image processing. Finite groups represent 

digital images; the Finite Radon Transform (FRAT) is then 

applied. To overcome the periodization effect of a finite transform, 

Do and Vetterli [1] introduce a novel ordering of the FRAT 

coefficients. This paper introduced a detailed mathematical 

analysis of the optimal ordering of FRAT coefficients that 

introduces new normal vectors that are clearly identified with 

examples producing the FRAT transform. Lately FRAT is used 

with OFDM systems as an M-Ary mapping technique, thus, the 

signal constellation of some of the different orders of FRAT is 

presented as well as generating the OFDM symbols from the 

output of FRAT. This procedure leads to extra investigation on the 

performance of FRAT-based OFDM systems in comparison with 

the QAM mapping techniques. 

Key Words— Finite Radon Transform, FRAT, M-Ary Mapping, 

Radon, OFDM. 

I. INTRODUCTION 

n 1917, Johann Radon presented a solution to the inversion 

of linear function transformation and a solution of the dual 

problem of calculating a line function from its point mean 

values [2]. His solution is later known as the Radon Transform 

(RT), which becomes a mathematical basis for solving 

computerized tomography, and finds application in medical 

imaging and image processing [3, 4]. 

There is a powerful relationship between the Radon 

transform (RT) and the Fourier transform. Deans book is 

considered as a perfect literature for the researchers who are 

interested in obtaining wide information about this topic [5]. 

This important result, known as the central-slice or projection-

slice theorem, shows that the 1D Fourier transform of a 

projection of a 2D function is directly one line through the 2D 

Fourier transform of the function itself [3, 5-8]. The Fourier 

transform (FT) characterizes the overall regularity of a periodic 

signal as well as the related concept of frequency scale. The 

orthogonality of the basic functions, which allows for a unique 

signal decomposition, is an important feature of FT. thus, it is 

used as the major part of generating the OFDM symbols used  
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as the air interface for the next generation of mobile systems [9-

11]. The essential relationship between the Fourier transform 

and the Radon transform is given as follows: 

 

     1

1 2D Df f R R F F  (1) 
 

Fig. 1 displays the corresponding graphical interpretation [5, 

12]. A new algorithm based on the generalized Radon transform 

that works on binary images, obtained by deconvolution is 

proposed in [13] for fast curve parameter estimation.  

The fundamental idea is to reduce the computational cost of 

the generalized Radon transform by the use of a precondition 

map. To generate the precondition map, a fast mapping 

procedure named image point mapping is developed [13]. 

Beylkin in [7] describes the discrete RT (DRT) and the exact 

inversion of it. The DRT is a very useful tool for 

multidimensional DSP and other applications of digital signals 

and image processing described in [7, 14-20]. 
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Fig. 1. The Relation between Radon Transform and Fourier Transform 

Section II introduces the Radon Transform with clear 

description of the generating the sinogram from the different 

projections, which introduces Fourier Slice Theorem presented 

in section III. Section IV describes in details the Finite Radon 

Transform applied to finite groups represent digital images. A 

novel ordering of the FRAT coefficients is introduced by Do 

and Vetterli [1] with examples to simply clarify the procedure 

of reordering the coefficients. Assuming binary input to the 

FRAT transform and the inverse of the FRAT transform are 

introduced as well. The resulted complex symbols could be 

used as an M-Ary for OFDM system as in section V. The 

conclusions of this research is given by section VI. 

II. RADON TRANSFORM (RT) 

Radon transform is used in many branches of science, X-ray 

crystallography, microwave scattering and others. The medical

I 
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computed tomography (CT) has attracted more attention than 

any other application of the RT. The basic data obtained in a CT 

procedure are X-ray transmission measurements through a 2D 

slice of a body. Each measured transmission value is simply 

related to a line integral of the X-ray attenuation coefficient in 

this slice [6], in a narrow sense, tomography is the problem of 

reconstructing the interior of an object by passing radiation 

through it and recording the resulting intensity over a range of 

directions. 

Fig. 2 illustrates a certain two dimensional object defined by 

the real function  ,f x y  on a certain Cartesian coordinate

system. Defining a line  ,L    through the object function

parameterized by    “the angle between the line and the y-

axis” and by    “the position where this line intersects with

the detector line or the displacement of the lines through the 

object”.  

Direction of Line Rotation








'x

 ,f x y

0 

1 

 p 

 ,L  

x

y

Fig. 2. Radon Transform Demonstration 

The line  ,L    in this system holds the detector array for

a certain projection direction  0    , which is rotated by 

the angle in the counterclockwise direction relative to the 

original x-y coordinate system. This gives rise to the attenuated 

intensity measurement function  I   for all values of 

displacement   . The (logarithmic) transformed measurement

function  p  , a parallel beam projection, is then computed.

