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Abstract: In this paper, in order to accurately detect Domain Name System (DNS) covert channels
based on DNS over HTTPS (DoH) encryption and to solve the problems of weak single-feature
differentiation and poor performance in the existing detection methods, we have designed a DoH-
encrypted DNS covert channel detection method based on features fusion, called FF-MR. FF-MR is
based on a Multi-Head Attention and Residual Neural Network. It fuses session statistical features
with multi-channel session byte sequence features. Some important features that play a key role in
the detection task are screened out of the fused features through the calculation of the Multi-Head
Attention mechanism. Finally, a Multi-Layer Perceptron (MLP) is used to detect encrypted DNS
covert channels. By considering both global and focused features, the main idea of FF-MR is that
the degree of correlation between each feature and all other features is expressed as an attention
weight. Thus, features are re-represented as the result of the weighted fusion of all features using
the Multi-Head Attention mechanism. Focusing on certain important features according to the
distribution of attention weights improves the detection performance. While detecting the traffic in
encrypted DNS covert channels, FF-MR can also accurately identify encrypted traffic generated by
the three DNS covert channel tools. Experiments on the CIRA-CIC-DoHBrw-2020 dataset show that
the macro-averaging recall and precision of the FF-MR method reach 99.73% and 99.72%, respectively,
and the macro-averaging F1-Score reached 0.9978, which is up to 4.56% higher than the existing
methods compared in the paper. FF-MR achieves at most an 11.32% improvement in macro-averaging
F1-Score in identifying three encrypted DNS covert channels, indicating that FF-MR has a strong
ability to detect and identify DoH-encrypted DNS covert channels.

Keywords: DNS over HTTPS; DNS covert channel; features fusion; multi-head attention mechanism

1. Introduction

As a critical infrastructure of the Internet, the DNS protocol plays an important role
in the translation between domain names and IP addresses. However, DNS requests
and responses are transmitted in the form of plaintext, which means that anyone can
intercept and view the network access behavior of users between the host and local DNS
server, which is detrimental to the protection of user privacy and network security [1].
Therefore, the technology to protect the security of DNS requests comes into being. At
present, the three protocols listed in the Internet standardization document include Domain
Name System Security Extensions (DNSSEC), DNS over TLS (DoT), and DNS over HTTPS
(DoH). DNSSEC mainly uses digital signature technology to protect the integrity and
authenticity of the DNS response, but the communication process is still transparent to
attackers. DoT and DoH both use TLS encryption, the difference between them being that
the former uses the dedicated port 853, while the latter uses the HTTPS standard port
443, i.e., DoH transfers DNS messages using HTTPS streams. Today, companies, such as
Google, Cloudflare, and Alibaba, offer DoH nodes, and Google’s Chrome browser natively
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supports DoH. In February 2020, Mozilla Firefox began enabling DoH by default for US
users, and DNS requests from Firefox were encrypted by DoH and forwarded to Cloudflare
or [2]. DoH has played an effective role in protecting customers’ privacy and network
security and has thus developed rapidly and is more widely used in practical applications.

With the development of 5G technology, Internet of Things (IoT) systems are gaining
momentum. While they result in greater convenience, their use presents many security
challenges, e.g., data privacy, unstable network connections, and possible botnets [3]. The
DNS system, as the underlying network, affects the reliability and security of the IoT [4].
DNS technology meets the availability and transparency requirements for deploying the
IoT, a large number of heterogeneous devices can use DNS for network access, and DNS
encryption technology better protects the DNS data privacy of users. However, the risks
and opportunities are the same: the encryption of DoH and the interactivity of end-to-end
devices in the IoT (without human involvement) may jointly lead to attacks that are less
likely to be detected, not to mention the emergence of large-scale botnets and DDoS attacks
on public IoT services [5].

Therefore, while DoH enhances security, it also provides new opportunities for attack-
ers. In July 2019, Netlab, the cyber threat search division of Qihoo 360, released a report
that malware named Godlua used DoH to obtain domains and use them as communication
channels for Command and Control (C&C) [6]. In May 2020, Kaspersky also discovered
that Iran’s APT group OilRig had weaponized DoH and applied it to actual network data
theft activities [7]. General, non-encrypted DNS covert channels are transmitted in plaintext
via port 53 in the C&C stage of Advanced Persistent Threats (APT), while a DoH uses
encrypted transmission via port 443, which is indistinguishable from general HTTPS traffic
for network administrators. An attacker can thus hide and encrypt the DNS covert channel
via DoH to conduct malicious cyber attacks.

In this paper, we propose a DoH-encrypted DNS covert channel detection method
called FF-MR that aims to improve detection performance and solve the problems of weak
single-feature differentiation and poor performance in existing research. In summary, the
contributions of our paper are three-fold:

• We summarize and analyze the threat scenario of DoH-encrypted DNS covert channels
in the C&C stage, clarify its communication principle, and provide support for the
research of detection methods.

• We propose a DoH-encrypted DNS covert channel detection method (FF-MR) based on
feature fusion. FF-MR takes the session as a representation of encrypted DNS covert
channel traffic, fuses statistical features with byte sequence features extracted by
Residual Neural Networks, and focuses on important features through a Multi-Head
Attention mechanism to detect and identify three encrypted DNS covert channels.

• We conduct comprehensive experiments to evaluate the performance of FF-MR by
comparing it with other encrypted DNS covert channel detection methods. We es-
tablish four baselines to measure the improvements achieved by the detection model
in FF-MR and verify the validity of the model. Finally, recommended values for the
hyperparameters are identified using a parameter sensitivity experiment.

The rest of the paper is organized as follows: Section 2 introduces related work
on DoH-encrypted DNS covert channel detection. Section 3 summarizes and analyzes
the command control process of DoH-encrypted DNS covert channel and introduces the
research and application of Multi-Head Attention. In Section 4, we present the design
details of FF-MR. In Section 5, we experimentally evaluate the performances of FF-MR on
the publicly available dataset CIRA-CIC-DoHBrw-2020. Section 6 concludes this paper.

2. Related Work

In this paper, we mainly present the existing research on DoH-encrypted DNS covert
channel detection. Most previous studies have used statistical features and the CIRA-CIC-
DoHBrw-2020 dataset in their experiments. Detection is basically performed in two layers:
the first layer classifies non_DoH (HTTPS traffic) with DoH traffic, and the second layer
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classifies DoH traffic into normal DoH and malicious DoH traffic, i.e., DoH-encrypted DNS
covert channel traffic, as shown in Table 1.

Table 1. Research on DoH-encrypted DNS covert channel detection and identification.

Research Category Publication Year Author Features/Neural
Network Input Method

Detection

2020 Banadaki et al. [8] Statistical Features LGBM, Random Forest

2020 MontazeriShatoori et al.
[9] Statistical Features Random Forest, Naive

Bayes, SVM, LSTM
2021 Al-Fawa’reh [10] Statistical Features Bi-RNN
2022 Nguyen et al. [11] Statistical Features Transformer

2022 Zhan et al. [12] Statistical Features
+TLS fingerprint

Decision tree, Random
Forest, Logistic

Regression

Detection and Identification 2021 Mitsuhashi et al. [13] Statistical Features LGBM, XGBoost
2022 Zebin et al. [14] Statistical Features Stacked Random Forest

Banadaki et al. [8] performed a statistical analysis of DoH traffic and extracted a total
of 34 classes of statistical features, including IPs and ports, and used machine learning
algorithms such as LGBM and XGBoost to perform two-level classification. However, the
source IPs and destination IPs, which are directly related to the data itself, were used as the
basis for classification, and the resulting experimental results were obviously not objective.
MontazeriShatoori et al. [9] proposed arranging the captured packets in temporal order. A
set of consecutive packets in the same direction within a certain time threshold is called a
packet cluster. In this study, 28 classes of statistical features were extracted, and traditional
machine learning algorithms, including Random Forest (RF), Naive Bayes (NB), Support
Vector Machines (SVM), and Long Short-Term Memory (LSTM) Neural Networks, were
used to distinguish non_DoH from DoH and normal DoH from malicious DoH traffic.
Nguyen et al. [11] proposed a two-layer classification of DoH based on a Transformer
containing a four-layer encoder and a six-layer decoder using statistical features as input.
They also used an ELK stack architecture, which included four modules: Elasticsearch,
Logstash, Kibana, and Beats. Finally, a Security Operation Center (SOC) system enabled
the monitoring and detection of malicious DoH traffic for enterprise-level networks.

