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Abstract: Multimodal sentiment analysis, which aims to recognize the emotions expressed in multi-
modal data, has attracted extensive attention in both academia and industry. However, most of the
current studies on user-generated reviews classify the overall sentiments of reviews and hardly con-
sider the aspects of user expression. In addition, user-generated reviews on social media are usually
dominated by short texts expressing opinions, sometimes attached with images to complement or
enhance the emotion. Based on this observation, we propose a visual enhancement capsule network
(VECapsNet) based on multimodal fusion for the task of aspect-based sentiment analysis. Firstly, an
adaptive mask memory capsule network is designed to extract the local clustering information from
opinion text. Then, an aspect-guided visual attention mechanism is constructed to obtain the image
information related to the aspect phrases. Finally, a multimodal fusion module based on interactive
learning is presented for multimodal sentiment classification, which takes the aspect phrases as the
query vectors to continuously capture the multimodal features correlated to the affective entities in
multi-round iterative learning. Otherwise, due to the limited number of multimodal aspect-based
sentiment review datasets at present, we build a large-scale multimodal aspect-based sentiment
dataset of Chinese restaurant reviews, called MTCom. The extensive experiments both on the single-
modal and multimodal datasets demonstrate that our model can better capture the local aspect-based
sentiment features and is more applicable for general multimodal user reviews than existing methods.
The experimental results verify the effectiveness of our proposed VECapsNet.

Keywords: multimodal sentiment analysis; aspect-based sentiment analysis; capsule network; atten-
tion mechanism; multimodal fusion

1. Introduction

With the popularity of mobile internet and smartphones, more and more users are used
to expressing opinions, reviewing products, or sharing experiences on social networks or
e-commerce platforms. Analyzing the emotions embedded in the user-generated data has
not only attracted extensive attention from the academic community [1,2], but also brought
a wide range of commercial prospects, such as service supervision, game experience,
satisfaction survey, product recommendation, and so on. Although much progress has been
made in the sentiment analysis on user-generated data, most current research focuses on
recognizing the sentimental polarity using the single modal or multiple modal features [3,4]
while ignoring the rich and complementary emotional information between the multiple
modalities. In addition, the existing studies have paid little attention to the task of aspect-
based sentiment analysis. The task, however, offers significant guidance for practical
applications. For example, separate ratings of a phone’s screen, appearance, battery, price,
and so on are better suited for personalized recommendations than simply assessing the
phone’s overall performance. The reviews expressing opinions in social networks mainly
include texts, images, and a small number of short videos, and a short video can also be
regarded as a collection of continuous images. Therefore, in this paper, we will study
aspect-based multimodal sentiment analysis on the review data including texts and images.
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Aspect-based multimodal sentiment analysis is a fine-grained task in multimodal sen-
timent analysis. Although aspect-based sentiment analysis on text [5–7] and multimodal
sentiment analysis [8,9] have become the hot research topics in the multimedia mining
community, aspect-based multimodal sentiment analysis on user-generated reviews has
received little attention. Xu et al. [10] introduced the task of aspect-based multimodal
sentiment analysis for the first time, and proposed a multi-interactive memory network
(MIMN) to iteratively learn the text and image information for sentiment classification.
Zhou et al. [11] proposed an adversarial training representation model for extracting the
unified features of texts and images. In terms of multimodal feature fusion, the post-fusion
method is adopted in most studies, which first extracts the features of each modality sep-
arately, and then concatenates them as the input of the sentiment classifier. This method
uses the modal data independently to infer the sentimental polarity, thus ignoring the
semantic correlation and the emotional interaction between different modalities. However,
in practical applications, the data of a certain modality is often missing, or the aspect
sentiment cannot be obtained from the specified one. According to the research of Truong
and Lauw [12], text is often the main carrier to convey information, especially emotional
information, and images only serve as supplementary instructions rather than as an in-
dependent information source. In this regard, we design a visual enhancement network
structure to address the above shortcomings. The model enhances the textual representa-
tions using the aspect-guided image features, and interactively learns the textual and visual
emotional features to improve the performance of aspect-based sentiment classification.

In this paper, we propose a novel visual enhancement capsule network (VECapsNet)
for aspect-based multimodal sentiment analysis. The model consists of three components,
i.e., an adaptive mask memory capsule network (MemCapsNet) for extracting the textual
features associated with the affective entities, an aspect-guided capsule network (AgCap-
sNet) for capturing the image emotional features guided by the aspect phrases, and a
multimodal fusion module for interactively learning the textual and visual capsule features
and exploring the cross-modal interaction and intermodal emotional enhancement. Since
no more publicly available datasets exist for multimodal emotion analysis, we built a
large-scale text-image aspect sentiment dataset, named MTCom, by crawling the website
of Meituan to obtain the review data of Chinese restaurants and reintegrating and anno-
tating the obtained data using six aspect labels. The main contributions of this paper are
summarized as follows:

• We present MemCapsNet and AgCapsNet structures, which use an adaptive mask
memory attention and aspect-guided attention to extract the aspect emotion features
of text and image on the pose matrix of the capsule, respectively.

• We design a visual enhancement network to explore the cross-modal interaction
between text and image and the emotional enhancement of image to text.

• We propose a novel VECapsNet model that uses the capsule features of text and
images for aspect-based multimodal sentiment analysis. The empirical results show
that our model performs satisfactorily on both the Multi-ZOL dataset and our MTCom
dataset.

The subsequent sections of the paper are organized as follows: Section 2 summarizes
the related work, including the studies on single-modal sentiment analysis, multimodal
sentiment analysis, aspect-based sentiment analysis, and multimodal fusion. Section 3
proposes a VECapsNet model for aspect-based multimodal sentiment analysis. In Section 4,
we perform the experiments and analyze the experimental results. Finally, Section 5
concludes the whole paper and puts forward future work.

2. Related Work

In this section, we briefly review previous studies on single-modal sentiment anal-
ysis, multimodal sentiment analysis, aspect-based sentiment analysis, and multimodal
feature fusion.
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2.1. Single-Modal Sentiment Analysis

Single-modal sentiment analysis is mainly divided into text sentiment analysis and
image sentiment analysis. Text sentiment analysis is to extract and recognize the implicit
sentiment or emotion in text, which has been widely studied in the field of natural language
processing in recent years.With the advent of deep learning, deep network models have
been extensively used in text sentiment analysis for automatically learning the feature
embedding representations of text. Dong et al. proposed an AdaRNN model based on a
recursive neural network (RNN) to transmit the emotional information of text through a
syntactic dependency tree [13]. Kim introduced a convolutional neural network (CNN)
for the first time to extract the fine-grained sentiments of text [14]. Chen et al. built a
novel sentiment classification model using the sentiment supplementary information of
negation and inversion in text [15]. Chen et al. used a directional graph convolutional
network (GCN) for joint aspect extraction and sentiment analysis [16]. Furthermore, the
long short-term memory network (LSTM) has been widely applied to the tasks of text
sentiment classification for capturing the context dependency of affective entities [17–20].

At the same time, great progress has been made in image sentiment analysis based
on deep neural networks. Xu et al. analyzed image sentiment using a CNN for the first
time [21]. Song et al. introduced a multilevel visual attention mechanism into a CNN
sentiment classification [22]. Wu et al. used a weakly supervised interaction discovery
network to capture the cross-spacial abstract sentiment relations [23]. Liang et al. employed
deep metric networks for image sentiment analysis based on cross-domain semi-supervised
learning and via heterogeneous semantics, respectively, in [24] and [25]. Text sentiment
analysis and image sentiment analysis have been found to have good effects using different
methods. However, the above methods are only for single-modal data, whereas most
user-generated data is multimodal.