In X-ray transmission it is usually a good approximation to 

assume that a thin pencil beam of monoenergetic X-rays is 

attenuated in accordance with Beer-Lambert Law, which states 

that: the decrease in intensity of light with thickness of the 

absorbing medium at any point is directly proportional to the 

intensity of light [21]. For a homogeneous medium of thickness 
 L , this means that 

0

LI I e   (2)

where  I  is the X-ray flux transmitted through the medium, 

 0I , is the flux that would be transmitted in the absence of the

medium, and    is the linear attenuation coefficient. For an

inhomogeneous medium such as the human body,    r  is

a function of position, and Equation (2) must be replaced with 

 
0 exp

D

S

I I dl
 

  
 
 r  (3) 

where the line integral runs from the source position S to the 

detector position D. In computed tomography, intensity 

measurements are made for many line-integral paths confined 

to a plane, and (r) is therefore a 2D position vector with 

Cartesian components  ,x y . The logarithm of  0/I I , is 

linearly related to the line integral: 

   
0

ln

D

S

I
dl p

I
 

 
   

 
 r  (4) 

Radon transform of a real function  ,f x y , represents the

linear attenuation coefficient of the inhomogeneous medium, is 

defined on a family of lines, having the value of the line integral 

along  ,L    [5, 22, 23]. On this line, we measure what is

called the detector function  p   or the forward projection.

Thus, Radon can be seen as the family of projections, where the 

projection  p   is the restriction of Radon transform on the

set of all lines parallel to the line containing the origin with 

direction    ,  , 0L  , for different displacements   .

The parallel lines of  , 0L  are the lines with a 

displacement of   , or shifted to the left or to the right on the

x-y plane with  'x  as shown in Fig. 2, given as follows: 

      , ,  : ' 'L x y y k x x kx kx        (5) 

From Fig. 2,  tank   is the slope of the line, 'sinx 

and the angle 
2


 
 

  
 

, thus, the parallel line in Equation 

(5) is given as follows: 

sin sin

cos cos sin

sin
2

cos cos
2 2

cos sin
2 2

sin cos

y x

y x

y x

y x

  

  






 
 

 
  

  

  

 
 

 
 

   
    

   

   
      

   
  

 (6) 

sin cosy x     (7) 

This line is then a collection of all the points in the coordinate 

system and written as follows [4, 6, 19]: 

    , ,  : cos sinL x y x y        (8) 
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The slope of this line is
 

 

sin cos
tan

cos sin
k

 


 

 
   

 
, 

where    is the angle of the displacement   with the x-axis.

For vertical lines, 0
2 2

 
  
 

     
 

 and for horizontal 

lines,
2 2

 
   
 

     
 

, thus Equation (8) is written as 

follows: 

    

  

0, ,  :

, ,  :
2

L x y x

L x y y

 


 

  

 
   

 

(9) 

Mathematically, the integral of  ,f x y  along this line can

be obtained by multiplying  ,f x y  by the line mass

 cos sinx y     , which has support the x-y plane along

the line of Equation (8) and then integrating the product 

function over the x-y plane as follows: 

     , cos sinp f x y x y dxdy     
 

 

     (10) 

At this point, we finally have all that we need to define the 

measured linear projection data of the function  ,f x y  under

the annual data and detector position   .

x

y


s



coss 

sins 

sin 

cos 



cos sin

sin cos

x s

y s

  

  

 

 

 ,L  

Fig. 3. Coordinates Translation 

By using the analysis and conversion of axes as illustrated in 

Fig. 3, the projection function that represents the straight-line 

integral of  ,f x y  along the line  ,L    is written with the

change of variables as follows: 

   cos sin , sin cosp f s s ds       




    (11) 

If we do this for all projection angles and all positions on the 

detector line so this basically means that we're rotating the 

detector line around the object function constantly building a 

detector function each time. Then we end up with the Radon 

transform. 

   
 ,

, ,f

L

f x y ds
 

   R  (12) 

x

 ', 'r  

'y  ', 'x x y y  

 ,f x y

'r

'x

y

'

Fig. 4. Example Illustration 

To illustrate the two-dimensional nature of the operation 

defined in Equation (10) the Radon transform of the two-

dimensional impulse function  ', 'r   is considered as shown

in Fig. 4. Substituting this impulse into the Equation directly 

yields: 

       

   

', ' ', '

', ' cos sin

r x x y y p

x x y y x y dxdy

   

    
 

 

   

     

R R

 (13) 

Using the characteristic of the Dirac function, 

     

     0 0

0f t t dt f

f t t t dt f t















 





(14) 

   'cos 'sinp x y        (15) 

This Equation specifies a line mass supported on the curve 

 'cos 'sinx y     in the  plane  . From Fig. 4,

 ' 'cos 'x r  ,  ' 'sin 'y r   and  2 2 2' ' 'r x y  , then the 

line mass could be written as follows: 

   
   

 

'cos 'sin cos cos sin sin

0.5 cos 0.5 cos

0.5 cos 0.5 cos

cos

x y r r

r r

r r

r

      

   


   

  

   

    
 

  

 

(16) 

Equation (15) is then written as: 

    cosp r         (17) 

The Radon transform of the two-dimensional impulse 

function is more than simply an example of the Radon 

transform operation. Since an arbitrary function  ,f x y  can

be expressed as a continuous sum of impulses, i.e. 

