
Citation: Zhang, M.; Li, H.; Wang, P.;

Liu, Q. Parity Check Based Fault

Detection against Timing Fault

Injection Attacks. Electronics 2022, 11,

4082. https://doi.org/10.3390/

electronics11244082

Academic Editor: Esteban

Tlelo-Cuautle

Received: 25 October 2022

Accepted: 6 December 2022

Published: 8 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Parity Check Based Fault Detection against Timing Fault
Injection Attacks
Maoshen Zhang 1 , He Li 2, Peijing Wang 1 and Qiang Liu 1,*

1 School of Microelectronics, Tianjin University, Tianjin 300072, China
2 School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
* Correspondence: qiangliu@tju.edu.cn

Abstract: Fault injection technologies can be utilized to steal secret information inside integrated
circuits (ICs), and thus cause serious information security threats. Parity check has been adopted
as an efficient method against fault injection attacks. However, the contradiction between security
and overhead restricts the further development and applications of parity check in fault injection
detection. This paper proposes two methods, mixed-grained parity check and word recombination
parity check, based on parity check for the trade-off between security and overhead. The efficiency
of the proposed approaches is verified on RC5, AES, and DES encryption implementations by clock
glitch attack. Compared with the traditional parity check, the fault coverage rate of the mixed-
grained approach can be increased by up to 53.69% by consuming 13.2% registers more. Against the
traditional parity check, the fault coverage rate of the word recombination approach can be increased
by up to 47.16% by using only 2.35% register more. The proposed approaches provide IC designers
with countermeasure options targeting different design skills and design specifications.

Keywords: fault injection; information security; parity check

1. Introduction

The Internet of things (IoT) has been prevailing in a wide range of applications,
including the smart home, smart transportation, smart city, etc. The distributed and
connected IoT devices in these applications continuously interact with personal data or
sensitive information, and face great security threats [1].

In addition to widely known software attacks, hardware physical attacks, such as side-
channel analysis (SCA) [2] and fault injection attack (FIA) [3], on cryptographic primitives
embedded in the IoT devices have become the main threat. SCA exploits the physical infor-
mation, such as power trace or delay variation, of the operating IoT devices to extract the
critical data such as secret keys. In contrast to the passive SCA, FIA is the active technique,
which intentionally injects data faults into the IoT devices and reveals the confidential
information by analyzing the faulty outputs [4]. With the active and controllable nature,
FIA demonstrates higher attack efficiency and higher potential hazards [5–7]. Among
the FIA techniques, the low-cost techniques, such as clock glitch attack [8], voltage glitch
attack [9] and electromagnetic harmonic attack [10], aim to disturb the clock system of
the IoT devices to inject timing faults. The timing faults are mainly due to violation of
setup/hold timing constraints of the target circuits and induce errors in data processing.
By analyzing the erroneous outputs, the confidential information can be revealed.

Two main types of countermeasures against timing FIAs have been proposed, sensor-
based countermeasure [11,12] and information-based countermeasure [13,14]. Sensor-
based countermeasures deploy analog/digital sensors, which are integrated into the target
circuits, to detect the disturbance of the clock system. The advantage of the sensor-based
countermeasure is that the fault injection can be detected even before the fault is effective.
However, this type of countermeasure requires advanced circuit design skills to deal

Electronics 2022, 11, 4082. https://doi.org/10.3390/electronics11244082 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11244082
https://doi.org/10.3390/electronics11244082
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8524-5917
https://doi.org/10.3390/electronics11244082
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11244082?type=check_update&version=1

Electronics 2022, 11, 4082 2 of 19

with the issues: (1) high power consumption of analog sensors using phase locked loop,
or (2) the aging phenomenon of digital sensors using ring oscillator. Information-based
countermeasures exploit various error detection codes (EDCs), such as cyclic residue code
and parity code, to detect the induced errors in data processing [14]. The information-based
methods are applied at the information-flow level, requiring fewer circuit details and
showing the independence of the particular hardware implementation.

The basic principle of fault detection in the information-based methods is that the
predicted information bits (the residue for the cyclic residue code and the parity for the
parity code) and the actual information bits are compared. Then, a mismatch shows the
fault injection. The fault coverage is improved as the number of redundant information bits
increases. Among the two simple EDCs, the parity code-based detection method shows
similar fault coverage and less hardware overhead, due to its simple operations in parity
prediction [14]. It is known that the parity check and its variants (e.g., Low-Density Parity
Check Code) are widely used in the communication area. Ref. [13] firstly implemented
the parity check on the AES cipher circuit with the uniform grain, and [14] compared the
performance of the parity code and the cyclic residue code for fault detection of the RC5
cipher circuit. As we know, the parity-code-based method fails when the number of the
fault bits is even [11]. Therefore, for a higher fault coverage rate, the fine-grained parity
code check is exploited but introduces higher overhead in hardware resource or power
consumption [15].

For the satisfactory trade-off between fault coverage and overhead, two parity-code-
based detection are proposed in this paper. Firstly, a mixed-grained parity check approach
is proposed, in which the sub-word level parity check (high fault coverage and overhead)
is applied to the security-critical operations of the circuit, and the word-level parity check
(low fault coverage and overhead) is applied to the other operations. This way achieves
a trade-off between fault coverage rate and overhead. Secondly, to further reduce the
overhead, a word recombination parity check approach is proposed. Sub-words of different
variables from the security-critical operations and non-critical operations are reorganized
into a new word. Then the word-level parity check is performed on the new word. This way
is equivalent to the sub-word level parity check applied to the security-critical operations.
The contributions of this work are as follows:

• We propose two efficient detection approaches against timing FIAs based on the parity
code check. The two approaches realize the idea of fine-grained parity check with
low overhead in two ways and apply the parity check on the pipelined and iterative
circuits. The two approaches provide designers with different design capabilities with
alternative countermeasures.

• We develop the implementation flow of the proposed approaches, which can be
integrated with the existing IC design flow, enabling security-driven hardware de-
sign flow.

• We design parity check blocks for basic operations involved in various encryption
algorithms. In this way, the proposed methods apply to multiple widely used cryptog-
raphy ICs.

• We evaluate the proposed approaches on RC5, AES, and DES encryption implementa-
tions. Compared with the word parity check, the results show that the mixed-grained
approach increases the fault coverage rate by up to 53.69% while consuming 13.2%
more resources; the word recombination approach increases the fault coverage rate by
up to 47.16% while introducing up to 2.35% resource usage.

The rest of this paper is organized as follows. Section 2 briefly introduces the back-
ground. Section 3 describes the threat model which is considered in this paper. Section 4
explains the concepts and the implementations of the proposed approaches. Section 5
shows the prediction operations for the parity check of various ciphers. Section 6 pro-
poses the general implementation flow of the proposed approaches. Section 7 shows the
experiment settings and results. Section 8 compares the related works with the proposed
methods. Section 9 concludes this paper.

Electronics 2022, 11, 4082 3 of 19

2. Background

We first introduce the principle of parity-code-based detection (Section 2.1), and then
briefly describe the basic operations in three typical encryption algorithms, AES, RC5, and
DES (Section 2.2).

2.1. Principle of Parity Code-Based Detection

The parity bit P(A) of an n-bit word A is obtained by XORing all of its n bits as below

P(A) =
i=(n−1)∼0
⊕ A[i] = A[n− 1]⊕ . . .⊕ A[0] (1)

To implement the parity code-based detection method, as shown in Figure 1, a parity
check block is added in parallel with the circuit under attack (CUA), including parity
calculation, prediction and comparison. The parity code-based detection approach detects
the timing fault injection by checking the calculated parity bit P(y) and the predicted parity
bit P′(y) of the output y. P(y) is calculated using (1). P′(y) is obtained dependently on
the specific operations in CUA. Section 5 will present the ways of parity prediction for
basic encryption operations. The comparison is realized by XORing P(y), and P′(y) and
generates a check bit. When a fault is injected into the CUA, y and thus P(y) may be
disturbed. The check bit equal to 1 indicates that the fault is detected. For example, let the
correct value of 32-bit output y in Figure 1 be 0xFFFF. When a timing fault in the CUA
alters y to 0xFFFE, P(y) turns from 0 to 1, and the predicted parity P′(y) based on x is still
0. Then, the check bit turns from 0 to 1, and the fault is detected.

Circuit under attack (CUA)

Parity
prediction

Parity
calculation

Parity comparison

Parity check block (PCB)

Check bit

Input x Output y

P(y)P'(y)

Figure 1. The diagram of the parity-check-based detection approach.

Parity check with m-bit granularity means that one parity bit is computed for every
m bits of a n-bit data, i.e., k = dn/me parity bits are needed. The finer granularity means
the smaller m and the larger k. Continue with the above example. Assume that a 2-bit
fault is injected into the CUA, i.e., the fault induces timing violations in two paths. The
fault changes y to 0xFEFE. In this case, with the 32-bit parity check, P(y) remains 0 and
the check bit equals 0. The fault cannot be detected. If a 16-bit parity check is applied,
two parity bits are calculated and predicted. P(y[31 . . . 16]) and P(y[15 . . . 0]) become 1,
respectively. Two check bits turn from 0 to 1, and the fault is detected.

This example shows that the fine-grained parity check improves fault coverage, but
requires extra parity bits and hardware resources. To trade off the fault coverage and
hardware overhead, this paper proposes two efficient approaches which will be presented
in the next section.