2.2. Aspect Based Sentiment Analysis

Aspect-based sentiment analysis (ABSA), as one of the more challenging subtasks in
sentiment analysis, has been widely studied. Its two fundamental tasks are aspect terms
extraction (ATE) and aspect sentiment classification (ASC) [26,27]. The early text-based
studies mainly use bidirectional LSTM (BiLSTM) and conditional random field (CRF) to
extract the opinion information through the hidden vectors [5,28,29]. Although the ability of
CNN used for learning the local features of text has been verified in many studies [14,30,31],
it might obtain the local features expressing different sentiments simultaneously and build
the false correspondences between opinion words and emotional entities. To this end,
Chen et al. [32] and Du et al. [33] applied capsule networks on ABSA, which distinguished
overlapping features by clustering feature capsules. The existing studies based on capsule
networks mainly weight the activation values of capsules by calculating the gated attention
between different contexts and affective entities. This kind of method may lead to the
following problems: (1) The input of the gated attention is from the hidden vectors and the
weighted objects are the capsules on the next layer, so hidden vector correlation does not
mean capsule correlation. (2) The gated attention requires that the length of the weighted
capsule sequence be the same as that of the hidden sequence, which will lead to the
degradation of the network into a fully connected network, thus limiting the representation
ability of the high-level capsules. (3) The gated attention directly weights the activation
value of a capsule without considering its credibility, and it is obviously unreasonable to
assign a higher attention to a capsule with low credibility. To solve the above problems, we
propose a MemCapsNet model for extracting the aspect emotional features of text, which
uses a mask memory attention mechanism on the pose matrixes of capsules. Extensive
experiments on the public datasets verified the effectiveness of the network.

2.3. Multimodal Sentiment Analysis

Multimodal sentiment polarity analysis and emotion prediction are two fundamental
subtasks of multimodal sentimental analysis. Most of the existing end-to-end methods fol-
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low the process of feature encoding–multimodal interaction–emotional fusion–sentimental
prediction, in which the emotional interaction between different modalities is the core to
making accurate sentiment predictions. You et al. used a consistent regression [34] and
a syntactic dependency RNN with an attention mechanism [35] for sentiment classifica-
tion. Xu et al. proposed several network models for multimodal sentiment analysis using
image captions, image-guided attention, or iterative features of images and texts [36–38].
Chen et al. designed the weighted cross-modal attention mechanism for multimodal
sentiment analysis, which captured the temporal correlation and the spatial dependence
between modalities [39]. Peng et al. proposed a cross-modal complementary network
with hierarchical fusion for multimodal sentiment classification [40]. In addion, more
deep fusion models were used for modeling intra- and inter-modal semantical interac-
tion [41–43]. In many multimodal tasks, unified multimodal representations were learned
using attention-based adversarial networks [44] and a correlational multimodal variational
autoencoder [45].

Although the current studies have achieved promising results, the aspect-based multi-
modal sentiment analysis still has some limitations on review data. First of all, compared
with text, the emotions expressed by images are more abstract and uncertain, which may be
sparse, may have nothing to do with aspects, or may reflect conflicting emotions in some
aspects. Second, the learning of deep models relies heavily on large-scale training data,
and most multimodal sentiment datasets are labeled by only sentimental polarity [36–38],
which are not suitable for fine-grained aspect-based sentiment prediction. Therefore, in this
paper, we use affective entities to guide visual feature learning in reviews, rather than
simply utilizing image features for training. At the same time, we build a large-scale
MTCom dataset from social networks for aspect-based multimodal sentiment analysis.

2.4. Multimodal Fusion

Multimodal fusion plays a crucial role in effectively fusing image and text features
for improving the performance of emotional classification results. At present, multimodal
fusion in end-to-end network models mainly adopts sharing network layers or cross-modal
attention mechanisms to fuse the feature embeddings from multimodal data. Compact
bilinear representations were obtained through a novel kernelized analysis of bilinear
pooling for fine-grained recognition in [46]. The tensor fusion networks were employed to
capture interactive features between different modalities for multimodal sentiment analysis
in [42,47,48]. Huang et al. presented an attention-based modal gated network to classify
sentiments, which utilized modality-gated LSTM to adaptively choose modal features
with strong sentiments [49,50]. Cross-modal attention mechanisms were widely employed
in multimodal sentiment analysis to capture the interactive and supplementary features
between multiple modalities in many studies [5,33,39]. In this paper, we employ interactive
learning to deeply fuse the modal features through a multi-round bidirectional visual
enhancement architecture.

3. Methodology

In this section, we propose a visual enhancement capsule network (VECapsNet) for
multimodal aspect-based sentiment analysis. The architecture of VECapsNet is shown in
Figure 1, which contains three components: an adaptive mask memory capsule network
(MemCapsNet) on the text modality, an aspect-guided capsule network (AgCapsNet) on
the imaging modality, and a multimodal emotion fusion module base on the interactive
learning. In this section, we first formulate the problem and then elaborate the framework
of the proposed model, and finally design the algorithm flow for the task of multimodal
aspect-based sentiment analysis.
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Figure 1. The framework of the VECapsNet model for multimodal aspect-based sentiment analysis.
The model is composed of three parts: MemCapsNet based on text features, AgCapsNet based on
image features, and the multimodal fusion module based on interactive learning.

3.1. Problem Formalization

The multimodal aspect-based sentiment analysis problem is defined as follows. Sup-
pose that T and I represent a text sample space and an image sample space, respectively,
where the ith document is Ti = {w1, w2, . . . , wn}, and its corresponding image set is Ii =
{I1, I2, . . . , Im}, where n and m represent the number of the words and images, respectively.
The document Tt and its corresponding image sequence It constitute an instance, and the
instance set is expressed as Ins = {< T1, I1 >,< T2, I2 >, . . . ,< Tu, Iu >}, where u is the
size of the text–image set pairs in the training set. Given an aspect set A = {a1, a2, . . . , al}
and the aspect phrase sequence of at is represented as At = {wa

1, wa
2, . . . , wa

s}, where l is the
number of aspects and s is the number of aspect phrases of at.

Each instance is associated with a sentiment polarity label Ls on each aspect at, where
the sentiment label Ls ∈ {Positive, Neutral, Negative}. The goal of multimodal aspect-
based sentiment analysis is to learn a mapping f : T × I × A → L from the quadruple
sequence of multimodal training dataset {< Ti, Ii, aj, Ls > |1 ≤ i ≤ u, 1 ≤ j ≤ l}, where
T× I × A is the cartesian space consisted of three sets, T and I and A, and L is the label set
composed of Ls, that is L = {Positive, Neutral, Negative}. Table 1 provides an overview of
the basic notations used in the paper.
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Table 1. Description of the basic notations of model.

Notation Discription

wt(wa
t ) The tth word (aspect word)

It The tth image
Ti(Ii) Document (image set) included in the ith review, and wt ∈ Ti, It ∈ Ii

< Ti, Ii > The ith instance composed of Ti and Ii

at The tth aspect
A(At) Aspect set (aspect phrase sequence of at) and at ∈ A, wa

t ∈ At
vt(va

t ) Word vector of wt(wa
t )

Ls A sentimental polarity label
L A set of the labels composed of Ls
vt(va

t ) Word vector of wt(wa
t )−→

ht Feature vector of wt(wa
t ) gained by forward LSTM←−

ht Feature vector of wt(wa
t ) gained by backward LSTM

ht Representation vector gained by Bi-LSTM
hc

t (h
a
t ) Representation vector of wt(wa

t ) gained by Bi-LSTM
H Representation matrix obtained by Bi-LSTM
ki Size of the ith n-gram convolutional kernel
mj Feature mapping matrix of the jth image

ppri(ppri
j ) Capsule pose matrix of a text (the jth image) from source capsule layer

apri(apri
j ) Capsule active value matrix of a text (the jth image) from source cap-

sule layer
patt Attention matrix from adaptive mask attention layer
va Aspect mapping capsule vector
β j Aspect-guided attention matrix of the jth image

ptxt(pimg
j ) Capsule feature representation of a text (the jth image) from capsule

convolution layer
atxt(aimg

j ) Active value capsule matrix of a text (the jth image) from capsule convo-
lution layer

ptxt_class(pimg_class) Class capsule matrix of a text (its image set) produced by fully connected
routing layer

aimg_class(atxt_class) Class active capsule matrix of a text (its image set) produced by fully
connected routing layer

3.2. Visual Enhancement Capsule Network Based on Multimodal Fusion

In order to explore the complementation and reinforcement of text and images in
emotional representations, we propose a visual enhancement capsule network model
(VECapsNet) for multimodal aspect-based sentiment analysis. As shown in Figure 1,
the whole framework of the model is composed of three parts: MemCapsNet based on text
features, AgCapsNet based on image features, and multimodal emotional fusion based
on interactive learning. These three components interact with each other for the task of
multimodal sentiment analysis. The details of VECapsNet will be described below.

3.2.1. MemCapsNet

The Adaptive Mask Memory Capsule Network (MemCapsNet) aims to extract text
features related to affective entities, as shown in the left of Figure 1, which contains word-
embedding layer, encoding layer, N-gram source capsule layer, adaptive mask attention
layer, and convolution capsule layer. The following will describe further details about
this architecture.