For binary classification, Al-Fawa’reh [10] combined statistical feature analysis with
a Bidirectional Recurrent Neural Network (Bi-RNN) to achieve the detection of DoH-
encrypted DNS covert channels. Zhan et al. [12] established a TLS fingerprint whitelist
based on the information from the TLS handshake stage, where TLS fingerprints not on
the whitelist will be considered as suspicious DoH traffic; in addition, normal DoH and
encrypted DNS covert channels are classified according to the statistical features of the
DoH flow. The difference between Al-Fawa’reh’s work and other studies is that the attack
scenarios are simulated; data on the location (latency), number, sending interval (rate), and
packet (domain name) length of different DoH servers are generated; and a large number
of adversarial and evaluation experiments are conducted to verify the effectiveness of the
method using three machine learning models.

The above studies only investigate the detection of encrypted DNS covert channels,
but there is less work related to identification of DoH-encrypted DNS covert channels in
the literature. Zebin et al. [14] proposed an interpretable machine learning approach using
ten-fold cross-validation to triple classify HTTPS, normal DoH, and DoH-encrypted DNS
covert channel traffic by stacking RF-based classifiers and, finally, test the performance of
the model in identifying encrypted DNS covert channels. The model could only achieve
an accuracy of about 92%. Mitsuhashi et al. [13] chose three machine learning algorithms,
XGBoost, LightGBM, and CatBoost, to implement a three-stage detection of HTTPS and
DoH, normal DoH, and DoH-encrypted DNS covert channel traffic, respectively, followed
by the classification and identification of the encrypted DNS covert channels.
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By summarizing the existing research on DoH-encrypted DNS covert channel detec-
tion, we identify the following limitations:

• There are few works related to DoH-encrypted DNS covert channel detection and
identification in existing studies, and the performance in this area still needs to be
improved;

• Most existing studies use statistical features as the basis for detection, which makes it
easy for attackers to evade detection by using single features;

• The role of byte sequence features and combining multiple features is ignored, thus
failing to meet the requirements of encrypted DNS covert channel detection.

In summary, there is a lack of work related to DoH-encrypted DNS covert channel
identification in existing studies, and the detection performance still needs to be improved.
Therefore, in this paper, we focus on the detection and identification of DoH-encrypted
DNS covert channels and calculate the correlation between statistical features and session
byte sequence features globally through Multi-Head Attention to obtain weighted fusion
features as a basis for detection and identification. As the correlation between global
features is extracted and the key features are highlighted, detection and identification
performance have been further improved.

3. Background

We elaborate and analyze the mechanism of the DoH-encrypted DNS covert channel
in Section 3.1 and formally describe the principle of the Multi-Head Attention mechanism
in Section 3.2.

3.1. DoH-Encrypted DNS Covert Channel

In this paper, we focus on DoH-encrypted DNS covert channels and domain name
resolution using DoH in two cases: one is to use browsers such as Google, Firefox, etc.,
that support the DoH protocol, where all DNS traffic is directly encapsulated into a TLS
encrypted HTTP message and sent to DoH servers, which are then forwarded to domain
name servers on the Internet for resolution; the second is to use hosts that do not support
the DoH protocol by building a local DoH proxy for forwarding (available proxy tools
include QuantumultX, Surge, Loon, etc.). The host forwards all network requests to the
local DoH proxy, the proxy will forward the DoH traffic to the Internet DoH server, and,
finally, the DoH server will perform domain name resolution.

As shown in Figure 1, in the C&C stage of an APT attack, the data carrier in the
DoH-encrypted DNS covert channel does not use the DNS covert channel directly, but
rather, the attack is implemented by encapsulating it into a TLS-encrypted HTTP message.
Firstly, the victim host sends a DoH request containing the DNS covert channel domain
name, updata.tunnel.com, through a local DoH proxy or directly to the DoH server. Updata
refer to sensitive information leaked from the victim host or command requests sent to the
attacker. Secondly, the DoH server parses the DNS request and performs an iterative query,
which is eventually forwarded to a disguised authoritative domain name server controlled
by the attacker, i.e., C&C Server. Finally, the attacker obtains the updata sent by the victim
host through the C&C server. The attacker also issues commands, i.e., downdata, through a
disguised authoritative domain name server and delivers downdata to the victim host by
DNS response and DoH response.

In general, the DoH-encrypted DNS covert communication between the attacker and
the victim host is similar to the scenario of non-encrypted DNS covert communication: the
principles of building DNS covert communication are the same. As shown in Figure 1, both
updata and downdata are iteratively queried, and the disguised authoritative domain name
server is used as the C&C server to relay between the attacker and the victim host.
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Figure 1. Data leakage and command control process based on DoH-encrypted DNS covert channels.

The difference between a non-encrypted DNS covert channel and a DoH-encrypted
DNS covert channel is reflected in two aspects. First, as a data carrier for leakage and
command and control, DNS covert channels in DoH traffic are encrypted, making it
impossible to apply existing deep packet inspection techniques. Second, DNS covert
channels are hidden in HTTPS traffic, and the DoH server acts as a local DNS server to
forward DNS traffic, which also makes it impossible for the local network administrator
to find the malicious activities of the victim through DNS. At the same time, the victim
host reduces the frequency of DNS requests, reducing the suspicion of malicious activities.
The above two characteristics bring a greater challenge for DoH-encrypted DNS covert
channel detection.

3.2. Multi-Head Attention Mechanism

Attention mechanisms were first proposed in the field of image processing [15]. In 2014,
the Google mind team combined an RNN and an attention mechanism and applied it to an
image classification task [16]; this was then further developed and expanded by researchers.
In different fields, many different attention mechanisms have evolved, including basic
attention mechanisms, such as Soft Attention, Hard Attention, Self-Attention, etc., and
combined attention mechanisms, such as Co-Attention, Attention-over-Attention, Multi-
Head Attention [17]. Although the above attention mechanisms are different, the basic
principles of implementation are similar. This section provides a brief overview of the
Multi-Head Attention mechanism by summarizing the general implementation principles
of the attention mechanism.

In essence, the attention mechanism can be summarized as filtering out important
and noteworthy information by computing the weight distribution of attention within or
among data. It usually contains three variables, Query, Key, and Value (Q, K, V), which
represent the data encoding using target data, source data encoding, and content data
encoding, respectively. The calculation process can be divided into two steps: one is to
calculate the similarity between the target data Q and the source data K, and the other is to
calculate the new data representation V ′ based on the similarity and V :

e = g( f (Q, K)) (1)

V ′ = m(e, V) (2)

where the similarity between Q and K is calculated by the energy function f [18] and the
distribution function g to obtain the weight distribution of attention e. Later, using the
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transformation function m, the new data representation V ′ is obtained by multiplying e
with V . Usually, the distribution function g is chosen to be normalized by softmax, while the
transformation function m is a weighted summation. The usual energy functions f include
additive and dot product functions [19], which are calculated as follows:

f (Q, K) = vT act(W1K + W2Q + b) (3)

f (Q, K) = QT K (4)

where act is the nonlinear activation function, such as tanh and ReLU, etc.; vT is the
parameter vector; b is the neuron bias; and W1 and W2 are the weight matrices.

