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Abstract: The extraction of sugarcane juice is the first step of sugar production. The optimal values of
process indicators and the set values of operating parameters in this process are still determined by
workers’ experience, preventing adaptive adjustment of the production process. To address this issue,
a multi-objective optimization framework based on a deep data-driven model is proposed to optimize
the operation of sugarcane milling systems. First, the sugarcane milling process is abstracted as the
interaction of material flow, energy flow, and information flow (MF–EF–IF) by introducing synergetic
theory, and each flow’s order parameters and state parameters are obtained. Subsequently, the state
parameters of the subsystems are taken as inputs, and the order parameters—including the grinding
capacity, electric consumption per ton of sugarcane, and sucrose extraction—are produced as outputs.
A collaborative optimization model of the MF–EF–IF of the milling system is established by using a
deep kernel extreme learning machine (DK-ELM). The established milling system model is applied
for an improved multi-objective chicken swarm optimization (IMOCSO) algorithm to obtain the
optimal values of the order parameters. Finally, the milling process is described as a Markov decision
process (MDP) with the optimal values of the order parameters as the control objectives, and an
improved deep deterministic policy gradient (DDPG) algorithm is employed to achieve the adaptive
optimization of the operating parameters under different working conditions of the milling system.
Computational experiments indicate that enhanced performance is achieved, with an increase of 3.2 t
per hour in grinding capacity, a reduction of 660 W per ton in sugarcane electric consumption, and an
increase of 0.03% in the sucrose extraction.

Keywords: sugarcane milling system; synergetic theory; deep kernel extreme learning machine;
multi-objective chicken swarm optimization; deep deterministic policy gradient

1. Introduction

The production of cane sugar involves sugarcane milling, juice clarification, juice
evaporation, sugar crystallization, sugar paste separation, and dry product packaging.
Sugarcane milling is the first step in the production of cane sugar, mainly involving heavy
load equipment, the electric consumption of which accounts for more than 50% of the
whole sugar production process [1,2]. Clean production is currently advocated to minimize
waste and emissions while maximizing the production of manufactured products [3,4].
Whether production indicators such as the grinding capacity, sucrose extraction, and
electric consumption meet the standards will affect sugar production’s smooth operation
and economic benefits. The output of the manufacturing system mainly depends on the
corresponding conditions of input [5]. The appropriate setting of the operating parameters
in sugarcane milling is a necessary premise to ensure that the production index fluctuates
around the optimal value. Therefore, it is particularly important to study the optimization
of the operational parameters in the sugarcane milling process and provide guidance for
improving the energy costs, quality, and yield of the sugarcane milling system.
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The optimization of the operating parameters in the production process includes two
key steps: the establishment of the model, and the selection of the optimization method(s).
Model building is used to regress the relationship between the operating parameters and
process indices, mainly including mechanistic modeling and data-driven modeling. Then,
the optimal process indices and the corresponding operating parameters are obtained by
using reasonable optimization algorithms based on the established model.

Many studies have sought to improve the performance of sugarcane milling systems
by improving the milling mechanism. Adam et al. simulated the pressing of sugarcane
using finite factors and studied the effect of sugarcane thickness on the extraction of cane
juice, without considering the dynamic effects [6]. Duan et al. proposed a two-step method
to analyze the relevant parameters of the pressing process and determine the factors that
have a significant influence on the pressing process [7]. Qiu et al. proposed an arbitrary
Lagrangian–Euler algorithm to simulate the dynamic process of sugarcane milling and
study the corresponding changes in the physical quantities [8]. Duan et al. modeled the
evolution of the properties of the sugarcane milling process using the three-dimensional
simulation method of the modified Drucker–Prager cap model and concluded that the
compression ratio is the most important parameter. This method might provide a more
accurate prediction for the optimization of these important parameters during the milling
process of sugarcane [9]. However, the sugarcane milling system consists of not only the
pressing process, but also the processes of crushing, tearing, and seepage [7,10]. Hence,
a mechanistic model of the process is difficult to establish. With the development of big
data in the industry, data-driven modeling has become a new approach to model complex
production processes that do not depend on mathematical expressions. Many studies have
sought to apply such an approach in the sugar industry. Lin et al. used improved binary
heuristic dynamic planning to build an Elman network model and predict sucrose juice’s
neutral and transparent pH values [11]. Song et al. used the principal component analysis
(PCA) method to process the production data and developed a generalized dynamic fuzzy
neural network to predict the color value and acidity of the sucrose carbonation clarification
process [12]. Meng et al. proposed a data-driven model based on a kernel extreme learning
machine (KELM) to predict the juice’s gravity purity and the clear juice’s color value [13].
Georgieva et al. took mother-liquid oversaturation and other independent parameters
as inputs, and chose crystal nucleation, growth, and aggregation as outputs, in order to
establish an offline prediction model [14]. Meng et al. predicted the grain content and crystal
distribution in the crystallization process based on a mechanistic, data-driven model [15].

In addition to modelling milling systems, the optimization of milling system opera-
tions considering multiple objectives should also be investigated. At present, the combina-
tion of a data-driven prediction model with an intelligent optimization algorithm is the
most popular framework for studying methods for the optimization of operational parame-
ters in process industries [16], and many scholars have proposed different multi-objective
optimization models. Saleh et al. proposed a machine learning (ML) model optimization
method for building energy loads for forecasting both heating and cooling loads, and
they used a MOO-based multi-objective optimization with an evolutionary algorithm to
search the space of possible parameters [17]. Wu et al. proposed a deep-learning-based
data-driven genetic algorithm and Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) for the multi-objective optimization of machining process parameters
and searching for final solutions, which improved the environmental impact and produc-
tion efficiency of the machining process effectively [18]. Tang et al. combined a deep belief
network (DBN) and Jaya algorithm to model and optimize a combustion system; the exper-
imental results showed that both combustion efficiency and NOx emissions were improved
by using the optimal control settings of the combustion system [19]. Hao et al. used coal
consumption and free calcium oxide content as optimization targets in cement calcina-
tion and proposed a time-domain rolling multi-objective Jaya algorithm (TDRM-Jaya) to
optimize the dynamic crushing process [20]. Tikadar et al. established three different multi-
objective optimization models based on the process safety, environment, economy, and
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modified an industrial gas desulfurization plant by adjusting the operating parameters [21].
Nouiri et al. set up a flexible workshop-scheduling multitarget optimization model with the
processing time, energy cost, and machine completion time of sand-casting as optimization
targets [22]. However, traditional heuristic algorithms do not perform well in the face of
the large number of complex parameter variables and high-dimensional decision space
in the process industry [23]. In contrast, deep reinforcement learning (DRL) has shown
better optimization performance than heuristic algorithms in many fields [24]. He et al.
proposed a decision-making optimization system for the textile chemical manufacturing
process based on random forests and deep reinforcement learning, and achieved parameter
optimization for the process under multi-criteria conditions [25]. Zhou et al. proposed
a mathematical model of thermochemical production in heavy oil reservoirs; the deep
reinforcement learning algorithm was used in the model to predict dynamic production
parameters and determine the combination of parameters that maximized oil recovery [26].
Cheng et al. developed an optimization system for coal-fired boilers based on deep rein-
forcement learning to determine the optimal boiler operating parameters, with reducing
emissions and improving fuel utilization as the objective functions [27]. However, there are
few studies on the modeling and multi-objective optimization of sugarcane milling systems
in the literature. Therefore, in order to fill this research gap, a multi-objective optimization
framework based on a deep data-driven model is proposed in this paper.