Word-embedding layer. All the words in the vocabulary are vectorized through a
sharing word embedding Wemb ∈ Rd×|V|, where |V| and d denote the vocabulary size and
the dimension of the word vector, respectively. The embedding matrix can be initialized
with random initializations [51] or pretrained models [52]. Given a candidate document
Ti = {w1, w2, . . . , wn1} and its aspect phrase sequence At = {wa

1, wa
2, . . . , wa

n2
}, we can use

matrix Wemb to obtain word vector vt(va
t ) ∈ Rd for each word wt(wa

t ). In order to simplify
representations, we uniformly denote the word vector matrix as E = {v1, v2, . . . , vn}.

Encoding layer. The purpose of this layer is to integrate global semantic information
into the embedding representation of each word of the given document Ti and its aspect
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phrase sequence Ai
t in aspect at. The global semantic information of each word vector is

captured with bidirectional LSTM (Bi-LSTM).
Give an input word embedding matrix E = {v1, v2, . . . , vn}, where vt is the embedding

vector of the tth word. The output can be computed using Equations (1)–(6).

it = σ(Wi[ht−1, et] + bi) (1)

ot = σ(Wo[ht−1, et] + bo) (2)

ft = σ(W f [ht−1, et] + b f ) (3)

c̃t = tanh(Wc[ht−1, et] + bc) (4)

ct = ft � ct−1 + it � c̃t (5)

ht = ot � tanh(ct) (6)

where σ is the sigmoid function, θbi = {Wi, Wo, W f , Wc, bi, bo, b f , bc} is the set of training
parameters of the Bi-LSTM; i, o, and f are the input gate, output gate, and forget gate,
respectively; h and c are the hidden vector and the cell vector, respectively; and� expresses
the dot product operation of two vectors.

A Bi-LSTM model runs a forward and backward LSTM on a sequence starting from
the left and right ends, respectively. The hidden states of vt generated by these two
LSTMs are concatenated to represent the tth word vector and its context. Hence, the vector
representation of the tth word can be expressed as follows:

−→
ht =

−−−→
LSTM(ht−1, vt, θ),

←−
ht =

←−−−
LSTM(ht−1, vt, θ) (7)

ht =
−→
ht ‖
←−
ht , t ∈ {1, 2, ..., n} (8)

where
−→
ht ,
←−
ht ∈ Rk, ht ∈ R2k, k is the number of hidden units in LSTM, and ‖ represents the

concatenation of two vectors.
In the model, two different Bi-LSTMs are used on the document and the aspect phrase

sequence, respectively, to prevent them from mixing their features through the hidden states.
Thus, the information of the document and the aspect phrases can be sufficiently distin-
guished in the upper layers of the network, and it is more conducive to extracting semantic
information correlated to affective entities from the document. So from the encoding layer,
we can obtain the hidden states (hc

i , i ∈ {1, 2, ..., n1}) of the document Ec = {ec
1, ec

2, . . . , ec
n1
}

and the hidden states (ha
j , j ∈ {1, 2, ..., n2}) of the aspect phrases Ea = {ea

1, ea
2, . . . , ea

n2
}, re-

spectively generated by two Bi-LSTMs according to the above process, and then concatenate
their text representation vectors as H = {hc

1, hc
2, . . . , hc

n1
, ha

1, ha
2, . . . , ha

n2
}.

N-gram source capsule layer. In this layer, we extract N-gram source capsule features
of the hidden vector H as the input for the capsule network by one-dimensional convolution
operation using different sizes of convolution kernels, where each source capsule contains
a 4 × 4 pose matrix and an activation value.

Set the set of one-dimensional convolution kernel sizes k = {ki|ki ∈ N}, where N is a
natural number set. In the model, we use k = {3, 5, 7} to extract the text local features of
3-gram, 5-gram, and 7-gram, respectively. Suppose Hs:t(1 ≤ s ≤ t ≤ n) express the column
vectors in H from the sth to tth column, the one-dimensional convolution operation on the
jth vector is

cki
j = ReLu(Wki · H

− ki−1
2 +j: ki−1

2 +j
+ bki ) (9)

where Wki ∈ Rki×n(n = n1 + n2) is the weight coefficient of the convolution kernel with a
size of ki, bki ∈ R is its corresponding bias, and Relu is a rectified linear unit. The ki-gram
output feature map of H is cki = [cki

0 , cki
1 , . . . , cki

n−1].
The implicit vector needs to be padded on its two sides before the one-dimensional

convolution operation so that the length of the generated vector cki is equal to that of the
implicit vector H. The pose matrix sequence Ppri and the active value vector apri of source
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capsules can be computed after multiple repeated one-dimensional convolution operations
through Equations (10) and (11).

Ppri = Multiple({c3, c5, c7}, 16 ∗ d) (10)

apri = Multiple({c3, c5, c7}, d) (11)

where Ppri ∈ R(3∗d)×(4×4)×n, apri ∈ R(3∗d)×n, Multiple(a, b) denotes to repeat b times on
the operation of determining a, and d is the base number of repeating executions with
different sizes of the convolution kernel. Computing Ppri needs to be repeated 16 ∗ d times
because the size of a pose matrix is 4 × 4.

Each column vector of Ppri corresponds to one word and its different N-gram local
features nearby, and each pose matrix expresses one of the local features of the word. So
for each word, there are total 3 ∗ d pose matrixes for representing its different local features,
and 3 ∗ d active values in each column express the active probabilities of the corresponding
pose matrix, respectively.

Adaptive mask memory attention layer. Attention is a mechanism for flexibly se-
lecting the reference of context information, which can facilitate global learning [53]. We
propose an adaptive mask memory attention for capturing the global emotional information
related to the local features over a long-distance text. In this layer, the mask mechanism is
first used to clear invalid attention at the padding positions in the text. Then, the attention
is adaptively scaled so that less attention is paid to the contexts that are not relevant to
the aspect phrases. Last, the adaptive mask attention is used to weight the sum of the
memory matrix, that is, the source capsule matrix sequence, for obtaining the capsule
features containing global context semantics.

Let M = Ppri express the memory matrix and Q ∈ R(3∗d)×(4×4)×Lq denote the query
capsule matrix, where Lq is the width of a query, and 3 ∗ d is the height of capsules, which
is the number of types of capsules. Since the different types of capsules mean different
kinds of local features, we calculate the attention of different types of capsules separately.
Memory attention is computed with Equations (12) and (13).

gjil = tanh(Watt
j · [mji, qjl ] + batt

j ) (12)

attjil =
exp(gjil)

∑n
1 exp(gjil)

(13)

where j denotes the jth capsule type; mji and qjl are the capsules of the jth type at the ith
sequence in matrix M and the lth sequence in matrix Q, respectively; Watt

j ∈ R2∗16 is the
attention weight of the jth type of capsules; batt

j ∈ R is the bias of the jth type of capsules;
gjil is the similarity score between capsule mji and qjl ; attjil is the result after normalization
of gjil .

• Mask mechanism. In word embedding, an input sequence into the deep model
is generally required to have a uniform length, so the inputted word vectors will
be padded. As shown in Figure 2, [pad] is the padding label in a word sequence.
The attention is calculated over the global vector, and some invalid attention scores
will be obtained in the [pad] positions of the second row. The proportion of invalid
attention will increase with the increase of the padding length, which is obviously
unreasonable for short texts. Therefore, we will mask these attention scores in padding
positions according to the actual length of text, as shown in the third row of Figure 2.
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Figure 2. Masking mechanism of attention. The first row shows a word sequence with [pad] labels.
The attention scores of the according words are shown in the second row, and the results after masking
[pad] scores are in the third row.

• Adaptively scaling. Since e expect to obtain the contextual features more relevant to
the aspect phrases through attention, we do not pay too much attention to irrelevant
words. To concentrate on these words that are important for identifying sentiment,
we apply an adaptive scaling mechanism on the contextual attention according to the
correlation with the aspect phrases, as shown in Figure 3. Specifically, the attention of
the jth type of capsules at the lth sequence of matrix Q is scaled as follows:

attc
jl =

max(atta
jl)

max(attc
jl)

rmaskac
jl (14)

where attc
jl denotes the contextual attention of the jth type of capsules at the lth

sequence of matrix Q, i.e., attc
jl = {attjil |i ∈ [1, n1]}; i is the ith word of the context; atta

jl
denotes the aspect attention of the jth type of capsules at the lth sequence in matrix Q,
i.e., atta

jl = {attjtl |t ∈ [1, n2]}; t is the tth word of the aspect phrases; n1 and n2 are the

numbers of textual words and aspect words, respectively; rmask is mask coefficient.