The Self-Attention mechanism was proposed in 2017 by Vaswani et al. [20] for com-
puting the correlation between words within a sentence to extract syntactic and semantic
features. The difference compared to the general attention mechanism is that Q = K = V ;
that is, it only focuses on the interdependencies between elements within the data.

The Multi-Head Attention mechanism belongs to a kind of combined attention mecha-
nism, which can greatly improve the data fitting ability and enrich the feature representation
by combining multiple attention mechanisms headi and jointly extracting information from
different representation subspaces:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)Wo

where headi = m(g( f (Q, K)), V)
(5)

It should be noted that the Multi-Head Attention mechanism used in our paper is
combining multiple Self-Attention mechanisms.

Nowadays, attention mechanisms are widely used in natural language processing [21],
as well as in autonomous driving [22] and human–computer interaction [23], among oth-
ers. After a major breakthrough by the Google mind team using attention mechanisms
in image processing, researchers have also used them in natural language processing.
Bahdanau et al. [24] first used the attention mechanism to solve the word alignment prob-
lem of indeterminate-length sentences in machine translation. Furthermore, attention
mechanisms are gradually being taken advantage of in applications in the field of cy-
berspace security [25,26]. In their study of abnormal traffic and encrypted malicious traffic
detection, Jiang et al. [27] used LSTM with CNN to extract spatio-temporal features of pack-
ets on the CICAndMal2017 dataset and further used a Multi-Head Attention mechanism
to extract sequence features of multiple packets in a session. Wang et al. [28] deployed a
single-layer Self-Attention mechanism on the CIC-IDS-2017 dataset to learn the correlation
and dependency within statistical features in order to detect abnormal and attack traffic.
Dong et al. [29] added convolutional operations between multi-layer Self-Attention mech-
anisms to improve performance over models such as GoogLeNet and ResNet-50 on the
NSL-KDD dataset. For encrypted traffic classification, Lin et al. [30] proposed the ET-BERT
(Encrypted Traffic Bidirectional Encoder Representations from Transformer) model. Based
on the BERT model [31], traffic is converted to tokens for pre-training. They proposed
two fine-tuning strategies, packet-level fine-tuning for single-packet classification and
stream-level fine-tuning for single-stream classification, and verified the robustness and
generalization ability of the model on five encrypted traffic datasets and the TLS1.3 dataset.

4. Method Design

In this section, we design a DoH-encrypted DNS covert channel detection method
named FF-MR based on features fusion. FF-MR, including a Multi-Head Attention mecha-
nism and a Residual Neural Network, fuses statistical features and byte sequence features.
Its framework is shown in Figure 2.
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Figure 2. Framework of FF-MR.

FF-MR is mainly divided into three parts: data preprocessing, statistical features and
session representation extraction, and a DoH-encrypted DNS covert channel detection
model based on Multi-Head Attention and Residual Neural Network. The proposed
method achieves HTTPS (i.e., non_DoH), normal DoH (i.e., benign_DoH), and three kinds
of malicious DoH traffic (i.e., iodine, dnscat2, and dns2tcp) in five categories. Iodine,
dnscat2, and dns2tcp are three kinds of malicious DoH traffic generated by encrypted DNS
covert channel tools, that is, DoH-encrypted DNS covert channel traffic.

Firstly, the data preprocessing module splits and reorganizes the raw pcap file into
sessions, and then, we clean these sessions for filtering and anonymization.

Secondly, session representation and statistical features are extracted, and after stan-
dardization and normalization, they are used as the input of the DoH-encrypted DNS
covert channel detection model.

Finally, in the DoH-encrypted DNS covert channel detection model based on the Multi-
Head Attention and Residual Neural Network (MHA-Resnet), byte sequence features are
extracted by the Residual Neural Network, and the Multi-Head Attention mechanism
calculates the weighted fusion of session statistical features and byte sequence features
so that the distinction between features of different traffic sources is more pronounced.
Moreover, the classification of four kinds of DoH and HTTPS traffic is achieved by a
Multilayer Perceptron (MLP) to detect and identify DoH-encrypted DNS covert channels.

4.1. Data Preprocessing

Data preprocessing is divided into two steps—traffic splitting and traffic cleaning—
in order to obtain traffic representation suitable for the detection model and to remove
any invalid data mixed in with the original traffic that could reduce the classification
performance of the model.

4.1.1. Traffic Splitting

We split the original pcap file into multiple temporally contiguous sets of packets
according to certain rules. The five-tuple (tuple) contained in each packet is comprised of
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source IP address srcIP, destination IP address dstIP, source port srcPort, destination port
dstPort, and transport layer protocol type protocol. The ith packet, pi, can be defined by
the start transmission time timei, five-tuple tuplei, and payload payloadi as follows:

tuple = (srcIP, dstIP, srcPort, dstPort, protocol) (6)

pi = (timei, tuplei, payloadi). (7)

Flow is the set of packets with the same tuple, and all packets in a f low have the
same origin and destination and are independent of time and payload. Session refers to
a bidirectional flow. Packets in a session have the same tuple or tuple′, where tuple′ has
srcIP, dstIP, {srcPort, dstPort} and is the opposite of that in tuple. Therefore, even though
the packets do not have exactly the same five-tuple, they are still considered to be the same
session. Flow and session are expressed as:

f low = {p1, p2, . . . , pN}, tuple1 = tuple2 = . . . = tupleN (8)

session =
{

p1, p′1, p2, p′2, . . . , pN , p′M
}

where tuple1 = tuple2 = . . . = tupleN , tuple′1 = tuple′2 = . . . = tuple′M.
(9)

The raw pcap file is split into sessions using the SplitCap tool, which can optionally
split the file by flow. In addition, the tool can also choose to keep all the data of the protocol
layers or only the data above the transport layer. Since we need to extract session statistical
features, the result of splitting the traffic is to retain all of the session’s protocol layers.

4.1.2. Traffic Cleaning

We sort, filter, and anonymize the sessions. Firstly, sessions after traffic splitting are
classified and sorted into five categories according to detection results in Figure 2, namely,
iodine [32], dnscat2 [33], dns2tcp [34], benign_DoH, and non_DoH, where iodine, dnscat2,
and dns2tcp represent malicious_DoH sessions for different types of DoH-encrypted DNS
covert channels. Benign_DoH refers to normal DoH sessions, in which packets are en-
crypted DNS packets without DNS covert channels, and non_DoH refers to HTTPS sessions.

Secondly, it is necessary to filter out sessions with too little data because of the uneven
session size. The main principle of filtering is to remove sessions with fewer packets than
min_window_size because the raw pcap files corresponding to sessions may be incomplete,
and the TLS handshake information needed for model classification may be missing, which
will greatly reduce the performance of model classification. Furthermore, since the input of
the detection model named MHA-Resnet is of a fixed length, the session length, in bytes,
needs to be unified. However, if the number of packets in the session is small, it will result
in a small number of session bytes; thus, the extracted byte length will be insufficient, and a
large amount of zero-padded byte data will be generated when the length is unified, which
may also affect the performance of the model’s classification. Since the TCP connection and
TSL handshake are generally completed before the sixth packet of the session, the value of
min_window_size is taken as six in this paper.

Finally, the tuple of packets in a session is either the same or opposite, and the classifi-
cation is directly influenced by the tuple, resulting in classification exclusively according
to the tuple rather than the features of the session, which greatly affects the detection and
identification performance of MHA-Resnet. Therefore, the session needs to be anonymized.
Specifically, the port, IP, and MAC address of each packet in the session are overwritten
with all zeros. In this way, the impact of specific fields on classification can be minimized.