     , ', ' ', ' ' 'f x y f x y x x y y dx dy
 

 

     (18) 

Since the Radon transform operation is linear, then (by 

superposition) the Radon transformation of this continuous sum 

of impulses Equation (18) is a continuous sum of the line 

masses in Equation (13). Thus, the line mass obtained in 

Equation (13) is the “point spread function” of the Radon 

transform operation. Viewing the Radon transform of an 

arbitrary function  ,f x y  as a superposition of these line
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masses, supported on sinusoids in the  plane  , provides a

simple procedure for obtaining a bound on the effective band 

region of the Radon transform [i.e., the support of the Fourier 

transform of  p  . 

Since     cosp r        , the line mass “point

spread function” of the Radon transform operation is given by: 

 cosr    . (19) 

This represents the sinogram resulted from scanning the 

object  ,f x y . For different positions of the Dirac function

with the same magnitude  r  and different angles   , the line

mass “point spread function” of the Radon transform operation 

will results in the sinogram of the cosine function shifted with 

these angles as shown in Fig. 5. This is a result of scanning the 

object with different lines parallel to that at the origin with 

different rotation angles. 

With  0  , the lines are vertically scanning the object. The

four lines that can scan the Dirac functions assumed in this 

example (see Fig. 5a) are those with the following 

displacements:    ,0 ,  0,0 ,  ,0  and ,0
2 2

r r
L L L L r

   
   
   

.

Those lines get the values of the four points shown in Fig. 5 at 

 0  . For
4



 

 
 

, the lines scan the object at an angle of 

3

4

 
 
 

 since 
2


 
 

  
 

. Fig. 5b illustrates that only three 

lines can scan the four Dirac functions, where the line with 

displacement of 
2

r 
 
 

 scans two Dirac functions as shown in 

Fig. 5 with the intersection of the two sinusoidal represents the 

Dirac function in the sinogram. 

For all values of  &  , the result will be a sinusoidal shape

for each of the Dirac functions used in the example. Thus, for 

the whole object  ,f x y  (  p p  Shepp-Logan phantom), a 

sinogram shape is resulted as shown in Fig. 5. 

r

  ,0r

x

 , 45r 

 ,90r 

 ,135r 

y

 p 

0  

 0,0L   0.707 ,0L r 

 ,0L r 

 0.707 ,0L r 

 a

r

 ,0r

x

 , 45r 

 ,90r 

 ,135r 

y

 p 

22.5  

 0.303 ,22.5L r 

 0.923 ,22.5L r 

 0.383 ,22.5L r 

 b


0.923r

0.383r

0.383r

r

 ,0r

x

 , 45r 

 ,90r 

 ,135r 

y

 p 

45  

 0.707 ,45L r 

 , 45L r 
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 c



0.707r

Fig. 5. Rotating 𝐿(𝜃, 𝜌) to scan 𝛿(𝑟, ∅) and Line mass “point spread function” for ∅ = 0, 45𝑜, 90𝑜, 135𝑜 and the Sinogram of Shepp-Logan head phantom 

III. FOURIER SLICE THEOREM

Analytical reconstruction methods are based on the Fourier 

slice theory that can be used to build the reconstruction from a 

projection data. To understand the Fourier slice theorem, some 

basic knowledge on Fourier analytics is required [24-26]. 

The Fourier Slice theorem states that: a one dimensional 

Fourier transform of the (projection) detector function  p t  

at an angle    is exactly the same as a (slice) line through the 

two dimensional Fourier representation of the entire object even 

more it is aligned to the origin at the exact angle   , [27-29] 

Fig. 6.  

(The Fourier Slice Theorem also known tensor transform-

based algorithm of the N×N-point 2-D DFT, which was 

developed not only for prime N, and for other cases of N, as 

well [30]). A given two-dimensional object function  ,f x y

represented on a Cartesian domain is shown in Fig. 6. 
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The Fourier representation is given by taking the 2D-Fourier 

transform of the unknown object function. The only known its 

detector functions for a set of different angles. 

By measuring a single projection of an object, we are able to 

fill in a single line in the Fourier domain (red or blue lines). 

Obviously as we then acquire projections from multiple angles, 

we can then essentially construct the full Fourier representation 

of that object. 

Then a two-dimensional inverse Fourier transform can be 

applied on that data to retrieve or to reconstruct the original 

object function. The 2D FT is given as follows: 

        2

2 , , ,
j ux vy

D f x y F u v f x y e dxdy


 

 

 

  =F  (20) 

Fig. 6. Projection and the 2D-FT and Fourier Slice Theorem (Forward) 

The 1D FT of the radon transform is given as follows: 

    2jP p e d

   






   (21) 

Using Equation (10), 

       2, cos sin jP f x y dxdy x y e d

      
  



  

    

(22) 

From the characteristics of the Dirac function, 

   2 cos sin2cos sin
j x yjx y e d e
      



 



    (23) 

Thus, Equation (22) is as follows: 

     

   

   

2 cos sin

2 cos 2 sin

,

,

cos , sin

j x y

j x j y

P f x y e dxdy

P f x y e e dxdy

P F

  



     









    

 

 

 

 

 

 







 

  (24) 

Comparing Equation (24) with Equation (20) given that 

cos ,   sinu and v     , which proves the Fourier Slice 

Theorem, where the 1D Fourier transform of the radon 

transform (the projection function) is the 2D Fourier transform 

of the object function as follows: 

         1 2 , ,D Dp P f x y F u v    =F F  (25) 

Using the Fourier transform, we can find the Radon 

transform of the object function by doing the 2D Fourier 

transform followed by the inverse 1D Fourier transform shown 

in Equation (1) and given as follows: 

      1

1 2, ,D Df x y f x yR F F  (26) 

To reconstruct the object function using the Fourier slice 

theorem, an inverse operation is done as follows: 

          1 1

2 1 2 1, ,D D D Df x y p f x y   F F F F R

(27) 

The problem of this approach is that the amount of 

measurements in practice is finite, which leads to a Fourier 

domain that is sampled in a difficult way to work with. Free 

samples lie in circles rather than on a square grid as shown in 
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Fig. 7, which is required for practical algorithms that perform 

the inverse transformation such as the fast Fourier transform.  