Figure 3. Adaptive scale mechanism of attention. For paying more attention to the context than the
aspect phrases, an adaptive scale mechanism on the contextual attention is used according to their
correlations with aspect phrases, rather than a clamp mechanism to tailor the contextual attention
according to the aspect phrases.

After masked and adaptively scaled processing, the attention vector attjl of the jth
type of capsules at the lth sequence of matrix Q can be produced as attjl = [attc

jl , atta
jl ].

With the vector attjl and the memory matrix M as inputs, we can obtain the aggregated
capsule rjl of the jth type of query capsules at the lth sequence by weighted sum operation
as follows:

rjl =
n1+n2

∑
i=1

attjilmji (15)

Then, the jth-type global capsule rj is produced by calculating the jth type of aggre-
gated capsules at the different locations as rj = {rj1 , rj2 , . . . , rjLq

}. Finally, we can obtain
the output of the adaptive mask memory attention layer by computing all types of global
capsule matrixes as patt = {r1, r2, . . . , r(3∗d)}.

3.2.2. AgCapsNet

We use AgCapsNet to obtain the local capsule features relevant to the affective entities
from an image by an aspect-guided attention, which mainly corresponds to the right of
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Figure 1, including the feature extracting layer, the image source capsule layer, and the
aspect-guided attention layer.

Feature extracting layer. In this layer, we extract the basic features of an image by the
different receptive fields with a size of 5× 5, and obtain a feature mapping with the depth
of A (channel number) after 2-stride convolution and ReLU activation. That is, for the jth
image Ij in set Ii, its feature matrix, mj ∈ Rd×d×A, is obtained through the feature extracting
layer, where d× d is the size of the feature map in each channel.

Image source capsule layer. Similar to the N-gram source capsule layer, in this layer
we will transform the basic features of an image into capsule features. That is, each
position of the feature matrix is expressed as a capsule, including a 4× 4 pose matrix
and an active value. Here, a 1× 1 convolutional kernel is used for linear transforming
on the different channels in a feature matrix to obtain the pose matrixes of image source
capsules. Then, the corresponding activation value of each pose matrix is obtained by
the sigmoid activation function, as shown in Figure 1. After the feature matrix mj is
encapsulated, the pose matrix of image capsules and its corresponding activation value
matrix are denoted as Ppri

j ∈ R(d×d)×B×(4×4) and apri
j ∈ R(d×d)×B, respectively, and B is the

depth of the source capsule layer.
Aspect-guided attention layer. After the feature representation of an image in the

source capsule layer, we use a Text2vision attention to aggregate the aspect-guided infor-
mation into the image capsule features, and then obtain image local information related
to the affective entities for aspect-based sentiment classification. The Text2vision atten-
tion mechanism will be elaborated in the next section on multimodal fusion based on
interactive learning.

3.2.3. Multimodal Fusion Based on Interactive Learning

The interactive learning of the memory network is mainly to capture the auxiliary
information between the text and the image for improving the performance of multimodal
sentiment analysis. To explore the complementarity information of text and images, we
propose a multimodal multi-round fusion module based on interactive learning using the
capsule features from MemCapsNet and AgCapsNet for aspect-based sentiment classifica-
tion. A new visual enhanced feature fusion network is designed for interactive learning
of the different modalities. The network iteratively queries the text and image features
by using the next multi-hop storage system to explore the relationship between text and
images. The upper part of Figure 1 illustrates the architecture of the module, including
three parts of processes: an aspect-guided image learning based on a Text2Vision attention
mechanism, an image-guided text learning based on a Vision2Text attention mechanism,
and a capsule convolution.

Aspect-guided image learning. In order to learn the image features related to the af-
fective entities, an aspect-guided Text2Vision attention mechanism is designed for allowing
the aspect features to help the model find the key feature mapping of an image, that is,
using the aspect capsules to conduct the gating selection on the image capsules of different
types and at different locations.

Let pl
j ∈ RB×(4×4) be the pose matrix vector of the jth image Ij at the lth position and

l ∈ [1, d× d]. va is an aspect mapping vector from the hidden vector of aspect phrases
in MemCapsNet. As shown in Figure 1, an aspect mapping is obtained by performing
a temporal maximum pooling on the aspect phrase indices of the text source capsule
sequence Ppri:

va = pooling(ppri
x |x ∈ [n1 + 1, n]) (16)

where ppri
x is the pose vector of 3 ∗ d capsules of the xth aspect word. In order to gain the

aspect-guided attention, we first compute the projects of the pose vector pl
j and the aspect

vector va onto the Text2Vision attention space as kl and qa, respectively:
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kl = tanh(wk pl
j + bk) (17)

qa = tanh(wqva + bq) (18)

where wk ∈ Rdatt×B×(4×4) and wq ∈ Rdatt×B are the coefficient matrixes of projecting, bk,
bq ∈ Rdatt are their corresponding biases, and datt is the size of the attention space. Then,
the aspect-guided correlation score gl and the attention score βl are computed as follows:

gl = V · (kl � qa + kl) (19)

βl =
exp(gl)

∑l exp(gl)
(20)

where V ∈ Rdatt is a randomly initialized contextual vector that can be trained, and we can
obtain the attention matrix of images β j = {β jl |1 ≤ l ≤ d ∗ d}(1 ≤ j ≤ m). Lastly, the most
relevant image with the given affective entity is found as below:

J = arg max
l

(‖βl‖2) (21)

where ‖ · ‖2 is the 2-norm function of the matrix. We can complete the gating selection of
the image capsule using attention matrix βl to weight the capsule features of IJ , and obtain
the capsule feature map pJ related to the affective entity.

Subsequently, we conduct the multilayer attention computation on pJ to get the final
attention matrix β J and the weighted capsule feature mapping β J � pJ , which will be
inputted into the add and norm layer for the further sentiment computation. At the same
time, with β J and pJ as the inputs for ∑ operation, we can obtain the global feature matrix:

vimg =
∑k β Jk � pJk

∑k β Jk
(22)

Then, vimg can be inputted into the Vision2Text attention layer for image-guided text
feature learning.

Image-guided text learning. After Text2Vision attention learning, we get the aspect-
guided image features relevant to the affective entity. Then, to further utilize the mutual
information between text and image for sentiment analysis, we continue to learn the image-
guided text features based on the Image2text attention mechanism, which enhances the
sentiment of text using the auxiliary information from aspect-guided image features.

Similar to Text2vision attention calculation, we first compute the projects of the text
capsule matrix Patt from MemCapsNet and global image vector vimg onto the attention
spaces kl and qa:

kl = tanh(wk patt
j + bk) (23)

qa = tanh(wqvimg + bq) (24)

where wk ∈ Rdatt×(3∗d)×(4×4) and wq ∈ Rdatt×(3∗d) are the weight matrixes of projecting.
Then, we compute the correlation score gl and the attention score γl after normalization
as follows:

gl = K · (kl � qimg + kl) (25)

γl =
exp(gl)

∑l exp(gl)
(26)

where, similar to V, K ∈ Rdatt is a randomly initialized contextual vector that can be trained.
Finally, we use the attention matrix γ = {γl |1 ≤ l ≤ Lq} to weight the capsule features of
Patt on the width dimension and complete the image-guided text feature aggregation.

Capsule convolution. The EM routing algorithm is used to perform a convolution
operation on the capsule matrixes, and then the cluster centers are extracted to find the
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sentiment information of text and images that is more related to the aspect phrases. Finally,
the results of sentiment classification are output through a fully connected routing layer. It
should be noted that the text capsule matrix and the image capsule matrix are convolved
using one- and two-dimension convolutional kernels, respectively.

Firstly, a transformation matrix Mij is applied to the pose matrix pi of a low-level capsule
i ∈ ΩL, where ΩL is the Lth convolutional layer, and the vote matrix Vij = piMij is obtained
which can be routed to the high-level capsule j ∈ ΩL+1. Then, EM routing is conducted as
follows: (1) M stage. We compute the mean µh

j and the variance (σh
j )

2 of the mixture Gaussian
distribution of capsule j on the dimension h using Equations (27) and (28).