To address the adaptive optimization of operating parameters in the sugarcane milling
system, the milling system was abstracted as the interaction of material, energy, and
information flow (MF–EF–IF). Using the production targets as the order parameters of
flows, we combined the mutual information and wrapper method based on hybrid chicken
swarm optimization to obtain the features of each flow subsystem. Next, the deep kernel
extreme learning machine (DK-ELM) was employed to establish the MF–EF–IF models of
the sugarcane milling system based on the obtained parameters. Moreover, a collaborative
optimization model of MF–EF–IF was constructed, and the multi-objective chicken swarm
algorithm was studied to determine the optimal value of the process index that makes the
whole system tend to be collaborative. Finally, deep reinforcement learning was employed
to achieve adaptive optimization of the key operating parameters of the sugarcane milling
process and ensure that the system fluctuated around the optimal values.

2. Establishment of a Collaborative Optimization Model of MF-EF-IF in the Sugarcane
Milling Systems
2.1. Sugarcane Milling System

This paper’s research object is the sugarcane milling production process in a sugar
factory in Guangxi, China. This system mainly consists of a cane cutter, squeezer, conveyor
belt, and permeating water system, as shown in Figure 1. First, the harvested sugarcane is
conveyed by two belts and decomposed into filamentous or sheet-like sugarcane material.
The sugarcane material is then fed to six sets of squeezers to separate the sugarcane juice and
bagasse. During this process, soaking water is added, and the residual sugar is extracted
by diffusion, dilution, and displacement caused by the concentration difference between
the thin and thick juices.

2.2. Analysis of MF-EF-IF in the Sugarcane Milling System

To better analyze the sugarcane milling system, the process was abstracted as the
interaction of material, energy, and information flow (MF–EF–IF) based on the actual
production, as shown in Figure 2, which is conducive to analysis of the dynamic and
synergistic relationships of the system. The material flow mainly consists of cane material,
permeating water, and juice, and is driven by the energy flow, which is composed mainly
of electric energy, to produce information flow. In information flow, variables such as
the speed of the conveyor and cutter and the ratio of osmotic water to sugarcane are
the operating parameters of the sugarcane milling system. Other parameters, including
the present load of various machines and the composition of sugarcane, are the working
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condition parameters of the system. The material flow is the carrier of the energy and
information flows, and it is accompanied by the transformation, utilization, and recovery of
energy, along with the continuous generation, transmission, and processing of information.
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Figure 2. Analysis of material, energy and information flow of the sugarcane milling system.

Synergetics notes that the order parameters can dominate the evolution of the process
and help the disordered system to transform into a new, ordered structure through self-
organization [28]. According to the production objectives of the sugarcane milling process,
the order parameters of material, energy, and information flow were determined as the
grinding capacity, electric consumption per ton of sugarcane, and sucrose extraction,
respectively. The grinding capacity means the amount of sugarcane processed by the
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milling train per unit of time while maintaining a certain sucrose extraction; the electric
consumption per ton of sugarcane indicates the amount of electricity consumed to process
1t of sugarcane material during the milling process; and the sucrose extraction refers to
the proportion of the weight of sucrose extracted from the sugarcane during the milling
process compared to the total sucrose in the sugarcane. In addition to the order parameters
that guide the development trend of the system, the flow also includes parameters that can
characterize the state. The state parameters of each flow are usually variables that have a
greater impact on the order parameters.

2.3. Feature Extraction of MF-EF-IF in the Sugarcane Milling System

In order to obtain the state parameters of each flow, a multilevel filtering method based
on mutual information proposed by Meng et al. was used [29]. On the basis of the analysis
of the influencing factors of the milling system and the on-site testing data, the operating
parameters of the sugarcane milling system were determined, as shown in Table 1. The
parameter data were collected by the distributed control system (DCS) installed on the
milling system, the interface diagram of which is shown in Figure 3. A total of 1500 sets
of operating data from a sugar mill in Guangxi, China, with a sampling interval of 5 min,
were used as the research samples.

Table 1. Operating parameter set of the sugarcane milling system.

Number Parameter Description Number Parameter Description

1 x1 #1Crusher current 15 x15 #3Squeezer speed

2 x2
#2Crusher

current(East) 16 x16 #4Squeezer current

3 x3
#2Crusher

current(West) 17 x17 #4Squeezer speed

4 x4 #3Crusher current 18 x18 #5Squeezer current
5 x5 First-level belt current 19 x19 #5Squeezer speed
6 x6 First-level belt speed 20 x20 #6Squeezer current