2.2. Basic Operations in RC5, DES and AES Encryption Algorithms

Algorithms 1–3 show the basic operations involved in three widely used symmetric
block ciphers, RC5, DES, and AES. Among them, RC5 and DES use data-dependent
operations, while AES uses data-independent operations. DES is a typical Feistel structure
cipher. AES is a typical substitution-permutation network (SPN) structure cipher. All three
ciphers involve r-round (iterative) operations. The basic operations of the three encryption
algorithms are also common for some other encryption algorithms such as IDEA [16] and

Electronics 2022, 11, 4082 4 of 19

Twofish [17]. This paper presents and evaluates the proposed approaches with these three
encryption algorithms.

Algorithm 1 RC5 algorithm
Input 64-bit plaintext, which is divided into 32-bit words A, B, and key.
Output: ciphertext
1: A, B = Permutation-P(plaintext)
2: A=A+key [0]
3: B=B+key [1]
4: for i =1 to 12
5: A = ((A xor B) <<<B)+key[2i]
6: B = ((B xor A)<<<A)+key[2i+1]
7: ciphertext = {A, B}.

Algorithm 2 DES algorithm
Input 64-bit plaintext divided into 32-bit L and R, and key.
Output: ciphertext
Begin
1: for i = 1 to 16
2: Li = Ri−1;
3: Ri = Li−1 xor function-f (Ri−1, keyi);
4: ciphertext = {L16, R16};End
Function-f(R, key)
5: E = Expansion-E (R)
6: Address_Sbox = E xor key
7: S = Sbox (Address_Sbox)
8: P = Permutation-P (S).

Algorithm 3 AES-128 algorithm
Input: 128-bit Plaintext, which is presented as the state matrix, and key.
Output: ciphertext
Begin:
1: state = Plaintext
2: AddRoundKey (state, key)
3: for round=1 to 9
4: state=Subbytes(state)
5: state=shiftRows(state)
6: state=MixColumns(state)
7: state=AddRoundKey(state, key[round]). End
Final round Begin:
8: state=Subbyte(state)
9: state=shiftRows(state)
10: state=AddRoundKey(state, key[round])
11: ciphertext=state. End

As shown in Algorithm 1, each round of RC5 is comprised of three basic operations:
XOR, rotate left (<<<), and arithmetic addition (+). In Algorithm 2, each round of DES
contains four basic operations: Expansion permutation box (EP-box), XOR, Substitution
boxes (S-box) and Straight permutation box (SP-box). The EP-box operation expands the
32-bit input to 48-bit by a permutation table with 8× 6 entries, each corresponding to one
bit of the input. The S-box operation carries out the data mixing using eight S-box tables,
each with 4× 16 4-bit entries. The SP-box operation performs straight permutation with a
4× 8 table, each corresponding to one bit of the input. In Algorithm 3, each round of AES
contains four basic operations: SubBytes, ShiftRows, MixColumns, and AddRoundKey.
The SubBytes operation substitutes the state matrix (16 bytes) by looking up a fixed table

Electronics 2022, 11, 4082 5 of 19

(S-box). The ShiftRows operation rotates each of the four rows of the matrix to the left.
The j-th row is shifted j− 1 (byte) position. The MixColumns operation transforms each
column of four bytes using a special mathematical function. This function takes as input
the four bytes of one column and outputs four completely new bytes using left shift and
XOR. The AddRoundKey operation XORs the state matrix to the round key.

Overall, the basic operations in three encryption algorithms can be classified into con-
ventional arithmetic addition (+), modulo 2 addition (XOR, AddRoundKey, MixColumns),
logical shift (rotate left, ShiftRows, MixColumns), permutation operation (EP-box, SP-box),
and substitution box (S-box). To realize the parity check-based fault detection approach, a
parity prediction method should be designed for each of the basic operations, which will
be presented in Section 5.

3. Threat Model

The threat model considered in this paper is that attackers inject timing faults into
cipher circuits with the aim of revealing the encryption key, by means of FIAs such as clock
glitches, electromagnetic pulse, and voltage underfeeding.

In a sequential logic path, data launched from Reg1 is propagated through the combi-
national logic and is captured by Reg2. For correct operation, the following setup timing
requirement should be met.

Tclk ≥ Tpd + Tsu (2)

where Tclk is the clock cycle, Tpd is the signal propagation delay through the combinational
logic, and Tsu is the setup time. The FIAs such as the clock glitch attack and electromagnetic
pulse attack could produce clock glitches in the clock signal, which is equivalent to tem-
porarily decreasing Tclk. The FIA technique voltage underfeeding could increase the signal
propagation delay Tpd. In these two cases, the setup timing constraint (2) could be violated,
and Reg2 samples the wrong data, resulting in faulty operation [18]. It is reported in [8]
that for clock glitch attack, as the fault intensity increases (i.e., the glitch period decreases),
more bits fail one after another.

With the means of timing fault injection, the attackers usually choose the appropri-
ate time and position to induce faults, in order to reveal key with the least effort. For
example, when applying FIA to the AES circuit, faults are injected into the state bytes in
the SubBytes operation at the beginning of the last round [19,20], or into the operations
before MixColumns in the second/third last round with more complex key analysis [21].
Therefore, we define the encryption operations in a specific round, which are particularly
targeted by FIA, as the security-critical operations.

There are usually two ways of implementing a cipher circuit. For small hardware
areas, the cipher is implemented in an iterative way, i.e., different rounds of operations
are mapped on the same piece of a circuit. For high speed, the cipher is implemented in
pipeline, and there is a piece of the circuit for each round of operations. Figure 2 shows an
example, where AES is implemented in two ways. By this example, we want to show how
the security-critical operations (shaded blocks) are defined for different implementations.
Note that, the example just shows one possible selection of security-critical operations.
Circuit designers could have different specifications, e.g., selecting as the security-critical
operations all operations in the last round in Figure 2b.

SubBytes ShiftRows MixColumns AddRoundKey

round1

SB SR MC ARK
roundr-1

SB SR MC ARK
roundr

SB SR ARK...

(a)

(b)

plaintext

plain

text

ciphertext

cipher

text

Figure 2. The example of AES circuit in (a) iterative implementation and (b) pipelined implementation.
Shaded blocks represent security-critical operations.

Electronics 2022, 11, 4082 6 of 19

In this work, to balance fault coverage and hardware overhead, the fine-grained parity
check is applied to the security-critical operations, while the coarse-grained parity check is
applied to the other operations. The proposed approaches are presented in the next section.

4. Proposed Approaches

As discussed early, high fault coverage needs fine-grained parity check but introduces
high hardware overhead. Considering the nature of FIAs, faults are more likely to be
injected into the security-critical operations defined in this paper. In other words, faults
injected into the other operations are not the main target of the proposed detection ap-
proaches. This is one of the main differences between security-driven design and fault
tolerance-driven design. Therefore, this paper proposes two parity check-based detection
approaches against timing FIAs: mixed-grained parity check approach (Section 4.1) and
word recombination parity check approach (Section 4.2).

4.1. Mixed-Grained Parity Check

Concept and Implementation: Based on the fact that fine-grained parity check achieves
higher fault coverage but introduces higher hardware overhead, it is intuitive to apply
fine-grained parity check to the security-critical operations and coarse-grained parity check
to other operations in cipher circuits. The proposed mixed-grained parity check approach
is based on this idea.

Figure 3a shows an example of the mixed-grained parity check, where Operation0
and Operation1 process 32-bit data and Operation0 is assumed to be the security-critical
operation. 32-bit parity check is applied to Operation1, and a parity check block (PCB) is
added. Given the parity check nature, the theoretical fault coverage is 50%. Then, a 16-bit
parity check is applied to Operation0. The 32-bit A0 is divided into two 16-bit banks, and a
PCB is added for each bank. In this way, 2 parity bits are calculated, which increase the
theoretical fault coverage to 75%, at the cost of 2 PCBs. Therefore, the mixed 16/32-bit
parity check consumes 3 PCBs and has the 50 ∼ 75% fault coverage, as shown in Table 1.
In practice, the Operations of the pipelined or iterative cipher circuits can be the cipher
rounds (pipelined cipher circuits) or the basic operations in one cipher round (iterative
cipher circuits). Figure 4 shows the operation division of DES as a practical example. In
the figure, each Operation of the pipelined DES means one DES cipher round, and one
Operation of an iterative DES means one operation in one cipher round.

Operation1Operation0

32-bit PCB16-bit
PCB

16-bit
PCB

A0[31...0]

check bitcheck bit check bit

A1[31...0]
A2[31...0]

(a) Mix-grained parity check

Operation1Operation0

32-bit PCB

A0[31...0]

check bit

A1[31...0]
A2[31...0]

(b) Word recombination parity check

32-bit PCB

check bit

C={A1[31...16],A2[31...16]} D={A1[15...0],A2[15...0]}

Figure 3. The implementation of mixed-grained parity check and word recombination parity check.
Operation0 is the security-critical operation. C and D are new words recombined by A1 and A2. PCB:
parity check block.

Electronics 2022, 11, 4082 7 of 19

Table 1. Theoretical analysis of fault coverage and hardware resource usage of different parity
check approaches.

Granularity m Uniform 32-bit Uniform 16-bit Mixed 16/32-bit 2 Words
Recombination

Fault coverage
(%) 50 75 50 ∼ 75 75

HW resource 2 PCB 4 PCBs 3 PCBs 2 PCBs

1st round 2nd round
Input

Operation0 Operation1

16th round
output

...

