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In this paper, the problem of exponential synchronization of semi-Markov jump stochastic complex dynamical networks using
nonuniform sampled-data control with random delayed information exchanges among dynamical nodes are discussed. In
particular, it is considered that random delayed information exchanges follow a Bernoulli distribution, in which stochastic
variables are used to model randomness. To achieve exponential synchronization, we designed a nonuniform sampled-data
control approach. By constructing an appropriate Lyapunov–Krasovskii functional and using the Wirtinger inequality, sufcient
criteria were obtained in terms of linear matrix inequalities. Finally, numerical examples were implemented to demonstrate the
efectiveness and superiority of the proposed design techniques.

1. Introduction

In the past few decades, complex dynamical networks
(CDNs) have attracted increasing attention in many real-
world applications such as power grids, the World Wide
Web, cellular networks disease, transmission networks,
trafc networks on roads, electricity distribution, neural
networks, linguistic networks, and aviation networks. In
general, a CDN consists of a vast set of associated nodes,
which constitute the basic elementary units with defnite
dynamics. Te complexity of these networks results in
signifcant practical problems. Terefore, analyses of the
topological properties and dynamical behaviors of the
network nodes have been extensively conducted by many
researchers [1–3]. Additionally, they have made signifcant
eforts to examine and implement large-scale dynamical
systems in felds of science and engineering. It is worth
mentioning that CDNs can be expressed by diferential

equations demonstrating various dynamical behaviors such
as self-organization, spatial-temporal chaos, synchroniza-
tion, and spiral waves. Among these, synchronization is a
key issue that has been extensively investigated [4–6]; it fnds
applications through synchronous communication and
signals synchronization in geostationary satellites, syn-
chronous motors, and databases. It is well known that the
process of synchronization between two or more nodes aims
to attain common trajectories by tuning a set of prescribed
properties. In [7], global cluster synchronization via ape-
riodic intermittent control was proposed. Zhao et al. [8]
studied the exponential synchronization of delayed CDNs
under nonfragile sample data control, and Dai et al. [9]
proposed an event-triggered mechanism with the objective
of obtaining exponential synchronization for time-varying
inner-coupling CDNs. In addition, in [10], a sampled data
control scheme was adopted for exponential synchroniza-
tion of CDNs with Markov jump, whereas in [11] a
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nonfragile sampled-data controller for exponential H∞
synchronization of CDNs was examined. Terefore, it is
more general and relevant to consider the exponential
synchronization of CDNs.

Besides, it should be noted that CDNs are often subject
to noisy environments and perturbations. In real-life sce-
narios, unpredicted modifcations of the external environ-
ment or uncertainties lead to random fuctuations, which
results in a noisy environment during signal transmission.
Hence, stochastic modeling has become more signifcant for
handling random fuctuations in realistic dynamical be-
haviors of complex networks. Recently, many researchers
have focused on investigating synchronization problems in
stochastic complex dynamical networks. However, time
delays occurring in such systems can degrade the perfor-
mance or damage the synchronization process. It is essential
to consider time delays in the synchronization problem of
CDNs. In practical situations, during information exchange
between the nodes, a time delay may occur, and in some
cases, randomness may also emerge in delayed information
exchanges, which is a more tedious problem to address.
Tese random delayed information exchanges are handled
using a stochastic variable that satisfes the Bernoulli dis-
tribution. Terefore, it is necessary and practical to consider
random delayed information exchanges between nodes in
the study of CDNs [12].

Nowadays, more attention has been concentrated on
the study of semi-Markov jumps in CDNs. In general, the
abrupt variation occurring in communication topologies
may lead to repairs and failures of components owing to
sudden environmental changes, unstable systems, and
interdependence among various points of a nonlinear
plant. To overcome these practical problems, this class of
systems is modeled using transitions according to the
Markov chain methodology. Ye et al. [13] and Ma et al. [14]
studied the synchronization of a class of semi-Markov
jump CDNs. In Markov jump CDNs, the transition rates
are constant, whereas, in semi-Markov jump CDNs,
varying transition rates are exploited [15, 16]. Moreover,
Markov-jump systems have limitations in their application
because the time duration between two jumps is considered
as a sojourn time that follows an exponential distribution in
which the jump speed stochastic process is independent of
the history, whereas in a semi-Markov jump process, the
sojourn time obeys a nonexponential distribution, which
not only depends on the present time but also on the
sojourn time. Terefore, semi-Markov jump CDNs are
more generic than Markov-jump CDNs and can deal with
the highly complex factors occurring in systems [16, 17].
Te authors, in [18], discussed about stochastic complex
dynamical networks with the semi-Markov process. Also,
the authors of [19, 20] and [21] have studied about semi-
Markov jump systems. In addition, most real-time systems
are afected by external noise factors and stochastic dis-
turbances. Hence, it should be noted that stochastic dis-
turbances are inevitable in the study of the synchronization
of CDNs.Terefore, it is important to investigate stochastic
CDNs subject to a semi-Markov jump topology and sto-
chastic disturbances.

In general, all the dynamic behaviors of the nodes in
CDNs are not synchronized. Several control schemes have
been applied for the synchronization of CDNs. With the
rapid development of high-speed computers, digital con-
trollers are being used to control modern communication
systems. Hence, only at the discrete-time, instants will the
samples of the control input signals be employed; that is,
only at sampling instants will the information be sent to the
controller, which helps in reducing the amount of trans-
mitted information. In addition, communication bandwidth
is saved by implementing sampled-data control systems
[22, 23]. However, for the sake of greater use of modern
computer techniques, communication technology, and
digital hardware systems, sampled-data feedback control is
applied. Tis control plays a signifcant role in attaining low
consumption, high reliability, and simple system deploy-
ment [24–27]. At certain instants, the introduction of
suitable irregularities provides more benefts than classical
sampling methods. In addition, the main aim of using
diferent sampling schemes is to reduce the data size and
data loss and ensure higher accuracy. Terefore, it is im-
portant to consider nonuniform sample techniques that take
samples according to unequal time intervals [28]. Tese
techniques are applied in chemical engineering, network
control systems, nuclear magnetic resonance, automotive
applications, and sensing devices. Based on this idea, many
researchers focused on using nonuniform sampled-data
controllers [29–32].

