
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Recent Advances in Reinforcement Learning
Applications for Building Energy Management: A
Mini Review.

Shaqour, Ayas
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University

Hagishima, Aya
Interdisciplinary Graduate School of Engineering Sciences, Kyushu University

https://doi.org/10.5109/5909098

出版情報：Proceedings of International Exchange and Innovation Conference on Engineering &
Sciences (IEICES). 8, pp.239-245, 2022-10-20. 九州大学大学院総合理工学府
バージョン：
権利関係：



Proceedings of the 8th International Exchange and Innovation Conference on Engineering & Sciences 

(IEICES 2022) 

239 
 

Recent Advances in Reinforcement Learning Applications for Building Energy 
Management: A Mini Review. 

 

Ayas Shaqour1*, Aya Hagishima1 

1Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Japan. 

*Corresponding author email: ayasshaqour@kyudai.jp 

 

Abstract: In 2019, buildings accounted for 55% of the global electricity demand, making them a key contributor to global 

emissions and a core target for energy efficiency, energy reduction, and policies and measures promoting renewable 

energy usage. Reinforcement learning (RL) is an agent-based modelling technique that has proven successful in many 

applications, particularly in artificial intelligence. RL has attracted research attention owing to its utilization in building 

energy management (BEM) applications. In this work, the latest research advances that utilize this method are 

investigated and discussed, primarily its usage in modelling complex building energy problems, building energy 

consumption control, optimization for comfort and cost savings, and the enhancement of demand forecasting algorithms. 

Furthermore, the combination of RL with other deep learning methods is discussed. As a state-of-the-art technology in 

smart grid building applications, RL is applied for control purposes and forecasting enhancement.   

 

Keywords: Building Energy Demand; Deep reinforcement learning; Energy consumption prediction; Energy efficiency; 

Energy Management.  
 

1. INTRODUCTION  

In 2019, the building sector accounted for 55% of the 

global electricity demand [1], accounting for almost 38% 

of global greenhouse gas emissions. Thus, the reduction 

of such high demands and an increase in renewable 

energy through various policies and technologies has 

become an urgent issue[2]. Building energy demand is a 

multidimensional problem that can be approached 

considering different intricate paradigms listed below:  

1- Improvement of building thermal performance 

determined by materials and design of a building 

[3].  

2- Energy efficiency improvement of appliances and 

facilities [4]  

3- Changes in energy-related occupant behaviors 

through various interventions, including market-

based pricing policies and the demand response 

approach[5][6].  

4- Renewable energy integration [7].  

5- Smart buildings incorporated with AI-based 

energy management and optimization [8]. 

 

To overcome these challenges, researchers have 

deployed the latest advancements in artificial intelligence 

(AI) and machine learning fields, particularly to tackle 

the building energy challenge from the macro-country 

levels to micro-building levels[9]. The ML approach can 

be classified into three main categories: The first is 

supervised learning, which maps the relationship 

between dependent variables and the target variable. It 

can be used for numerous building energy applications, 

such as predicting human behavior, risks, energy demand, 

and renewable energy generation, as well as identifying 

equipment types and activities[10][11][12][13]. The 

second is unsupervised learning, which is primarily used 

for autonomous pattern recognition in buildings and can 

be useful for identifying energy lifestyle patterns, 

consumer types, and anomaly detection[14][15]. The 

area of smart building energy management (BEM) 

systems, because of their innovative features compared 

to conventional control and forecasting methods. Hence, 

this article presents a brief overview of the methodology 

of RL and its recent applications in BEM. Section 2 

presents a discussion on the basic methodology for RL 

and deep RL (DRL) and their varieties. Section 3 

introduces the most recent research on RL/DRL 

applications for building energy control and forecasting, 

and Section 4 presents the conclusions of the paper. Third 

is reinforcement learning (RL) algorithms that have 

recently attracted research attention, particularly in the 

 

 
Fig. 1. Major applications of ML methods in Building 

energy Demand Management 

 