Operation15

(a) Operation division of the pipelined DES

Expansion-E AddKey S-box Permutation-P XOR Ctrl

Operation0 Operation1 Operation2 Operation3 Operation4

Cipher Operations

Input

(b) Operation division of the iterative DES

Figure 4. The example of Operation division.

4.2. Word Recombination Parity Check

To further reduce the hardware overhead, we also propose a word recombination
parity check approach. The approach essentially exploits the parity check resources as-
signed for the security non-critical operations to achieve fine-grained parity check for the
security-critical operations. Specifically, words from the security-critical operation and the
non-critical operation are partitioned into sub-words and the sub-words are recombined to
form new words whose parity is checked at the word level. Next, the approach is presented
in detail.

Concept: Figure 5 illustrates the concept of word recombination parity check. In
Figure 5a 32-bit word A and word B are partitioned into two 16-bit sub-words {A1, A2} and
{B1, B2}, respectively. Assume that parity of A and B is checked with 32-bit, respectively.
Then, new words C = {A1, B1} and D = {A2, B2} are formed and their parity is also
checked with 32-bit. Assuming that two 1-bit faults occur in A1 and A2, respectively, and
no fault exists in B. The 32-bit parity check of A cannot detect the faults because the number
of faults is even. After recombination, the 32-bit parity check of C and D can detect the
faults without introducing extra parity bits. This is equivalent to 16-bit parity check A. A
fine grained parity check can be achieved by recombining A with more words. For example,
partitioning A into 4 8-bit sub-words and recombining with other three words can achieve
8-bit parity check for A.

B = { B1, B2 }

Parity calculation

D={ A2, B2}

P (C)

Parity calculation

P (D)

C={ A1, B1}

A = { A1, A2 }

(a)
P (C)

P (A1), P (A2) P (B1), P (B2)

xor xor

P (D)

(b)

Figure 5. The example of the word recombination parity check. (a) Recombination of words;
(b) Recombination of parities.

Electronics 2022, 11, 4082 8 of 19

Implementation: To implement the idea of the word recombination parity check, we
need to (1) find the words for recombination and (2) realize the parity prediction and the
parity calculation of the recombined words.

The parity calculation of the recombined words still uses (1), as shown in Figure 5a.
The parity prediction of the recombined words can be implemented in two steps. The first
step predicts the parity of each sub-word according to the related operation. The second
step generates the parity of the recombined words by XORing the predicted parities of the
sub-words. Continue with the example in Figure 5. The predicted parity means P′(C) =
P′(A1)⊕ P′(B1) and P′(D) = P′(A2)⊕ P′(B2), respectively, as shown in Figure 5b.

The last requirement to apply the word recombination approach is to find proper
words for recombination. Given a word from a security-critical operation, there are two
cases. For the iterative circuit implementation of ciphers, the words can be from the security
non-critical operations within the same round. For the pipelined circuit implementation,
the words can be from the security non-critical operations within the same round and
other rounds. Note that the data dependency between words does not affect the word
recombination because the parity prediction is carried out in each sub-word individually.

Figure 3b shows an example of the word recombination parity check. A1 and A2 are
recombined to form C and D. As shown in the figure, A0 and A1 are used to predict the
parity of C and D, respectively. Parity calculation is carried out on C and D directly. As
a result, by exploiting the 32-bit PCB of Operation1, a 16-bit parity check is achieved for
Operation0. Therefore, the 2-word-recombination parity check consumes 2 PCBs and has
the 75% fault coverage, as shown in Table 1. Note that, in this example, there is a data
dependency between A1 and A2. However, as long as both A0 and A1 have valid values
at the same time, the approach works. In circuit design, this requires A0, A1, and A2 to
be registered.

Although reducing resource usage, the word recombination approach could affect the
timing of the circuit because it introduces a logical relationship between the words and
may affect their placement and routing. The experiment in Section will evaluate this effect.

So far, we have presented two parity check-based FIA detection approaches. As shown
in Figure 1, the PCB contains parity calculation, prediction, and comparison. As described,
while the parity calculation and comparison are easy to implement, implementation of the
parity prediction depends on the specific operations in encryption algorithms and is not
straightforward. The next section presents the parity prediction methods of different basic
operations introduced in Section 2.2.

5. Parity Prediction of Basic Operations

Ideally, parity prediction predicts the parity of an operation’s output based on its
input’s parity, without duplicating the real operation of CUA. In this way, the high overhead
of dual modular redundancy is avoided. However, different basic operations show different
features, such as some are linear, and some are nonlinear. This diversity increases the design
difficulty of parity prediction. This section will present the parity prediction methods for the
basic operations introduced in Section 2.2. Because these basic operations are common to
existing encryption algorithms, the presented prediction methods enable wide applications
of the proposed parity check-based approaches.

5.1. Conventional Arithmetic Addition

For operation A adding B, its parity P(A + B) can be predicted by (3)

P(A + B) = P(A)⊕ P(B)⊕ Cin ⊕ C(i)
out (3)

where Cin is the carry input and C(i)
out is the carry generated by A[i] + B[i] (0 ≤ i ≤ n− 2).

We can see that as long as inputs A, B and Cin are known, P(A + B) can be obtained by
operating on the parities of A and B, instead of n-bit A and B.

Electronics 2022, 11, 4082 9 of 19

5.2. Modulo 2 Addition

The parity prediction for modulo 2 operation is straightforward. The parity of A xor B
can be obtained as below

P(A⊕ B) = P(A)⊕ P(B) (4)

5.3. Logical Shift

As described in Section 2, the logical shift operation includes left rotation (<<<) and
left shift (<<). Given a n-bit word A and after k-bit left rotation, the operation does not
change the parity of A, i.e., P(A <<< k) = P(A). However, when fine-grained parity check
is applied, the rotate shift does change the parities of different sub-words of A. For m-bit
parity check, the parity of the h-th sub-word of A after k-bit left rotation is predicted by (5).

Ph(A <<< k) =
i=(m−1)∼0
⊕ A[(mh− k + i) mod n] (5)

For left shift, the parity of the h-th sub-word of A, with m-bit parity check, after k-bit
left shift is predicted by

Ph(A << k) =
i=(m−1)∼0
⊕ A[(mh− k + i)], mh− k + i ≥ 0 (6)

5.4. Permutation Operation

The output of the permutation operations is a permutation of the input according
to a permutation table. Figure 6 illustrates the permutation operation of EP-box and
SP-box. We can see that given the fixed permutation logic and input A, the parity of
output B with different granularity can be predicted by XORing the corresponding bits
of A. For example, applying 4-bit parity check to the SP-box operation in Figure 6b,
P7(SP-box(A)) = A[24]⊕ A[3]⊕ A[10]⊕ A[21] and the parities of other seven sub-word
can be predicted similarly.

(a)

31 30 29 28 7 6 5 4 3 2 1 0

0 31 30 29 28 27 8 7 6 5 4 3 4 3 2 1 0 31

...

...

input A

output B

31 30 29 28 7 6 5 4 3 2 1 0...input A

24 3 10 21 16 27 11 28 20 19 6 15
output B ...

(b)

Figure 6. Permutation operation of (a) EP-box and (b) SP-box.

5.5. Substitution Box

The S-box operation carries out the real mixing and the outputs are generated by
looking up a fixed table (state matrix) in AES or eight fixed tables in DES. As a result, the
parity of the S-box operation output cannot be predicted using the parity of the input. To
solve the problem, a separate parity table, which includes the predicted parity bit for each
element of S-box, is built. Then, the predicted parity bit can be obtained by looking up the
parity table.

Figure 7 illustrates the parity prediction of S-box and ShiftRows in AES. The state
matrix in Figure 7a is the S-box table. Its parity table in a form of a matrix is shown
in Figure 7b, where pr,c is the parity of sr,c. Given an input, both the state matrix and
parity matrix are looked up, and the outputs are used in parity calculation and prediction,

Electronics 2022, 11, 4082 10 of 19

respectively. Note that, in Figure 7 each element of the state matrix is 8-bit. If a coarse-
grained parity check is used, the corresponding elements of the parity matrix are XORed to
form the required parity. If the fine-grained parity check is applied, the parity matrix can
be expanded, and each element indicates the parity of different parts of the elements of
the state matrix. For example, applying the 4-bit parity check adds two parity bits for each
state matrix element, i.e., 16× 2 parity bits in total. In addition, with the parity matrix, the
parity of ShiftRows operation result is easy to obtain, instead of using (5).

s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

p0,0 p0,1 p0,2 p0,3
p1,0 p1,1 p1,2 p1,3
p2,0 p2,1 p2,2 p2,3
p3,0 p3,1 p3,2 p3,3

p0,0 p0,1 p0,2 p0,3
p1,1 p1,2 p1,3 p1,0
p2,2 p2,3 p2,0 p2,1
p3,3 p3,0 p3,1 p3,2

(a) (b) (c)

Figure 7. Parity prediction of S-box and ShiftRows in AES. (a) State matrix; (b) Parity matrix; (c) Parity
matrix after ShiftRows.

With the parity prediction methods of the above basic operations, the proposed parity
check approaches can be applied to various encryption circuits. The next section will
present the application flow of the proposed approaches.

6. Design Flow

This section explains the design flow of the proposed approaches, which can be
integrated into the existing IC design flow. Figure 8 shows the design flow. The input
to the design flow is a data flow graph (DFG) of CUA. Each node of DFG represents an
encryption operation of an encryption algorithm, and an edge indicates the input-output
relationship between operations.