Te problem of synchronization of stochastic CDNs
constitutes a new challenge subjected to random time-
varying delays and stochastic disturbances within a semi-
Markov process. To handle stochastic disturbances, the
Wiener process plays an important role, and to overcome
these difculties, a nonuniform sampled-data controller was
investigated to achieve higher accuracy. To the best of our
knowledge, no results have been reported concerning the
exponential synchronization of semi-Markovian stochastic
CDNs based on nonuniform sampled-data control subject to
random delayed information exchanges and stochastic
disturbance. Motivated by the above discussions, we derive a
new set of criteria for exponential synchronization of semi-
Markov stochastic CDNs with a Wiener process based on
nonuniform sampled-data control in terms of linear matrix
inequalities (LMIs). Te main contributions of this study are
summarized as follows:

(1) In our work, as the frst attempt, studies on the
synchronization problem for a class of stochastic
CDNs subjected to random time delay under semi-
Markov jump process and non-uniform sampled
data controller have been considered, altogether, in
which the challenging problem is that how to handle
randomly occurring time delay that occurs during
information exchange among the nodes and to attain
exponential synchronization.

(2) To handle this randomness, Bernoulli distribution
has been introduced, and also, a Wiener process
technique is implemented for handling stochastic
disturbances.
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(3) Furthermore, a suitable Lyapunov–Krasovskii
functional (LKF) is constructed to derive sufcient
conditions in terms of LMIs. Finally, developed
theoretical results are validated and achieved
through two numerical simulations.

Tis paper is organized as follows. Te problem for-
mulation and preliminaries are presented in Section 2. Te
main results are presented in Section 3. In Section 4, nu-
merical examples are presented to demonstrate the efec-
tiveness of the proposed approach. Finally, the conclusions
are presented in Section 5.

1.1. Notations. Rl denotes the l-dimensional Euclidean
space and the set of all p × q real matrices is denoted asRp×q.
For any given matrix, M � [Mij]n×n, MT and M− 1 denote
the transpose and inverse ofM, respectively. Te elements
presented below the main diagonal of the symmetric matrix
are denoted as ∗. Te notation X> 0(X≥ 0) for X ∈ Rn × Rn

implies that the matrix X is a real symmetric positive defnite

(positive semi-defnite) matrix, and I is the identity matrix.
diag . . .{ } denotes a block diagonal matrix. For a given
matrix, the largest eigenvalue is Θmax(.). Given any two
matrices,T ∈ Rn×m and S ∈ Rp×q, their Kronecker product
is denoted as T⊗S. Te complete probability space
(Ξ, F, P) in which fltration Ft􏼈 􏼉t≥ 0 satisfes that it contains
all P− null sets and is always right-continuous. LP

F0
([− ζ, 0])

denotes the family of allF0 measurableC([− ζ, 0];Rn) with
random variables φ � φ(s): ζ ≤ s≤ 0􏼈 􏼉, such that
sup

− ζ≤s≤0
E‖φ(s)‖P <∞, where ‖ · ‖ denotes the Euclidean norm

in Rn, and E ·{ } indicates the mathematical expectation
operator.

2. Problem Formulation and Preliminaries

Consider a class of semi-Markov jump CDNs consisting
of N identical coupled nodes defned over a probability
space (Ξ,F, P) whose network model is designed as
follows:

dxq(t) � Aη(t)xq(t) + f t, xq(t)􏼐 􏼑 + (1 − ϱ(t)) 􏽘
N

r�1
bqrΓη(t)xr(t) + ϱ(t) 􏽘

N

r�1
bqrΓη(t)xr(t − ℘(t)) + uq(t)⎡⎣ ⎤⎦dt

+Wη(t)dτ(t),

xq(t) � ϕq(t), ∀t ∈ [− ℘, 0], q � 1, 2, . . . , N,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where xq(t) ∈ Rn denotes the state vector, uq(t) represents
the control input, Aη(t) is the given matrix, f(t, xq(t)) is a
nonlinear vector-valued function, ℘(t) denotes the time-
varying delay satisfying 0≤℘(t)≤℘, with _℘(t)≤ ], Γη(t)

indicates the inner coupling positive diagonal matrix, and
B � (bqr)N×N ∈ RN×N represents the outer coupling matrix
that provides the topological structure of the networks. If
there is a connection between node q and node r(q≠ r), then

bqr ≠ 0; otherwise, bqr � 0. Te diagonal elements are con-
sidered to be bqq � − 􏽐

N
r�1,r≠ q bqr, where r � 1, 2, . . . , N;

Wη(t) indicates the Wiener process matrix, which is con-
sidered to be an appropriate dimensional matrix, in which
τ(t) is a standard one-dimensional Wiener process on the
given probability space (Ξ,F, P) with E dτ(t) � 0{ },
E dτ2(t) � dt􏼈 􏼉; and ϱ(t) denotes the stochastic variable that
follows the Bernoulli distributed sequence:

ϱ(t) �
1, information exchange happen during delay,

0, information exchange does not happen during delay.
􏼨 (2)

Let η(t), t≥ 0􏼈 􏼉, be a continuous-time homogeneous
semi-Markov process that is defned on a probability space
(Ξ,F, P) with right-continuous trajectories, and the values

are taken in a fnite set S � 1, 2, . . . ,N{ } with the transition
probability matrix Π≜ Πij(Δ)􏽮 􏽯 given by

Pr η(t + Δ) � j|η(t) � i􏼈 􏼉 � 􏽙
ij

(Δ)Δ + o(Δ), i≠ j, 1 + 􏽙
ii

(Δ) + o(Δ), i � j,
􏼨 (3)

where the small o - notation o(Δ) defned as
limΔ⟶0(o(Δ)/Δ) � 0, Δ> 0 represents the sojourn time in
the semi-Markov process, 􏽑ij(Δ)≥ 0 for i≠ j is the tran-
sition rate from mode i at a time t to mode j at the time
(t + Δ), and 􏽑ii(Δ) � − 􏽐j∈s,j≠i􏽑ij(Δ).