This needs to apply interpolation in the Fourier domain, 

which is not acceptable. In the other hand, the sampling 

distribution of the Fourier domain is much denser near the 

origin than it is for the outer regions; this means that for the 

lowest frequencies there is many data available meaning that 

these low frequencies will be reconstructed accurately. 

The high frequencies however, which is where most of the 

finer details of the object are located are not that greatly 

sampled and will not be accurately reconstructed after the 

inverse Fourier transform and this will lead to very blurry 

images. Even though you cannot use the Fourier slice theorem 

to directly create reconstructions it does form the basis for 

another reconstruction methods called filtered back-projection, 

which cleverly manages to overcome the problems of the 

Fourier Slice Theorem by introducing an additional filtering 

phase and by replacing the inverse Fourier transform with a 

different operation [31, 32]. 

IV. THE FINITE RADON TRANSFORM (FRAT)

The Finite Radon Transform (FRAT) has been discussed in 

many research papers and defined for 2-D images. It is a DRT 

that is defined on the same finite geometry as the Discrete 

Fourier Transform (DFT) [33-35]. 

Fourier Sampling with Fourier Slice 

Theorem

u

v

Sampling Required by Fast Fourier 

Transform

x

y High

Frequencies

Low

Frequencies

Fig. 7. Sampling in the Fourier Domain 

During the last decade, elements of a finite Radon transform 

theory have appeared mainly in the field of combinatorics. The 

fundamental concept due to Bolker is as follows: The finite 

Radon transform of a real function  f  defined on a finite set

   (with respect to a collection  Y  of its subsets: blocks) is

the function  f̂  on  Y , the values of which are obtained by

summing  f  over these subsets: blocks. It seems quite

impossible to say anything about this transform without 

additional conditions on the collection  f , however, when

considered on special combinatorial or algebraical structures 

like designs, metroid’s, lattices, groups, etc., [36-38]. 

Matus and Flusser [39] presented a model of FRAT that 

generalizes to finite group projections in the traditional RT 

theory applied to square array of prime sizes p p . The Radon 

projector averages a function on a group over normalizing of a 

subgroup. Deriving reconstruction formulae, which were 

formally similar to the convolved back projection ones and an 

iterative reconstruction technique is found to converge after 

finite number of steps, consequently, it may be exactly inverted 

via the Fast Fourier Transform (FFT) without any filtering or 

interpolation. The Finite Radon transform (FRAT) is defined as 

the summation of image pixels over a certain set of lines [1, 12, 

39, 40]. 

Another technique applied to dyadic square arrays 2 2n n  

called the DPRT “Discrete periodic RT” [15]. This technique is 

developed to prime-adic arrays 
n np p  . Later on a 

generalized FRAT that is applied to square arrays of arbitrary 

size N N  and based on a modulo arithmetic is proposed by 

[41], where the operation of generalized FRAT made it useful 

imaging tool that reduced 2D problems to a set of 1D problem. 

Most of the radon transforms were not designed to be 

invertible transforms for digital images. Alternatively, the 

FRAT, which means transform for finite length signals, 

provides an interesting solution. 

A group is called finite, if it contains finitely many elements, 

i.e.,  0,1, , 1p   is called the group of integers modulo p

 pZ . The number of elements in the finite group is called its

order [12]. 

Do and Vetterli defined FRAT as the summation of image 

pixels  ,f i j , over some set of lines ,  k lL , which is a set of line 

points on  2

pZ . Denote  0,  1,  ,  1pZ p   as a finite field

with modulo p operations, where p is a prime number [1, 39]. 

The FRAT of a real function  f  over  2

pZ is given as 

follows: 

     
  , ,   

1
, ,

k l

k f

i j L

r l FRAT k l f i j
p 

    (28) 

 ,k lL is a set of line points on  2

pZ  that is presented by the 

slope or direction  * 0,  1,  ,  pk Z p  and intercept 

 0,  1,  ,  1pl Z p   , where:
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    
  

,

,

, :   mod ,  

, :  ,   

k l p

p l p

L i j j ki l p i Z

L l j i l j Z

   

  
(29) 

When the slope is zero (horizontal lines), the line equation 

will be     pj l for all i Z  . In addition, when the slope is

infinity (vertical lines), the line equation will be

    pi l for all j Z  . For slopes between zero and infinity,

Equation (29) is valid [1, 39, 42]. The FRAT of a real function 

is then given as follows: 

   

   

1

0

1

0

1
,   mod

1
,  

p

k

i

p

p

j

r l f i ki l p
p

r l f l j
p









   






(30) 

For compacting energy, it is better to subtract the mean from 

the image  ,f i j  before transforming it. On the other hand, the

2l norm  (known as the Euclidean norm, which calculates the 

distance of the vector coordinate from the origin of the vector 

space) is normalized by introducing the factor  1/ p .