4.2. Statistical Features and Session Representation Extraction

After preprocessing, we extract the statistical features and session representation as
input to the detection model in two steps, as described in Sections 4.2.1 and 4.2.2.
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4.2.1. Session Representation Extraction

To make up for the fact that only using the statistical features is insufficient to detect
DoH-encrypted DNS covert channels, we intercept a string of bytes from a session after
traffic cleaning to use as input in the detection model. After analyzing the CIRA-CIC-
DoHBrw-2020 dataset for HTTPS and DoH traffic, there is a certain difference in packet
size between the two in the TCP connection stage, which is mainly reflected in the optional
fields of the TCP headers. For example, in order to avoid serial number wrapping, most
DoH traffic contains a TSval field for reliable transmission. In addition, because DoH traffic
needs to query the domain name, the response time is longer, and time-related fields, such
as TSval and Timestamps in the TCP header, reflect this communication delay, which can
also be used as TCP transmission features to distinguish HTTPS and DoH traffic.

The distinction between normal DoH and malicious DoH traffic, i.e., DoH-encrypted
DNS covert channel, is mainly reflected in the TLS handshake stage, where the commu-
nicating parties negotiate the plaintext information, such as the TLS version, extension,
cipher suite, certificate, and elliptic curve type used for encryption and decryption. To
a certain extent, the plaintext information reflects the trustworthiness of the encrypted
session. Due to the lack of security and formality guarantees for malicious DoH traffic,
the above plaintext information is different from normal DoH traffic; for example, mali-
cious traffic is more likely to use a lower version of the encryption algorithm. Normal
encrypted traffic mostly uses Extended Validation SSL Certificates (EV SSL) and other
highest trust level certificates [35]. In related studies, the certificate information and Client
Hello message have also been verified to ensure a good degree of differentiation [36,37].
For different forms of malicious DoH traffic, the TLS handshake information negotiated
by the encrypted DNS covert channel, such as cipher suite and elliptic curve type, etc., is
not consistent, so this information can be used as an effective feature to detect and identify
encrypted malicious DNS covert channels.

In summary, the packet size during the TCP connection stage, the timestamp field of
the TCP packet, and the non-encrypted messages in the TLS handshake stage all reflect the
characteristics of communication behavior of different types of traffic. Therefore, instead
of focusing on data below the network layer, we concatenate the traffic data in the TCP
layer with the traffic data in the TLS layer of each packet, extracting the first n bytes as
the session representation. The number of bytes n is used as the hyperparameter of the
detection model, and 512, 1024, 2048, 4096, and 8192 bytes are selected in the experiment
in Section 5.3. According to the experimental results, we choose 1024 bytes as the session
representation for the input n of the DoH-encrypted DNS covert channel detection model.
The byte vector Xi of the ith session after normalization can be expressed as:

X i =
[

xi
1, xi

2, . . . , xi
k, . . . , xi

n

]
(10)

where xi
k is the kth byte of the ith session.

4.2.2. Session Statistical Features Extraction

We extract a total of 29 sessions statistical features of five categories, as shown in Table 2.
The session duration, number of bytes, packet length, packet time, and request/response
time difference are counted. We calculate the mean, median, mode, variance, standard
deviation, coefficient of variation, skew from median, and skew from mode for three
features, except session duration and number of bytes. At the same time, the rate of
session bytes sent and received are calculated because the above five categories of features
characterize the characteristics of DoH-encrypted DNS covert channel traffic. For example,
DoH-encrypted DNS covert channels contain TCP traffic with covert transmission, which
requires more data to be sent, so the values of session duration, number of bytes, and packet
length are larger. Compared with the normal DoH and HTTPS traffic, DOH-encrypted
DNS covert channel traffic usually has a lower cache hit rate, which leads to a higher
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latency, a higher frequency of sending packets, and a larger time difference between request
and response.

After experimental verification, these features can better represent the difference
between the DoH-encrypted DNS covert channel and normal DoH and HTTPS traffic.
Because of the different magnitudes, numerical values vary greatly in the statistical features,
and it is therefore necessary to be standardized to maintain numerical sensitivity. The
standardized statistical features can be expressed as:

Si =
[
si

1, si
2, . . . , si

k, . . . , si
29

]
(11)

where Si is the statistical feature vector of the ith session, and si
k is the kth statistical feature

value of the ith session.

Table 2. Session statistical features.

Category Number Feature

Duration 1 Session duration

Number of bytes

2 Number of session bytes sent
3 Rate of session bytes sent
4 Number of session bytes received
5 Rate of session bytes received

Packet length

6 Mean Packet Length
7 Median Packet Length
8 Mode Packet Length
9 Variance of Packet Length

10 Standard Deviation of Packet Length
11 Coefficient of Variation of Packet Length
12 Skew from median Packet Length
13 Skew from mode Packet Length

Packet time

14 Mean Packet Time
15 Median Packet Time
16 Mode Packet Time
17 Variance of Packet Time
18 Standard Deviation of Packet Time
19 Coefficient of Variation of Packet Time
20 Skew from median Packet Time
21 Skew from mode Packet Time

Request/response
time difference

22 Mean Request/response time difference
23 Median Request/response time difference
24 Mode Request/response time difference
25 Variance of Request/response time difference
26 Standard Deviation of Request/response time difference
27 Coefficient of Variation of Request/response time difference
28 Skew from median Request/response time difference
29 Skew from mode Request/response time difference

We have improved the statistical feature extraction tool DoHMeter [38]. The original
DoHMeter tool extracts statistical features in the unit of time-divided streams, and the
improved DoHMeter extracts statistical features in session (bidirectional stream) units.
Compared with the standard tool, the features extracted by the improved DoHMeter are
more complete, sufficient, and more effective for detection using experimental verification.

4.3. Model Development and Architecture

The MHA-Resnet architecture includes three parts: the extraction of session byte
sequence features, the weighted fusion of session statistical features and byte sequence
features, and session classification. The model is based on the Residual Neural Network.
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The Multi-Head Attention mechanism is used to globally weight and fuse the features to
improve the detection performance of the model. The structure of MHA-Resnet is shown in
Figure 3. In order to learn the different communication behaviors of five types of traffic and
the mode of TLS encrypted connection, session statistical features and byte data are taken
as the input of the model. Byte sequence features, including TCP transmission features,
TLS handshake features, and local patterns of DoH-encrypted DNS covert channels, are
extracted by the multiple one-dimensional convolutional layers (Conv1D) of the Residual
Neural Network, which are then concatenated with session statistical features. The atten-
tion weight distribution between all features is calculated by the Multi-Head Attention
mechanism, which re-represents the features as the result of a weighted fusion. The output
vector of the model is the probability that a session is judged as each of the five types of traf-
fic (i.e., iodine, dnscat2, dns2tcp, benign_DoH, non_DoH), and the label of the maximum
probability in the output vector is taken as the classification result.
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ResLayer2

ResBlock
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加密
连接
特征

Multi -Head
Attention

Embedding

Feed
Forward

Session Statistics Feature Session Byte Sequence

ResBlock ResLayer1

ResBlock
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ResBlock
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BatchNorm
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BatchNorm
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Figure 3. Structure of MHA-Resnet.

The model contains the design of residual connection in both of the above neural
networks and achieves the purpose of adaptively adjusting the number of network layers
according to the task needs by generating constant mapping of the redundant network
layers when it is unnecessary. This mitigates to some extent the negative impact of the deep
neural network degradation problem on the model performance [39].

4.3.1. Session Byte Sequence Features Extraction

We adopt a Residual Neural Network to extract the session byte sequence features,
treating the bytes as words in Natural Language Processing (NLP) tasks and the session
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byte sequences as sentences, obtaining the contextual associations of the bytes in the session
through Conv1D and then extracting the combined byte information, including fields and
messages. Moreover, shallow convolution is used to obtain the contextual association of
bytes inside the TCP header and TLS handshake message, at which time the combined byte
information is at the field level, corresponding to the packet size in the TCP connection stage,
timestamp, and TLS certificate mentioned in Section 4.2, i.e., TCP transmission features
and TLS handshake features. Deep convolution is used to obtain the contextual association
of the TCP and TLS messages in the session when the combined byte information is at
the message level, corresponding to the extraction of the correlation between adjacent
TCP and TLS messages, i.e., the local pattern of the DoH-encrypted DNS covert channel
during transmission.