To derive the main results of this study, the following
assumptions were made:

(A1) Te vector-valued continuous function,f: Rn⟶ Rn

satisfes the following sector-bound condition:
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[f(t, x(t)) − f(t, y(t)) − U(x − y)]
T
[f(t, x(t)) − f(t, y(t)) − V(x − y)]≤ 0, (4)

for every x, y ∈ Rn, where U and V are suitable
constant matrices.

(A2) If ϱ(t) is the Bernoulli distributed sequence, then
the given probability conditions satisfy

(i) Prob ϱ(t) � 1􏼈 􏼉 � E ϱ(t)􏼈 􏼉 � ϱ0,
(ii) Prob ϱ(t) � 0􏼈 􏼉 � 1 − E ϱ(t) � 1􏼈 􏼉 − ϱ0, where

0≤ ϱ0 ≤ 1, is a constant.

(A3) Te sampling period h(t) is bounded by h> 0, such
that 0< tk+1 − tk ≤ h, 0< h(t)≤ h.

Based on the aforementioned conditions, for N identical
nodes (1) synchronized to a general value, the synchronization
error is constructed as zq(t) � xq(t) − s(t), where s(t) ∈ Rn

denotes the state vector of the unforced isolated node satisfying
ds(t) � [Aη(t)s(t) + f(t, s(t))]dt, which is assumed to be
noise-free. Terefore, the error system is defned as follows:

dzq(t) � Aη(t)zq(t) + f t, zq(t)􏼐 􏼑 + (1 − ϱ(t)) 􏽘
N

r�1
bqrΓη(t)zr(t) + ϱ(t) 􏽘

N

r�1
bqrΓη(t)zr(t − ℘(t)) + uq(t)⎡⎣ ⎤⎦ dt

+ Wη(t)zq(t)dτ(t),

(5)

where g(t, zq(t)) � f(t, xq(t)) − f(t, s(t)). Te controller is
defned as follows:

uq tk( 􏼁 � Kη(t)zq tk( 􏼁, tk ≤ t< tk+1, (6)

where the control signals are represented by a sequence of
sampling times satisfying 0 � t0 < t1 < · · · < tk < · · · for
lim

k⟶∞
tk � +∞, such that only uq(tk) is available for the

interval tk ≤ t< tk+1, and zq(tk) is the discrete measurement
of zq(t) at sampling instant tk. Te sampling period T is

defned as T: tk+1 − tk, which is not constant. Terefore, the
sampling period is considered to be tk+1 − tk � h(t)≤ h for
any integer k≥ 0, where h> 0 represents the largest sampling
interval and h(t) � t − tk,∀t ∈ [tk, tk+1). Hence, the non-
uniform sampled-data controller is constructed as follows:

uq tk( 􏼁 � Kη(t)z(t − h(t)), h(t)≤ h, t ∈ tk, tk+1􏼂 􏼁. (7)

Implementing the designed control input (7) into (5)
yields

dzq(t) � Aη(t)zq(t) + g t, zq(t)􏼐 􏼑 + (1 − ϱ(t)) 􏽘
N

r�1
bqrΓη(t)zr(t) + ϱ(t) 􏽘

N

r�1
bqrΓη(t)zr(t − ℘(t))⎡⎣

+ Kη t( )z(t − h(t))⎤⎦dt + Wη(t)zq(t)dτ(t),

(8)

where Kη(t) indicates a set of nonuniform sampled-data
feedback controller gain matrices that are to be determined.
For convenience, matrices Aη(t), Γη(t), and Wη(t) are

represented by Ai, Γi, and Wi, respectively, for i ∈ S. With
the aid of Kronecker product properties, the compact form is
obtained as follows:

dz(t) � IN ⊗Ai( 􏼁z(t) + G(t, z(t)) + (1 − ϱ(t)) B⊗ Γi( 􏼁z(t) + ϱ(t) B⊗ Γi( 􏼁z(t − ℘(t))⎡⎣ ⎤⎦

+ IN ⊗Ki( 􏼁z(t − h(t))􏼃dt + Wiz(t)dτ(t),

(9)

where z(t) � [zT
1 (t), zT

2 (t), . . . , zT
N(t)]T, G(t, z(t)) � [gT(t,

z1(t)), . . . gT(t, zN(t))]T, Ki � diag K1, K2, . . . , KN􏼈 􏼉.
Te following defnitions and lemmas were used to

derive the main results.

Lemma 1 (see [18]). Te noise intensity function
w
∧

(t, zi(t), zi(t − ℘(t)), R+ × Rn × Rn⟶ Rn is uniformly
Lipschitz continuous in terms of the following inequality of the
trace inner product.

trace w
∧ T

t, zi(t), zi(t − ℘(t))( 􏼁w
∧

t, zi(t), zi(t − ℘(t))( 􏼁􏼚 􏼛≤ ηiz
T
i (t)zi(t) + ζ iz

T
i (t − ℘(t))zi(t − ℘(t)), (10)
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where ηi, ζ i(i � 1, 2, . . .) are non-negative real constants. Lemma 2 (see [33]). For any positive defnite matrix Z, with
scalars 0<L<U, the following integration holds:

− (U − L) 􏽚
t− L

t− U
z

T
(s)Zz(s)ds≤ − 􏽚

t− L

t− U
z(s)ds􏼠 􏼡

T

Z 􏽚
t− L

t− U
z(s)ds􏼠 􏼡,

−
U

2
− L

2
􏼐 􏼑

2
􏽚

t− L

t− U
􏽚

t

s
z

T
(u)Zz(u)duds ≤ − 􏽚

t− L

t− U
􏽚

t

s
z(u)duds􏼠 􏼡

T

Z 􏽚
t− L

t− U
􏽚

t

s
z(u)duds􏼠 􏼡.