7 x7
Second-level belt

current 21 x21
#6Double roller

speed

8 x8
Second-level belt

speed 22 x22 #6Squeezer speed

9 x9 Double roller speed 23 x23
#6Double roller

current
10 x10 #1Squeezer speed 24 x24 Permeate water flow

11 x11 #1Squeezer current 25 x25

Permeate
water-to-sugarcane

ratio
12 x12 #2Squeezer current 26 x26 Sucrose content

13 x13 #2Squeezer speed 27 x27
Non-sugar content

of cane
14 x14 #3Squeezer current 28 x28 Cane fibre

In this study, the order parameters (i.e., grinding capacity, electric consumption per
ton of sugarcane, and sucrose extraction) were set as the output targets, and the cor-
relation between each parameter and every output target was calculated, as shown in
Figures 4a, 5a and 6a. The parameter variables with a correlation degree greater than 0.9
and less than 0.95 are denoted as set M, while those with a correlation degree greater
than 0.85 and less than 0.9 are denoted as set N. The parameter variables in set N were
sequentially added to set M to obtain the subset Mi. The redundancy degree between subset
Mi and each parameter variable with a correlation degree less than 0.85 was calculated,
and the feature variables corresponding to the maximum redundancy degree were deleted.
The number of redundancy analysis cycles and the results of the final cycle are shown in
Figures 4b, 5b and 6b.
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As shown in Figures 4–6, we deleted the parameter variables corresponding to the
maximum redundancy in the final cycle and combined the parameter variables with a
correlation greater than 0.95. The feature set with high correlation and low redundancy with
order parameters was selected to represent the state parameters of MF–EF–IF. Therefore,
#3 crusher current (x4), first-level belt speed (x6), second-level belt speed (x8), #1 squeezer
current (x11), #3 squeezer current (x14), #6 squeezer current (x20), #6 double roller current
(x23), permeate water-to-sugarcane ratio (x25), sucrose content (x26), non-sugar content of
cane (x27), and cane fiber (x28) were selected as the state parameters of the material flow;
#3 crusher current (x4), first-level belt speed (x6), second-level belt speed (x8), #1 squeezer
current (x11), #3 squeezer current (x14), #3 squeezer speed (x15), #4 squeezer current (x16),
#4 squeezer speed (x17), #6 squeezer current (x20), #6 double roller current (x23), permeate
water-to-sugarcane ratio (x25), and non-sugar content of cane (x27) were selected as the
state parameters of the energy flow; and #3 crusher current (x4), first-level belt speed (x6),
second-level belt speed (x8), #1 squeezer current (x11), #3 squeezer current (x14), #3 squeezer
speed (x15), #4 squeezer speed (x17), #6 squeezer current (x20), #6 double roller speed (x21),
#6 double roller current (x23), permeate water-to-sugarcane ratio (x25), sucrose content (x26),
non-sugar content of cane (x27), and cane fiber (x28) were selected as the state parameters
of the information flow.
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2.4. Establishment of a Collaborative Optimization Model of MF-EF-IF in the Sugarcane
Milling Systems

In order to establish the optimal objective function with high fitness with respect to
the obtained feature parameters of MF–EF–IF, we combined the kernel extreme learning
machine (KELM) proposed by Huang et al. [30], and the kernel extreme learning machine
autoencoder (KELM-AE) to propose a deep kernel extreme learning machine (DK-ELM)
and construct a data-driven model between the order parameters and the corresponding
state parameters; its network structure is shown in Figure 7. This process consisted of two

steps: First, the input matrix X =


x11 x12 · · · x1d
x21 x22 . . . x2d

...
...

. . .
...

xn1 xn2 · · · xnd

was constructed, and a network

of n KELM-AE was used to extract the data features. The weight matrix βi of each layer
was obtained as follows:

βi =

(
I
C
+ ΩELM

)−1
Hi (1)

Hi+1 = g((βi+1)
T

Hi) (2)

Ω =


k(x1 − x1) k(x1 − x2) · · · k(x1 − xn)
k(x2 − x1) k(x2 − x2) · · · k(x2 − xn)

...
...

. . .
...

k(xn − x1) k(xn − x2) · · · k(xn − xn)

 (3)
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where K(•) is the kernel function, Hi is the output of the i-th layer i ∈ [1, n], g(•) is the
activation function, and C is the cost parameter. The stacked network is traversed to
calculate each weight matrix [β1, β2, · · ·βn−1] until the output of the last hidden layer Hn
is obtained. In the second step, the output of the last hidden layer Hn is used as the input of
the KELM model, the target set Y is the output, and the weight matrix between the hidden
layer β and the output layer is solved.

β =

(
I
C
+ ΩELM

)−1
Hn (4)

ΩELM =


k′(x1 − x1) k′(x1 − x2) · · · k′(x1 − xn)
k′(x2 − x1) k′(x2 − x2) · · · k′(x2 − xn)

...
...

. . .
...

k′(xn − x1) k′(xn − x2) · · · k′(xn − xn)

 (5)
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Figure 7. Network structure of the DK-ELM model.

When K(•) is the kernel function, the network output of the DK-ELM is as follows:

fDK_KELM(X) =

K(x, x1)
...

K(x, xn)


T(

I
C
+ ΩELM

)−1
Y (6)

To better analyze the results of the simulation, the prediction performance is assessed
by three indices: the root-mean-square error (RMSE), the mean absolute error (MAE), and
the determination coefficient (R2). Assuming that the actual value of the i-th test sample



Foods 2022, 11, 3845 10 of 28

with m test samples is yi, the mean value is y = ∑m
i=1 yi
m , and the corresponding data-driven

model prediction value is ŷi. Each evaluation index formula is as follows:

RMSE =

√
∑m

i=1(yi − ŷi)
2

m
(7)

MAE =
∑m

i=1|yi − ŷi|
m

(8)

R2 =
∑m

i=1(ŷi − yi)
2

∑m
i=1(yi − yi)

2 (9)

This study employs the feature combination of each flow subsystem as the inputs and
takes the grinding capacity, electric consumption per ton of sugarcane, and sucrose extrac-
tion as the outputs, and the sugarcane milling system’s MF–EF–IF models are constructed
based on DK-ELM. Among them, the kernel function is selected as the Gaussian radial basis
function K(x, xi) = exp(‖x− xi‖2/γ), with wide applicability and only one parameter
variable. The sigmoid function is selected as the activation function. The parameters that
need to be adjusted are the penalty factor C and kernel function parameters γ. The number
of hidden layers and the hyperparameters for each layer of the constructed DK-ELM model
affect the model’s accuracy. At the same time, the feature extraction method described
in Section 2.3 only considers the effects of individual features on the output target, and
the effects of different feature combinations on the model are not considered. In order to
obtain better performance, the wrapper method based on the improved chicken swarm
optimization (ICSO) proposed by Meng et al. is used to obtain the optimal parameter
combinations [29]. The training model’s determination coefficient (R2) is taken as the
fitness, and a combination of the ICSO and trial-and-error methods is used to optimize the
hyperparameters. The number of hidden layers is sequentially accumulated to obtain the
optimal parameters until the fitness function no longer increases. The range of parameter
optimization is set to [0.01, 1000], and the model parameter results after iteration are shown
in Table 2.