2. REINFORCEMENT LEARNING OVERVIEW 

AND FORMULATION  

The RL methodology is based on optimal control theory 

and first emerged in the 1950s. It was utilized to 

formulate system control problems in which the target 

system behavior variable was reduced with time[16]. The 

Markov decision processes (MDPs) introduced by 

Bellman constitute a core part of the RL theory [17]and 

MDPs were introduced to formulate problems related to 

optimal control. One of the most important 

characteristics of RL is that it can operate with or without 

a system model (model-based vs. model-free), which is a 

significant advantage over conventional control 

methodologies[18]. Recently, model-free RL has been 

gaining increasing attention. It can be applied to complex 

systems whose dynamics are too difficult to capture and 

model[19]. One of the recent breakthrough applications 

of RL and DL is the deep mind model applied to Google’s 

data center. Following its application, the cooling costs 

were reduced by 40%, and their proposed model-free 
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solution had the following advantages over conventional 

methods[20]:  

1. The nonlinear, intricate, and complex nature of 

the data center environment and its equipment 

makes engineering formulations of such systems 

unfeasible.  

2. A large number of scenarios that could occur in 

such environments, both internally and externally, 

hinder the speed of adapting to such static-

engineering solutions.  

3. The fact that different datacenters with different 

configurations would require specific fine-tuned 

models, where RL and DL solutions are more 

generalizable.  

 

This is one example of how such methods can be 

leveraged to reduce costs and increase energy efficiency 

in different types of building settings. 

 

3. RL FORMULATION 

The core aspects of RL include the environment, agents, 

and their interactions, as shown in Error! Reference s

ource not found.. This figure depicts how agents at each 

time step in the real world observe a state (𝑠𝑡) from their 

surroundings, take action (𝑎𝑡) according to a certain goal 

(policy), and finally receive feedback (reward 𝑟𝑡) based 

on how the state changes. With sufficient experience, the 

RL agent learns the best strategy (optimal policy) to 

navigate the environment and maximize its rewards[19].  

At the core of any RL lies the formalization of MDPs, 

which entails the Markov property, which states that the 

transitions are only based on recent states and actions and 

are irrelevant to any prior history. The MDP is a tuple of 

five elements 〈𝑆, 𝐴, 𝑅, 𝑃, 𝜌0〉; with 𝑆 and 𝐴 being the set 

of all valid states and actions, respectively; 𝑅 represents 

the reward function, where at any moment in time, 𝑟𝑡 is 

defined as a function of state and action 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1), 
𝑃  represents the transition probability function that 

defines the probability  of transitioning into state (𝑠′) 
starting at state 𝑠 and performing action 𝑎 𝑃(𝑠′|𝑠, 𝑎), and 

finally 𝜌0  indicates the initial state distribution that is 

used to define the first state of the problem. A transition 

of states 𝑠𝑡+1 is based on the model of the environment 

that might be unknown to the agent, and the last action 

𝑎𝑡  is based on the agent’s policy, which can either be 

deterministic 𝑓(𝑠𝑡 , 𝑎𝑡) or stochastic 𝑃(. |𝑠𝑡 , 𝑎𝑡)[19]. 
First, based on a certain episode, 𝜏  is defined as a 

sequence of actions and states in the world 

(𝑠0, 𝑎0, 𝑠1, 𝑎1, … ), and the cumulative reward over that 

episode can be defined in several ways, such as a finite-

horizon (fixed T) undiscounted return:  

 

 

𝑅(𝜏) = ∑  

𝑇

𝑡=0

𝑟𝑡 (1) 

 

 

or an infinite-horizon discounted return: 

 

 
𝑅(𝜏) = ∑  

∞

𝑡=0

𝛾𝑡𝑟𝑡 (2) 

 

where 𝛾 ∈ (0,1)  indicates a discount factor for 

convergence purposes over infinite sums, bias towards 

early rewards, and other mathematical reasons.  For 

policy 𝜋  and return 𝑅(𝜏)  over T steps in time, the 

expected return 𝐽(𝜋) of the RL problem is formulated as  

 

 
𝑱(𝝅) = ∫ 

𝝉

𝑷(𝝉 ∣ 𝝅)𝑹(𝝉) = 𝐄
𝝉∼𝝅
[𝑹(𝝉)] (3) 

 

where 𝑷(𝝉 ∣ 𝝅)  indicates the transition probability of 

a T-step sequence of state/action 𝝉  and the principal 

optimization challenge in a RL paradigm is to find the 

optimal policy 𝝅∗  that maximizes the expected return. 

The right side of Equation 3 contains a common 

abbreviation for the expected return depicted by 𝐄[𝑹(𝝉)], 
where (𝝉 ∼ 𝝅), meaning that 𝝉 follows a policy 𝝅. 