(11)

Lemma 3 (Ito formula) (see [34]). Consider the time-varying
stochastic system of the form

dx � f t, e
∧

i(t)􏼒 􏼓dt + h t, e
∧

i(t)􏼒 􏼓dτ(t), (12)

where τ(t) is an independent r-dimensional standard Wiener
process. Te infnitesimal generator of the Markov process

t≥ 0, e
∧
(t), η(t)􏼚 􏼛 is given by

CV � Vt(t, e
∧
(t)) + V

e
∧(t, e
∧
(t)) f t, e

∧
i(t)􏼒 􏼓􏼚 􏼛 +

1
2
trace h

T
(t, e
∧
(t))V

e
∧
e
∧(t, e
∧
(t))h(t, e

∧
(t))􏼚 􏼛, (13)

where Vt(t, e
∧
(t)) � (zV(t, e

∧
(t))/zt), V

e
∧(t, e
∧
(t)) �

(zV(t, e
∧
(t))/ze

∧
1, zV(t, e

∧
(t))/ze

∧
2 . . . zV(t, e

∧
(t))/ze

∧
n), and

V
e
∧
e
∧(t, e
∧
(t)) � (z2V(t, e

∧
(t))/ze

∧
ie
∧

j)n×n.
Te expansion of the above equation is realized according

to the following algebraic operations:
dt dt � 0, dt dτ(t) � 0, dτ(t)dτ(t) � t, which in turn follow
the properties of stochastic efects.

Defnition 1 (see [35]). CDNs are said to be exponentially
synchronized, that is, the considered closed-loop error
dynamics are exponentially stable if there exist positive
constants δ, ϑ such that the following condition holds:

E ‖G(t)‖
2

􏽮 􏽯≤ ϑe
− δtsup− max c,℘{ }≤ϕ≤0E [‖G(ϕ)‖, ‖G(ϕ)

.

‖]
2

􏼚 􏼛.

(14)

3. Main Results

Tis section presents the sufcient conditions for the con-
sidered CDN model (1) to guarantee exponential synchro-
nization. Specifcally, the exponential stability of the error
system (5) is obtained, and turns up (1) is synchronized.
Additionally, nonuniform sampled-data control was con-
sidered; it was derived in terms of LMIs.

Theorem 1. For given positive scalars, ϱ0 ∈ [0, 1], ℘, h, ], the
error system (5) is exponentially mean-square stable with
known controller gain Ki satisfying conditions (A1) - (A3); if
there exist real symmetric matrices Pi, B1, B2, B3, C1,
C2, D1, D2, F1, F2, then the following LMIs hold:

J1 �
Jij􏽨 􏽩8×8 0

∗ − Z
⎡⎣ ⎤⎦< 0, (15)

where

J11 � 􏽘
N

i�1
ΠiiPi + B1 + B2 + B3 − C1 − C2 − 2D1 − 2F1 + 2βPi + 2Pi IN ⊗Ai( 􏼁 + 2 1 − ϱ0( 􏼁Pi B⊗ Γi( 􏼁

+ W
T
i PiWi − cU,

J12 � ϱ0Pi B⊗Γi( 􏼁 + C1,J14 � PiKi + C2,J16 �
2
℘

D1,J17 �
2
h

F1,J18 � − cV + Pi,

J22 � (1 − ])e
− 2β℘

B1 − C1,J23 � C1,J33 � − e
− 2β℘

B2 − C1 − D2,J36

J45 � C2,J55 � − e
− 2βh

B3 − C2 − 2F2,J57 �
2
h

F2,J66 �
− 2
℘2

D1 −
2
℘2

D2,J77 �
− 2
h
2F1 −

2
h
2F2,

Complexity 5



J88 � − cI,Z � g1C1 + g2C2 + g3D1 + g4D2 + g5F1 + g6F2, g1 �
℘
2β

1 − e
2β℘

􏼐 􏼑,

g2 �
h

2β
1 − e

2βh
􏼐 􏼑, g3 �

℘
2β

+
1
4β2

−
e
2β℘

4β2
, g4 �

− 1
4β2

+
e
2β℘

4β2
−
℘e2β℘

2β
, g5 �

h

2β
+

1
4β2

−
e
2βh

4β2
,

g6 �
− 1
4β2

+
e
2βh

4β2
−

he
2βh

2β
,U �

IN ⊗U( 􏼁
T

IN ⊗V( 􏼁

2
+

IN ⊗V( 􏼁
T

IN ⊗U( 􏼁

2
,

V �
IN ⊗U( 􏼁

T
+ IN ⊗V( 􏼁

T

2
, U � diag u, u, . . . , u{ }􏽼√√√√√􏽻􏽺√√√√√􏽽

N times

, V � diag v, v, . . . v{ }􏽼√√√√􏽻􏽺√√√√􏽽
N times

. (16)

Te remaining parameters are set to zero.

Proof. Consider the following Lyapunov–Krasovskii
functional:

V(z(t), t, i) � 􏽘
5

m�1
Vm(z(t), t, i), (17)

where

V1(z(t), t, i) � e
2βt

z
T
(t)Piz(t),

V2(z(t), t, i) � 􏽚
t

t− ℘(t)
e
2βs

z
T
(s)B1z(s)ds + 􏽚

t

t− ℘
e
2βs

z
T
(s)B2z(s)ds + 􏽚

t

t− h
e
2βs

z
T
(s)B3z(s)ds,

V3(z(t), t, i) � ℘􏽚
0

− ℘
􏽚

t

t+θ
e
2β(s− θ) _z

T
(s)C1 _z(s)ds dθ + h 􏽚

0

− h
􏽚

t

t+θ
e
2β(s− θ) _z

T
(s)C2 _z(s)dsdθ,

V4(z(t), t, i) � 􏽚
0

− ℘
􏽚
0

λ
􏽚

t

t+θ
e
2β(s− θ) _z

T
(s)D1 _z(s)dsdθ dλ + 􏽚

0

− ℘
􏽚
λ

− ℘
􏽚

t

t+θ
e
2β(s− θ) _z

T
(s)D2 _z(s)dsdθdλ,

V5(z(t), t, i) � 􏽚
0

− h
􏽚
0

μ
􏽚

t

t+θ
e
2β(s− θ) _z

T
(s)F1 _z(s)dsdθdμ + 􏽚

0

− h
􏽚
μ

− h
􏽚

t

t+θ
e
2β(s− θ) _z

T
(s)F2 _z(s)dsdθdμ.