As the iterations end, the optimal feature combinations of the material, energy, and
information flows are obtained as {x6, x8, x11, x14, x20, x26, x28}, {x4, x8, x14, x15, x20, x23, x25,
x27}, and {x4, x8, x11, x14, x17, x20, x21, x23, x25, x27}, respectively, as shown in Table 2. With the
optimal combination of MF–EF–IF as the inputs and the corresponding order parameters
(grinding capacity y1, electric consumption per ton of sugarcane y2, and sucrose extraction
y3) as outputs, using the obtained optimal combination of features and hyperparameters,
the data-driven model of the sugarcane milling system is constructed and can be expressed
as follows:

y1 = f1(x6, x8, x11, x14, x20, x26, x28)
y2 = f2(x4, x8, x14, x15, x20, x23, x25, x27)
y3 = f3(x4, x8, x11, x14, x17, x20, x21, x23, x25, x27)

(10)
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Table 2. Optimal parameter results for data-driven models of material, energy and information flow subsystems.

Model Output Determination
Coefficient (R2)

Model Input Optimized Parameter Values

Penalty Factor (C) Kernel Function Parameter (γ)

Grinding capacity 0.9569 {x6, x8, x11, x14, x20, x26, x28} [347.0117, 558.520, 24.8699] [94.3138, 249.1454, 537.7881]
Electric consumption per ton of sugarcane 0.9776 {x4, x8, x14, x15, x20, x23, x25, x27} [187.9431, 1024, 124.5195] [680.8325, 560.2704, 741.2701]

Sucrose extraction 0.9282 {x4, x8, x11, x14, x17, x20, x21, x23, x25, x27} [260.9975, 871.738, 65.3083, 622.3309] [485.1199, 180.6365, 386.6616, 501.7772]
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With the optimization goals of maximizing the grinding capacity and sucrose ex-
traction and minimizing the electric consumption in the squeezing process, using the
constructed data-driven model as the fitness function, the collaborative optimization model
of MF–EF–IF in the sugarcane milling process can be constructed based on the range value
of each input variable of the DK-ELM model presented in Table 3, as shown in Equation (11):

Max f1(x6, x8, x11, x14, x20, x26, x28)
Min f2(x4, x8, x14, x15, x20, x23, x25, x27)
Max f3(x4, x8, x11, x14, x17, x20, x21, x23, x25, x27)
s.t. 53 ≤ x4 ≤ 66; 631 ≤ x20 ≤ 804

5.5 ≤ x6 ≤ 8.1; 3.3 ≤ x21 ≤ 4.2
6.1 ≤ x8 ≤ 7.8; 906 ≤ x23 ≤ 1092
969 ≤ x11 ≤ 1092; 15.94 ≤ x25 ≤ 21.72
788 ≤ x14 ≤ 934; 14.19 ≤ x26 ≤ 14.91
4.9 ≤ x15 ≤ 6.2; 2.16 ≤ x27 ≤ 2.59
3.5 ≤ x17 ≤ 5.6; 10.16 ≤ x28 ≤ 10.5

(11)

Table 3. Value range of decision variables of the sugarcane squeezing process.

Parameter Description (Unit) Min
Value

Max
Value Parameter Description (Unit) Min

Value
Max

Value

x4 #3Crusher current (A) 53 66 x20 #6Squeezer current (A) 631 804
x6 First-level belt speed (m/s) 5.5 8.1 x21 #6Double roller speed (m/s) 3.3 4.2
x8 Second-level belt speed (m/s) 6.1 7.8 x23 #6Double roller current (A) 906 1092

x11 #1Squeezer current (A) 969 1092 x25
permeate Water-to-sugarcane

ratio (null) 15.94 21.72

x14 #3Squeezer current (A) 788 934 x26 Sucrose content (%) 14.19 14.91
x15 #3Squeezer speed (m/s) 4.9 6.2 x27 Non-sugar content of cane (%) 2.16 2.59
x17 #4Squeezer speed (m/s) 3.5 5.6 x28 Cane fibre (%) 10.16 10.5

3. Solving the Collaborative Optimization Model of MF-EF-IF in the Sugarcane
Milling System
3.1. Multi-Objective Chicken Swarm Optimization Solution Strategy Based on Flow Collaboration

In order to solve the collaborative optimization model constructed in Section 2.4 and
investigate the optimal process indicators to guide the adjustment of the operating parame-
ters, a multi-objective chicken swarm optimization algorithm based on flow collaboration
(IMOCSO) is proposed in this paper. The specific contents include the following:

(1) Hierarchical relationship update between chicken populations: In the MOCSO,
the synergy degree (SE) is selected as the aggregation function of multiple objectives. The
MOCSO algorithm sorts the population of chickens according to the values of the aggregate
objective function and follows the rate into the rooster (NR), hen (NH), and chick (NC)
population groups. The order parameters are discussed with two opposite effects: The
positive effect means that the degree of order of the subsystem increases as the order
parameter increases [31]. Conversely, a negative effect means that the degree of order
of the subsystem decreases as the order parameter increases [32]. Based on the efficacy
coefficient, the degree of synergy among the MF–EF–IF can be introduced to show the
overall performance of the milling system. The efficacy coefficient (Fs) and synergy degree
(SE) of the order parameter are calculated as follows:

Fs(µi)(i = 1, 2, 3) =


max(µi)−µi

max(µi)−min(µi)
(negative e f f ect)

µi−min(µi)
max(µi)−min(µi)

(positive e f f ect)
(12)
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SE = 3
√

Fs(µ1)·Fs(µ2)·Fs(µ3) (13)

where µi is the order parameter, i is the i-th flow, and max(µi) and min(µi) are the maximum
and the minimum of µi, respectively.

(2) Update the position of each chicken group: The forward learning mechanism is
introduced into the rooster subgroup, which can accelerate the rate of convergence.

xt+1
i = xt

i ∗ (1 + Randn(0, σ2)) + w1(xt
best − xt

i) (14)

σ2 =

{
1 i f xi≺ xk

exp( SEk−SEi
|SEi | + ε

), otherwise (15)

where xi≺ xk indicates that the i-th rooster weakly dominates the k-th rooster, Randn(0,σ2)
is a Gaussian distribution with a mean of zero and a standard deviation of σ2, ε is a small
constant to prevent the denominator from being zero, xt

i is the position of the i-th rooster
at the t-th iteration, xt+1

i is the position of the i-th rooster at the t + 1-th iteration, and
xt

best is the globally optimal individual at the t-th iteration, which has the largest degree of
collaboration in the archive, while w1 is the learning factor of forward learning. According
to Equations (12) and (13), the SE of each rooster is calculated, where SEi is the synergy
degree of the i-th rooster, and SEk is the synergy degree of the k-th individual. The hen
randomly selects the rooster to follow, and its position is updated as follows:

xt+1
i = xt

i + S1 ∗ rand ∗ (xt
r1 − xt

i) + S2 ∗ rand ∗ (xt
r2 − xt

i) (16)