 

3.1 RL Variants and Deep RL 

There are many variants of RL that are optimized for 

different problems, the two main ones include [21]: 

1. Model-based: either the model of the environment 

is given or learn the model (approximate 

environment transitions). Model-based 

approaches are more sample efficient (time steps 

of ~ 100 to converge). 

2. Model-Free: either value-based (approximate Q-

function), policy-based (approximate policy), or a 

combination of both (approximate policy-value 

function). Value-based RL, such as Q-learning, is 

more sample efficient (time steps ~ 1M) than 

policy-based approaches (time steps ~ +10M). 

 

Deep RL (DRL) is a branch of RL algorithms that utilizes 

deep learning algorithms, such as feedforward neural 

networks, convolutional neural networks, or recurrent 

neural networks, to approximate either the environment 

transitions, Q-function, or policy-value function [22]. An 

example of a popular DRL is deep Q-learning (DQN) 

[23], which is based on a Q-learning algorithm, as shown 

in Fig. 2. In Q-learning, the quality (estimated return) of 

a pair of action states is stored in a lookup table and is 

based on the estimation of the Bellman optimality 

equation [21,24] with a Q-function:  

 
𝑸𝒕+𝟏(𝒔𝒕, 𝒂𝒕) = 𝑸𝒕(𝒔𝒕, 𝒂𝒕) +

𝜶 [𝒓𝒕 + 𝜸𝒎𝒂𝒙
𝒂
 𝑸𝒕(𝒔𝒕+𝟏,𝒂) − 𝑸𝒕(𝒔𝒕, 𝒂𝒕)]

                   (4) 

 

where 𝐐𝐭+𝟏 indicates the estimated new Q-value based 

on an action 𝐚𝐭  taken in state 𝐬𝐭, 𝛂 indicates the learning 

rate, 𝛄 indicates the discount factor, and 𝒎𝒂𝒙
𝒂
 𝑸𝒕(𝒔𝒕+𝟏,𝒂) 

denotes the maximum reward that can be gained in the 

new state 𝐬𝐭+𝟏  by considering the best action 𝒂.  In a 

DQN, the Q-function is approximated using any deep 

learning algorithm, as shown in Fig. 2.  DQN is one of 

the many variants of DRL that utilizes deep learning 

algorithms to approximate policy/value functions, which 

is extremely useful in cases where the state-action space 

is too large or continuous, thus increasing the difficulty 

of obtaining its Q-table in the case of Q-learning as an 

example. 
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Fig.  2. RL and DRL overview 

 

RL and DRL algorithms can be further classified based 

on their action spaces as discrete (DQN), continuous 

(deep deterministic policy gradient (DDPG) [25], 

reinforcement [26]), or both (proximal policy 

optimization (PPO)) [27]. The type of action space is a 

crucial characteristic that can dictate the selection of the 

RL algorithm used, which is determined by the target 

application, particularly in BEM systems.  

 

4. RECENT APPLICATION OF RL AND DRL IN 

BUILDING ENERGY MANAGEMENT   

Recently, there have been applications of RL and DRL 

algorithms for BEM. In general, the main goal of these 

algorithms is decision making, where the decision 

(action) can be a control signal, control threshold, 

algorithm selection, human behavior, rescheduling 

choices, etc., for the many elements that exist in the 

building premise. First, the challenges of conventional 

BEM are briefly discussed in comparison to RL BEM. 

Second, the latest applications and research are 

introduced.  

 

4.1 Conventional vs RL based BEM: challenges and 

opportunities. 

Learning and adaptation is a key characteristic of RL; 

hence, such functionalities can be adapted and evolved 

with time and usage, which can provide an advantage 

over static conventional methods [11]. One such case is 

conventional ML-based forecasting, which can be 

enhanced with an added layer of learning beyond its 

weights and biases, as discussed in subsection 3.1. 