Yes

NO

Critical Parts Specification

Scheme

Determination
Mix-grained OR Word recomb

EvaluationFC/Area/Timing/Power

Done

Logic design & Synthesis & Implementation
Circuit

Implementation

Figure 8. The design flow of the proposed approaches. In the Evaluation stage, FC means fault
coverage.

Designers should specify area/timing/power/security requirements and security-
critical operations. With the provided information, the design flow explores the design
space in three stages: Scheme determination, Circuit implementation, and Evaluation.

6.1. Critical Parts Specification

In the specification stage, a designer should specify the security-critical parts of the
main circuit according to the circuit’s application. The last several cipher rounds of cipher
circuits are specified as the security-critical parts by this work because faults in the rounds
are easy to be used by attackers [22–24].

Electronics 2022, 11, 4082 11 of 19

6.2. Parity Check Scheme Determination

The parity check scheme determination stage mainly decides the granularity of parity
check, i.e., determining mi for each operation i. We formulate the decision process in a
constrained optimization problem as below.

max FC(m0, m1, . . . , mO) (7)

s.t.Res(m0, m1, . . . , mO) ≤ R∗

Here, the objective is to maximize the fault coverage FC() with respect to resource
constraint Res(). R∗ is the available hardware resource in a hardware platform. The next
will show how the fault coverage and resource usage models are analytically formulated,
respectively.

The fault Coverage Model: The fault coverage of mixed-grained parity check is
dependent on parity check of each operation involved in a cipher circuit, especially the
security-critical operations. Therefore, in this paper, we define (FC(·)) as an average of the
fault coverage f ci(mi) of each operation i.

FC(m0, m1, . . . , mO) = Avg{αi f ci(mi)} (8)

where αi is a weight associated with operation i. The security-critical operations will be
assigned a large weight.

The fault coverage f ci(mi) can be theoretically analyzed according to the used parity
check granularity. Here, the fault coverage is defined as (9).

FC =
Number o f detected f aults

Total number o f injected f aults
(9)

It is assumed that the number of faulty bits appears randomly in a word. Thus, the
total number of the i-bit faults for an n-bit word is Ci

n, and the total number of faults is
∑n

i=1 Ci
n. Table 2 shows the theoretical fault coverage of parity check with m = 32, 16, 8, 4,

respectively, for a 32-bit word. For example, the 32-bit parity check uses one parity bit and
in theory can detect the faults with the odd number of bits but not the even number of
bits, and thus the fault coverage is 50%. The 16-bit parity check uses two parity bits and
in addition to all odd-bit faults can also detect the even-bit faults in which the number of
faulty bits in each 16-bit sub-word is odd. As a result, the theoretical fault coverage is about
75%. Similarly, the theoretical fault coverage for 8-bit and 4-bit parity check can be derived.
By looking up the table, f ci(mi) can be obtained given mi.

Table 2. Theoretical fault coverage of different degrees of parity check granularity for 32-bit word.

mi 32-bit 16-bit 8-bit 4-bit

f ci (%) 50 75 93.75 99.55

The resource Model: As shown in Figure 1, each parity bit needs a PCB. The resource
overhead is comprised of three blocks: parity prediction, parity calculation and comparison.
The required logic circuit to implement the three blocks mainly includes XOR gates and
registers. Therefore, we use the number of XOR gates (#XOR) and the number of registers
(#Reg) to evaluate the resource usage.

Among the three blocks, the prediction procedure for different operations is different,
and thus the resource usage of the prediction block varies over operations and parity
check granularity m. Based on the prediction methods presented in Section 5 for the
basic operations, the resource usage is listed in Table 3. The resource usage of the parity
calculation and comparison blocks only depends on m. The detailed derivation procedure
is omitted for brevity.

Electronics 2022, 11, 4082 12 of 19

Table 3. Resource usage of parity check approach.

Blocks #XOR #Reg

Prediction

Addition (m− 1)n/m 3n/m

Modulo 2 addition n/m 3n/m

Logical shift
0, if m = n;

(m− 1)n/m, if
m < n;

n/m

Permutation (m− 1)n/m n/m

AES S-box 3, if m = 32; 1, if
m = 16; 0, others

32 + n/m, if m = 4;
16 + n/m, others

Calculation+Comparison 32 2n/m

Having the resource usage model for each block and operation, the total resource
usage introduced by the proposed parity check approaches can be determined according to
the encryption operations of CUA. The resource constraint must be met for all two resource
types, i.e., ResXOR and ResReg are formulated respectively.

The formulation in (7) is a O-variable integer non-linear programming problem. A sim-
ulated annealing algorithm can be used to obtain a near-optimal solution (m0, m1, . . . , mO).
Note that mi ≤ n and usually takes value of power of 2. Also, mi = 0 is allowed, meaning
no parity check for operation i.

After determining the parity check granularity for each operation, the proposed
two approaches can be applied. Considering application conditions and efficiency, it
is suggested that word recombination can be applied first. If the word recombination
approach cannot be used in certain conditions such as not finding the proper words
for combination or the recombination introduces timing violations in the performance
evaluation stage, then the mixed-grained approach is applied. Note that two approaches
can be used together.

6.3. Circuit Implementation

After the parity check scheme is determined for CUA, the proposed approaches are
applied to CUA and add PCBs at the RTL level with the basic design methodology. Based
on the design methodology, a circuit is advised to be designed in hierarchies for the conve-
nience of subsequent debugging, analysis, and optimization. Then, the default Synthesis &
Implementation transforms the RTL-specified design into a gate-level representation, and
places & routes the netlist onto device resources within the logical, physical, and timing
constraints of the design. Finally, the corresponding bitstream is generated by design tools.
This basic design flow is suitable for the implementation on FPGA and ASIC.

6.4. Evaluation

Evaluation stage evaluates FC (fault coverage) and performance of the circuit design.
FC Evaluation: As description in Section 3, attackers attempt to inject timing faults

into CUA by inducing timing violations. To evaluate FC, we can mimic timing fault
injection during post-layout timing simulation. This can be easily achieved by adding clock
glitches into the clock signal during timing simulation, as shown in Figure 9. The clock
signal clk with a glitch is generated by two clock signals with different clock cycles under
the control of the selection signal sel. clk_slow represents the normal clock signal. The
clock cycle of clk_ f ast is proportional to clk_slow, e.g., the proportion is 1/4 in Figure 9. By
controlling the time when clk_ f ast signal is selected, timing faults can be injected into the
encryption operations.

Electronics 2022, 11, 4082 13 of 19

For the MPSF and eMPSF attacks, 1-bit fault is randomly
injected into a state byte. We provide ten sets of plaintexts,
each with a different order of plaintexts. For example, we mark
10 plaintexts as ①-⑩, then the first set of plaintexts includes
①②③④⑤⑥⑦⑧⑨⑩, the second set includes ②③④⑤①
⑥⑦⑧⑨⑩, etc. The whole key includes 16 bytes, so there are
also 160 trials for each attack.

For each trial, we inject faults one by one until finding the
unique key hypothesis. If the unique key is correct, the trial is
successful and we record the number of faults required at this
time; if not, the trial fails. For each attack model, we count the
number of failed trials and calculate the average number of
faults required. The fewer faults required, the higher the attack
efficiency is.

Table I shows the statistical results of theoretical analysis.
The eSPIF model has the highest attack efficiency and the
SPIF has the lowest one. The shortcoming of three trials failed
in SPIF is improved in eSPIF. The last two attack models have
the same average number of faults for successful breaking the
key, and have no failed trial in theoretical analysis.

In the three failed cases of SPIF, the wrong key leads to
minimum kρ . For example, Q is 4 and the faulty state variables
derived from the correct key and four successive faulty
ciphertexts are 0000_0000, 0001_0000, 0001_0010, and
0001_1010, which make kρ 10 in (2) and 3 in (3). When the
successive faulty state variables derived from a special wrong
key guess are 0001_1000, 0011_0000, 0011_1000, and
1011_1000, kρ is 9 in (2) and 4 in (3). When looking for the

minimum kρ , SPIF considers this wrong key guess as the
unique correct key, but eSPIF can exclude this wrong key
guess.

In the following sections, the theoretical results are verified
by practical clock glitch FIA experiments.

V. EXPERIMENTAL SETUP

The AES-128 encryption hardware circuit design is
synthesized and implemented, and the Post-Implementation
Timing Simulation is used to inject faults using the Vivado
Design Suite released by Xilinx. The clock with a glitch is
generated in a testbench, and assigned to the AES-128
encryption circuit.

As shown in Fig. 3, the clock with a glitch is generated by
two clock signals with different clock cycles under the control
of the selection signal sel. The clock cycles of clk_fast and
clk_slow are always proportional, i.e. fast_clkslow_clk TT 4= .

The clk_slow signal ensures the normal encryption operation.
The clk_fast signal is selected during the ninth round of the
AES operations so that faults are injected into the state bytes at
the beginning of the tenth round.

We choose 4.4ns as the initial clock cycle of clk_fast signal
based on the maximum path delay of the AES circuit given by
the static timing analysis after implementation. The clock cycle
of clk_fast signal is gradually reduced by a step of 0.02ns.
Moreover, 10 plaintexts same to Section IV are used. We
observe and analyze the fault injection results before the clock
cycle of clk_fast is reduced to 3.72ns when the subkey bytes of
the tenth round begin to fail due to the setup timing violation.
This violation in key could also cause faulty ciphertexts, which
are not the ones expected by the attackers.