S2 = exp(SEr2 − SEi) (17)

S1 = exp(
SEi − SEr1

|SEi|+ ε
) (18)

where xt
i is the position of the i-th hen at the t-th iteration, xt+1

i is the position of the i-th
hen at the t + 1-th iteration, xt

r1 is the rooster followed by the i-th hen at the t-th iteration,
xt

r2 is the rooster or hen randomly selected from the whole flock, and r1 6= r2; SEi, SEr1,
and SEr2 are the synergy degree of the i-th, r1-th, and r2-th individuals, respectively. The
parental guidance mechanism and adaptive factors are introduced into the chick’s position
update as follows:

xt+1
i = w ∗ xt

i + λ1 ∗ (xt
m − xt

i) + λ2 ∗ (xt
r1 − xt

i) (19)

where xt
i is the position of the i-th chick at the t-th iteration, xt+1

i is the position of the
i-th chick at the t + 1-th iteration, xt

m is the hen followed by the i-th individual, xt
r1 is the

rooster followed by the i-th chick, w is the weight, and λ1 and λ2 are the learning factors
from the hens and roosters, respectively.

(3) Maintenance of external archives: The obtained non-dominated solution set is
stored in an external archive. An exponential function is introduced to maintain information
sharing between the particles to avoid the explosion of—And preserve the diversity of—The
archive population. The Euclidean distance dij is used to measure the degree of aggregation
between the i-th particle and the j-th particle, after which an exponential distance update
is introduced [33].

dij = ‖xi − xj‖ =
√

n

∑
k=1

(xi,k − xj,k)
2 (20)

xt
i,k =

(
xt

i,k −
uni f ormrnd(Lbk, Ubk)

(Ubk − Lbk)
2

)
∗ e
−(xt

i,k−
uni f ormrnd(Lbk ,Ubk)

(Ubk−Lbk)
2 )

(Ubk − Lbk)
2 (21)
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where dij is the distance between the i-th particle and the j-th particle, Ubk and Lbk are the
upper and lower limits of the k-th variable, respectively, and the function uni f ormrnd()
represents a randomly selected normal distribution value.

The IMOCSO algorithm is used to solve the established model, and the solution
process is shown in Figure 8.
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3.2. Adaptive Optimization of Operating Parameters Based on Deep Reinforcement Learning

The sugarcane milling process is a 24/7 production process. During the production,
when the order parameters of the sugarcane milling process (i.e., grinding capacity, electric
consumption per ton of sugarcane, and sucrose extraction) fluctuate, it is necessary to
adjust the operating parameters so that the order parameters can be quickly return to near
the optimal target. Due to the working conditions are constantly changing throughout the
production process, the operating parameters need to be continuously adjusted during the
production cycle to make the production process stable. Therefore, adaptive optimization
of the sugarcane milling process means that the operational parameters are continuous
adjusting according to the real-time detection values of the order parameters when the
working conditions of the production process change, ensuring that the order parameters
are stable in the optimal range.

In Section 2.4, a data-driven model of MF–EF–IF model is presented for real-time
detection values of the order parameters, while in Section 3.1 MOCSO is used to solve
the optimal values of the order parameters under all working conditions. However, there
are many contradictions among the order parameters, and constraints such as production
boundary conditions will change with time, resulting in the optimal solution set and Pareto
frontier surface also changing with time. The traditional multi-objective optimization
methods has been unable to adapt to the new production environment, and it is difficult to
quickly track the Pareto frontier and Pareto solution set after detecting the environmental
changes. Therefore, on the basis of the above, a deep reinforcement learning technique
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was introduced and applied to the sugarcane milling process to optimize the process’
operating parameters.

Deep reinforcement learning (DRL) is a technique to train an agent to interact with its
environment and to learn the mapping relationship from state to behavior based on the
powerful fitting capability of a neural network. DRL uses the Markov decision process
(MDP) to model the training process, including four basic elements: M = (S, A, P, R),
where S is the set of all states of the process, A is the set of all possible actions taken,
P denotes the probability of the occurrence of a transfer from one state to another, and
R : S× A→ [−Rmax, Rmax] is the reward function by which the action taken by the agent
affects the environmental state. Li et al. developed a deep-reinforcement-learning-based
online path-planning approach for unmanned aerial vehicles (UAVs) and used Markov
decision processes to define and explain the UAV state space, UAV action space, and
reward functions [34]. Zhang et al. proposed a deep-reinforcement-learning-based energy
scheduling strategy to optimize multiple targets, taking diversified uncertainties into
account; an integrated power, heat, and natural gas system consisting of energy-coupling
units and wind power generation interconnected via a power grid was modeled as a
Markov decision process [35]. Liu et al. proposed an adaptive uncertain dynamic economic
dispatch method based on deep deterministic policy gradient (DDPG); on the basis of the
economic dispatch model, they built a Markov decision process for power systems [36]. In
this paper, the operation optimization of the sugarcane milling process is described as an
MDP process, which is modeled as follows:

(1) State space S: The state space determines the environmental perception of the
agent. On the basis of the obtained state parameters of MF–EF–IF of the milling system as
described in Section 2.3, 14 parameters with a certain influence on the order parameters—
Such as #2 crusher current (West) (x3) and #3 crusher current (x4)—Are selected as the state
space. The state space is expressed as follows:

St = {x3, x4, x6, x7, x13, x14, x16, x19, x21, x25, x26, x27, x28} (22)

(2) Action space A: The action space of the agent is the algorithm’s output, which
comprises the operating parameters that need to be adaptively adjusted. Based on the
principle that the selection of action should be consistent with the actual control variables,
the key process parameters of the sugarcane milling process—I.e., first-level belt speed (x6),
second-level belt speed (x8), #3 squeezer speed (x15), #4 squeezer speed (x17), and #6 double
roller speed (x21)—Are selected as the action space. Assuming that the speed control of the
first five actions is v1, v2, v3, v4, and v5, respectively, and that the control action of osmotic
water on the sugarcane ratio is h, the action space is expressed as follows:

at = {v1, v2, v3, v4, v5, h} (23)

(3) Reward function R(s, a): The agent evaluates the action taken by the reward
function. Considering that the optimization objective is to minimize the deviation between
the optimal values of the order parameters obtained in Section 3.1 (i.e., grinding capacity,
electric consumption per ton of sugarcane, and sucrose extraction) and their actual values,
the reward function (R(s, a)) of different actions under different states is determined
as follows:

R(s, a) =
3

∑
i=1

√
( fi(st)− pi)2

3
−

3

∑
i=1

√
( fi(st+1)− pi)2

3
(24)

where fi is the mathematical model of MF–EF–IF based on the DK-ELM method, and pi
represents the optimal order parameters of each flow solved by the MOCSO based on flow
collaboration.