For each image, there are  1p  directions and  p

intercepts that obviously, there are  1p p   number of lines

and every line contains  p  number of points. These represent

 1p  coefficients at  1p  directions in addition to the 

mean value, which make up    21 1 1p p p     FRAT

coefficients in the FRAT domain [1]. This indicates that the 

function contains  2p  points input to the FRAT and  1p p 

number of output points resulted from integrating this number 

of lines. For general definition of lines in  2

pZ  plane:

    ' 2

, , , :  0 moda b t pL i j Z ai bj t p     (31) 

where  , , pa b t Z  and  , 0a b  . For the finite line  '

, ,a b tL , 

 ,a b  has the role of a normal vector,  t  is the translation

parameter. This is by analogy with the line Equation (8) 

    , ,  : cos sinL x y x y        . Since the line

slope represents  tank   as in Fig. 2 above, and

 cos cos sin
2


  

  
     

  
 and

 sin sin cos
2


  

  
    

  
, thus the slope is given as: 

sin cos

cos sin
k

 

 
 


 (32) 

For fixed normal vector  ,a b ,  '

, , :a b t pL t Z  is a set of lines 

in the  2

pZ plane. This set is equal to the set of p lines 

 , :k l pL l Z  with the same slope k that is: 

    
  
    

,

,

' 2

, ,

1 1

1

1

'

, , ,

, :   mod ,  

, :  ,     

, :  0 mod

 

   ,  0,  

k l p

p l p

a b t p

a b t k l

L i j j ki l p i Z

L l j i l j Z

L i j Z ai bj t p

j ki l ab i b t

a
ab i ki k

b
t

b t l l
b

a t
L L if k b l

b b

 





   


   


     

    

   


  


   

(33) 

And as in [42], 

    
  
    

,

,

' 2

, ,

'

, , ,

, :   mod ,  

, :  ,     

, :  0 mod

,     0,  0,  

k l p

p l p

a b t p

a b t p l

L i j j ki l p i Z

L l j i l j Z

L i j Z ai bj t p

t t
i l L L if a b l

a a

   


   


     

     

(34) 

The FRAT could be written as follows: 

     
  '

, ,

,

,   

1
, , ,

a b t

a b f

i j L

r t FRAT a b t f i j
p 

   (35) 

For this equation, the FRAT projection sequence 

      , , ,0 ,  1 , ,  1a b a b a br r r p   is simply a reordering of the 

FRAT sequence       0 ,  1 , ,  1k k kr r r p  . The normal 

vector  ,a b  controls the ordering of these coefficients in each

FRAT projection as well as the represented direction of those 

projections.  kr l  uses the set of  1p   normal vectors  ku

where: 

   ,1    0,  1, ,  1,   1,0k pk k p and    u u  (36) 

To represent  ,a br k , we need normal vector

  *, :k k pa b k Z  to cover all  &k pu u  normal vectors. In

addition, the set of lines with normal vectors  ,a b  equals to

the set of lines with normal vectors  ,na nb , the  1p 

choices are given as follows: 

 

       0 0,

 ,   1,  2, ,  1

 &  , =0,1 1,0

k k k

p p p

a pwheb n n

a b a b

re  

 

u

u
 (37) 

The good choice of the  1p   normal vectors is resulted

from the Discrete Projection –Slice Theorem, which shows that: 

The 1D DFT  ,a bR   of a FRAT projection  ,a br t  is identical
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to the 2D DFT    ,   ,F u v of f i j  evaluated along a discrete

slice through the origin at direction  ,a b :

      

 
 

 
 

        

'
, ,

1 2

, 1 , ,

0

1 2

0 ,   

1 1 2

0 0

, 2

1
,

1
,

, , ,

a b t

tp j
p

a b D a b a b

t

tp j
p

t i j L

ai bjp p j
p

i j

a b D

R r t r t e

f i j e
p

f i j e
p

R F a b f i j F u v












  

 



 

 

  

 

 

 
  

 
 



  



 



F

F

 (38) 

This shows the influence of the normal vectors  ,a b  that

control the order of the coefficients in the Fourier slices (also 

known tensor transform-based algorithm of the N ×N-point 2D 

DFT, which was developed not only for prime N, and for other 

cases of N, as well [30]). In particular,  ,F a b  represents the

first harmonic of the FRAT projection. Since most of the 

interested types of images, the energy in concentrated in the low 

frequency, the represented normal vectors  ,a b  should be

chosen to be as close to the origin of the Fourier plane as 

possible. This lead to define the set of  1p   optimal normal

vectors   * * *, :k k pa b k Z  as follows [1, 40]: 

 
   

 

    * *

,    : 1 1

  0

, arg min ,
k k k

p k

k k p k p k
a b n n p

C b

a b C a C b
   




u

(39) 

A. Optimal Normal Vectors 

From Equation (39), the new optimal normal vectors are 

obtained as follows: 

    ,    :  1 1k k ka b n n p   u are the points on the 

periodic Fourier plane

 Taking into account that 

       0 0, 0,1  &  , 1,0p pa b a b   are the vertical and

horizontal slices in the Fourier domain, the number of 

slices in the Fourier domain are  1p   slices distributed

around the origin where 
 1 1

: 1,  1:
2 2

p p
k

  
  
 

 

 

 
1

12 1
.. 1 1 ..