µh
j =

∑i RijVh
ij

∑i Rij
(27)

(σh
j )

2 =
∑i Rij(Vh

ij − µh
j )

2

∑i Rij
(28)

where Rij is a routing assigned coefficient, and Vh
ij is the value of Vij on h dimension. Then

the active value actj of capsule j is computed according to the shortest description distance
as follows:

actj = sigmoid(λ(βa −∑
h

costh
j )) (29)

costh
j = (βu + log(σh

j ))∑
i

Rij (30)

where βu and βa are trainable parameters, representing the description distance costs of
mixed Gaussian model for each data point and for its mean and variance when its capsule
is activated, respectively, and λ is the inversion coefficient, denoting the sensitive degree of
the active value to the description distance cost. (2) E stage. We adjust the Rij of the data
point to determine the lower bound of the log-likelihood of the mixed Gaussian distribution
under the current parameters using Equation (31).

Rij =
actj pj

∑j actj pj
(31)

where the pose matrix pj is obtained by the joint probability of the mixed Gaussian distribution:

pj =
actj pj√

∏h 2π(σh
j )

2
exp(−∑

h

(Vh
ij − µh

j )
2

2(σh
j )

2
) (32)

Thus, the sequences of pose matrix and active value of all capsules, p = {pj|j ∈ ΩL+1}
and act = {actj|j ∈ ΩL+1}, can be obtained through iterating M stage and E stage.

In the last layer of capsule convolution, we conduct a fully connected routing on the fea-
ture capsules, which is to construct a line transformation from the feature capsules to three
sentiment capsule classes corresponding to the label set L = {Positive, Neutral, Negative},
and the active values of three class capsules are acted as the logit values used for senti-
ment classification.

3.3. Training and Predicting

During training, MemCapsNet and AgCapsNet are separately used for encoding text
and images. In the other words, the capsule representations for the text and images are
obtained by two models, respectively. Multimodal fusion based on interactive learning is
applied to select and enhance the aspect-based sentimental information of capsule features
using the mutual information between text and images. Finally, the probabilities of aspect-
based sentiment labels are outputted from the capsule convolution layer. Our training
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objective is to maximize the interval between the active value actt of the objective label and
acti of the other labels, and the loss function is defined as

Loss = ∑
i 6=t

Lossi (33)

Lossi = (max(0, m− (actt − acti)))
2 (34)

where m is an interval coefficient. m is set as 0.2 at the beginning, and linearly increased to
0.9 with the training. We start training with a smaller interval value to avoid the problem
of dead capsules due to early excessive punishment. Since the two modalities of text and
image correspond to two losses Losstxt and Lossimg, respectively, in order to make the text
capsules with more aspect-oriented information play a leading role in the training, we use
the weighted interval loss as the joint objective function of the network, i.e.,

Loss = Losstxt + wimgLossimg (35)

where weighted coefficient wimg ∈ [0, 0.5]. Losstxt and Lossimg are two modal losses
obtained from Equations (33) and (34), respectively.

Algorithm 1 is the operational flow of VECapsNet.

Algorithm 1 Multimodal aspect-based sentiment analysis based on a VECapsNet.
Input: Multimodal triplet test dataset: {< T, I, At >}
Output: The sentiment label set Lt at aspect at
1. Extract the context word vector ec, the aspect word vector ea and the image feature
mapping set M
2. Obtain the text hidden vectors hc&ha from Bi-LSTMs, and concatenate them as sequence H
3. Get the pose matrix ppri and the active matrix apri of H from source capsule layer
4. Obtain the attention patt from adaptive mask attention layer
5. Obtain the aspect mapping va using Equation (16).
6. Get the pose matrix ppri

m and the active matrix apri
m of each image m in M, and obtain its at-

tention matrix βm using ppri
m and va from Text2vision module according to Equations (16)–(20)

7. Compute the most relevant image index J from all βm using Equations (21)
8. Compute the weighted image pose matrix pimg

J using β J and ppri
J

9. Repeat
10. Compute the Text2vision attention β J using pimg

J and va

11. Obtain the global image vector vimg using Equation (22)
12. Compute the weighted matrix pimg

J using β J and pimg
J

13. Compute the Vision2text attention ptxt using vimg and patt according to Equa-
tions (23)–(26)
14. Obtain new pimg

J and aimg
J by image convolution layer

15. Obtain new ptxt and atxt by text convolution layer
16. Update Loss using Equation (35)
17. Until the accuracy of the validation dataset no longer increases over ten epochs or
reaches default N times
18. Obtain the class capsules pimg_class and ptxt_class, and the class active aimg_class and
atxt_class from last fully connected routing layer
19. Retrieve the predicted label set Lt from the aggregated distribution of aimg_class and
atxt_class.

4. Experiment
4.1. Experimental Data and Preprocessing

We conduct the multimodal aspect-based sentiment analysis task using text-image
review data from social media, and adopt six review datasets for these experiments: Lap14,
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Rest14, Rest15, Rest16, Multi-ZOL, and MTCom, where Lap14, Rest14, Rest15, and Rest16
are single-text datasets from the International Conference on Semantic Evaluation (Se-
mEval), published from 2014 to 2016. They correspond to the product review datasets in
English for one laptop review dataset (Lap14) and three restaurant review datasets (Rest14,
Rest15, and Rest16), respectively. Table 2 shows the details of the above four datasets.

Table 2. Statistics of the datasets on SemEval.

Dataset
Positive Neutral Negative

Train Test Train Test Train Test

Lap14 987 341 460 169 866 218
Rest14 2164 728 633 196 805 196
Rest15 955 34 272 340 28 195
Rest16 1297 63 466 474 29 127

Multi-ZOL [10] is a multimodal aspect-level sentiment dataset, including a total of 5228
text-image reviews for mobile phones from ZOL.com in China. Each review includes textual
content (an average of 315 words long) and an image set (an average of 4.5 images) in six
aspect categories. A total of 28,469 aspect–review pairs are obtained by pairwise combining
each aspect category and each review. Each aspect-based sentiment has an emotional score
from 1 to 10, which can be used as a label in the aspect-based sentiment classification.

In order to further analyze the aspect-based sentiment of multimodal data, we built
a multimodal review dataset by crawling the reviews of Chinese restaurants from the
Meituan website. The mate dataset consists of 791,852 text-image reviews. Each review
contains textual content, a user’s self-report tag, an image set including at least three images,
and a star rating from 1 to 5. Since the original data is unevenly distributed over 191 tags
and 5 ratings, we classified original reviews into six aspects according to users’ self-report
tags. The six aspects are “general comment”, “location”, “environment”, “prices”, “tastes”,
and “service”. For each aspect, each review has a star rating from 1 to 5, which is regarded
as a label for sentiment classification. After randomly discarding the data from more than
10,000 reviews with a single star rating, we finally obtain 42,543 pieces of multimodal
reviews for the task of the aspect-based sentiment analysis. Table 3 shows the statistics of
stars in MTCom.

Table 3. Statistics of the stars in MTCom.

Star Rating Review Number Percentage

5 10,000 23.50%
4 10,000 23.50%
3 10,000 23.50%
2 7428 17.45%
1 5115 12.02%

4.2. Experimental Setup

In the experiment, The parameter settings and evaluation methods of the model are
as follows:

Network settings. First, in MemCapsNet, the GloVe model is used in the word
embedding layer, and the unit numbers of the input vector layer and the hidden layer
are both set to 300 in BiLSTMs. Second, in AgCapsNet, ResNet with RGB three channels
is used as the feature mapping network in the feature extracting layer, where the size of
the convolution kernel is 5× 5 and the stride is 2. Last, for capsule convolution networks,
the number of iterations of EM routing in capsule convolution of text and image is uniformly
set as 3. The number of convolution layers in both networks is 2. The one-dimensional
convolution kernel of text capsules in two layers are 5 and 3, respectively, and the strides
are 3 and 2 respectively. Meanwhile, the two-dimensional convolution kernel of image
capsules is 3× 3 and the strides in two layers are 2 and 1, respectively.
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Model setup and metrics. In the multimodal experiments, the maximum number
of samples used at the same time in training is 8. If only MemCapsNet is used for text
sentiment analysis, the maximum number of samples used simultaneously is 64. In our
all neural network-based experiments, the Adam optimizer with a learning rate of 0.0005
is used to minimize the interval loss of the model, where the L2 regularization coefficient
was 0.0000002. A dropout strategy with a ratio of 0.3 is used in the add and norm layers.
The metrics used in our experiment are accuracy and F1-score (F1), and the definition of
F1-score is expressed below:

F1 =
2× Prec× Rec

Prec + Rec
(36)

where Prec and Rec are precision and recall, which are used to calculate F1. The micro-F1
method is employed to evaluate the results of aspect-based fine-grained sentiment analysis
in our experiments.