Moreover, they can overcome the limitations of 

conventional proportional-integral-derivative (PID) 

feedback-based control systems that rely on standard, 

static, and heuristic rules, such as the ASHRAE 

Guideline 36. PID-based control systems also suffer from 

the limitation of integrating future predictions in the 

control loop, which can be overcome using model 

predictive control (MPC) systems [28]. MPCs have a 

predictive aspect “P” and are based on identifying the 

model “M” that characterizes different types of dynamics 

within a building environment. Models for building 

applications are not easily generalizable relative to other 

applications of MPC, such as car and airplane 

applications, primarily because buildings can have 

several unique designs. Building energy modelling has 

been commonly performed based on detailed physics-

based models using tools, such as EnergyPlus, which can 

consume a relatively large simulation time (t > ~ 

sec/min), scaling up with larger and more complex 

building types [29]. Although such modelling is typically 

performed for constructing building design standards and 

pre-optimizing building systems, it might not be optimal 

for real-time BEM with a very high response time (t < ~ 

s) owing to the complex physics-based modelling 

approach. In buildings, the ubiquitous challenges in both 

modelling and control decisions are usually intricate and 

feed into one another, as discussed by Yu et al.[8], which 

can be summarized as follows: 

• Real Time Modelling: Constructing accurate and 

efficient real-time thermal dynamics models for 

buildings is challenging because of their complex 

and stochastic elements[30]. Complexity is 

caused by the many elements and parameters that 

must be fed into the modelling approaches. 

Stochasticity exists due to uncertainty concerning 

extrinsic elements in modern buildings, such as 

renewable energy generation, dynamic energy 

pricing, temperature, and intrinsic elements, such 

as occupancy, HVAC schedule, and indoor 

temperatures [31].  

• Multi-objective optimization: The subsystems 

existing in smart buildings, such as cooling, 

heating, and energy storage, have temporal and 

spatial operational constraints, where the control 

decision of one subsystem can affect the future 

decisions of all others, thereby increasing the 

complexity of managing and coordinating 

decision making [32]. Furthermore,  based on 

efficient computational complexity in terms of 

both space and time, it is challenging to 

implement real-time BEM in conventional control 

methods when dealing with large solution spaces, 

particularly for large-scale BEM [33].  

• Generalization: Difficulty in engineering 

standard and generalizable solutions applicable to 

BEM problems under varying environments and 

building designs/configurations using 

conventional modelling and control 

approaches[34].  

 

Through online learning and other methods, such as 

transfer learning, model-free RL can overcome the need 
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for complex building models, while also having the 

potential for being generalizable. Furthermore, multi-

objective optimization can be efficiently solved by 

designing appropriate reward functions [8]. Finally, most 

of the existing research has focused on simulation 

environments, which is discussed in Tables 1 and 2, and 

only a few studies have focused on real implementation 

and validation, as discussed by Wang and Hong[28], in 

which only 11% of the studies were conducted in real 

buildings. Real implementations face challenges related 

to the requirement of large amounts of data and training 

time, security issues, and the need for transfer learning to 

achieve better generalization[28].  

 

4.2 Building energy demand forecasting 

High-performing forecasts of future energy demands are 

crucial to achieving optimal operation as well as supply 

demand balance, particularly when renewable energy is 

integrated, or demand response programs are active. 

Table 1 lists the recent applications of a variety of 

RL/DRL algorithms to increase the performance of 

prediction. While recent research in this area is very 

limited, as RL is primarily used for decision-making 

control-based problems, which is evident from the table, 

researchers are combining RL with the DL algorithms to 

increase the prediction performance by:  

• Training the RL agent to select the best model at 

each prediction horizon from a set of available 

models based on a certain context. 

• Training the RL agent to change the 

hyperparameters in real time to obtain an adaptive 

DL model, specifically when the training data 

exhibits high variation.  

• An autoencoder is used to improve the state-space 

representation and then a DRL is used to directly 

predict the energy demand.  

 

A new and interesting perspective is presented on the 

integrations of these methods, which particularly relates 

to the first two points, that is, RL can make the DL 

algorithms more dynamic and evolve in real-time on a 

higher dimension than learnable parameters. This shows 

the potential for exploring the integration of RL with 

other DL algorithms, not only for prediction purposes, as 

discussed, but also for classification or unsupervised 

approaches. For many prediction applications, DDPG is 

the choice of DRL algorithm because of its continuous 

action space, which is suitable for predicting continuous 

variables, such as energy demand, and for having high 

accuracy, as it requires higher computational resources. 

Finally, the direct usage of DRL is being tested for 

prediction applications and DRL might be able to 

outperform other ML methods, as observed in Table 1.  