It is necessary to choose a specific depth-enhanced learning framework combining
the application scenarios of each algorithm along with its advantages and disadvantages.
Common deep reinforcement learning methods include deep Q networks (DQNs), Actor–
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Critic (AC), policy gradient (PG), and deep deterministic policy gradient (DDPG) [37–39].
Considering that the optimization of the operational parameters in sugarcane milling
is a continuous process, the DDPG algorithm composed of an actor–critic framework is
selected. After DDPG perceives the environmental state st, the actor online policy network
outputs the action at = µ(st|θµ) , and the critic online Q network evaluates the action value
Q = Q(st, at

∣∣θQ) , where θµ and θQ are the actor and critic online network parameters,
respectively. In order to improve the stability of the algorithm, the actor target policy
network and target Q network are also constructed.

To update the actor and critic networks, DDPG draws N small batches of sequence
data {st, at, rt+1, st+1} from the experience playback pool M to train the model, and the
critic network is updated in the direction of the minimization loss function L, denoted
as follows:

L(θQ) ≈ 1
N

N

∑
i=1

[
yi −Q(si , ai

∣∣∣θQ)
]2

(25)

where yi = ri + γQ′(si+1, µ′(si+1

∣∣∣θµ′)
∣∣∣θQ′) is the target value, i is the extracted sample

sequence number, γ ∈ [0, 1] is the discount factor, µ′(si+1

∣∣∣θµ′) is the determined action

of the target policy network based on the output of the next state si+1, and θµ′ and θQ′

represent the parameters of the actor target policy network and the target Q network,
respectively. Meanwhile, the actor network is updated according to the policy gradient
as follows:

∇θµ J =
1
N

N

∑
i=1

[∇aQ(s, a|θQ)
∣∣∣s=si ,a=µ(si |θ)∇θµ µ(s|θµ)|s=si ] (26)

The parameters of the target valuation network and the target policy network in DDPG
are updated in a soft manner, as follows:

θµ′ = τθµ′ + (1− τ)θµ′ , 0 < τ << 1 (27)

θQ′ = τθQ′ + (1− τ)θQ′ , 0 < τ << 1 (28)

Due to the introduction of the soft update method, the parameters of the target
network are updated by a smaller magnitude each time, making it easier to converge and
more stable.

In order to ensure that the diversity of samples in the experience pool is conducive
to network convergence, a random discarding sample based on the sample similarity
algorithm is introduced during the network training to improve the DDPG algorithm.
Sample similarity is calculated as follows:

sim(xi
∗, xki) = 1− |xi

∗ − xki|
max(xi

∗, xki)
(29)

where sim(xi
∗, xki) is the sample similarity, xi

∗ is the state space of the running process, xki
is the state space in the sample pool, |•| is the Euclidean distance between xi

∗ and xki, and
max() is the maximum of all Euclidean distances; the greater the similarity, the higher the
probability of discarding that sample.

The optimization framework of the operating parameters in the sugarcane milling
process based on improved DDPG is shown in Figure 9, and the improved DDPG algorithm
is used to realize the adaptive adjustment of operating parameters in the sugarcane milling
process, which is solved in the following steps:
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Step 1: First, the experience pool D with capacity N, the action value network, and
the policy network are initialized, and the weight parameters are randomly generated.
Then, the parameters of the action value network and the policy network are initialized
and copied to the corresponding target network;

Step 2: The Ornstein–Uhlenbeck (OU) noise of the random process for action explo-
ration is initialized, and the current state St is obtained. The action is selected based on the
current policy network and noise, and then the current action at is executed to update the
environment and to obtain the rewards rt and the next moment state St+1;

Step 3: The sample similarity between the current state space and the state space in the
experience pool is calculated. The state is discarded if the similarity is greater than a given
threshold; otherwise, it is stored in the experience pool. Step 3 is repeated to determine
whether the inner loop is reached; if so, Step 2 is repeated;

Step 4: After a certain number of data are stored in the experience pool, a small batch
of trajectory data {st, at, rt+1, St+1} are randomly sampled from the experience pool D at
specific time intervals. The target action value network and the policy network are updated
according to Equations (25) and (26), and the action value network and policy network are
softly updated after a certain time interval;

Step 5: The above steps are repeated until the training times are achieved, and the set
values of the optimal process parameters are output.

4. A Framework of Optimization for Sugarcane Milling System Operation

In order to achieve the global optimization of the milling process, the sugarcane
milling process is abstracted as a system with the interaction of MF–EF–IF, and the pro-
posed optimization framework of the sugarcane milling system, as shown in Figure 10,
includes establishing a collaborative optimization model of MF–EF–IF and the solution of
the optimization model. The state features of MF–EF–IF are obtained by combining mutual
information and a hybrid chicken swarm optimization algorithm. Then, a data-driven
model of MF–EF–IF is established by using the DK-ELM method. With the optimization
objectives of minimizing electric consumption per ton of cane and maximizing the grind-
ing capacity and sucrose extractions, a collaborative optimization model of MF–EF–IF is
constructed. The solution of the optimization model is composed of two parts: In the first
part, the MOCSO algorithm based on flow collaboration is used to solve the optimal values
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of the order parameters under all working conditions, providing guidance for optimizing
the operational parameters. In the second part, the optimal values of the obtained order
parameters are selected as the control objectives, the optimal operation parameter setting
values under different working conditions are determined based on the trained DDPG
model, and the adaptive adjustment of the whole process is realized.
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Figure 10. Operation optimization framework of the sugarcane milling system.

5. Experimental Results and Discussion
5.1. Result and Analysis of the Data-Driven Model of MF-EF-IF in the Sugarcane Milling System

In order to study the data-driven modeling, the used sample set was kept consistent
with the feature extraction. The dataset was randomly divided into five equal parts, of
which four equal parts were used as the training set to construct a data-driven model of
the sugarcane milling process and to determine the optimal combination of features and
hyperparameters of the model. The remaining data were used as the test set to verify
the model’s output accuracy and degree of fit. The performance evaluation of each flow
subsystem model is shown in Table 4. Figures 11–13 show the test results and errors of the
data-driven models of material, energy, and information flows, respectively.

Table 4. Data-driven model performance of the sugarcane milling production process based on DK-ELM.