As shown in Figure 3, in order to process network traffic data with a one-dimensional
sequence structure, the Residual Neural Network is based on one-dimensional convolution,
and the main body consists of four residual layers (ResLayer). Each residual layer consists
of two residual blocks (ResBlock), and two sets of one-dimensional convolutional layers
(Conv1D) with batch normalization layers (BatchNorm) are used in the basic residual
blocks. The difference between the different residual layers is that the first residual block in
the last three residual layers adds to the downsampling operation, and the structure of the
downsampling is shown in Figure 4.

Conv1D

BatchNorm

x

Figure 4. Downsample.

Firstly, we ascend dimensionality of the first n bytes Xi of the ith session after a layer
of one-dimensional convolution using the batch normalization operation. Specifically,
the multi-channel feature matrix X ′

i is obtained by multiple convolution kernels, where
multiple convolution kernels represent multiple feature extractors, indicating the extraction
of different convolutional features with adjacent bytes. Batch normalization is mainly used
to solve the problem of gradient disappearance or explosion in deep neural networks.

Secondly, four residual layers extract convolutional features of adjacent fields or
messages. Afterwards, the preliminary convolution operation of X ′

i is performed in the
first residual layer to obtain the output with the same dimension as the input and the next
three residual layers to extract the sequence features under different step lengths using the
downsampling operation. The downsampling operation can be performed by decreasing
the size of the convolution kernel and increasing the step length in order to extract sequence
features with multiple fields while ensuring the same tensor dimensionality for residual
concatenation. The calculation of the multi-channel session’s byte sequence features X ′′i is
as follows:

X ′i = BatchNorm(Conv1D(X i)) (12)

X ′′
i = Reslayer4

(
Reslayer3

(
Reslayer2

(
Reslayer1

(
X ′

i
))))

(13)

Finally, the multi-channel session byte sequence features X ′′i are input into the neural
network composed of the Multi-Head Attention mechanism for weighted feature fusion.
The main significance of the multi-channel features is to fully characterize the different
TCP transmission features, TLS handshake features, and local transmission patterns of
the DoH-encrypted DNS covert channels extracted by the multi-convolutional kernel and
multi-step and then correlate them with statistical features, thus filtering out unnecessary
features. On the other hand, after the global one-dimensional averaging pooling operation
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(Avgpooling1D) is performed, the features in each channel are averaged to simplify compu-
tation. Then, we obtain the session byte sequence feature vector Res_Xi extracted by the
Residual Neural Network:

Res_Xi = AvgPool1D
(
X ′′

i
)

(14)

4.3.2. Weighted Fusion of Session Statistical Features and Byte Sequence Features

In existing studies, the byte sequence features or statistical features alone are not
enough to detect and identify encrypted DNS covert channels. Multifaceted features, such
as session statistical features, TCP transmission features, TLS handshake features, and
encrypted DNS covert channel transmission patterns of the same category of traffic, are not
independent but have some correlation and are uniformly related to the behavior patterns
of normal or malicious DoH traffic. Therefore, on the basis of the Residual Neural Network
extracting byte sequence features, we also adopt the Multi-Head Attention mechanism in
MHA-Resnet. The Self-Attention mechanism in Multi-Head Attention treats the distance
between any two features as one and can obtain the global correlation between features,
with the purpose of focusing on important features and ignoring redundant and useless
features by assigning weights. Specifically, the Self-Attention mechanism expresses the
global correlation and dependency between the above multi-faceted features as an attention
weight matrix: the stronger the correlation between two features, the larger the weight. The
more important a feature is, the more strongly correlated it is with multiple other features.
The fusion features with greater distinction for detection are obtained by the weighted
summation of all features. This method, which considers both global and focused features,
solves the problem of long-distance dependency in RNN, highlights important features
and their mapping relationships in the overall features using the correlations between
multi-faceted features, and further improves detection performance.

The interpretability of the global correlation of features extracted by the Self-Attention
mechanism can be visualized as Figure 5a of the attention distribution in machine transla-
tion. The solid line indicates the referential and correlation relationship between words. For
example, the words related to the word “it” through the learning of the Self-Attention mech-
anism include “The”, “cat”, “street”, “it”, and punctuation “.”; the strongest correlation
is the word “cat”, which is consistent with the semantics of the sentence. In this case, the
correlation is a semantic-grammatical feature. Similarly, applying the Self-Attention mecha-
nism to DoH traffic, the global correlation of features can be considered as the connection
between multi-faceted features embodied in activities and behaviors of encrypted DNS
covert channels, i.e., the correlation relationship between the session statistical features and
byte sequence features within and among each other.

The Multi-Head Attention mechanism integrates multiple Self-Attention mechanisms
to improve the robustness and generalization of MHA-Resnet by learning the features of
different representation subspaces. As shown in Figure 5b, the distribution of attention
learned by another Self-Attention mechanism is different from Figure 5a. Here, the word
“it” has a strong correlation with “street”.

As shown in Figure 6a,b, the TCP transmission features extracted from session byte
sequence are correlated with Mean Packet Length, Mean Packet Time, and Mean Re-
quest/response time differences, while different attention mechanisms will produce dif-
ferent degrees of correlation. The TCP transmission features in Figure 6a are strongly
correlated with the Mean Request/response time difference, while the TCP transmission
features in Figure 6b are strongly correlated with the Mean Packet Length. Therefore, the
Multi-Head Attention mechanism can represent the relationship between traffic features in
multiple dimensions, thereby preventing overfitting.
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Figure 5. Interpretability of distribution of attention in machine translation: (a) a distribution of
attention; (b) another distribution of attention.

(a) (b)

Figure 6. Interpretability of distribution of attention for features of traffic: (a) a distribution of
attention; (b) another distribution of attention.

The computation of the Multi-Head Attention mechanism is divided into three steps.
Firstly, to improve the nonlinear expression of the network, the statistical features Si are
input to a fully connected layer linear with the Sigmoid activation function and transformed
into a two-dimensional word vector matrix through word embedding. It is concatenated
with a multi-channel byte sequence feature matrix X ′′

i extracted by the Residual Neural
Network. Meanwhile, we adopt the LayerNorm normalization for the sake of faster
convergence and consistent data distribution and then obtain the input Ui of the Multi-
Head Attention layer:

Ui = LayerNorm
(
Concat

(
Embedding(Linear(Si)), X ′′i

))
. (15)

Secondly, Figure 7a [20] shows the weighted fusion of the session statistical features
and byte sequence features using the scaled dot-product self-attention, which is more
efficient compared to other Self-Attention mechanisms [40]. The scaled dot-product self-
attention mechanism is implemented through Q (Query), K (Key), and V (Value), which are
linear transformations of Ui. Essentially, the attention weight distribution of boldsymbolV is
determined by computing the similarity (multiplication) between Q and K, where a larger
weight indicates that a feature is more relevant to another feature and vice versa. Thus,
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the statistical features Si and the multi-channel byte sequence features X ′′
i are computed

by a single-scaled dot-product self-attention mechanism to obtain the feature matrix of
weighted fusion attentioni:

Q = UiW
Q
i (16)

K = UiWK
i (17)

V = UiWV
i (18)

attentioni = Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (19)

where dk is the dimension of K, whose main function is to avoid the inner product of QKT

being too large, and softmax normalizes the feature matrix of weighted fusion attentioni.

MatMul

Scale

𝑼𝒊

Softmax

MatMul

Q K V

Linear Linear Linear

a�ention

(a)

𝑼𝒊

Linear Linear Linear

A�ention

Concat

Linear

Multi-Head A�ention

h

(b)

Figure 7. Attention mechanism in this paper: (a) weighted fusion of features calculated by scaled
dot-product self-attention; (b) weighted fusion of features in different representation subspaces
calculated by Multi-Head Attention.