(18)

Te time derivative of V(t) is manipulated as follows:

E C V1(z(t), t, i)( 􏼁􏼈 􏼉 � 2βe
2βt

z
T
(t)Piz(t) + 2e

2βt
z

T
(t)Pi IN ⊗Ai( 􏼁z(t) + G(t, z(t)) + (1 − ϱ(t)) B⊗ Γi( 􏼁z(t)􏼂

+ ϱ(t) B⊗Γi( 􏼁z(t − ℘(t)) + Kiz(t − h(t))􏼃dt + e
2βttrace z

T
(t)W

T
i PiWiz(t)􏽨 􏽩

+ 􏽘

N

j�1
Πijz

T
(t)Pjz(t),

(19)

E C V2(z(t)), t, i( 􏼁􏼈 􏼉 � e
2βt

z
T
(t)B1z(t) + z

T
(t)B2z(t) + z

T
(t)B3z(t)􏽨 􏽩 + (1 − ])e

2β℘(t)
z

T
(t − ℘(t))

B1z(t − ℘(t)) − e
2β℘

z
T
(t − ℘)B2z(t − ℘) − e

2βh
z

T
(t − h)B3z(t − h),

(20)

E C V3(z(t), t, i( 􏼁􏼈 􏼉 � ℘􏽚
0

− ℘
e
2β(t− θ) _z

T
(t)C1 _z(t) − e

2βt _z
T
(t + θ)C1 _z(t + θ)􏼐 􏼑dθ

+ h 􏽚
0

− h
e
2β(t− θ) _z

T
(t)C2 _z(t) − e

2βt _z
T
(t + θ)C2 _z(t + θ)􏼐 􏼑dθ

� e
2βt

g1 _z
T
(t)C1 _z(t) − ℘􏽚

t

t− ℘
_z
T
(s)C1 _z(s)ds + g2 _z

T
(t)C2 _z(t) − h 􏽚

t

t− h

_z
T
(s)C2 _z(s)ds􏼨 􏼩.

(21)

Te integral terms are also considered:
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− ℘􏽚
t

t− ℘
_z
T
(s)C1 _z(s)ds � − ℘􏽚

t− ℘(t)

t− ℘
_z
T
(s)C1 _z(s)ds − ℘􏽚

t

t− ℘(t)

_z
T
(s)C1 _z(s)ds,

− h 􏽚
t

t− h

_z
T
(s)C2 _z(s)ds � − h 􏽚

t− h(t)

t− h

_z
T
(s)C2 _z(s)ds − h 􏽚

t

t− h(t)

_z
T
(s)C2 _z(s)ds.

(22)

Applying Lemma 2, we obtain

E C V3(z(t), t, i)( 􏼁􏼈 􏼉≤ e
2βt

g1 _z(t)C1 _z(t) −
z(t)

z(t − ℘(t))
􏼢 􏼣

T
− C1 C1
∗ − C1

􏼢 􏼣
z(t)

z(t − ℘(t))
􏼢 􏼣

⎧⎨

⎩

−
z(t − ℘(t))

z(t − ℘)􏼢 􏼣

T
− C1 C1
∗ − C1

􏼢 􏼣
z(t − ℘(t))

z(t − ℘)􏼢 􏼣 + g2 _z
T
(t)C2 _z(t)

−
z(t)

z(t − h(t))
􏼢 􏼣

T
− C2 C2
∗ − C2

􏼢 􏼣
z(t)

z(t − h(t))
􏼢 􏼣

−
z(t − h(t))

z(t − h)
􏼢 􏼣

T
− C2 C2
∗ − C2

􏼢 􏼣
z(t − h(t))

z(t − h)
􏼢 􏼣􏼩 (23)

E C V4(z(t), t, i)( 􏼁􏼈 􏼉 � 􏽚
0

− ℘
􏽚
0

λ
e
2β(t− θ) _z

T
(s)D1 _z(s) − e

2βt _z
T
(t + θ)D1 _z(t + θ)􏼐 􏼑dθdλ

+ 􏽚
0

− ℘
􏽚
λ

− ℘
e
2β(t− θ) _z

T
(t)D2 _z(t) − e

2βt _z
T
(t + θ)D2 _z(t + θ)􏼐 􏼑dθdλ

� e
2βt

g3 _z(t)D1 _z(t) − 􏽚
0

− ℘
􏽚

t

t+λ
_z
T
(s)D1 _z(s)dsdλ + g4 _z(t)D2 _z(t)􏼨

− 􏽚
0

− ℘
􏽚

t+λ

t− ℘
_z
T
(s)D2 _z(s)dsdλ􏼩.

(24)

By applying Lemma 2 to the integral terms in (24), we obtain

E C V4(z(t), t, i)( 􏼁􏼈 􏼉≤ e
2βt

g3 _z
T
(t)D1 _z(t) − 2z

T
(t)D1z(t) +

2
℘

z
T
(t)D1 􏽚

t

t− ℘
z(s)ds􏼠 􏼡􏼨

+
2
℘

􏽚
t

t− ℘
z(s)ds􏼠 􏼡D1z

T
(t) −

2
℘2

􏽚
t

t− ℘
z

T
(s)ds􏼠 􏼡D1 􏽚

t

t− ℘
z(s)ds􏼠 􏼡

+ g4 _z
T
(t)D2 _z(t) − 2z

T
(t − ℘)D2z(t − ℘) +

2
℘

z
T
(t − ℘)D2 􏽚

t

t− ℘
z(s)ds􏼠 􏼡

+
2
℘

􏽚
t

t− ℘
z(s)ds􏼠 􏼡D2z

T
(t) −

2
℘2

􏽚
t

t− ℘
z

T
(s)ds􏼠 􏼡D2 􏽚

t

t− ℘
z(s)ds􏼠 􏼡􏼩,

(25)