4.3. Baselines

We compare our model with the following baseline models. To highlight the advan-
tages of multimodal feature fusion, we separately evaluate MemCapsNet and AgCapsNet
for single-modal aspect-based sentiment analysis. ATAE-LSTM, MemNet, and IACapsNet
are used as single-text baseline models on the SemEval datasets for aspect-based sentiment
analysis. Since there were no publicly available methods and datasets for aspect-based
image sentiment analysis on review data, we compare the results of AgCapsNet with the
reproduced results on VGG-16 [54] and Capsule Network (CapsNet) [55] only using the
image data in Multi-ZOL and MTCom. Finally, the comparison experiments are conducted
for our VECapsNet and the strong baseline method MIMN on the Multi-ZOL dataset and
our MTCom dataset.

ATAE-LSTM [6]: An aspect-based text sentiment analysis model, which uses the
attention mechanism between hidden states and aspect words to obtain aspect-related
keyword representations for text sentiment analysis.

MemNet [26]: A memory model using multiple attention mechanisms on a memory
matrix stacked by inputted word vectors.

IACapsNet [33]: A capsule network model using a cross-attention mechanism for
textual aspect-based sentiment analysis.

MIMN [10]: A multimodal aspect-based sentiment analysis model proposed by Xu et
al., which uses two interactive memory networks with four types of attention to supervise
the textual and visual information with the given aspect. They presented the task of
aspect-based multimodal sentiment analysis for the first time, and provided a multimodal
aspect-level sentiment dataset, Multi-ZOL.

4.4. Experimental Results and Analysis
4.4.1. Aspect-Based Text Sentiment Analysis

We first conduct the comparative experiment with MEMCapNet and three baseline
methods on four textual evaluation datasets, Lap14, Rest14, Rest15, and Rest16. In the
experiment using MEMCapNet for single-text aspect-based sentiment classification, the Vi-
sion2Text attention module in Figure 1 is removed. The experimental results are shown in
Table 4, where we can observe that the MEMCapNet proposed in our method performs
better than the other models in the terms of accuracy and F1-score. Obviously, we can
find the reason from the model structures of these models. Compared with ATAE-LSTM,
MemCapsNet has a convolutional neural network and a memory module, which can better
extract local features of the text. Although MemNet uses the memory network, it only
models the global context with long-distance dependence, which cannot find the structural
information of local phrases and clauses. IACapsNet uses a capsule network for extracting
the local features of text, but it does not get a better effect due to the lack the auxiliary
information on the global context.
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Then we further conduct the comparative experiment only using the text features on
two multimodal datasets, and rows 1-3 of Table 5 show the results of MemCapNet and the
reproduced results of the baseline models. It can be observed that although the results on
all models are degraded, the MemCapNet proposed in our method still outperforms other
baseline models. Experiments on two kinds of datasets both verify the effectiveness of
MemCapNet on single-text aspect-based sentiment analysis. Compared with the results in
Table 4, the performance in Table 5 is lower due to the degraded quality of online crawled
review datasets relative to the well-defined evaluation datasets, and the lack of visual
support in the same text-image review for sentiment labels.

Table 4. The metrics of accuracy and F1-score on four text datasets.

Dataset
Lap14 Rest14 Rest15 Rest16

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

ATAE-LST 68.70 - 77.20 - - - - -
MemNet 70.64 65.17 79.61 69.64 77.31 58.28 85.44 69.55

IACapsNet 76.80 73.29 81.79 73.40 80.41 61.67 88.71 64.48
MemCapsNet (our) 77.56 74.14 83.56 74.78 80.41 61.67 89.16 71.62

Table 5. The metrics of accuracy and F1-score on the multimodal datasets.

Dataset
Multi-ZOL MTCom

Accuracy F1 Accuracy F1

MemNet-T 59.51 58.73 56.08 53.03
IACapsNet-T 58.69 57.47 53.48 50.77

MemCapsNet (our) 59.47 58.91 56.32 54.71

VGG-16-I 44.05 43.67 33.46 31.86
CapsNet-I 45.10 44.29 31.41 30.13

AgCapsNet (our) 46.59 44.36 41.37 40.16

MIMN 61.59 60.51 54.35 52.94
VECapsNet (our) 61.23 59.63 57.87 56.81

The suffix “*-T” indicates the model only used the text features in the multimodal datasets; the suffix “*-I” indicates
the use of only image features in the multimodal datasets.

4.4.2. Aspect-Based Image Sentiment Analysis

We also evaluate the performance of AgCapsNet on aspect-based image sentiment
analysis by the comparative experiments with two baseline models of VGG-16 and CapsNet.
Due to the lack of a single aspect-based image emotional dataset, only the annotated image
data in the Multi-ZOL and MTCom datasets are used in the experiments. As shown in
Figure 1, the input of aspect vector va from the source capsule layer in MemCapsNet and
the Text2vision attention module are included in the AgCapsNet for aspect-based image
sentiment classification.

The experimental results are shown in rows 4–6 of Table 5. Obviously, the AgCapsNet
proposed by us is better than the baseline models. No aspect information is integrated into
the VGG-16 and CapsNet, proving that adding the relevant information of the affective
entity to the aspect-based sentiment analysis task with a single-image modality can improve
the accuracy of emotional recognition, as well as the effectiveness of the capsule features of
the image in this task is verified.

4.4.3. Aspect-Based Multimodal Sentiment Analysis

We conduct the experiment on the multimodal datasets of Multi-ZOL and MTCom,
and compare our model with the baseline MIMN model. The results of the two models are
listed in the last two rows in Table 5. It can be observed that the experimental results of
VECapsNet proposed in our method on the Multi-ZOL dataset are close to and a bit lower
than MIMN, but the result on the MTCom dataset is significantly better than MIMN. Since
the same model behaves differently on two datasets, we will analyze the experimental
results from two aspects of the composition of the data set and the limitations of the model.
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Analysis of datasets. Multi-ZOL is a multimodal sentiment annotated dataset pro-
vided by Xu et al. [10] for evaluating the MIMN model, which contains six aspects: “price-
performance ratio”, “performance configuration”, “battery life”, “appearance and feeling”,
“photographing effect”, and “screen”. Except “price-performance ratio”, the correspond-
ing affective entities with the aspects can be intuitively found in the images in reviews.
For example, “performance configuration” corresponds to the run points’ scores with dif-
ferent colors or the line charts and other statistical charts; “battery life” corresponds to the
battery consumption diagrams; “appearance and feeling” corresponds to the photos of mo-
bile phones; “photographing effect” corresponds to the close-range or long-range photos;
“screen” corresponds to the lighted mobile phone screens, etc. In the MTCom dataset, for the
annotated aspects of “general comment”, “location”, “environment”, “prices”, “tastes”,
and “service”, it is difficult to find their corresponding affective entities in the review
images, except for “environment” and “tastes”. Therefore, the reason for the performance
differences of the model in the two datasets is likely to be the non-correspondence between
the aspects and the affective entities of images in most of reviews.

At the same time, we also further explore the compositions of the text content and
images in two datasets: Multi-ZOL and MTCom. Figure 4 sorts the average text lengths
and image numbers of samples in two datasets, respectively, and the statistics of their 91st
to 99th quantiles are listed in Table 6. Taking the statistics in the typical 95th quantile as an
example, we can see that the average text length of MultiZOL is 803, while that of MTCom
is only 146, and the average number of images in Multi-ZOL is 14, while that of MTCom is
only 7. This is because, for expensive electronic products such as mobile phones, people
tend to use longer text to describe all aspects of them in detail, as well as supplementing
their reviews with corresponding images for almost every aspect. However, for the daily
consumption of food and beverage, people usually do not spend a lot of time giving long
reviews unless the dining experience is very good or very bad. So the text lengths and
image numbers of reviews in the MTCom dataset are shorter and less than those in the
Multi-ZOL dataset, and more representative of the majority of review data.

Analysis of limitations. The analysis of the datasets also verifies our design idea from
another aspect, that is, in the task of multimodal sentiment analysis, text information is
dominant, and an image is auxiliary rather than a complete ideographic unit. Furthermore,
VECapsNet proposed in our method uses capsule networks to model the local sentimental
features, so it has more advantages for processing short text than MIMN, which uses
bidirectional LSTMs for capturing long-distance dependencies of context. Although the
effectiveness of VECapsNet can be verified by the overall experimental results, for long
text content and a small number of image comments with almost no explicit emotion,
the performance of VECapsNet is shown to be degraded, which may be due to the fact
that text-guided image feature learning may not be able to well mine the induced emotion
in images. We also point out that for the direction of our further research, we still need
to strengthen the emotion analysis for long text compared with the uncertainty of image
emotion. We may consider decomposing the long text into short texts according to syntactic
structures or integrating the structural information of long text into the capsule features in
MMCapsNet for sentiment prediction, so as to capture more sufficient semantic features
from the global context.