VI. EXPERIMENTAL RESULTS

In this section, we first describe the faulty behavior induced
by clock glitch and determine whether the faulty behavior is
consistent with the description of the models or not. Then, we
post-process the faulty results and compare the attack
efficiency and the success rate among the four attack models.
Finally, the analysis result of the experiments is compared with
the theoretical analysis result.

A. Description of Actual Faulty Behavior

Fig. 4 shows the changes in the number of faulty bits in 16
state bytes corresponding to one plaintext as the glitch period
decreases. Each colored line is associated with a state byte.
From the figure we can make two observations.

Firstly, as shown in Fig. 4, the number of faulty bits of each
state byte is in a growing trend. The trend demonstrates the
increasing fault intensity. At the same time, most bytes show
faulty bits one after another. For example, as glitch period
decreases the continuous hexadecimal values of state byte 1 is
shown in Table II, where the number of faulty bits is shown in
parentheses. It is shown that the consecutive two values have
the Hamming Distance 1 and the faulty bits remain faulty in
the most cases. The only exception is the fourth bit (counting
from the least significant bit) which does not keep faulty in the

TABLE I. STATISTICAL RESULTS OF THEORETICAL ANALYSIS

Attack Models
Average Number

of Faults
Number of

Failed Trials

SPIF 2.56688 3

eSPIF 2.18750 0

MPSF 2.26875 0

eMPSF 2.26875 0

Fig. 3.Generation of the clock with a glitch.

16

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on July 20,2020 at 01:00:53 UTC from IEEE Xplore. Restrictions apply.

Figure 9. Clock glitch for mimicking timing fault injection.

After the timing fault injection simulation, the FC of the circuit design can be evaluated
by counting the number of detected faults. If the fault coverage does not meet the security
requirement specified by designers, then the flow goes back to the first stage to modify the
parity check scheme. Note that, the FC in the first stage is theoretically estimated, and thus
it is possible that the security requirement is not met. If the security requirement is met, the
flow goes to the Performance evaluation.

Performance Evaluation evaluates area, timing and power consumption with EDA
tools and ensures the budget of CUA is not broken. If performance requirements specified
by designers are not satisfied, the flow goes back to the first stage. When back to the first
stage, the optimization problem will be searched for an optimal solution or will be updated
with different weights αi and constraints, depending on the feedback from the second and
third stages. Then the parity check scheme will be changed using different granularity, ap-
proaches or combinations of the proposed parity check approaches. Designers having deep
knowledge about the encryption circuits can control the convergence of the design flow
by setting proper security and performance requirements. The above design flow can be
integrated with the existing IC design tool chain, and enables the design automation of the
proposed parity check approaches. The next section will evaluate the proposed approaches.

7. Experiment Results
7.1. Experiment Setup

To evaluate the performance and efficiency of the proposed approaches, experiments
are carried out on a Xilinx v7-690 FPGA board using the Vivado development environment.
Three encryption algorithms AES, DES and RC5 are implemented on FPGA. AES and RC5
are implemented in the pipelined circuit, and DES is implemented in both iterative and
pipelined circuits.

As described in Section 6, post-layout dynamic timing simulation is carried out to
evaluate the detection efficiency. In experiments, a fault is injected if the circuit output is
wrong, and the fault number is obtained by comparing the circuit output, and the correct
ciphertexts [19]. In experiments, the working frequency of the cipher circuits (clk_slow) is
50 MHz. clk_ f ast means the injected clock glitches. The plaintexts are random, and the
clock glitch attack begins after 100 clk_slow periods. In a clock glitch attack, the first faulty
bit is on the critical path, which has the maximum path delay; then, as the glitch period
decreases (i.e., the fault intensity increases), more bits fail one after another depending on
the length of each bit’s propagation path delay. Therefore, experiments in this work inject
glitches with various periods by decreasing the clk_ f ast period to evaluate the detection
efficiency comprehensively. In experiments, clk_ f ast starts with a period of 5ns and ends
with 1ns at the rate of 1ns per step. At each step, 200 glitches are injected, and each glitch is
injected every 40 clk_slow periods. As a result, each experiment injects 1000 glitches.

In the circuit design, multiple PCBs operate independently and all check bits are
ORed to generate an alarm output. Alarm output equal to 1 indicates that injected fault
is detected.

Electronics 2022, 11, 4082 14 of 19

7.2. Results
7.2.1. Evaluation of Mixed-Grained Parity Check

The pipelined cipher circuits: Figures 10–12 show the overhead and the detection
rate (i.e., FC) of different mixed-grained parity check schemes for RC5, pipelined DES, and
AES, respectively. The x-axis represents various mixed-grained schemes.

3 2

1 6 (1
) - 3 2

(1 1)

1 6 (2
) - 3 2

(1 0)

8 (1)
- 3 2 (

1 1)

1 6 (3
) - 3 2

(9)

1 6 (4
) - 3 2

(8)

8 (2)
- 3 2 (

9)

4 (1)
- 3 2 (

1 1)

8 (3)
- 3 2 (

9)

4 (1)
- 8 (1

) - 3 2
(1 0)

4 (1)
- 8 (1

) - 1 6
(1) -

3 2 (9
)

8 (4)
- 3 2 (

8)

4 (2)
- 3 2 (

1 0)

4 (2)
- 8 (1

) - 1 6
(1) -

3 2 (8
)

4 (3)
- 3 2 (

9) 1 6 8 4

4 4 0 0
4 6 0 0
4 8 0 0
5 0 0 0
5 2 0 0
5 4 0 0
5 6 0 0
5 8 0 0 R C 5

Co

ns
um

ed
 R

eg
ist

ers

D e t e c t i o n s c h e m e s

(a)

32

16(1)-3
2(11)

16(2)-3
2(10)

8(1)-3
2(11)

16(3)-3
2(9)

16(4)-3
2(8)

8(2)-3
2(9)

4(1)-3
2(11)

8(3)-3
2(9)

4(1)-8
(1)-1

6(1)-3
2(9)

4(1)-8
(1)-1

6(1)-3
2(9)

8(4)-3
2(8)

4(2)-3
2(10)

4(2)-8
(1)-1

6(1)-3
2(8)

4(3)-3
2(9) 16 8 4

4120

4140

4160

4180

4200

4220

Co
ns

um
ed

 LU
Ts

Detection schemes

 RC5

(b)

3 2

1 6 (1
) - 3 2

(1 1)

1 6 (2
) - 3 2

(1 0)

8 (1)
- 3 2 (

1 1)

1 6 (3
) - 3 2

(9)

1 6 (4
) - 3 2

(8)

8 (2)
- 3 2 (

9)

4 (1)
- 3 2 (

1 1)

8 (3)
- 3 2 (

9)

4 (1)
- 8 (1

) - 3 2
(1 0)

4 (1)
- 8 (1

) - 1 6
(1) -

3 2 (9
)

8 (4)
- 3 2 (

8)

4 (2)
- 3 2 (

1 0)

4 (2)
- 8 (1

) - 1 6
(1) -

3 2 (8
)

4 (3)
- 3 2 (

9) 1 6 8 4
5 0 %
5 5 %
6 0 %
6 5 %
7 0 %
7 5 %
8 0 %
8 5 %
9 0 %
9 5 %

1 0 0 % R C 5

De
tec

tio
n r

ate
s

D e t e c t i o n s c h e m e s
(c)

Figure 10. The results of RC5 with various mixed-grained schemes. (a) Register consumption;
(b) LUT consumption; (c) Detection rate. The detection rate here means FC.

3 2

1 6 (9
) - 3 2

(7)

1 6 (1
2) - 3

2 (4)

8 (9)
- 3 2 (

7) 1 6

4 (1)
- 8 (9

) - 1 6
(6)

4 (1)
- 8 (1

0) - 1
6 (5)

4 (3)
- 8 (7

) - 1 6
(6)

4 (9)
- 8 (5

) - 1 6
(2)

4 (4)
- 8 (6

) - 1 6
(4) -

3 2 (2
) 8

4 (1)
- 8 (1

0) - 3
2 (5)

4 (5)
- 8 (8

) - 3 2
(3)

4 (6)
- 8 (7

) - 3 2
(3) 4

8 8 0 0
8 8 2 0
8 8 4 0
8 8 6 0
8 8 8 0
8 9 0 0
8 9 2 0
8 9 4 0
8 9 6 0 D E S

Co
ns

um
ed

 R
eg

ist
ers

D e t e c t i o n S c h e m e s

(a)

32

16(9)-3
2(7)

16(12)-3
2(4)

8(9)-3
2(7) 16

4(1)-8
(9)-1

6(6)

4(1)-8
(10)-1

6(5)

4(3)-8
(7)-1

6(6)

4(9)-8
(5)-1

6(2)

4(4)-8
(6)-1

6(4)-3
2(2) 8

4(1)-8
(10)-3

2(5)

4(5)-8
(8)-3

2(3)

4(6)-8
(7)-3

2(3) 4
2440

2460

2480

2500

2520

2540 DES

Co
ns

um
ed

 LU
Ts

Detection schemes

(b)

3 2

1 6 (9
) - 3 2

(7)

1 6 (1
2) - 3

2 (4)

8 (9)
- 3 2 (

7) 1 6

4 (1)
- 8 (9

) - 1 6
(6)

4 (1)
- 8 (1

0) - 1
6 (5)

4 (3)
- 8 (7

) - 1 6
(6)

4 (9)
- 8 (5

) - 1 6
(2)

4 (4)
- 8 (6

) - 1 6
(4) -

3 2 (2
) 8

4 (1)
- 8 (1

0) - 3
2 (5)

4 (5)
- 8 (8

) - 3 2
(3)

4 (6)
- 8 (7

) - 3 2
(3) 45 0 %

5 5 %
6 0 %
6 5 %
7 0 %
7 5 %
8 0 %
8 5 %
9 0 %
9 5 %

1 0 0 %

De
tec

tio
n r

ate
s

D e t e c t i o n S c h e m e s

 D E S

(c)

Figure 11. The results of the pipelined DES with various mixed-grained schemes. (a) Register
consumption; (b) LUT consumption; (c) Detection rate (FC).