Model Output Model Training Time (s) MAE RMES R2

Grinding capacity 0.7682 4.9045 5.7333 0.9569
Electric consumption per

ton of sugarcane 0.8281 0.1292 0.1646 0.9776

Sucrose extraction 0.9688 0.0271 0.0332 0.9282

As shown in Table 4, the training of the data-driven model of MF–EF–IF of the sugar-
cane milling system takes less than 1 s, indicating that it has a fast learning speed. Secondly,
the values of the evaluation metrics (RMSE and MAE) are small and fluctuate within the
acceptable range, with R2 of 0.9569, 0.9776, and 0.9282, respectively. This indicates that the
model has a high degree of fit and good learning performance. As shown in Figures 11–13,
the constructed data-driven model has a good ability to predict the grinding capacity,
electric consumption per ton of sugarcane, and sucrose extraction. The predicted values
are very close to the actual values, and there are no data points with substantial errors.
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The error curve fluctuates smoothly and around zero, indicating that the model has good
generalization performance and can be used for modeling the MF–EF–IF of the sugarcane
milling process.
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5.2. Obtaining the Optimal Values of the Order Parameter

In order to study the optimal performance of the sugarcane milling process under all
working conditions, the grinding capacity, electric consumption per ton of sugarcane, and
sucrose extraction were used as objective functions, and the IMOSCO algorithm proposed
in Section 3.1 based on the implemented DK-ELM model was used for that purpose. The
parameter settings of the IMOSCO algorithm are summarized in Table 5.

The results of the Pareto solution set and the relationships between the different
objectives are shown in Figures 14 and 15. Among them, the maximum grinding capacity is
370 t/h, the minimum grinding capacity is 310 t/h, the maximum electric consumption per
ton of sugarcane is 22.7 kW.h/t, the minimum electric consumption per ton of sugarcane is
18.5 kW.h/t, the maximum sucrose extraction is 97.8%, and the minimum sucrose extraction
is 97%. As visualized in Figure 14, the reduction in the electric consumption per ton of
sugarcane leads to a reduction in the sucrose extraction, and there is a contradiction between
the two objective functions. At the same time, as demonstrated in Figure 15, it is not the
case that a greater grinding capacity will lead to a higher sucrose extraction. Meanwhile,
with the increase in the grinding capacity, the electric consumption per ton of sugarcane
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will also increase, because the speed of the milling process will increase to meet the actual
production demand as the amount of feed in the mill process increases, and there will be
more energy loss as a result. Therefore, the contradictions between these three objective
functions are consistent with the relationships in the actual sugarcane milling system. To
find the global optimum, the particles in the archive are sorted according to their degree
of maximum synergy, where the optimal point is at a grinding capacity of 353.38 t/h, an
electric consumption per ton of sugarcane of 17.09 kW.h/t, and an sucrose extraction of
97.87%. The obtained set of values is chosen as the global optimal index to guide the
adjustment of the process parameters.

Table 5. Parameters setting of IMOSCO.

Algorithm Parameters Values

Size of population 350
Number of iterations 300

Archive capacity 150
Proportion of rooster 0.2

Proportion of hen 0.6
Proportion of chicken 0.2

Learning factor for chick to hen 0.4
Learning factor for chick to rooster 0.6
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5.3. Results of the Operation Optimization of the Operating Parameters in the Sugarcane
Milling Process
5.3.1. DDPG Parameter Settings and Optimization Results

Based on the optimal values of the order parameters, the improved DDPG algorithm
was applied to the optimization of key operating parameters in the sugarcane milling
process, and the relevant training parameter settings of DDPG are shown in Table 6. The
optimal solution of the order parameters was set as the optimal goal of the experiment (the
grinding capacity was set at 353.38 t/h, the electric consumption per ton of sugarcane was
set at 17.09 kW.h/t, and the sucrose extraction was set at 97.87%), and the neural network
parameter settings of DDPG are demonstrated in Table 7.
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Figure 15. Relationship between the three objectives. (a) Relationship grinding capacity and elec-
tric consumption per ton of sugarcane. (b) Relationship grinding capacity and sucrose extraction.
(c) Relationship electric consumption per ton of sugarcane and sucrose extraction.

Table 6. Training parameters setting of DDPG.

Training Parameters Values

Size of experience pool 5000
Number of cycles in the outer layer 2000

Time step of inner layer 7
Adjustment time of inner action space 60

Threshold of discarding the sample 0.5
Discount factor 0.9

Learning rates of actual network 0.0001
Learning rates of target network 0.01

Soft update rate 0.001
Exploration noise 0.01

Table 7. Neural network parameters setting of DDPG.

Network Name Network Layers Activation Function Number of Neurons

policy network 2 ReLU, tanh 80,30
Q network 2 ReLU, tanh 80,30

target policy network 2 ReLU, tanh 100,35
target Q network 2 ReLU, tanh 100,35

First, the agent was trained 2000 times, and then, the reward value obtained by the
agent was recorded at each iteration time in the training process of the DDPG algorithm.
The training results are shown in Figure 16. The obtained reward value fluctuated up
and down before 1000 iterations of the training process; that is, the agent was constantly
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learning how to deal with the newly generated working conditions, and the parameters of
each network were also in a continuous process of adjustment and optimization. After 1000
iterations of the training process, the reward value obtained tended to be stable, indicating
that the decision-making ability of the agent was significantly improved.
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After 2000 iterations of training, the trained DDPG model was used for different
working conditions of the sugarcane milling production process. The tracking effect of
the agent under specific working conditions is shown in Figure 17. The trained agent
can adaptively determine the optimal setting strategy according to the current working
condition. The final tracking grinding capacity was 353.38 t/h, the electric consumption
per ton of sugarcane was 17.09 kW.h/t, and the sucrose extraction was 97.87%, all of which
fluctuated near the optimal index.

Foods 2022, 11, 3845 26 of 32 
 

 

  
(a) The tracking effect of grinding capacity 

under single working condition 
(b) The tracking effect of electric consumption per 
ton of sugarcane under single working condition 

 
(c) The tracking effect of sucrose extraction under single working condition 

Figure 17. Each control target following curve of a single working condition. 

The improved DDPG algorithm was used for 102 groups of different working condi-
tions. Figure 18 shows the final optimization results of each operating parameter under 
different working conditions in the sugarcane milling process. Based on the optimized 
operating parameter values applied to the corresponding working conditions, the process 
indices under each working condition were obtained and compared with those before op-
timization. Figure 19 shows the comparative effects of grinding capacity, electric con-
sumption per ton of sugarcane, sucrose extraction, and synergy degree before and after 
the optimization of the 102 groups of working conditions. 