E C V5(z(t)), t, i( 􏼁􏼈 􏼉 � 􏽚
0

− ℘
􏽚
0

λ
e
2β(t− θ) _z

T
(s)F1 _z(s) − e

2βt _z
T
(t + θ)F1 _z(t + θ)􏽨 􏽩dθ

+ 􏽚
0

− h
􏽚
μ

− h
e
2β(t− θ) _z

T
(t)F2 _z(t)dμ − e

2βt _z
T
(t + θ)F2 _z(t + θ)􏽨 􏽩dθ dμ

� e
2βt

g5 _z(t)F1 _z(t) − 􏽚
0

− ℘
􏽚

t

t+λ
e
2βt _z

T
(s)F1 _z(s)ds dμ + g6 _z(t)F2 _z(t) − 􏽚

0

− h
􏽚

t+μ

t− h
e
2βt _z

T
(s)F2 _z(s)ds dμ􏼨 􏼩.

(26)
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By applying Lemma 2 to the integral terms in (24), we
obtain

E C V5(z(t)), t, i( 􏼁􏼈 􏼉≤ e
2βt

g5 _z
T
(t)F1 _z(t) − 2z

T
(t)F1z(t) +

2
h

z
T
(t)F1 􏽚

t

t− h
z(s)ds􏼠 􏼡

+
2
h

􏽚
t

t− h
z(s)ds􏼠 􏼡F1z

T
(t) −

2
h
2 􏽚

t

t− h
z

T
(s)ds􏼠 􏼡F1 􏽚

t

t− h
z(s)ds􏼠 􏼡

+g6 _z
T
(t)F2 _z(t) − 2z

T
(t − h)F2z(t − h) +

2
h

z
T
(t − h)F2 􏽚

t

t− h
z(s)ds􏼠 􏼡

+
2
h

􏽚
t

t− h
z(s)ds􏼠 􏼡F2z

T
(t) −

2
h
2 􏽚

t

t− h
z

T
(s)ds􏼠 􏼡F2 􏽚

t

t− h
z(s)ds􏼠 􏼡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (27)

Based on (A2), for any scalar c> 0,

− c
z(t)

G(t, z(t))
􏼢 􏼣

T
U V

∗ I
⎡⎣ ⎤⎦

z(t)

G(t, z(t))
􏼢 􏼣≤ 0, (28)

which can be written in the following simplifed form:

− c z
T
(t)Uz(t) + G

T
(t, z(t))V

T
z(t) + z

T
(t)VG(t, z(t)) + G(t, z(t))INz(t)􏼔 􏼕≤ 0. (29)

Substituting expressions (19)–(27) into (17) and sub-
tracting (29), we obtain

E C(V(z(t), t, i){ }≤ e
− 2βt

E ζT
(t)J1ζ(t)􏽮 􏽯, (30)

where ζT
(t) � [z(t) z(t − ℘(t)) z(t − ℘) z(t − h(t)) z(t − h)

􏽚
t

t− ℘
z(s)ds 􏽚

t

t− h
z(s) ds G(t, z(t)) _z(t)]

Terefore,

E CV(z(t), t, i){ }≤ 0, t ∈ tk− 1􏼂 , tk􏼁. (31)

It follows from (31) and generalized Ito’s formula that we
have

E C(V(z(t), t, i)){ } − E C(V(z(0), 0, i)){ } � 􏽚
t

0
E C(V(z(s), s, i)){ }ds< 0,

E C(V(z(0), 0, η(0)))􏼈 􏼉≤
Θmax Pi( 􏼁 +ΘmaxB1Λ1 + ΘmaxB2Λ1 +ΘmaxB3Λ2 + ΘmaxC1Λ3

+ΘmaxC2Λ4 +ΘmaxD1Λ5 +ΘmaxD2Λ6 +ΘmaxF1Λ7 + ΘmaxF2Λ8
􏼢 􏼣

sup
max ℘,h{ }≤s≤0

E‖z(s)‖
2
,

(32)

where

Λ1 �
1
2β

−
e

− 2β℘

2β
􏼢 􏼣,Λ2 �

1
2β

−
e
2βh

2β
􏼢 􏼣,Λ3 �

e
2β℘

(2β)
2 −
℘
2β

−
1

(2β)
2􏼢 􏼣,Λ4 �

e
2βh

(2β)
2 −

h

2β
−

1
(2β)

2􏼢 􏼣,

Λ5 �
e
2β℘

(2β)
3 −

1
(2β)

3 −
℘

(2β)
2 −
℘2

4β
􏼢 􏼣,Λ6 �

e
2βh

(2β)
3 −

1
(2β)

3 −
h

(2β)
2 −

h
2

4β
􏼢 􏼣,

Λ7 �
− 1

(2β)
3 −

e
4β℘

(2β)
3 +
℘e2β℘

(2β)
2 −
℘2

4β
􏼢 􏼣,Λ8 �

− 1
(2β)

3 −
e
2βh

(2β)
3 +

de
2βh

(2β)
2 −

h
2

4β
􏼢 􏼣.

(33)

From Defnition 1, we have
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E ‖z(t)‖
2

􏽮 􏽯≤ e
− 2βtΨ sup

max ℘,h{ }≤s≤0
E‖‖z(s)‖

2
,

Ψ �
Θmax Pi( 􏼁 + ΘmaxB1Λ1 + ΘmaxB2Λ1 + ΘmaxB3Λ2 + ΘmaxC1Λ3

+ΘmaxC2Λ4 + ΘmaxD1Λ5 +ΘmaxD2Λ6 + ΘmaxF1Λ7 + ΘmaxF2Λ8
􏼨 􏼩.