1 2 8

8 (2)
- 3 2 (

3) - 6
4 (1)

- 1 2 8
(4)

8 (2)
- 1 6 (

3) - 6
4 (1)

- 1 2 8
(4)

8 (2)
- 1 6 (

3) - 3
2 (1)

- 1 2 8
(4)

8 (3)
- 1 6 (

2) - 6
4 (1)

- 1 2 8
(4)

8 (3)
- 1 6 (

2) - 3
2 (1)

- 1 2 8
(4)

8 (4)
- 1 6 (

1) - 3
2 (1)

- 1 2 8
(4) 6 4

8 (2)
- 3 2 (

4) - 1
2 8 (4

)

8 (3)
- 3 2 (

3) - 1
2 8 (4

)

8 (3)
- 1 6 (

3) - 1
2 8 (4

)

8 (4)
- 1 6 (

2) - 1
2 8 (4

) 3 2 1 6 8

9 8 4 0
9 9 0 0
9 9 6 0

1 0 0 2 0
1 0 0 8 0
1 0 1 4 0
1 0 2 0 0
1 0 2 6 0
1 0 3 2 0 A E S

Co
ns

um
ed

 R
eg

ist
ers

D e t e c t i o n S c h e m e s

(a)

128

8(2)-3
2(3)-6

4(1)-1
28(4)

8(2)-1
6(3)-6

4(1)-1
28(4)

8(2)-1
6(3)-3

2(1)-1
28(4)

8(3)-1
6(2)-6

4(1)-1
28(4)

8(3)-1
6(2)-3

2(1)-1
28(4)

8(4)-1
6(1)-3

2(1)-1
28(4) 64

8(2)-3
2(4)-1

28(4)

8(3)-3
2(3)-1

28(4)

8(3)-1
6 (3

)-1
28(4)

8(4)-1
6(2)-1

28(4) 32 16 8

5500

5550

5600

5650

5700

Co
ns

um
ed

 LU
Ts

Detection schemes

 AES

(b)

1 2 8

8 (2)
- 3 2 (

3) - 6
4 (1)

- 1 2 8
(4)

8 (2)
- 1 6 (

3) - 6
4 (1)

- 1 2 8
(4)

8 (2)
- 1 6 (

3) - 3
2 (1)

- 1 2 8
(4)

8 (3)
- 1 6 (

2) - 6
4 (1)

- 1 2 8
(4)

8 (3)
- 1 6 (

2) - 3
2 (1)

- 1 2 8
(4)

8 (4)
- 1 6 (

1) - 3
2 (1)

- 1 2 8
(4) 6 4

8 (2)
- 3 2 (

4) - 1
2 8 (4

)

8 (3)
- 3 2 (

3) - 1
2 8 (4

)

8 (3)
- 1 6 (

3) - 1
2 8 (4

)

8 (4)
- 1 6 (

2) - 1
2 8 (4

) 3 2 1 6 8

5 0 %

6 0 %

7 0 %

8 0 %

9 0 %

1 0 0 % A E S

De
tec

tio
n r

ate

D e t e c t i o n S c h e m e s

(c)

Figure 12. The results of AES with various mixed-grained schemes. (a) Register consumption;
(b) LUT consumption; (c) Detection rate (FC).

In the experiments, the ciphers contain 10 (AES), 16 (pipelined DES), and 12 (RC5)
cipher rounds. Therefore, the corresponding circuit is composed of 10 (AES), 16 (pipelined
DES), or 12 (RC5) cipher blocks. In the figures, the mixed-grained schemes are named by
the grain of the cipher blocks. To describe the mixed-grained schemes, the blocks are in
descending order based on path delay. For example, the mixed scheme 4(1)-8(1)-32(10)

Electronics 2022, 11, 4082 15 of 19

means that 4-bit PCB is applied to the first block, 8-bit PCB is applied to the second block,
and 32-bit PCBs are applied to the rest ten blocks. For another example, the mixed scheme
4 means the 4-bit PCB is applied to each block of the CUA.

To obtain the optimal mixed-grained scheme, various mixed-grained schemes are
evaluated by experiments. Results in the figures show that register consumption, LUT
(Look Up Table) consumption, and the FC increase with the number of parity bits. It is
shown that the increased register consumption is greater than LUT consumption, which
is consistent with the analysis of Table 3. Therefore, the area evaluation mainly discusses
the increased register consumption. To identify the optimal scheme for the mixed-grained
approach, the efficiency of the mixed-grained scheme (ES) in (10) is introduced. The higher
ES means the higher FC and fewer registers consumption for the mixed-grained scheme. In
other words, the mixed-grained scheme is efficient against the attack. The optimal scheme
means the mixed-grained scheme with the greatest ES. In (10), α or β is the weight of FC or
register consumption which can be adjusted by the designer based on the requirement. In
this paper, α and β are set to 1, and the results of ES are shown in Figure 13.

ES =
α · FC · 100

β · Register consumption
(10)

��

��
��
�

��
��
��
��
��
��

��
��
��
��
��
�

��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��

��
��
��
��
�

��
��
��
��
��

��
��
��

��
��
��
��
��
�

��
��
��
������

�����

�����

�����

�����

�����

�����

�����
����

�

�

�
�

������	����
�������

(a)

��

�

�

��
��
��
�

�

��
��
��
��
��

��

�
��
��
���

��
��
��
�

��
�

�

�

��
��
��
��
��
��

�
	�

��
��
��
��
��
�

�

�

��

�
��
�	
��
�

��
�

��
��
��
�

��
�

��
��
��
��
� �

��
��
��
��
��
��
��
	�

��
	�
��
��
��
��
��
�

��

�
��
��
��
��
��
� �

�����

�����

�����

�����

�����

�����

�

�

�
�

����������	��
��
���

����

�

�

(b)

12
8

8(
2)
-3
2(
3)
-6
4-
12
8(
4)

8(
2)
-1
6(
3)
-6
4-
12
8(
4)

8(
2)
-1
6(
3)
-3
2-
12
8(
4)

8(
3)
-1
6(
2)
-6
4-
12
8(
4)

8(
3)
-1
6(
2)
-3
2-
12
8(
4)

8(
4)
-1
6-
32
-1
28
(4
) 64

8(
2)
-3
2(
4)
-1
28
(4
)

8(
3)
-3
2(
3)
-1
28
(4
)

8(
3)
-1
6(
3)
-1
28
(4
)

8(
4)
-1
6(
2)
-1
28
(4
) 32 16 8

0.005

0.006

0.007

0.008

0.009

0.010
 AES

E
S

Detection strategies

(c)

Figure 13. ES of the mixed schemes for (a) RC5, (b) pipelined DES, and (c) AES.

In Figure 13a, the greatest ES of RC5 is 0.217 belonging to 4(2)-8(1)-16(1)-32(8). There-
fore, the optimal scheme in RC5 experiment is 4(2)-8(1)-16(1)-32(8). Compared with the
32-bit scheme in Figure 10, the optimal scheme increases the FC by 51.92% and only
consumes 3.2% more registers. Compared with the 4-bit scheme, the optimal scheme
saves 20.1% registers and has a 0.35% lower FC. Figures 11 and 13b show the results of
pipelined DES. It is shown that the greatest ES is about 0.011 which belongs to 4(9)-8(5)-
16(2). The optimal scheme 4(9)-8(5)-16(2) has a 96.29% FC which is 53.69% higher than the
32-bit scheme, at the cost of 0.9% more registers. Similarly, the result of AES is shown in
Figures 12 and 13c. For AES, 8(3)-16(3)-128(4) is the optimal scheme with 0.098 ES. All
these results demonstrate the high efficiency of the proposed mixed-grained parity check
scheme for the three ciphers.

Table 4 shows the overhead of cipher circuits with no detection or optimal mixed
schemes. WNS (Worst Negative Slack) means the worst difference between the actual and
the target delay. The negative WNS means the setup timing violation. The ∆ data is calcu-
lated by comparing the optimal mixed-grained schemes with the circuit without detection.
Results show that the mixed-grained method has little influence on timing performance
compared with the circuits without detection, which benefits from the integration at the
RTL level. Also, the small circuit size of the PCBs results in limited overhead on power
consumption and hardware resources.

Electronics 2022, 11, 4082 16 of 19

Table 4. Overhead of the circuits with no detection or optimal mixed schemes.