The singular Self-Attention is concatenated to obtain the Multi-Head Attention mecha-
nism, as shown in Figure 7b [20]. When calculating Q, K, and V in the h heads Self-Attention
mechanism, boldsymbolV, the initialized W Q

i , WK
i are different, as is the similarity of Q to

K; therefore, the feature matrix of weighted fusion attentioni also differs. MHA-Resnet
combines the features of different representation subspaces by Concat. After linear transfor-
mation WO, attentioni is dimensionally reduced to MultiHead(Ui) of the same dimension
as the input Ui. After the residual connection and LayerNorm normalization, we obtain U′

i :

Mu ltiHead(Ui) = Concat(attention1, . . . , attentionh)WO

where attentioni = Attention
(

UiW
Q
i , UiWK

i , UiWV
i

) (20)

U ′i = LayerNorm(Ui + MultiHead(Ui)). (21)

Finally, we obtain the weighted fusion MH A_Ui of session statistical features and
multi-channel byte sequence features through the nonlinear transformation in the forward
feedback layer (FeedForward) and residual concatenation and smoothing (Flatten):

MH A_Ui = Flatten
(
U ′i + FeedForward

(
U ′i
))

. (22)
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The main reason for using smoothing instead of a maximum or average pooling
is to reduce information loss so that different features in the multi-channel can be used
for classification.

4.3.3. Session Classification

We combine the weighted fusion of features MH A_Ui with the byte sequence features
Res_Xi, classified by MLP with softmax. Specifically, MH A_Ui and Res_Xi are concate-
nated and fed into three fully connected layers with ReLu activation, while the probability
vector predicted as each class of traffic, and the label corresponding to the maximum
probability is taken as the predicted label y_predicti for the ith session:

y_predicti = softmax(MLP(Concat(MH A_Ui, Res_Xi))) (23)

where we add dropout between the fully connected layers to prevent overfitting in MLP.

5. Experimental Evaluation

This section is divided into five parts. Section 5.1 describes the dataset and per-
formance metrics. Section 5.2 shows the hyperparameter settings in MHA-Resnet. We
evaluate the performance of FF-MR in Section 5.3. We verify the effectiveness of the model
MHA-Resnet in Section 5.4, and in Section 5.5, we implement the parameter sensitivity ex-
periments.

5.1. Dataset and Performance Metrics

The CIRA-CIC-DoHBrw-2020 dataset [9] comes from the Canadian Institute for Cyber-
security Research, and the data preprocessing results are shown in Table 3. DoH traffic is
generated using two browsers, Google Chrome and Mozilla Firefox, and three DNS covert
channel tools, including iodine, dnscat2, and dns2tcp, through four DoH servers, including
AdGuard, Cloudflare, Google DNS, and Quad9. The dataset contains three categories,
namely, non_DoH, benign_DoH, and malicious_DoH, respectively, representing HTTPS
traffic, normal DoH traffic, and malicious DoH, i.e., DoH-encrypted DNS covert channel
traffic. The first two are generated by browsers using the HTTPS and DoH protocols,
respectively, to access the top 10,000 domains on the Alexa website, while encrypted DNS
covert channel traffic is generated by DNS covert channel tools, which can send DNS
requests using TLS-encrypted HTTPS requests to special DoH servers.

Table 3. CIRA-CIC-DoHBrw-2020 dataset and preprocessing results.

Category Browsers\Tools Number of
Flows

Number of
Sessions

Number of Sessions
after Preprocessing

malicious_DoH
iodine 46,613 12,368 12,367

dnscat2 35,622 10,298 10,298
dns2tcp 167,515 121,897 121,738

benign_DoH Google Chrome 19,807 27,940 26,238Mozilla Firefox

non_DoH Google Chrome 897,493 492,171 485,654Mozilla Firefox

FF-MR not only detects encrypted DNS covert channels, i.e., malicious_DoH from
HTTPS and normal DoH traffic, but it also identifies traffic generated by three DNS covert
channel tools. As shown in Table 3, the magnitude of the preprocessed data is still at the
level of hundreds of thousands, indicating that the dataset is sufficient. The division ratio
of the training set, validation set, and test set is 6:2:2.

The CIRA-CIC-DoHBrw-2020 dataset is imbalanced, so the commonly used perfor-
mance metrics such as Accuracy are not applicable. We adopt three performance metrics:
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Precision, Recall, and F1-Score for evaluation in five categories. The comprehensive perfor-
mance metrics are macro-averaging:

Precision =
TP

TP + FP
(24)

Recall =
TP

TP + FN
(25)

F1-Score =
2Precision ∗ Recall
Precision + Recall

(26)

Macro_ P =
1
n

n

∑
i=1

Precisioni (27)

Macro_ R =
1
n

n

∑
i=1

Recall i (28)

Macro_ F1 =
1
n

n

∑
i=1

F1-Scorei (29)

where n = 5, true positive (TP) means the model predicts the target traffic and the actual
case is the target traffic, true negative (TN) means the model predicts the non-target traffic
and the actual case is also the non-target traffic, false positive (FP) means the model
predicts the target traffic and the actual case is the non-target traffic, and false negative
(FN), in contrast, means the model predicts the non-target traffic, and the actual case is the
target traffic.

The experimental environment is a 12th Gen Intel (R) Core (TM) i7-12700K @4.70GHz,
64GB RAM, and 2×NVIDIA RTX 3090 GPUs. The proposed architecture is developed
on Ubuntu 20.04 LTS based on Python 3.9.7, Pytorch 1.11.0, CUDA Toolkit 11.3, and
cuDNN8200, and codes are run with GPU acceleration.

5.2. Hyperparameter Settings

To ensure the objectivity and validity of the method, we performed ten experiments
with MHA-Resnet on the CIRA-CIC-DoHBrw-2020 dataset and averaged the final experi-
mental results in Section 5.3.

In terms of hyperparameter setting, MHA-Resnet was trained with a cross-entropy
loss function for evaluation and an Adam optimizer for optimization. The number of
training epochs was set to 100. We adopted a dynamic learning rate, where the initial
learning rate was set to 0.0001 and decayed by 0.1 times every 20 rounds. The structural
parameters of MHA-Resnet are shown in Table 4.

5.3. Performance Evaluation

We visualized and analyzed the features by using t-SNE feature dimensionality reduc-
tion in Section 5.3.1. The detection performance of FF-MR was evaluated by comparing it
with state-of-the-art methods in Section 5.3.2.

5.3.1. t-SNE Feature Dimensionality Reduction and Visual Analysis

Figure 8 shows the experimental results of the the normalized confusion matrix. We
mainly focus on the detection results of encrypted DNS covert channels. As shown in the
matrix, there was small amount of confusion in the classification of encrypted DNS covert
channel traffic, i.e., malicious_DoH traffic generated by iodine, dnscat2, and dns2tcp. To
visually analyze the classification results, the test data were saved with the feature vectors
learned by the MHA-Resnet before applying softmax, and we randomly selected 500
samples for each type of traffic, which were then reduced to two dimensions by t-SNE [41],
as shown in Figure 9.
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Table 4. Structural parameters in MHA-Resnet.

Substructure Layer Operation Input Output

Residual neural
Network

Conv1D One-dimensional
convolution 1*1024 32*1024

ResLayer1 One-dimensional
convolution*4 32*1024 32*1024

ResLayer2 One-dimensional
convolution*4 32*1024 64*512

ResLayer 3 One-dimensional
convolution*4 64*512 128*256

ResLayer 4 One-dimensional
convolution*4 128*256 256*128

AvgPooling1D Global average pooling 256*128 256*1

Multi-Head
Attention

mechanism

Linear linear transformation + 29*1 14*1Sigmoid
Embedding word embedding 14*1 14*128
Multi-Head calculate the attention (256 + 14)*128 (256 + 14)*128Attention weight matrix

Feed Forward
linear transformation +

(256 + 14)*128 (256+14)*128ReLU+
linear transformation

Flatten Flatten the weighted
fusion feature matrix (256 + 14)*128 34,560*1

MLP+softmax

Linear linear transformation + 34,560 + 256 200ReLU
Linear linear transformation 200 30

Linear linear transformation + 30 5softmax

Figure 8. Normalized confusion matrix.