(34)

Terefore, we conclude that the error system considered
in (5) is exponentially stable. □

Remark 1. Teorem 1 exclusively presents two notewor-
thy values based on the Lyapunov–Krasovskii stability
theory: (a) a new synchronization criterion for stochastic
CDNs (1) with random delayed information exchange
among the nodes under semi-Markov jump; and (b) a
design method of the nonuniform sample data controller
(6) that ensures the desired synchronization of the plant
(1). In order to achieve the desired synchronization, the
LKF was specifcally constructed using double integral
terms in such a way utilizing the Wirtinger-type in-
equality. Te primary beneft of the proposed method in
this paper is that it can guarantee the necessary

synchronization even in the presence of randomly oc-
curring delays and nonlinearity under semi-Markov
jump. Te results that were generated in this paper have
some potential benefts from an application viewpoint.

Theorem 2. For given positive scalars, ϱ0 ∈ [0, 1], ℘, h, ], the
error system (5) is exponentially mean-square stable with
unknown controller gain Ki satisfying conditions (A1) - (A3);
if there exist real symmetric matrices Pi, B1, B2, B3, C1, C2,
D1, D2, F1, F2, then the following LMIs hold:

Jij􏽨 􏽩9×9< 0, (35)

where

J11 � 􏽘

N

i�1
ΠiiPi + B1 + B2 + B3 − C1 − C2 − 2D1 − 2F1 + 2βPi + 2Pi IN ⊗Ai( 􏼁 + 2 1 − ϱ0( 􏼁Pi B⊗ Γi( 􏼁

+ W
T
i PiWi − cU,

J12 � ϱ0Pi B⊗Γi( 􏼁 + C1,J14 � Xi + C2,J16 �
2
℘

D1,J17 �
2
h

F1,J18 � − cV + Pi,

J22 � (1 − ])e
− 2β℘

B1 − C1,J23 � C1,J33 � − e
− 2β℘

B2 − C1 − 2D2,J36 �
2
℘

D2,J44 � − C2,

J45 � − e
− 2βh

B2 + C2,J55 � − C2 − 2F2,J57 �
2
h

F2,J66 �
− 2
℘2

D1 −
2
℘2

D2,J77 �
− 2
h
2F1 −

2
h
2F2,

J88 � − cI,J99 � g1C1 + g2C2 + g3D1 + g4D2 + g5F1 + g6F2,

g1 � −
℘
2β

1 − e
2β℘

􏼐 􏼑, g2 �
− h

2β
1 − e

2βh
􏼐 􏼑, g3 �

− ℘
2β

−
1
4β2

+
e
2β℘

4β2
, g4 �

1
4β2

−
e
2β℘

4β2
+
℘e2β℘

2β
,

g5 � −
h

2β
−

1
4β2

+
e
2βh

4β2
, g6 �

1
4β2

−
e
2βh

4β2
+

he
2βh

2β
.

(36)

The remaining parameters are set to zero. Moreover, the
controller gain matrices are given by Ki � P− 1

i Xi, i ∈ S.

Proof. Let us consider the same LKF as defned inTeorem 1
and follow the same procedure with an unknown gain
matrix Ki. By setting Xi � PiKi, we obtain (35). Tis
completes this proof. □

Remark 2. It is worth pointing out that a great number of
research works regarding the issues of synchronization of

CDNs have been reported in the recent literature, for in-
stance see [13–15]. Also, it should be noted that all the
aforementioned works do not consider stochastic behaviour
in the system. Recently, some interesting results on the
synchronization of stochastic CDNs behaviour have been
discussed [18, 22, 34]. However, the issues of the syn-
chronization of nonuniform samples data controller for
stochastic CDNs subjected to semi-Markov jump and
random delayed information exchanges has not been dis-
cussed in the literature. Tus, the main contribution of this
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paper is to fll such a gap through employing a nonuniform
control law for achieving synchronization of stochastic
CDNs in presence of semi-Markov jump and random delay
occurred during information exchanges, which makes this
work diferent from the existing works in stochastic CDNs.

Remark 3. In practical applications, randomness occurring
in the delays during the information exchanges are usually
inevitable owing to the infuence of unexpectable changes.
More precisely, the existence of randomness is apparent in a
probabilistic manner. To handle this scenario, Bernoulli
distributed parameter ϱ(t) is introduced in which it should
be noted that when ϱ(t) � 0 the considered stochastic CDNs
(1) reduces to general stochastic CDNs without delays,
which has been investigated in [12]. It should be noted that
such a description is considered for nonuniform sampled
data control law for synchronization of stochastic CDNs
with semi-Markov jump for the frst time.

Remark 4. It is generally well-known to research commu-
nities that implementing the LMI technique when consid-
ering a large number of decision variables in the designed
synchronization criterion, the computational complexity
certainly increases and also the required time to solve the
criterion is being large value. As a result, there should be a
trade-of between the aforementioned criteria and the
quantity of decision variables. Additionally, the computation
of the fndings suggested in Section 4 is conveniently ofine.
Terefore, the defned LMI-based synchronization criterion
may be easily solved by using the existing convex optimi-
zation tools.

Remark 5. Consider a class of semi-Markov jump CDNs (1)
with stochastic noise consisting of N identical coupled
nodes, defned over a probability space (Ξ,F, P), whose
error system is described as follows:

dzq(t) � Aizq(t) + g t, zq(t)􏼐 􏼑 + (1 − ϱ(t)) 􏽘

N

r�1
bqrΓizr(t) + ϱ(t) 􏽘

N

r�1
bqrΓizr(t − ℘(t)) + Kiz(t − h(t))⎡⎣ ⎤⎦dt

+ W t, zq(t), zq(t − ℘(t))􏼐 􏼑dτ(t),

(37)

whereW(t, zq(t), zq(t − ℘(t))) denotes the noise intensity
vector-valued function.

Corollary 1. For given scalars
ϱ0 ∈ [0, 1],℘> 0, h> 0, ]> 0, κi > 0(i ∈ S), the exponential
synchronization in the mean square of error system (37) can
be achieved via unknown control (7) with controller gain Ki.