 

4.3 Building energy demand control 

Smart and direct management of key energy-consuming 

appliances, especially thermal loads, such as water 

heating and heating, ventilation, and air conditioning 

(HVAC) systems, are key to achieving energy savings in 

buildings. Hence, most recent RL-based BEM research, 

as shown in Table 2, focuses on identifying the optimal 

strategies of such smart load control, not only to achieve 

energy and cost savings but also to satisfy comfort levels. 

The key points observed during the study are as follows:  

• Thermal loads either HVAC or water heating are 

the primary control targets through their setpoints 

or ON/OFF operations.  

• RL has been used to solve the control challenge 

while satisfying operational constraints, such as 

the thermal comfort level, energy demand, and 

electricity price.  

• The DQN is the most extensively utilized 

algorithm for these applications because of its 

discrete action space, while other algorithms are 

being tested, such as the DDQN, PPO, and SAC.   

• The effectiveness of such systems is measured by 

the cost savings and energy demand reduction.  

• A model can first be trained offline in a simulated 

environment for better initial performance, and 

then deployed for real-time online learning.  

 

 

Table 1. RL and DRL for building energy demand forecasting 

Ref. Year 
Target 

Building 
RL Methods RL Target Decision Description & Results 

[35] 2022 
University 
Campus 

Building 

 DDPG 
LSTM-model 

hyperparameter 

When the new training data has high variance, day ahead 
energy demand and peak demand prediction can gain up to 23% 

increased accuracy.  

[36] 2022 
Office 

Building 

Deep-forest-based DQN 

(DF–DQN) 

An hour ahead energy 

demand 

The proposed model decreased the mean absolute percentage 

error MAPE, the mean absolute error MAE, and root mean 

squared error RMSE by   5.5%, 7.3%, and 8.9%, respectively 

than DRL models.  

[37] 2022 
Building and 

Industry 
Multiarmed Bandit 

Choice of K-nearest 

Neighbors  

(KNN) or Artificial 
Neural Networks (ANN) 

Depending on different contexts, the RL algorithm can learn to 
switch between KNN and ANN methods at each time horizon 

to improve performance. 

[38] 2020 
Office 

Building 

Asynchronous Advantage 

Actor-Critic (A3C,) DDPG, 

and Recurrent Deterministic 
Policy Gradient (RDPG) 

The ground source heat 

pump (GSHP)-5 minutes 

ahead/1 hour demand 
energy forecasting 

Compared the prediction performance of three of the most 
common DRL algorithms with three conventional machine 

learning algorithms, for both 5 min ahead and 1-hour head 

horizons. DDPG and RDPG exhibited enhanced performance 
while A3C did not show an advantage over the other 

algorithms. 

[17] 2019 
Office 

Building 
DDPG 

 (GSHP)-5 minute ahead 
demand energy forecasting 

The combination of the DRL with Autoencoder (AE) feature 
extraction to predict the HVAC system energy improves 

performance by 22.46% and 25.96% for the MAE and RMSE 

respectively, thereby outperforming support vector machines 
(SVM) and neural networks (NN). 
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Table 2. RL and DRL for building energy demand control 

Ref. Year Target Building 
RL 

Methods 
RL Target Decision Description & Results  

[39] 2022 
Building HVAC 

model 
DQN 

 HVAC based on variable 

air volume (VAV) 
temperature set point reset 

sequence. 

Their model exhibited improved performance over fixed set point temperature 
control in a building simulated using energy plus. 

[40] 2022 
Residential 

houses 

Double 

DQN 

(DDQN) 

Heat pump ON/OFF, space 
heating setpoint 

The proposed DRL model employs solar energy generation, weather variables, 
and hot water usage to control the space heating while balancing energy 

demand, comfort levels, and water hygiene. Accordingly, a reduction of 60% 

energy was estimated by coupling the proposed control system with solar 
energy. 

[41] 2022 
University 
Building  

PPO HVAC setpoint 

Formulated a DR system that considers the dynamic time-of-use pricing, 

considering energy demand, thermal comfort, and environmental features to 
learn the optimal control of the thermostat set point. The results revealed cost 

savings of 9.17% compared to the constant setpoint.  

[24] 2021 
Simulated Smart 

Residential 

Buildings 

DQN Heating Control 
The proposed control scheme resulted in a 15—30% comfort increase and 
reduced costs by 5—12%. It was also concluded that in the case of multiple 

smart buildings, decentralized control outperforms central control.  