The same category of traffic is aggregated into a cluster in Figure 9, and the distinction
between traffic in different categories is obvious, in which there is a small amount of
confusion for the identification of the three encrypted DNS covert channels due to the effect
of data imbalance, verifying the experimental results of Figure 8. As shown in Table 3,
after data preprocessing, the encrypted DNS covert channel traffic generated by the iodine
and dnscat2 tools was much smaller than other forms of traffic, resulting in the inability
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to learn the features to identify the above two categories of traffic. In general, this finding
verifies that the FF-MR has a good feature extraction ability and performs well in detection
and identification.

Figure 9. Visualization of t-SNE dimension reduction in traffic features.

5.3.2. Results and Evaluation

Baselines. To measure the improvements achieved by FF-MR, we reproduce four base-
lines:

• LightGBM [13] is a framework for implementing the Gradient Boosting Decision
Tree (GBDT) algorithm, which supports efficient parallel training and has a faster
training speed, lower memory consumption, and better accuracy. The method takes
the statistical features of flow as input and outputs one of the five labels as a prediction;

• RF [8] is based on the Random Forest classifier, which adopts the same input and
output as LightGBM [13]. The above two methods use the same statistical features as
in Table 2;

• HAST-II [42] takes the first 4096 bytes of the session as input and combines CNN
with LSTM to learn the spatial features and temporal features of the session bytes,
respectively; it then uses a softmax classifier to perform five classifications on the
spatio-temporal features;

• The input of CENTIME [43] is the same as ours: both use the statistical features and the
first n bytes of the session. The difference is that they use the self-encoder to reconstruct
the statistical features and the residual neural network with the same structure as ours
to extract the byte sequence features and then concatenate the two inputs to the fully
connected network for classification.

Results. As shown in Table 5, FF-MR achieved scores of 99.72%, 99.73%, and 0.9978
on Macro_P, Macro_R, and Macro_F1, respectively, demonstrating that the detection per-
formance is better than the other four methods both in macro-averaging and metrics of
identification of each category. Next, we will present a detailed comparative analysis of the
experimental results though Table 5 and Figure 10.

Evaluation. As shown in Figure 10, comparing the results of LightGBM and RF,
HAST-II, and LightGBM and RF, which use statistical features alone, it can be seen that
these methods have higher recall and their overall performance is similar; HAST-II, which
uses session bytes as input, has a higher precision. Although the results of the above
three methods reflect the different advantages of the two features, the macro-averaging
metrics are poor, and their F1-scores are only about 0.96. In contrast, the detection perfor-
mance of FF-MR and CENTIME, which combine the two features, is better than the other
three methods.



Appl. Sci. 2022, 12, 12644 20 of 27

Figure 10. FF-MR vs. other methods on macro-averaging Metrics.

As shown in Table 5, in terms of the metric Macro_F1, FF-MR improves over LightGBM
and RF by 4.56% and 4.35%, respectively, and 3.62% over HAST-II. The results of FF-MR in
the five classifications are also significantly higher than the other three methods, especially
in the identification of encrypted DNS covert channel traffic generated by the iodine and
dnscat2 tools. FF-MR improves F1-Score when using iodine and dnscat2 by 6.06% and
8.22% over LightGBM, by 5.81% and 8.12% over RF, and by 5.67% and 11.32% over HAST-II,
respectively, indicating the important role of the combined use of features for encrypted
DNS covert channel identification.

Table 5. FF-MR vs. other methods.

Metrics LightGBM [13] RF [8] HAST-II [42] CENTIME [43] FF-MR

Macro-averaging

Macro_P 0.9558 0.9609 0.9892 0.9913 0.9972
Macro_R 0.9489 0.9482 0.9391 0.992 0.9973
Macro_F1 0.9522 0.9543 0.9616 0.9916 0.9978

iodine

Precision 0.9234 0.9319 0.9743 0.9773 0.994
Recall 0.9458 0.942 0.905 0.9766 0.9935

F1-Score 0.9345 0.937 0.9384 0.977 0.9951

dnscat2

Precision 0.9157 0.913 0.9957 0.9864 0.9939
Recall 0.9107 0.9154 0.7919 0.9874 0.9942

F1-Score 0.9132 0.9142 0.8822 0.9869 0.9954

dns2tcp

Precision 0.9911 0.9926 0.9761 0.9931 0.9993
Recall 0.986 0.9881 0.9998 0.9982 0.9995

F1-Score 0.9885 0.9903 0.9878 0.9956 0.9995

benign_DoH

Precision 0.9513 0.9697 0.9999 0.9994 0.999
Recall 0.9033 0.896 0.999 0.9992 0.9995

F1-Score 0.9267 0.9314 0.9994 0.9993 0.9992

non_DoH

Precision 0.9977 0.9975 0.9999 1.0000 0.9999
Recall 0.9987 0.9994 1.0000 0.9987 0.9999

F1-Score 0.9982 0.9985 0.9999 0.9993 0.9999

Our analysis is that LightGBM and RF belong to traditional machine learning al-
gorithms, which are variations of decision tree algorithms. Therefore, we can infer that
the decision tree algorithm does not achieve accurate classification and that decision tree
integration algorithms cannot simply improve the performance of detection by optimizing
the node splitting algorithm, i.e., XGBoost in LightGBM, or by increasing the number
of decision trees (RF). The reason is that non_DoH, benign_DoH, and the three kinds of
malicious DoH traffic are closer in the hyperplane, and multiple decision trees and the
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shallow neural network in HAST-II cannot divide them in a nonlinear way. However, the
deep neural network used in FF-MR is able to achieve this distinction by training multiple
layers of weights, thus greatly improving the performance of detection and identification.

Comparing FF-MR with CENTIME, although both use statistical features and byte
sequence features and have similar performance, FF-MR is better than CENTIME in iden-
tifying the encrypted DNS covert channel traffic generated by iodine and dnscat2 tools
due to the difference in the structure of the two models, improving F1-Score from 0.977
and 0.9869 to 0.9951 and 0.9954, respectively. The main reason for such improvement
is that FF-MR is a weighted fusion of session statistical features and multi-channel byte
sequence features though a Multi-Head Attention mechanism, instead of simply concate-
nating the two features in CENTIME. The drawback of CENTIME is that it does not mine
the correlations between two features or give weighted attention to important features;
thus, the performance of identifying a specific encrypted DNS covert channel is poor. The
above results show that the Multi-Head Attention mechanism using the weighted fusion of
features plays an important role in accurately identifying an encrypted DNS covert channel
with smaller samples.

5.4. Validation of Effectiveness

We verify the effectiveness of MHA-Resnet from three aspects: first, we compare and
validate the effect of one-dimensional and two-dimensional convolution on the model’s
classification performance; second, we assess the improvement of the model’s classifica-
tion performance using statistical features; third, the role of the Multi-Head Attention
mechanism is comparatively verified on the CIRA-CIC-DoHBrw-2020 dataset.

Therefore, baseline models selected in this section include 1D-CNN, 2D-CNN, 1D-
Resnet, and 2D-Resnet. The 1D-CNN and 2D-CNN both contain two convolutional layers
in series, which are classified by fully connected networks; the difference between them
is that the former is a one-dimensional convolution, and the latter is a two-dimensional
convolution. The structural settings of 1D-Resnet and 2D-Resnet are the same as that of the
Residual Neural Network in MHA-Resnet, and similarly, the difference is in the dimensions
of convolution. The hyperparameters and other settings of the five models are the same,
and the training losses are shown in Figure 11, which shows that all models have reached
convergence without overlearning after 100 epochs. MHA-Resnet converges around the
20th epoch, while the other four models converge at around the 30th epoch, indicating that
MHA-Resnet is more efficient in training.