Implementation Reg Power (W) WNS (ns) ∆Power (W) ∆WNS (ns) ∆Reg

AES
No detection 9657 0.686 6.368 - - -

8(3)-16
(3)-128(4) 10009 0.708 6.228 0.022 0.14 352

Pipelined DES
No detection 8574 0.452 7.065 - - -

4(9)-8(5)-
16(2) 8920 0.63 6.932 0.178 0.133 346

RC5
No detection 4351 0.57 3.317 - - -

4(2)-8(1)-
16(1)-32(8) 4524 0.668 3.192 0.098 0.125 174

The iterative cipher circuit: This experiment evaluates the efficiency of the mixed-
grained method for the iterative DES implementation. The iterative DES with mixed
schemes is implemented as Figure 4. Table 5 shows the results. 4(1)-32(3) is the optimal
scheme with ES = 1.351. FC of 4(1)-32(3) is 98.6% with 73 registers. Compared with 4(4),
4(1)-32(3) is 0.7% lower in FC while saving 21 registers. Compared with 32(4), 4(1)-32(3)
consumes 7 registers more while being 44.7% higher in FC. Compared with the iterative
DES with no detection, iterative DES with the optimal mixed scheme only increases 17
registers, 48 LUTs, 0.03 W power, and 0.2027 ns WNS.

Table 5. Results of mixed schemes with the iterative DES.

Mixed Scheme FC Reg LUT ES Power (W) WNS (ns)

No detection 0 56 92 0 0.3 4.958

32(4) 53.9% 66 135 0.817 0.33 4.798

4(4) 99.3% 94 153 1.056 0.331 4.68

4(1)-32(3) 98.6% 73 140 1.351 0.33 4.7553

7.2.2. Evaluation of Word Recombination Parity Check

The pipelined cipher circuits: To evaluate the efficiency of the word recombination
approach, it is applied to AES, pipelined DES, and RC5 encryption circuits. In the experi-
ment, the parity check with one parity bit is applied to all cipher blocks.

The results are shown in Table 6. LUT consumption is not shown because it is the same
as the parity check with one parity bit. Num o f words means the number of recombined
words. When Num o f words = 1, there is no recombination operation. In Table 6, it
is shown that the FCs with word recombination are significantly improved, while the
register consumption is limited. For example, when 8-word-recombination FC is increased
by 46.29% (RC5), 47.16% (pipelined DES), and 44.5% (AES) compared to the 1-word-
recombination scheme, while register consumption is only increased by 0.79% (RC5), 2.35%
(pipelined DES), or 0.588% (AES), respectively. At the same time, the word recombination
has little overhead on power consumption and WNS as shown in Table 6.

Furthermore, the word recombination approach with 8 recombined words is compared
with the optimal scheme of the mix-grained parity check. For RC5, the optimal scheme
of the mix-grained parity check is 4(2)-8(1)-16(1) whose ES = 0.217, while 8-word-
recombination ES is 0.022. For DES, 8-word-recombination ES is 0.011, and the optimal
mix-grained scheme is 4(9)-8(5)-16(2) with 0.01 ES. For AES, 8-word-recombination ES
is 0.0098, and the optimal mix-grained scheme is 8(3)-16(3)-128(4) with 0.0097 ES. These
results mean that 8-word- recombination scheme is more efficient than the optimal scheme
of the mix-grained approach.

Electronics 2022, 11, 4082 17 of 19

Table 6. Results of word recombination.

Circuit Num. of Words FC Reg ES Power (W) WNS (ns)

RC5

1 51.92% 4427 0.012 0.61 3.252
2 87.48% 4432 0.019 0.63 3.25
4 94.83% 4443 0.021 0.68 3.174
8 98.21% 4462 0.022 0.705 3.117

Pipelined DES

1 53.69% 8837 0.006 0.483 6.982
2 78.54% 8841 0.009 0.505 6.978
4 89.57% 8857 0.010 0.527 6.953
8 98.19% 8889 0.011 0.54 6.942

AES

1 51.44% 9877 0.0052 0.697 6.368
2 75.11% 9965 0.0075 0.743 6.302
4 90.83% 9997 0.0091 0.78 6.221
8 98.60% 10109 0.0098 0.824 6.115

The iterative cipher circuit: This experiment evaluates the efficiency of the word
recombination method with one iterative DES. Table 7 shows the result of the word recombi-
nation and ES increases with the number of recombined words. The 4-word recombination
scheme is the optimal scheme with ES = 1.059.

Table 7. Results of word recombination with the iterative DES.

Num. of Words FC Reg ES Power (W) WNS (ns)

1 53.9% 66 0.817 0.33 4.798

2 74.2% 74 1.003 0.332 4.723

4 84.7% 80 1.059 0.339 4.69

Compared with 1-word recombination, the FC of 4-word recombination is 30.8%
higher while consuming 14 registers more. Compared with the mixed scheme 4(1)-32(3),
the 4-word-recombination ES is less than the ES of 4(1)-32(3). In Table 7, the 4-word-
recombination scheme has limited timing overhead and power consumption compared
with the 1-word-recombination scheme.

8. Discussion

This section summarizes the fault detection methods into two categories.
Sensor-based detection: The sensor-based detection is proposed to monitor the phys-

ical signals of the device, such as the clock or voltage. The typical methods include
RO-based [25] or delay-chain-based detectors [26]. Generally, the sensor-based counter-
measures have little influence on the protected circuits and bring low power and hardware
overhead. In addition, the sensor-based countermeasures achieve high efficiency against
specific faults. For example, the detector detects clock glitch attacks by monitoring the
device’s clock signal. As a result, the clock glitch monitor fails to detect the faults in-
duced by increasing path delay. PV and aging phenomena also influence the efficiency of
the detectors.

Redundancy countermeasures: The redundancy countermeasures detect data faults
by redundancy (e.g., time, hardware, or information redundancy) and are independent of
the attack technologies. Repetition is one typical time redundancy countermeasure with
a high time overhead. Hardware redundancy detects faults by integrating duplicated or
triplicated hardware with high hardware overhead [27]. Information redundancy detection
detects faults by employing the error detection code (EDC) and consumes limited time and
hardware overhead.

Electronics 2022, 11, 4082 18 of 19

This work proposes parity-code-based methods with information redundancy. Com-
pared with other EDC-based countermeasures [11,28,29], this work (1) abstracts the basic
operations of typical ciphers and proposes the parity prediction for the basic cipher op-
erations so that the proposed detection approach applies to multiple ciphers instead of
one specific cipher; (2) realizes the idea of fine-grained parity check with low overhead
in two ways, and provides designers with different design options; (3) develops a design
flow, which can be integrated with the existing IC design flow, enabling security-driven
hardware design flow.

9. Conclusions

This work proposes the mixed-grained parity check and word recombination parity
check against timing FIAs and integrates the implementation flow of the two approaches
with the existing IC design flow. The proposed methods can apply to multiple widely
used cryptography ICs because this work designs parity check blocks for basic operations
involved in various encryption algorithms. Evaluation of RC5, AES, and DES encryption
implementations show that the mixed-grained approach increases the fault coverage rate
by up to 53.69% while consuming 13.2% more resources compared with word parity check;
the word recombination approach increases the fault coverage rate by up to 47.16% while
introducing up to 2.35% resource usage. In the future, the proposed approaches will be
explored to extend the application by designing parity check blocks for different circuits
besides cryptography ICs.

Author Contributions: Conceptualization, P.W. and Q.L.; Methodology, M.Z., H.L. and P.W.; Soft-
ware, M.Z.; Formal analysis, M.Z. and H.L.; Investigation, M.Z., H.L. and P.W.; Data curation, M.Z.
and P.W.; Writing original draft, M.Z.; Writing review and editing, H.L. and Q.L.; Supervision, Q.L.;
Project administration, Q.L.; Funding acquisition, Q.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is funded by the National Natural Science Foundation of China under Grant
61974102.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data openly available in a public repository.

Acknowledgments: This work would like to thank the support of the National Natural Science
Foundation of China under Grant 61974102.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zheng, Y.; Pal, A.; Abuadbba, S.; Pokhrel, S.R.; Nepal, S.; Janicke, H. Towards IoT Security Automation and Orchestration.

In Proceedings of the 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and
Applications (TPS-ISA), Atlanta, GA, USA, 28–31 October 2020; pp. 55–63. [CrossRef]

2. Moini, S.; Tian, S.; Holcomb, D.; Szefer, J.; Tessier, R. Power Side-Channel Attacks on BNN Accelerators in Remote FPGAs. IEEE J.
Emerg. Sel. Top. Circuits Syst. 2021, 11, 357–370. [CrossRef]

3. Ghosh, A.; Nath, M.; Das, D.; Ghosh, S.; Sen, S. Electromagnetic Analysis of Integrated On-Chip Sensing Loop for Side-Channel
and Fault-Injection Attack Detection. IEEE Microw. Wirel. Components Lett. 2022, 32, 784–787. [CrossRef]

4. Yoshikawa, H.; Kaminaga, M.; Shikoda, A.; Suzuki, T. Round addition DFA for microcontroller implemented the triple DES.
In Proceedings of the 2013 IEEE 2nd Global Conference on Consumer Electronics (GCCE), Tokyo, Japan, 1–4 October 2013;
pp. 538–539. [CrossRef]

5. Boneh, D.; DeMillo, R.A.; Lipton, R.J. On the Importance of Checking Cryptographic Protocols for Faults. In Proceedings of the
Advances in Cryptology—EUROCRYPT ’97, Konstanz, Germany, 11–15 May 1997; pp. 37–51.