[42] 2021 
Residential 

heating system 

Soft Actor-
Critic 

(SAC) 

Heating Control 
The DRL model coupled with a probabilistic window opening behavior method 
that was employed to capture the occupancy and building interaction achieved 

an estimated energy saving of 2—6%.   

[43] 2020 Office Building DQN 
Water supply heating set 

point 
5—12% energy saving was estimated in comparison with conventional control 
schemes.  

[44] 2019 

University 

Campus 

Building 

DQN  

Variable refrigerant flow 

(VRF) system and a 

humidifier control 

Evaluated the efficiency of a model that combines the Gaussian process 
regression (GPR) for predicting thermal comfort performance (PMV) in real-

time and a DRL model to determine the optimal control policy to minimize 

energy consumption while sustaining thermal comfort under dynamic 
environmental conditions.  

5. CONCLUSION  

RL has been introduced in the context of building energy 

demand prediction and energy management to overcome 

the ubiquitous challenges of conventional building 

modelling. With this background, this paper provides a 

brief overview of the different types of RL, particularly 

DRL methods. DRL utilizes DL methods as policy 

approximators and is classified as model-based or model-

free, with discrete or continuous action spaces. These 

characteristics of DRL are critical for selecting the 

appropriate algorithm based on the application type and 

target variable of control or forecast. As pointed out in 

recent literature, DQN was primarily used for control 

applications because it has a discrete action space, 

whereas DDPG with a continuous action space was 

utilized for prediction purposes. Although recent 

research has reported innovative attempts to combine DL 

and DRL for demand forecasting, little research has been 

conducted to exploit such combinations in the context of 

BEM. Considering the high potential of such a 

combination of methodologies, it should be further 

explored even outside of the prediction category. 

Thermal loads were identified as the main target variable 

for optimal control operations in buildings, where RL 

was employed to control their thermal set-points and 

operation. Control is performed by solving multi-

objective optimizations, such as energy saving, comfort, 

and cost reduction. Finally, most recent research has been 

conducted under simulation environments for different 

building types and available data; hence, testing and 

validating RL-based BEM for real buildings is very 

limited and has its own implementation challenges, 

which makes it an interesting direction for future research.  

 

7. REFERENCES   

[1] UN Environment Programme, Global Alliance for 

Buildings and Construction, 2020 Global Status 

Report For Buildings And Construction, 

Https://Wedocs.Unep.Org/Bitstream/Handle/20.500.

11822/34572/GSR_ES.Pdf. (2022). 

[2] United States Department Of Energy, An Assessment 

Of Energy Technologies And Research 

Opportunities, website: https://Www.Energy.Gov/Sit 

es/Prod/Files/2017/03/F34/Qtr-2015-Chapter5.Pdf. 

(2015). 

[3] M.A. Kamal, Material Characteristics and Building 

Physics for Energy Efficiency, Key Engineering 

Materials. 666 (2015) 77–87.  

[4] X. Cao, X. Dai, J. Liu, Building energy-consumption 

status worldwide and the state-of-the-art technologies 

for zero-energy buildings during the past decade, 

Energy and Buildings. 128 (2016) 198–213.  

[5] A. Shaqour, H. Farzaneh, Analyzing the Impacts of a 

Deep-Learning Based Day-Ahead Residential 

Demand Response Model on The Jordanian Power 

Sector in Winter Season, Proceedings of International 

Exchange and Innovation Conference on Engineering 

& Sciences (IEICES). 7 (2021) 247–254.  

[6] L. Malehmirchegini, H. Farzaneh, Modeling and 

Prioritizing Price–Based Demand Response 

Programs in The Wholesale Market in Japan, 7 (2021) 

7. 

[7] A. Shaqour, H. Farzaneh, Y. Yoshida, T. Hinokuma, 

Power control and simulation of a building integrated 

stand-alone hybrid PV-wind-battery system in 

Kasuga City, Japan, Energy Reports. 6 (2020) 1528–

1544.  

[8] L. Yu, S. Qin, M. Zhang, C. Shen, T. Jiang, X. Guan, 

A Review of Deep Reinforcement Learning for Smart 

Building Energy Management, IEEE Internet of 

Things Journal. 8 (2021) 12046–12063.  