Table 6. The quantile statistics of context length and image number of samples on two multi-
modal datasets.

Quantile
Multi-ZOL MTCom

Textual Length Image Number Textual Length Image Number

91 537 9 105 6
93 648 9 122 7
95 803 14 146 7
97 1195 21 185 8
99 1922 34 285 9
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Figure 4. Average context length and image number on two multimodal datasets. (a,b) show the
statistics of samples on the Multi-ZOL dataset and the MTCom dataset, respectively.

5. Conclusions

Aspect-based multimodal sentiment analysis is an important task in emotion analysis.
In this paper, we proposed a visual enhancement capsule network (VECapsNet) based
on interactive learning and built an aspect-based multimodal sentiment dataset (MTCom)
by crawling reviews from the Meituan website. First, an adaptive mask memory capsule
network is proposed for text feature learning. The model combines the memory networks
and the capsule networks to integrate context semantic information into local word embed-
ding and obtain capsule features related to aspect phrases by an adaptive mask attention
mechanism. Second, we propose a novel aspect-guided capsule network for learning image
sentiment features, which captures the local image information related to aspect phrases
using a Text2vision attention mechanism to guide the sentimental learning on image feature
capsules. Last, the multi-round fusion module is constructed by enhancing the text senti-
mental representations using the aspect-guided image features for aspect-based sentiment
classification. The results of extensive experiments on the publicly available single-text
evaluation datasets, the multimodal Multi-ZOL dataset, and on our MTCom dataset show
that our method proposed in the paper performs satisfactorily on the different multimodal
aspect-based sentiment analysis tasks. Compared with the existing models, VECapsNet
can better capture the local semantic features correlated to the aspect phrases in text and
images, which is more suitable for general text-based multimodal user-generated reviews.
In the future, we will further study how to more deeply integrate long-text semantics and
image interactions into the capsule features and apply our method to different multimodal
sentiment analysis tasks.

Author Contributions: Conceptualization, Methodology, Original draft preparation, Y.Z.; Data
processing, Experiments and analysis, Z.Z.; Supervision, Funding acquisition, Review and editing,
D.W. and S.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (62172086,
61872074).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Appl. Sci. 2022, 12, 12146 19 of 21

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The authors are grateful to Xu, N. and Mao, W. for providing the datasets used
in the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, L.; Wang, S.; Liu, B. Deep learning for sentiment analysis: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018,

8, e1253. [CrossRef]
2. Yue, L.; Chen, W.; Li, X.; Zuo, W.; Yin, M. A survey of sentiment analysis in social media. Knowl. Inf. Syst. 2019, 60, 617–663.

[CrossRef]
3. Abdi, A.; Shamsuddin, S.M.; Hasan, S.; Piran, J. Deep learning-based sentiment classification of evaluative text based on

multi-feature fusion. Inf. Process. Manag. 2019, 56, 1245–1259. [CrossRef]
4. Rao, T.; Li, X.; Zhang, H.; Xu, M. Multi-level region-based convolutional neural network for image emotion classification.

Neurocomputing 2019, 333, 429–439. [CrossRef]
5. Li, L.; Liu, Y.; Zhou, A. Hierarchical Attention Based Position-Aware Network for Aspect-Level Sentiment Analysis. In Proceedings

of the 22nd Conference on Computational Natural Language Learning (CoNLL), Brussels, Belgium, 31 October–1 November
2018; pp. 181–189.

6. Wang, Y.; Huang, M.; Zhao, L.; Zhu, X. Attention-based LSTM for Aspect-level Sentiment Classification. In Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP), Austin, TX, USA, 1–5 November 2016;
pp. 606–615.

7. Li, P.; Chang, W.; Zhou, S.; Xiao, Y.; Wei, C.; Zhao, R. A conflict opinion recognition method based on graph neural network in
Aspect-based Sentiment Analysis. In Proceedings of the 5th International Conference on Data Science and Information Technology
(DSIT), Shanghai, China, 22–24 July 2022; pp. 1–6.

8. Soleymani, M.; Garcia, D.; Jou, B.; Schuller, B.; Chang, S.F.; Pantic, M. A survey of multimodal sentiment analysis. Image Vis.
Comput. 2017, 65, 3–14. [CrossRef]

9. Kaur, R.; Kautish, S. Multimodal sentiment analysis: A survey and comparison. Int. J. Serv. Sci. Manag. Eng. Technol. (IJSSMET)
2019, 10, 38–58. [CrossRef]

10. Xu, N.; Mao, W.; Chen, G. Multi-Interactive Memory Network for Aspect Based Multimodal Sentiment Analysis. In Proceedings
of the Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 371–378.

11. Zhou, J.; Zhao, J.; Huang, J.X.; Hu, Q.V.; He, L. MASAD: A large-scale dataset for multimodal aspect-based sentiment analysis.
Neurocomputing 2021, 455, 47–58. [CrossRef]

12. Truong, Q.; Lauw, H. VistaNet: Visual Aspect Attention Network for Multimodal Sentiment Analysis. In Proceedings of the
Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 305–312.

13. Dong, L.; Wei, F.; Tan, C.; Tang, D.Y.; Zhou, M.; Xu, K. Adaptive Recursive Neural Network for Target-dependent Twitter
Sentiment Classification. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL),
Baltimore, MD, USA, 22–27 June 2014; Volume 2, pp. 49–54.

14. Kim, Y. Convolutional neural networks for sentence classification. arXiv 2014, arXiv: 1408.5882.
15. Chen, X.; Rao, Y.; Xie, H.; Wang, F.L.; Zhao, Y.; Yin, J. Sentiment classification using negative and intensive sentiment supplement

information. Data Sci. Eng. 2019, 4, 109–118. [CrossRef]
16. Chen, G.; Tian, Y.; Song, Y. Joint aspect extraction and sentiment analysis with directional graph convolutional networks.

In Proceedings of the 28th International Conference on Computational Linguistics (COLING), Online, 8–13 December 2020;
pp. 272–279.

17. Tang, D.Y.; Qin, B.; Feng, X.C.; Liu, T. Effective LSTMs for Target-Dependent Sentiment Classification. In Proceedings of the 26th
International Conference on Computational Linguistics (COLING), Osaka, Japan, 11–16 December 2016; pp. 3298–3307.

18. Feng, S.; Wang, Y.; Liu, L.R.; Wang, D.; Yu, G. Attention based hierarchical LSTM network for context-aware microblog sentiment
classification. World Wide Web 2019, 22, 59–81. [CrossRef]

19. Huang, M.; Cao, Y.; Dong, C. Modeling rich contexts for sentiment classification with LSTM. arXiv 2016, arXiv:1605.01478.
20. Zhao, Z.; Lu, H.; Cai, D. He, X.; Zhuang, Y. Microblog Sentiment Classification via Recurrent Random Walk Network Learning. In

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI), Melbourne, Australia, 19–25
August 2017; pp. 3532–3538.

21. Xu, C.; Cetintas, S.; Lee, K.; Li, L. Visual sentiment prediction with deep convolutional neural networks. arXiv 2016,
arXiv:1411.5731.

22. Song, K.; Yao, T.; Ling, Q.; Mei, T. Boosting image sentiment analysis with visual attention. Neurocomputing 2018, 312, 218–228.
[CrossRef]

23. Wu, L.; Zhang, H.; Shi, G.; Deng, S. Weakly Supervised Interaction Discovery Network for Image Sentiment Analysis. In Asian
Conference on Pattern Recognition; Springer: Cham, Switzerland, 2022; Volume 13188, pp. 501–512.

http://doi.org/10.1002/widm.1253
http://dx.doi.org/10.1007/s10115-018-1236-4
http://dx.doi.org/10.1016/j.ipm.2019.02.018
http://dx.doi.org/10.1016/j.neucom.2018.12.053
http://dx.doi.org/10.1016/j.imavis.2017.08.003
http://dx.doi.org/10.4018/IJSSMET.2019040103
http://dx.doi.org/10.1016/j.neucom.2021.05.040
http://dx.doi.org/10.1007/s41019-019-0094-8
http://dx.doi.org/10.1007/s11280-018-0529-6
http://dx.doi.org/10.1016/j.neucom.2018.05.104


Appl. Sci. 2022, 12, 12146 20 of 21

24. Liang, Y.; Maeda, K.; Ogawa, T.; Haseyama, M. Cross-Domain Semi-Supervised Deep Metric Learning for Image Sentiment
Analysis. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto,
ON, Canada, 6–11 June 2021; pp. 4150–4154.