6. Zhang, J.; Ji, X.; Wang, J.; Li, J.; Wang, N. A Differential Fault Attack on Security Vehicle System Applied SIMON Block Cipher.
In Proceedings of the IEEE Transactions on Intelligent Transportation Systems, Macau, China, 8–12 October 2022; pp. 1–12.
[CrossRef]

7. Rodriguez, J.; Baldomero, A.; Montilla, V.; Mujal, J. LLFI: Lateral Laser Fault Injection Attack. In Proceedings of the 2019
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), Atlanta, GA, USA, 24 August 2019; pp. 41–47. [CrossRef]

http://doi.org/10.1109/TPS-ISA50397.2020.00018
http://dx.doi.org/10.1109/JETCAS.2021.3074608
http://dx.doi.org/10.1109/LMWC.2022.3161001
http://dx.doi.org/10.1109/GCCE.2013.6664915
http://dx.doi.org/10.1109/TITS.2022.3157955
http://dx.doi.org/10.1109/FDTC.2019.00014

Electronics 2022, 11, 4082 19 of 19

8. Ning, B.; Liu, Q. Modeling and Efficiency Analysis of Clock Glitch Fault Injection Attack. In Proceedings of the 2018 Asian
Hardware Oriented Security and Trust Symposium (AsianHOST), Hong Kong, China, 17–18 December 2018; pp. 13–18. [CrossRef]

9. Bittner, O.; Krachenfels, T.; Galauner, A.; Seifert, J.P. The Forgotten Threat of Voltage Glitching: A Case Study on Nvidia Tegra X2
SoCs. In Proceedings of the 2021 Workshop on Fault Detection and Tolerance in Cryptography (FDTC), Milan, Italy, 17 September
2021; pp. 86–97. [CrossRef]

10. Nishiyama, H.; Fujimoto, D.; Kim, Y.; Sone, H.; Hayashi, Y.I. IEMI Fault Injection Method Using Continuous Sinusoidal Wave with
Controlled Frequency, Amplitude, and Phase. In Proceedings of the 2021 13th International Workshop on the Electromagnetic
Compatibility of Integrated Circuits (EMC Compo), Bruges, Belgium, 18–11 March 2022; pp. 97–101. [CrossRef]

11. Bedoui, M.; Mestiri, H.; Bouallegue, B.; Machhout, M. A reliable fault detection scheme for the AES hardware implementation. In
Proceedings of the 2016 International Symposium on Signal, Image, Video and Communications (ISIVC), Tunis, Tunisia, 21–23
November 2016; pp. 47–52. [CrossRef]

12. Ebrahimabadi, M.; Mehjabin, S.S.; Viera, R.; Guilley, S.; Danger, J.L.; Dutertre, J.M.; Karimi, N. Detecting Laser Fault Injection
Attacks via Time-to-Digital Converter Sensors. In Proceedings of the 2022 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), San Jose, CA, USA, 1–4 May 2022; pp. 97–100. [CrossRef]

13. Bertoni, G.; Breveglieri, L.; Koren, I.; Maistri, P.; Piuri, V. A parity code based fault detection for an implementation of the
Advanced Encryption Standard. In Proceedings of the 17th IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems, DFT 2002, Vancouver, BC, Canada, 6–8 November 2002; pp. 51–59. [CrossRef]

14. Bertoni, G.; Breveglieri, L.; Koren, I.; Maistri, P.; Piuri, V. Concurrent fault detection in a hardware implementation of the RC5
encryption algorithm. In Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures, and
Processors, ASAP 2003, The Hague,The Netherlands, 24–26 June 2003; pp. 423–432. [CrossRef]

15. Wen, L.; Jiang, W.; Jiang, K.; Zhang, X.; Pan, X.; Zhou, K. Detecting Fault Injection Attacks on Embedded Real-Time Applications:
A System-Level Perspective. In Proceedings of the 2015 IEEE 17th International Conference on High Performance Computing
and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, New York, NY, USA, 24–26
August 2015; pp. 700–705. [CrossRef]

16. Curiger, A.; Bonnenberg, H.; Zimmermann, R.; Felber, N.; Kaeslin, H.; Fichtner, W. VINCI: VLSI implementation of the new
secret-key block cipher IDEA. In Proceedings of the IEEE Custom Integrated Circuits Conference—CICC ’93, San Diego, CA,
USA, 9–12 May 1993; pp. 15.5.1–15.5.4. [CrossRef]

17. Smekal, D.; Hajny, J.; Martinasek, Z. Hardware-Accelerated Twofish Core for FPGA. In Proceedings of the 2018 41st International
Conference on Telecommunications and Signal Processing (TSP), Athens, Greece, 4–6 July 2018; pp. 1–5. [CrossRef]

18. Deshpande, C.; Yuce, B.; Ghalaty, N.F.; Ganta, D.; Schaumont, P.; Nazhandali, L. A Configurable and Lightweight Timing Monitor
for Fault Attack Detection. In Proceedings of the 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Pittsburgh,
PA, USA, 11–13 July 2016; pp. 461–466. [CrossRef]

19. Agoyan, M.; Dutertre, J.M.; Naccache, D.; Robisson, B.; Tria, A. When Clocks Fail: On Critical Paths and Clock Faults. In
Proceedings of the Smart Card Research and Advanced Application, Passau, Germany, 14–16 April 2010; pp. 182–193.

20. Ghalaty, N.F.; Yuce, B.; Taha, M.; Schaumont, P. Differential Fault Intensity Analysis. In Proceedings of the 2014 Workshop on
Fault Diagnosis and Tolerance in Cryptography, Washington, DC, USA, 23 September 2014; pp. 49–58. [CrossRef]

21. Sakiyama, K.; Li, Y.; Iwamoto, M.; Ohta, K. Information-Theoretic Approach to Optimal Differential Fault Analysis. IEEE Trans.
Inf. Forensics Secur. 2012, 7, 109–120. [CrossRef]

22. Patranabis, S.; Chakraborty, A.; Mukhopadhyay, D.; Chakrabarti, P.P. Fault Space Transformation: A Generic Approach to
Counter Differential Fault Analysis and Differential Fault Intensity Analysis on AES-Like Block Ciphers. IEEE Trans. Inf. Forensics
Secur. 2017, 12, 1092–1102. [CrossRef]

23. Wei, L.; Zhi, T.; Dawu, G.; Li, S.; Bo, Q.; Zhiqiang, L.; Ya, L. An effective differential fault analysis on the Serpent cryptosystem in
the Internet of Things. China Commun. 2014, 11, 129–139. [CrossRef]

24. Pogue, T.E.; Nicolici, N. Incremental Fault Analysis: Relaxing the Fault Model of Differential Fault Attacks. IEEE Trans. Very
Large Scale Integr. Syst. 2020, 28, 750–763. [CrossRef]

25. Yao, Y.; Kiaei, P.; Singh, R.; Tajik, S.; Schaumont, P. Programmable RO (PRO): A Multipurpose Countermeasure against
Side-channel and Fault Injection Attack. arXiv 2021, arXiv:2106.13784.

26. Zhang, M.; Liu, Q. A Digital and Lightweight Delay-Based Detector against Fault Injection Attacks. In Proceedings of the 2021
IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 21–25 May 2021; pp. 1–5. [CrossRef]

27. Benevenuti, F.; Kastensmidt, F.L. Evaluation of fault attack detection on SRAM-based FPGAs. In Proceedings of the 2017 18th
IEEE Latin American Test Symposium (LATS), Bogotá, Colombia, 13–15 March 2017; pp. 1–6. [CrossRef]

28. Chu, J.; Benaissa, M. Error detecting AES using polynomial residue number systems. Microprocess. Microsyst. 2013, 37, 228–234.
[CrossRef]

29. Mestiri, H.; Benhadjyoussef, N.; Machhout, M.; Tourki, R. High performance and reliable fault detection scheme for the advanced
encryption standard. Int. Rev. Comput. Softw. 2013, 8, 730–746.

http://dx.doi.org/10.1109/AsianHOST.2018.8607175
http://dx.doi.org/10.1109/FDTC53659.2021.00021
http://dx.doi.org/10.1109/EMCCompo52133.2022.9758626
http://dx.doi.org/10.1109/ISIVC.2016.7893960
http://dx.doi.org/10.1109/HOST54066.2022.9840318
http://dx.doi.org/10.1109/DFTVS.2002.1173501
http://dx.doi.org/10.1109/ASAP.2003.1212865
http://dx.doi.org/10.1109/HPCC-CSS-ICESS.2015.165
http://dx.doi.org/10.1109/CICC.1993.590722
http://dx.doi.org/10.1109/TSP.2018.8441386
http://dx.doi.org/10.1109/ISVLSI.2016.123
http://dx.doi.org/10.1109/FDTC.2014.15
http://dx.doi.org/10.1109/TIFS.2011.2174984
http://dx.doi.org/10.1109/TIFS.2016.2646638
http://dx.doi.org/10.1109/CC.2014.6879011
http://dx.doi.org/10.1109/TVLSI.2019.2947202
http://dx.doi.org/10.1109/ISCAS51556.2021.9401185
http://dx.doi.org/10.1109/ LATW.2017.7906747
http://dx.doi.org/10.1016/j.micpro.2012.05.010

	Introduction
	Background
	Principle of Parity Code-Based Detection
	Basic Operations in RC5, DES and AES Encryption Algorithms

	Threat Model
	Proposed Approaches
	Mixed-Grained Parity Check
	Word Recombination Parity Check

	Parity Prediction of Basic Operations
	Conventional Arithmetic Addition
	Modulo 2 Addition
	Logical Shift
	Permutation Operation
	Substitution Box

	Design Flow
	Critical Parts Specification
	Parity Check Scheme Determination
	Circuit Implementation
	Evaluation

	Experiment Results
	Experiment Setup
	Results
	Evaluation of Mixed-Grained Parity Check
	Evaluation of Word Recombination Parity Check

	Discussion
	Conclusions
	References