2 2
1

k

k

a nk

p p
a

p

 

 
     

    
   
   

 (40) 

   

   

 
 

 
2 2

1 1
.. 1 1 ..

2 2
2 1 2 1

.. 2 2 ..
2 2

1 1
.. 1 1 ..

2 2

k

p p

p p

a

p p
p p

   
 

 
   

 
 
 
   

   
 

 (41) 

 The other element of the normal vectors is  kb , which has 

the values of  n  for each group of  ka values as 

follows: 

 

1

1

2
1 1 1 1

1

k k

k

b n

b

p

 

 
 

  
 

  

(42) 

1 1 1 1

2 1 2 2

1 1 1 1

kb

p p p p

 
 

  
 

     

 (43) 

 for example, if  5p  , then 

 
   
   

 

       
       
       
       

3

5

1,1 1,1
,

2,2 2,2

2,1 1,1 1,1 2,1

4,2 2,2 2,2 4,2
,

6,3 3,3 3,3 6,3

8,4 4,4 4,4 8,4

k k p

k k p

a b

a b





  
   

   
  
 

  
   

(44) 

  p

x
C x x p round

p

 
    

 
 is the centralized function of 

period p applied to  ,k ka b  as follows: 

   
 

   
 

3

5

,
, , 3

3

,
, , 5

5

k k

k k k k

k k

k k k k

a b
C a b a b round

a b
C a b a b round

 
    

 

 
    

 

(45) 

 

 
   

   

 

       
       
       
       

3

5

1,1 1,1
,

1, 1 1, 1

2,1 1,1 1,1 2,1

1,2 2,2 2,2 1,2
,

1, 2 2, 2 2, 2 1, 2

2, 1 1, 1 1, 1 2, 1

k k

k k

C a b

C a b

  
     

   
  
 

      
       

(46) 

  imposed to remove ambiguity of choosing between

   , & ,a b a b  , this is done by eliminating points with

negative angle. Thus, the optimal normal vectors have

angles between  0, , thus all negative kb  values

represent negative angles.
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 
 

   
3

  0

1,1 1,1
,

p k

k k
C b

C a b
NaN NaN

  
  
 

 (47) 

 
 

       

       
5

  0

2,1 1,1 1,1 2,1

1,2 2,2 2,2 1,2
,

p k

k k

C b

C a b
NaN NaN NaN NaN

NaN NaN NaN NaN



   
 
  

 
 
 

 (48) 

 Minimization is done for each
*

pk Z  by computing 

 1p   distances and select the smallest one. If the

distances are equal, the minimum angle is chosen. 

    ,p k p kC a C b  is the distance from the origin to the 

point  ,k ka b  on the periodic Fourier plane (Euclidean 

norm). 

 
 

3

  0

3

2 2,

45 135

p k

k k

C b

C a b
NaN NaN

NaN NaN




 
  
  

    
   

 

 (49) 

 
 

5
  0

5

5 2 2 5

, 5 8 8 5

26.565 45 135 153.435

116.565 45 135 63.435

p k

k k
C b

C a b

NaN NaN NaN NaN

NaN NaN NaN NaN

NaN NaN NaN NaN

NaN NaN NaN NaN





 
 
 
 
 
  

        
        

   
 
  

 (50) 

 The minimum distances and there positions are given as

follows:

   
   

   
   

3

3

5

5

min 1.4142 1.4142

arg min 1 3

min 2.2361 1.4142 1.4142 2.2361

arg min 2 5 9 14

index

index



 



 

C

C

C

C

(51) 

 Retrieve  * *

0 , 'k kM a b  points and put them in a set of 

directions, as follows: 

     

   

     

       

3

0

3

0

5

0

5

0

, , 1 3

1,1 1,1

, , 2 5 9 14

1, 2 1,1 1,1 1, 2

p k k p k k

p k k p k k

M C a b C a bindex

M

M C a b C a bindex

M

 

   

 

    

(52) 

 Adding the vertical and horizontal slices as follows:

       

 

           

 

3

0

3

0

5

0

5

0

1,1 1,1 1,0 0,1

45 135 0 90

1, 2 1,1 1,1 1, 2 1,0 0,1

45 63.435 116.565 135 0 90

M

M





   

     

    

       

(53) 

 

 Sort those directions in ascending order of angles results in

the optimal ordering  * *,k ka b  as follows:

         

             

* * 3

03

* * 5

05

, 1,0 1,1 0,1 1,1

, 1,0 1,1 1,2 0,1 1,2 1,1

k k

k k

a b M

a b M

    

     

(54) 

After obtaining  * *,k ka b , FRAT and its inverse can be 

computed, where  &k pu u  are translated to  * *,k ka b , which

provides a much more uniform angular coverage as illustrated 

in Fig. 8. 