[9] H. Farzaneh, L. Malehmirchegini, A. Bejan, T. 

Afolabi, A. Mulumba, P.P. Daka, Artificial 

intelligence evolution in smart buildings for energy 

efficiency, Applied Sciences (Switzerland). 11 

(2021) 1–26.  



Proceedings of the 8th International Exchange and Innovation Conference on Engineering & Sciences 

(IEICES 2022) 

244 
 

[10] D.B. Araya, K. Grolinger, H.F. ElYamany, M.A.M. 

Capretz, G. Bitsuamlak, An ensemble learning 

framework for anomaly detection in building energy 

consumption, Energy and Buildings. 144 (2017) 191–

206.  

[11] K. Alanne, S. Sierla, An overview of machine 

learning applications for smart buildings, Sustainable 

Cities and Society. 76 (2022) 103445.  

[12] T.F. Megahed, S.M. Abdelkader, A. Zakaria, Energy 

management in zero-energy building using neural 

network predictive control, IEEE Internet of Things 

Journal. 6 (2019) 5336–5344.  

[13] A. Shaqour, T. Ono, A. Hagishima, H. Farzaneh, 

Electrical demand aggregation effects on the 

performance of deep learning-based short-term load 

forecasting of a residential building, Energy and AI. 

8 (2022) 100141.  

[14] X. Chen, C. Zanocco, J. Flora, R. Rajagopal, 

Constructing dynamic residential energy lifestyles 

using Latent Dirichlet Allocation, Applied Energy. 

318 (2022) 119109.  

[15] D. Wang, T. Enlund, J. Trygg, M. Tysklind, L. Jiang, 

Toward Delicate Anomaly Detection of Energy 

Consumption for Buildings: Enhance the 

Performance From Two Levels, IEEE Access. 10 

(2022) 31649–31659.  

[16] R.S. Sutton, A.G. Barto, Reinforcement learning: 

An introduction, MIT press, 2018. 

[17] T. Liu, C. Xu, Y. Guo, H. Chen, A novel deep 

reinforcement learning based methodology for short-

term HVAC system energy consumption prediction, 

International Journal of Refrigeration. 107 (2019) 39–

51.  

[18] M. Han, J. Zhao, X. Zhang, J. Shen, Y. Li, The 

reinforcement learning method for occupant behavior 

in building control: A review, Energy and Built 

Environment. 2 (2021) 137–148.  

[19] Achiam, Joshua, Spinning Up in Deep 

Reinforcement Learning, (2018). website:  https://git 

hub.com/openai/spinningup (accessed July 15, 2022). 

[20] Deep Mind, DeepMind AI Reduces Google Data 

Centre Cooling Bill by 40%, website:  Https://Www. 

Deepmind.Com/Blog/Deepmind-Ai-Reduces-Google-

Data-Centre-Cooling-Bill-by-40. (2016). 

[21] L. Fridman, Introduction to Deep RL, Deeplearning. 

Mit. Edu. (2019). 

[22] G. C. Alexandropoulos, K. Stylianopoulos, C. 

Huang, C. Yuen, M. Bennis, M. Debbah, Pervasive 

Machine Learning for Smart Radio Environments 

Enabled by Reconfigurable Intelligent Surfaces, 

(2022). http://arxiv.org/abs/2205.03793 (accessed 

July 15, 2022). 

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. 

Antonoglou, D. Wierstra, M. Riedmiller, Playing 

Atari with Deep Reinforcement Learning, (n.d.). 

[24] A. Gupta, Y. Badr, A. Negahban, R.G. Qiu, Energy-

efficient heating control for smart buildings with deep 

reinforcement learning, Journal of Building 

Engineering. 34 (2021) 101739.  

[25] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. 

Erez, Y. Tassa, D. Silver, D. Wierstra, Continuous 

Control With Deep Reinforcement Learning, (n.d.). 

https://arxiv.org/pdf/1509.02971.pdf  (accessed July 

15, 2022). 

[26] J. Zhang, J. Kim, B. O’donoghue, S. Boyd, Sample 

Efficient Reinforcement Learning with 

REINFORCE, (2020). www.aaai.org (accessed July 

15, 2022). 

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, 

O.K. Openai, Proximal Policy Optimization 

Algorithms, (n.d.). 