  

Figure 17. Each control target following curve of a single working condition.



Foods 2022, 11, 3845 23 of 28

The improved DDPG algorithm was used for 102 groups of different working condi-
tions. Figure 18 shows the final optimization results of each operating parameter under
different working conditions in the sugarcane milling process. Based on the optimized
operating parameter values applied to the corresponding working conditions, the process
indices under each working condition were obtained and compared with those before
optimization. Figure 19 shows the comparative effects of grinding capacity, electric con-
sumption per ton of sugarcane, sucrose extraction, and synergy degree before and after the
optimization of the 102 groups of working conditions.
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Figure 18. Optimal setting of operation parameters under different working conditions in sugarcane
milling production process.
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As shown in Figure 19d, the synergy degree (SE) of the selected working conditions
before optimization was less than 0.5 under most conditions. After the optimization of
the operating parameters, the synergy degree of the working condition index increased.
The synergy degree of the selected working conditions was greater than 0.5, and the
system gradually moved from disorder to order. As shown in Figure 19a–c, under the
different working conditions, the order parameters corresponding to each flow subsystem
were greatly optimized after the optimization of the process parameters. The average
values of grinding capacity before and after optimization were 346.51 t/h and 349.71 t/h,
respectively—An increase of 3.2 t/h. The average values of electric consumption per ton of
sugarcane before and after optimization were 19.93 kW.h/t and 19.27 kW.h/t, respectively—
A decrease of 660 W.h/t. The average values of the sucrose extraction before and after
optimization were 97.25% and 97.28%, respectively—An increase of 0.03%.

According to expert experience, every 1% increase in sucrose extraction can yield about
1.2 million t more sugar per 100,000 t of cane milled, with a total increase in production value
of about $ 120,000. In the last milling season, the sugar mill squeezed about 1.1 million tons
of sugarcane, and if the sucrose extraction is estimated to increase by 0.03%, the output value
increases by about $ 40,000, with economic significance. In addition, as shown in Figure 18,
the optimized setting values for each operating variable met the actual production process
requirements. The above results show that this paper’s operating parameter optimization
method has a good optimization effect. After the working condition changes, the target
value can be tracked in real time, providing a feasible method for the optimization of the
operating parameters in the sugarcane milling process.

5.3.2. DDPG Parameter Settings and Optimization Results

To validate the effectiveness of the improved DDPG algorithms, the DQN and tradi-
tional DDPG algorithms were compared based on the same development framework. To
ensure a fair comparison, the same compilation environment was used for all algorithms,
and after the agent’s training was completed, the data under the same 102 sets of working
conditions were selected to verify the results. The size of the experience pools of both
DDPG and DQN was set to 5000, the number of samples selected in the batch was 400, and
the discount factor was taken as 0.9. The optimization results of each algorithm are shown
in (Table 8), and the reward curve of the training process is shown in Figure 20.

Table 8. Optimal results of each algorithm.

Order Parameter Actual Average
Value DQN DDPG Improved

DDPG

Grinding capacity 346.51 338.08 347.87 349.71
Electric consumption per ton of

sugarcane 19.93 20.11 19.29 19.27

Sucrose extraction 97.25 97.20 97.26 97.28

As illustrated in Table 8, the optimization results of 102 sets of order parameters
were compared under different working conditions. The optimized grinding capacity
and the sucrose extraction of the improved DDPG were improved compared to both
conventional DDPG and DQN, while the optimized electric consumption per ton of cane
was reduced compared to both conventional DDPG and DQN. Meanwhile, the optimized
results obtained by the improved DDPG algorithm were all improved compared to the
unoptimized index. As shown in Figure 20, the cumulative reward values of all algorithms
fluctuated up and down, but all moved toward a better strategy, with the improved DDPG
algorithm having the fastest convergence and the best performance, followed by DDPG,
while DQN had the worst effects. The above results show that the improved DDPG can
efficiently optimize the operational parameters of the sugarcane milling production process.
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and after the agent’s training was completed, the data under the same 102 sets of working 
conditions were selected to verify the results. The size of the experience pools of both 
DDPG and DQN was set to 5000, the number of samples selected in the batch was 400, 
and the discount factor was taken as 0.9. The optimization results of each algorithm are 
shown in (Table 8), and the reward curve of the training process is shown in Figure 20. 

Table 8. Optimal results of each algorithm. 

Order Parameter Actual Average 
Value 

DQN DDPG Improved 
DDPG 

Grinding capacity 346.51 338.08 347.87 349.71 
Electric consumption per ton of 

sugarcane 
19.93 20.11 19.29 19.27 

Sucrose extraction 97.25 97.20 97.26 97.28 

 
Figure 20. Comparison curves of different algorithm training reward in the sugarcane milling pro-
duction process. 

As illustrated in Table 8, the optimization results of 102 sets of order parameters were 
compared under different working conditions. The optimized grinding capacity and the 
sucrose extraction of the improved DDPG were improved compared to both conventional 
DDPG and DQN, while the optimized electric consumption per ton of cane was reduced 

Figure 20. Comparison curves of different algorithm training reward in the sugarcane milling
production process.

6. Conclusions

In order to improve the performance of the sugarcane milling system, an optimization
framework for sugarcane milling systems was implemented using the combination of
the DK-ELM model, a MOCSO algorithm based on flow coordination, and an improved
DDPG algorithm. The sugarcane milling system being used in a sugar factory in Guangxi
was selected as the research object and abstracted into an MF–EF–IF coordination system.
The state representation of the flow subsystems was established based on the workshop
operating data. Then, a DK-ELM data-driven model was proposed to effectively regress
the relationships between the order parameters and the feature variables of each flow
subsystem. A collaborative optimization model was established with the optimization
objectives of a high grinding capacity, low electric consumption, and high sucrose extraction,
and a collaborative evaluation model based on the MOCSO algorithm was introduced to
determine the optimal values of each order parameter. The reward function was established
by combining the optimal values of the order parameters and the model of each flow
subsystem, and the optimal values of the order parameters were used as the control
objectives to optimize the operational parameters of the milling system under different
working conditions based on the improved DDPG algorithm. The method’s effectiveness
was verified by numerical simulation; the grinding capacity per hour was increased by
3.2 t, the electric consumption per ton of sugarcane was reduced by 660 W, and the sucrose
extraction was increased by 0.03%. This provides a new approach for the operational
optimization of such complex industrial processes. To improve the accuracy of state
representation of each flow, the data-driven model in this paper could be further improved
by combining worker experience and mechanism analysis of the production process.
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