25. Liang, Y.; Maeda, K.; Ogawa, T.; Haseyama, M. Deep Metric Network Via Heterogeneous Semantics for Image Sentiment Analysis.
In Proceedings of the IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021;
pp. 1039–1043.

26. Tang, D.; Qin, B.; Liu, T. Aspect level sentiment classification with deep memory network. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing (EMNLP), Austin, TX, USA, 1–5 November 2016; pp. 214–224.

27. Ju, X.; Zhang, D.; Xiao, R.; Li, J.; Li, S.; Zhang, M.; Zhou, G. Joint Multi-modal Aspect-Sentiment Analysis with Auxiliary
Cross-modal Relation Detection. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
(EMNLP 2021), Virtual, Dominican Republic, 7–11 November 2021; pp. 4395–4405.

28. Wang, B.; Lu, W. Learning Latent Opinions for Aspect-level Sentiment Classification. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; pp. 5537–5544.

29. Xu, L.; Bing, L.; Lu, W.; Huang, F. Aspect Sentiment Classification with Aspect-Specific Opinion Spans. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP), Virtual, Online, 16–20 November 2020;
pp. 3561–3567.

30. Li, X.; Bing, L.; Lam, W.; Shi, B. Transformation Networks for Target-Oriented Sentiment Classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (ACL), Melbourne, VIC, Australia, 15–20 July 2018; pp. 946–956.

31. Johnson, R.; Zhang, T. Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding. In
Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 7–12 December
2015; pp. 919–927.

32. Chen, Z.; Qian, T. Transfer Capsule Network for Aspect Level Sentiment Classification. In Proceedings of the 57th Conference of
the Association for Computational Linguistics (ACL), Florence, Italy, 28 July–2 August 2019; pp. 547–556.

33. Du, C.; Sun, H.; Wang, J. Qi, Q.; Liao, J.; Xu, T.; Liu, M. Capsule Network with Interactive Attention for Aspect-Level Sentiment
Classification. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), Hong Kong,
China, 3–7 November 2019; pp. 5488–5497.

34. You, Q.; Luo, J.; Jin, H.; Yang, J. Cross-modality consistent regression for joint visual-textual sentiment analysis of social
multimedia. In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, San Francisco, CA,
USA, 22–25 February 2016; pp. 13–22.

35. You, Q.; Cao, L.; Jin, H.; Luo, J. Robust visual-textual sentiment analysis: When attention meets tree-structured recursive neural
networks. In Proceedings of the 24th ACM International Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October
2016; pp. 1008–1017.

36. Xu, N. Analyzing multimodal public sentiment based on hierarchical semantic attentional network. In Proceedings of the IEEE
International Conference on Intelligence and Security Informatics (ISI), Beijing, China, 22–24 July 2017; pp. 152–154.

37. Xu, N.; Mao, W. MultiSentiNet: A deep semantic network for multimodal sentiment analysis. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management, Singapore, 6–10 November 2017; pp. 2399–2402.

38. Xu, N.; Mao, W.; Chen, G. A co-memory network for multimodal sentiment analysis. In Proceedings of the 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, MI, USA, 8–12 July 2018; pp. 929–932.

39. Chen, Q.; Huang, G.; Wang, Y. The Weighted Cross-Modal Attention Mechanism with Sentiment Prediction Auxiliary Task for
Multimodal Sentiment Analysis. IEEE/ACM Trans. Audio Speech, Lang. Process. 2022, 30, 2689–2695. [CrossRef]

40. Peng, C.; Zhang, C.; Xue, X.; Gao, J.; Liang, H.; Niu, Z. Cross-Modal Complementary Network with Hierarchical Fusion for
Multimodal Sentiment Classification. Tsinghua Sci. Technol. 2022, 27, 664–679. [CrossRef]

41. Ji, R.; Chen, F.; Cao, L.; Gao, Y. Cross-modality microblog sentiment prediction via bi-layer multimodal hypergraph learning.
IEEE Trans. Multimed. 2018, 21, 1062–1075. [CrossRef]

42. Zadeh, A.; Chen, M.; Poria, S.; Cambria, E.; Morency, L.P. Tensor fusion network for multimodal sentiment analysis. arXiv 2017,
arXiv:1707.07250.

43. Majumder, N.; Hazarika, D.; Gelbukh, A.; Cambria, E.; Poria, S. Multimodal sentiment analysis using hierarchical fusion with
context modeling. Knowl.-Based Syst. 2018, 161, 124–133. [CrossRef]

44. Huang, F.; Zhang, X.; Li, Z. Learning joint multimodal representation with adversarial attention networks. In Proceedings of the
26th ACM international conference on Multimedia, Seoul, Korea, 22–26 October 2018; pp. 1874–1882.

45. Huang, F.; Zhang, X.; Xu, J.; Zhao, Z.; Li, Z. Multimodal learning of social image representation by exploiting social relations.
IEEE Trans. Cybern. 2021, 51, 1506–1518. [CrossRef]

46. Gao, Y.; Beijbom, O.; Zhang, N.; Darrell, T. Compact bilinear pooling. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 317–326.

47. Wang, Z.; Xu, G.; Zhou, X.; Kim, J.Y.; Zhu, H.; Deng, L. Deep Tensor Evidence Fusion Network for Sentiment Classification. IEEE
Trans. Comput. Soc. Syst. 2022, 1–9. [CrossRef]

48. Xue, H.; Yan, X.; Jiang, S. Lai, H. Multi-Tensor Fusion Network with Hybrid Attention for Multimodal Sentiment Analysis.
In Proceedings of the 2020 International Conference on Machine Learning and Cybernetics (ICMLC), Adelaide, Australia, 2
December 2020; pp. 169–174.

http://dx.doi.org/10.1109/TASLP.2022.3192728
http://dx.doi.org/10.26599/TST.2021.9010055
http://dx.doi.org/10.1109/TMM.2018.2867718
http://dx.doi.org/10.1016/j.knosys.2018.07.041
http://dx.doi.org/10.1109/TCYB.2019.2896100
http://dx.doi.org/10.1109/TCSS.2022.3197994


Appl. Sci. 2022, 12, 12146 21 of 21

49. Huang, F.; Zhang, X.; Zhao, Z.; Xu, J.; Li, Z. Image–text sentiment analysis via deep multimodal attentive fusion. Knowl.-Based
Syst. 2019, 167, 26–37. [CrossRef]

50. Huang, F.R.; Wei, K.M.; Weng, J.; Li, Z.J. Attention based modality-gated networks for image-text sentiment analysis. ACM Trans.
Multimed. Comput. Commun. Appl. 2020, 16, 79. [CrossRef]

51. Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning, C.D.; Ng, A.; Potts, C. Recursive deep models for semantic compositionality
over a sentiment treebank. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, Seattle, WA,
USA, 18–21 October 2013; pp. 1631–1642.

52. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their composi-
tionality, In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013;
pp. 3111–3119.

53. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. In Proceedings of
the 3rd International Conference on Learning Representations (ICLR)—Conference Track Proceedings, San Diego, CA, USA,
7–9 May 2015.

54. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
55. Hinton, G.E.; Sabour, S.; Frosst, S. Matrix capsules with EM routing. In Proceedings of the 6th International Conference on

Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018.

http://dx.doi.org/10.1016/j.knosys.2019.01.019
http://dx.doi.org/10.1145/3388861

	Introduction
	Related Work
	Single-Modal Sentiment Analysis
	Aspect Based Sentiment Analysis
	Multimodal Sentiment Analysis
	 Multimodal Fusion

	Methodology
	 Problem Formalization
	Visual Enhancement Capsule Network Based on Multimodal Fusion
	MemCapsNet
	AgCapsNet
	Multimodal Fusion Based on Interactive Learning

	Training and Predicting

	Experiment
	Experimental Data and Preprocessing
	Experimental Setup
	Baselines
	Experimental Results and Analysis
	Aspect-Based Text Sentiment Analysis
	Aspect-Based Image Sentiment Analysis
	Aspect-Based Multimodal Sentiment Analysis


	Conclusions
	References