Fig. 8. The Set of Normal Vectors, which Indicate the Represented 

Directions for p = 3 & 5 

The normal vectors  * *,k ka b  are used to rearrange the 2D

Fourier transform data, the inverse 1D Fourier transform is then 

applied to get the RT of the real function  ,f i j .

B. FRAT of Data Input 

The input to the FRAT transformation is a  p p  matrix

represents the image pixels or the real function  ,f i j  as

shown in Fig. 9, where, p is a prime number [1, 43, 44]. This 

matrix is 2-D Fourier transformed as follows: 
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   
1 1 2

0 0

1
, ,

0 : 1
 

0 : 1

ui vip p j
p

i j

F u v f i j e
p

u p
where

v p


  

 



 


 


(55) 

2D Fourier 

Transform

Optimal Ordering 

Matrix

1D Inverse Fourier 

Transform

Data Input Bits = p2

Fopt

0 0 1 0 1 1 0 1 0

  ,f i jR

 ,f i j

Fig. 9. Data Symbols Generation using FRAT 

As an example, assume an input frame data number of 
2 9p  , where this input is to be arranged in a matrix of 

   3 3p p   .

 

   
2 2 2

3

0 0

0 0 0

0 0 1 0 1 1 0 1 0  , 0 1 1

1 1 0

1 0 : 2
, ,  

0 : 23

ui vi
j

i j

f i j

u
F u v f i j e where

v






 

 
  
 
 


 




 (56) 

    2, ,

2.31 2.89 0.5 2.89 0.5

1.155 0.577 1.0 0.289 0.5

1.155 0.289 0.5 0.577 1.0

DF u v f i j

i i

i i

i i



    
     
 
    

F

 (57) 

The optimal ordering of  ,F u v  matrix as suggested by [1]

is started by finding the best directory (normal vectors) of the 

matrix of    3 3p p   , which is found to be a

   2 1 2 4p       matrix as follows:

 * * 1 1 0 1
,

0 1 1 1k ka b
 

  
 

 (58) 

The optimal ordering is related to the (modulo operation) 

between the normal vectors and coordinates of the Fourier 

slices  * *,k ka b  as follows: 

*

*

' mod 

' mod 

k

k

U u a p

V v b p

 

 
(59) 

where (',u v ') are the column vectors of the Fourier slice 
coordinates, U and V are the Fourier slices used to identify the 

reordering of the Fourier matrix, thus U and V are given by: 

0 0 0 0 0 0 0 0

1 1 0 2 ,       0 1 1 1

2 2 0 1 0 2 2 2

U V

   
    
   
   

 (60) 

The new optimal ordering matrix  optF , which has a 

dimension of  1p p     (Fourier transform of FRAT

projections) is given as by the following ordering [1]: 

1

0 0 0 0 0 0 0 0

1 1 1 0 2 3 0 1 1 1

2 2 0 1 0 2 2 2

1 1 1 1

2 5 4 6

3 9 7 8

UV U p V

UV

UV

   

   
      
   
   

 
 
 
 

(61) 

 
1 1 1 1

2 5 4 6

3 9 7 8

2.31 2.31 2.31 2.31

1.155 0.577 1.0 2.89 0.5 0.289 0.5

1.155 0.577 1.0 2.89 0.5 0.289 0.5

opt

opt

opt

F F UV

F F

F i i i

i i i



 
 
 
 

 
       
 
      

(62) 

Take the 1D-IFFT for each column of the matrix  optF  to 

obtain the matrix of Radon coefficients, R and then construct 

the complex matrix R from the real matrix R to be the data sub-

carriers input to the IFFT of the OFDM system. The 1D-IFFT 

for each column of the matrix  optF  is given by: 

 

    

  

1

1,

0 1.155 0.577 0.577

, 1.155 0 1.155 1.155

1.155 1.155 0.577 0.577

D optf i j F

f i j



 
 
 
 

R F

R
 (63) 

C. Inverse FRAT 

To reconstruct the object function using the Fourier slice 

theorem, an inverse operation is done as show in Equation (27) 

above and rewritten as follows: 

      1

2 1, ,D Df i j f i j F F R  (64) 

   1

1

,

0 1.155 0.577 0.577

1.155 0 1.155 1.155

1.155 1.155 0.577 0.577

2.31 2.31 2.31 2.31

1.155 0.577 1.0 2.89 0.5 0.289 0.5

1.155 0.577 1.0 2.89 0.5 0.289 0.5

D

D opt

opt

f i j

F

F i i i

i i i



  
    
    

 
       
 
      

F R

F

(65) 

Reorder the optimal matrix using the same normal vectors 

and optimal ordering used in the FRAT transformation as 

follows: 
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 

1 1 1 1

2 5 4 6

3 9 7 8

2.31 2.89 0.5 2.89 0.5

1.155 0.577 1.0 0.289 0.5

1.155 0.289 0.5 0.577 1.0

UV optF F

i i

F UV i i

i i

 
  
 
 

    
     
 
    

(66) 

Taking the inverse 2D Fourier Transform results in the 

following: 

 

 