Figure 11. Training Loss.

As shown in Figure 12, the classification performance of the baseline models is com-
pared with that of MHA-Resnet on macro-averaging metrics. MHA-Resnet has the best
detection and identification performance, as shown in Table 6, showing an improvement of
9.03%, 8.52%, 1.42%, and 4.62% on Macro_F1 metrics over the baseline models, respectively.
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The next best model in detection performance is 1D-Resnet, with all three metrics scoring
around 0.98, while the Macro_F1 of 2D-Resnet with the same structure only reaches around
0.95, verifying that the one-dimensional convolution is more useful for processing network
traffic. However, the classification performance of 1D-CNN and 2D-CNN is similar, and
the Macro_F1 of the two models is only around 0.9, which illustrates the effectiveness of
the Residual Neural Network in the MHA-Resnet.

Figure 12. MHA-Resnet vs. Baseline Models on Macro-averaging Metrics.

The results of detection and identification are shown in Table 6. Iodine, dnscat2,
and dns2tcp belong to malicious_DoH. The classification performance of non_DoH and
benign_DoH is more desirable due to the different protocols; the former is HTTPS, while
other categories of traffic are DoH. On the other hand, because benign_DoH is generated
by browsers, while malicious_DoH is generated by three DNS covert channel tools, a large
difference in the plaintext information occurs (e.g., TLS certificates, TLS cipher suites).
However, the identification results of three types of encrypted DNS covert channels in
malicious_DoH vary greatly among different models; especially, the traffic generated by
iodine and dnscat2 tools are more difficult to identify. The F1-Scores of MHA-Resnet reach
0.9951 and 0.9954 for the identification of these two types of encrypted DNS covert channels,
respectively. These scores are much higher than the other baseline models’, improving by
14.88% and 28.34% over 1D-CNN, 14.16% and 26.58% over 2D-CNN, 2.67% and 4.05% over
1D-Resnet, and 7.26% and 14.61% over 2D-Resnet, respectively.

Table 6. MHA-Resnet vs. Baseline Models.

Metrics 1D- 2D- 1D- 2D- MHA-
CNN CNN Resnet Resnet Resnet

Macro-averaging

Macro_P 0.9061 0.9098 0.9838 0.9514 0.9972
Macro_R 0.9089 0.9157 0.9835 0.9519 0.9973
Macro_F1 0.9075 0.9126 0.9836 0.9516 0.9978

iodine

Precision 0.847 0.8557 0.9696 0.9262 0.994
Recall 0.8456 0.8513 0.9673 0.9188 0.9935

F1-Score 0.8463 0.8535 0.9684 0.9225 0.9951

dnscat2

Precision 0.7007 0.7081 0.954 0.8424 0.9939
Recall 0.7238 0.7524 0.9558 0.8563 0.9942

F1-Score 0.712 0.7296 0.9549 0.8493 0.9954

dns2tcp

Precision 0.9851 0.9874 0.9959 0.9899 0.9993
Recall 0.9825 0.9825 0.9959 0.9892 0.9995

F1-Score 0.9838 0.985 0.9959 0.9896 0.9995
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Table 6. Cont.

Metrics 1D- 2D- 1D- 2D- MHA-
CNN CNN Resnet Resnet Resnet

benign_DoH

Precision 0.9983 0.9981 0.9994 0.9989 0.999
Recall 0.9929 0.9926 0.9987 0.9952 0.9995

F1-Score 0.9956 0.9953 0.999 0.997 0.9992

non_DoH

Precision 0.9996 0.9996 0.9999 0.9997 0.9999
Recall 0.9999 0.9999 1.0000 0.9999 0.9999

F1-Score 0.9997 0.9997 0.9999 0.9998 0.9999

Comparing 1D-Resnet and MHA-Resnet reveals that both contain one-dimensional
Residual Neural Networks with the same structure; however, the difference is that statistical
features are added to MHA-Resnet, and important features are highlighted using the Multi-
Head Attention mechanism that not only enrich the training information but also enhance
the representation ability of the model. This is the reason why the MHA-Resnet performs
better in classification. The above comparative analysis verifies that statistical features are
an important factor in improving the classification performance of a model when applied
to the CIRA-CIC-DoHBrw-2020 dataset. It also verifies that the Multi-Head Attention
mechanism improves the detection performance of the model by fusing both features.

5.5. Parameter Sensitivity Experiments

FF-MR extracts the first n bytes above the TCP layer as the session representation,
aiming to extract the TCP transmission features, TLS handshake features, and the local
patterns of encrypted DNS covert channel during transmission, as shown in Figure 13. In
addition, the TLS messages after Server Hello are encrypted. Therefore, the principle for
selecting n is that the byte sequence of length n should include at least the Client Hello and
Server Hello, which are plaintext messages in the TLS handshake stage, with as many TCP
messages as possible on top of that.

Figure 13. TLS handshake and encrypted messages transmission.

We count the TCP and TLS layer bytes in the messages before Server Hello in a session.
The distribution is shown in Figure 14, and the size of the bytes is mainly within 5000.
According to the previous research on byte selection in the field of deep neural network
traffic detection and identification, the number of bytes is usually taken to the power of two.
Therefore, within 5000 bytes, n is selected as 512, 1024, 2048, and 4096 bytes. In addition,
we also select 8192 bytes in order to minimize information loss. The results are shown in
Figure 15.

As shown in Figure 15a,b, the results with byte sizes less than 4096 are close because
512 bytes already contain the Client Hello message, which can achieve high F1-Score,
precision, and recall. When n > 4096, the overall performance decreases significantly due
to the excessive zero padding at a uniform length of 8192 bytes. Figure 15b focuses on the
identification of the encrypted DNS covert channel traffic generated by iodine and dnscat2.
The use of n =1024 gives the best results; therefore, 1024 is chosen as the value of n.
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Figure 14. Distribution of TCP and TLS layer bytes.

(a) (b)

Figure 15. Comparison of results under different bytes size n: (a) comparison of macro-averaging
under different bytes size n; (b) Comparison of F1-Score under different bytes size n in identification
of iodine and dnscat2.

6. Conclusions

In this paper, we propose a DoH-encrypted DNS covert channel detection method
based on feature fusion called FF-MR to solve the problem of weak single-feature differ-
entiation in existing research. FF-MR extracts TCP transmission features, TLS handshake
features, and the local transmission patterns of DoH-encrypted DNS covert channels from
session byte sequences using a Residual Neural Network, calculates global correlations
with statistical features using a Multi-Head Attention mechanism, and finally, performs
weighted fusion. After multiple iterations of the neural network, important features will
be given higher weights, which plays a key role in classification. The proposed method’s
results on the CIC-DoHBrw-2020 dataset show that its macro-averaging precision and recall
reach 99.72% and 99.73%, respectively, and its macro-averaging F1-Score is able to reach
0.9978. Compared with existing methods discussed in this paper, FF-MR achieves at most a
4.56% improvement in macro-averaging F1-Score. Moreover, FF-MR demonstrates a better
F1-Score than the methods discussed in this paper when identifying two encrypted DNS
covert channels, iodine and dns2cat, improving from the highest scores of 0.977 and 0.9869
for other methods to 0.9951 and 0.9954, respectively. The effectiveness of the MHA-Resnet
model used in FF-MR is verified from three aspects by comparison with baseline models,
and finally, we implemented parameter sensitivity experiments to determine the value
of the byte sequence length n. However, due to the complex structure of the model, the
real-time performance is poor. Thus, we will take into account the accuracy and real-time
performance in future research.
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MLP Multilayer Perceptron
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IoT Internet of Things
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RF Random Forest
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LSTM Long Short-Term Memory
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SOC Security Operation Center
Bi-RNN Bidirectional Recurrent Neural Network
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NLP Natural Language Processing
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