[28] Z. Wang, T. Hong, Reinforcement learning for 

building controls: The opportunities and challenges, 

Applied Energy. 269 (2020) 115036.  

[29] T. Hong, F. Buhl, P. Haves, EnergyPlus Run Time 

Analysis, (2008).  

[30] T. Wei, Y. Wang, Q. Zhu, Deep Reinforcement 

Learning for Building HVAC Control, Proceedings - 

Design Automation Conference. Part 128280 (2017).  

[31] L. Yu, W. Xie, D. Xie, Y. Zou, D. Zhang, Z. Sun, L. 

Zhang, Y. Zhang, T. Jiang, Deep Reinforcement 

Learning for Smart Home Energy Management, IEEE 

Internet of Things Journal. 7 (2020) 2751–2762.  

[32] L. Yu, Y. Sun, Z. Xu, C. Shen, D. Yue, T. Jiang, X. 

Guan, Multi-Agent Deep Reinforcement Learning for 

HVAC Control in Commercial Buildings, IEEE 

Transactions on Smart Grid. 12 (2021) 407–419.  

[33] E. Mocanu, D.C. Mocanu, P.H. Nguyen, A. Liotta, 

M.E. Webber, M. Gibescu, J.G. Slootweg, On-Line 

Building Energy Optimization Using Deep 

Reinforcement Learning, IEEE Transactions on 

Smart Grid. 10 (2019) 3698–3708.  

[34] G. Gao, J. Li, Y. Wen, DeepComfort: Energy-

Efficient Thermal Comfort Control in Buildings Via 

Reinforcement Learning, IEEE Internet of Things 

Journal. 7 (2020) 8472–8484.  

[35] X. Zhou, W. Lin, R. Kumar, P. Cui, Z. Ma, A data-

driven strategy using long short term memory models 

and reinforcement learning to predict building 

electricity consumption, Applied Energy. 306 (2022) 

118078.  

[36] Q. Fu, K. Li, J. Chen, J. Wang, Y. Lu, Y. Wang, 

Building Energy Consumption Prediction Using a 

Deep-Forest-Based DQN Method, Buildings 2022, 

Vol. 12, Page 131. 12 (2022) 131.  

[37] D. Ramos, P. Faria, L. Gomes, P. Campos, Z. Vale, 

Selection of features in reinforcement learning 

applied to energy consumption forecast in buildings 

according to different contexts, Energy Reports. 8 

(2022) 423–429.  

[38] T. Liu, Z. Tan, C. Xu, H. Chen, Z. Li, Study on deep 

reinforcement learning techniques for building 

energy consumption forecasting, Energy and 

Buildings. 208 (2020) 109675.  

[39] X. Fang, G. Gong, G. Li, L. Chun, P. Peng, W. Li, 

X. Shi, X. Chen, Deep reinforcement learning optimal 

control strategy for temperature setpoint real-time 

reset in multi-zone building HVAC system, Applied 

Thermal Engineering. 212 (2022) 118552.  

[40] A. Heidari, F. Maréchal, D. Khovalyg, 

Reinforcement Learning for proactive operation of 

residential energy systems by learning stochastic 

occupant behavior and fluctuating solar energy: 

Balancing comfort, hygiene and energy use, Applied 

Energy. 318 (2022) 119206.  



Proceedings of the 8th International Exchange and Innovation Conference on Engineering & Sciences 

(IEICES 2022) 

245 
 

[41] Z. Li, Z. Sun, Q. Meng, Y. Wang, Y. Li, 

Reinforcement learning of room temperature set-

point of thermal storage air-conditioning system with 

demand response, Energy and Buildings. 259 (2022) 

111903.  

[42] S. Brandi, D. Coraci, D. Borello, A. Capozzoli, 

Energy Management of a Residential Heating System 

Through Deep Reinforcement Learning, Smart 

Innovation, Systems and Technologies. 263 (2022) 

329–339.  

[43] S. Brandi, M.S. Piscitelli, M. Martellacci, A. 

Capozzoli, Deep reinforcement learning to optimise 

indoor temperature control and heating energy 

consumption in buildings, Energy and Buildings. 224 

(2020) 110225.  

[44] Y.R. Yoon, H.J. Moon, Performance based thermal 

comfort control (PTCC) using deep reinforcement 

learning for space cooling, Energy and Buildings. 203 

(2019) 109420. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