1

2

,

2.31 2.89 0.5 2.89 0.5

1.155 0.577 1.0 0.289 0.5

1.155 0.289 0.5 0.577 1.0

0 0 0

, 0 1 1

1 1 0

D

f i j

i i

i i

i i

f i j





      
      
       

 
 
 
 

F  (67) 

V. M-ARY TECHNIQUE & SIGNAL CONSTELLATION 

Construct complex data from the matrix in Equation (63) 

done by taking the odd columns as real part and the even 

columns as the imaginary part of the data subcarriers, which are 

used as an input to the OFDM symbol generator (inverse 

Fourier transform), this is done by converting the complex 

matrix into complex column vector as follows: 

0.577 0.577 1.154

1.154 1.154 0.577

0.577 1.154 1.154 1.154
complex

i

R i

i i

 
  
 

  

 (68) 

0.577

1.154 1.154

0.577 1.154
 

0.577 1.154

0.577

1.154 1.154

i

i
Data Subcarriers

i

i

 
 
 

 
 

 
 

 

 (69) 

An observation of the output is that it equals to a frame of 

length  1 / 2 3 2 6p p      and the input as mentioned

before equals to a frame of length 3 3 9p p    . Focusing 

on the input number of bits and the output number of symbols, 

give that always the ratio is constant as follows: 

 

2 2
2

1 / 2 1

3 7 11 37

1.5 1.75 1.833 1.947

in p p
Ratio

out p p p

p

Ratio

   
 

(70) 

An observation of the output is that it equals to a frame of 

length  1 / 2p p   and the input as mentioned before equals to

a frame of length p p . This leads to a ratio between the input 

and the output as follows: 

 

2 2
2

1 / 2 1

in p p
Ratio

out p p p
   

 
(71) 

This ratio ensures that the data rate will not be increased 

whatever the size of the matrix, it will always behave as the 

BPSK mapping technique from the data rate point of view. 

Let us have a look at the matrix  R , which is the 1D-IFFT

for each column of the matrix  optF  before normalization. It 

always have element positive values between 0 and p related to 

the following examples: 

0 0 0 0 0 0 0

  0 0 0 0 0 0 0

0 0 0 0 0 0 0
mnInput Data D R

   
     
   
   

(72) 

0 1 0 1 1 1 1

  0 0 1 1 2 1 3

1 0 1 2 1 2 0
mnInput Data D R

   
     
   
   

(73) 

1 1 1 3 3 3 3

  1 1 1 3 3 3 3

1 1 1 3 3 3 3
mnInput Data D R

   
     
   
   

(74) 

By normalization and converting into complex as mentioned 

above, all the sub-carriers will result in positive phase between 

 0 & / 2  with positive real and imaginary values between

3 3
0 1.7321 1.7321

3

i
i

 
   

 
. 

Having long data input with variety of bits that covers from 

[0 0 0 0 0 0 0 0 0] to [1 1 1 1 1 1 1 1 1], the signal constellation 

of the FRAT sub-carriers resulted from a prime numbers 

 3,  5 &  7p p p   . It is worth mentioning that when using

more matrices with different sizes, the cumulative number of 

constellation points show all the constellation resulted from 

each matrix size to produce the needed number of data sub-

carriers, the constellation of the  dN  sub-carriers includes the 

constellations in Fig. 10. 

The differences in positions of constellation points related to 

the distance between the adjacent points of each matrix, which 

is  1/d p .  

The signal constellation of the FRAT mapper is considered 

as rectangular mapping, which are compatible to M-Ary QAM 

rather than M-Ary PSK. Therefore, we will consider the 

comparison with M-QAM mapping techniques in the next part. 

The spectral efficiency is /b d scR N f  , where, the

relationship between the input bits and the output symbols is as 

follows: 

 2 ,        1 / 2Bits dN p N p p    (75) 

2

Bits b t b

t

p
N R T R

T
    (76) 

   

2 22 2 1

1 1

b

d sc t sc t sc

R p p

N f T p p f p p T f
   

 
(77) 

In the case of critical time-frequency density (

1t sc u scT f T f  ), i.e., maximum spectral efficiency for the

FRAT transform is given as follows: 

2 2
1

p

p
  


 (78) 
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From this equation, the spectral efficiency for all 

combinations that may be used in any system will not exceed 2, 

in the contrary of using the M-Ary mapping techniques that is 

increased as the level of mapping increased. 

Fig. 10. FRAT Signal Constellation with Different Matrix Sizes 

VI. CONCLUSIONS

In this paper detailed analysis of the equations used in RT 

and FRAT that explores the transformation and its inverse, 

which is appropriate to cope with images previously 

transformed with these approaches. The Fourier slice theorem 

is introduced showing the relationship between RT and the 

Fourier transform as well as the FRAT. 

Extra analysis on FRAT is introduced showing how the 

optimal ordering is taken into consideration as well as 

generating the new normal vectors introduced by Do and 

Vetterli in [1]. This represents an introduction to construct 

complex data subcarriers from an input 2D matrix of binary 

numbers representing the input stream to an OFDM system. 

The signal constellation of the output data subcarriers 

generated by FRAT is illustrated and the spectral efficiency 

using this constellation is introduced as an introduction to the 

second part of this research, which shows performance analysis 

of FRAT-based OFDM system. 
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