If there exist positive defnite matrices Pi, B1, B2, B3, C1, C2,
D1, D2, F1, F2 and diagonal matrices N1, N2 with the ap-
propriate dimensions, the following inequality is satisfed:

Yij􏽨 􏽩9×9< 0, (38)

where

Y11 � 􏽘

N

i�1
ΠijPj + B1 + B2 + B3 − C1 − C2 − 2D1 − 2F1 + 2βPi + 2Pi IN ⊗Ai( 􏼁 + 2 1 − ϱ0( 􏼁Pi B⊗ Γi( 􏼁 − ]U + κiN1,

Y12 � ϱ0Pi B⊗ Γi( 􏼁 + C1,Y14 � Xi + C2,Y16 �
2
℘

D1,Y17 �
2
h

F1,Y18 � − cV + Pi,

Y22 � (1 − ])e
− 2β℘

B1 − C1 + κiN2,Y23 � C1,Y33 � − e
− 2β℘

B2 − C1 − 2D2,Y36 �
2
℘

D2,

Y44 � − C2,Y45 � − e
− 2βh

B2 + C2,Y55 � − C2 − 2F2,J57 �
2
h

F2,Y66 �
− 2
℘2

D1 −
2
℘2

D2,

Y77 �
− 2
h
2F1 −

2
h
2F2,Y88 � − c,Y99 � g1C1 + g2C2 + g3D1 + g4D2 + g5F1 + g6F2,

g1 � −
℘
2β

1 − e
2β℘

􏼐 􏼑, g2 �
− h

2β
1 − e

2βh
􏼐 􏼑, g3 �

− ℘
2β

−
1
4β2

+
e
2β℘

4β2
, g4 �

1
4β2

−
e
2β℘

4β2
+
℘e2β℘

2β
,

g5 � −
h

2β
−

1
4β2

+
e
2βh

4β2
, g6 �

1
4β2

−
e
2βh

4β2
+

he
2βh

2β
.

(39)
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In this case, the control gain matrix is given by
Ki � P− 1

i Xi.

Proof. Using Lemma 1, the inequality
trace WT(t, z(t), z(t − ℘(t)))PiW(t, z􏼈

(t), z(t − ℘(t)))}≤ κi

z(t)TN1z(t) + z(t − ℘(t))TN2z(t − ℘(t))􏽮 􏽯 is obtained.
Te remaining procedure follows from Teorem 2. □

Remark 6. Consider the CDNs (1) without a semi-Markov
jump, with stochastic noise consisting of N identical coupled
nodes, defned over a probability space (Ξ,F, P), whose
error system is described as follows:

dzq(t) � Azq(t) + g t, zq(t)􏼐 􏼑 +(1 − ϱ(t)) 􏽘
N

r�1
bqrΓzr(t) + ϱ(t) 􏽘

N

r�1
bqrΓzr(t − ℘(t)) + Kz(t − h(t))⎡⎣ ⎤⎦dt + Wzq(t)dτ(t), (40)

where W is the Wiener process matrix, which is assumed to
have appropriate dimensions.

Corollary 2. For given scalars ϱ0 ∈ [0, 1],℘> 0, h> 0, ]> 0
the exponential synchronization in the mean square of the
error system (40) can be achieved via control (7) with un-
known controller gain K. If there exist positive defnite

matrices B1, B2, B3, C1, C2, D1, D2, F1, F2, the following in-
equality is satisfed:

Xij􏽨 􏽩8×8 0

∗ − Z
⎡⎣ ⎤⎦< 0, (41)

where

X11 � B1 + B2 + B3 − C1 − C2 − 2D1 − 2F1 + 2βP + 2P IN ⊗A( 􏼁 + 2 1 − ϱ0( 􏼁P(B⊗Γ) + W
T
PW − cU,

X12 � ϱ0P(B⊗ Γ) + C1,X14 � X + C2,X16 �
2
℘

D1,X17 �
2
h

F1,X18 � c IN ⊗V􏼐 􏼑 + P,

X22 � (1 − ])e
2β℘

B1 − C1,X23 � C1,X33 � − e
− 2β℘

B2 − C1 − 2D2,X36 �
2
℘

D2,X44 � − C2,

X45 � − e
− 2βh

B2 + C2,X55 � − C2 − 2F2,J57 �
2
h

F2,X66 �
− 2
℘2

D1 −
2
℘2

F2,X77 �
− 2
h
2F1 −

2
h
2F2,

X88 � − cI.

(42)

Te remaining parameters of (39) follow Teorem 1.
Moreover, the controller gain matrix is given by K � P− 1X.

Proof. Te proof follows from Teorem 2. □

4. Numerical Examples

In this section, two numerical examples are presented to
evaluate the feasibility and efectiveness of the results
obtained.

Example 1. Consider the error system (5) with following
nodes. Furthermore, the outer and inner coupling matrices
and the corresponding system matrices are set as follows:

B �

− 1 0 1

0 − 1 1

1 1 − 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Γ1 �
2 0

0 2
􏼢 􏼣, Γ2 �

1.6 0

0 0.6
􏼢 􏼣, A1 �

− 0.5 − 1.5

1.3 − 0.5
􏼢 􏼣, A2 �

− 0.8 0.1

0.8 − 0.15
􏼢 􏼣. (43)

Besides, the nonlinear function is given by
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g zq(t)􏼐 􏼑 � [− 2.3z(t) + tanh(0.2z(t)) + 0.2z(t)0.95z(t) − tanh(0.75z(t))], (44)

satisfying the sector bound condition (4) with

U �
0.9 0
0 0.9􏼢 􏼣 and V �

1 0
0 1􏼢 􏼣. Also, the Wiener process

matrices are represented as

W
T
1 � 0.2 0.25 0.27 0.13 0.27 0.13􏼂 􏼃, W

T
2 � 0.8 0.5 0.84 0.34 0.57 0.8􏼂 􏼃. (45)

In addition, the semi-Markov jump topology exhibits
transition rates of the model chosen with

πij(1) �
− 2.5 1.3512

1.6879 − 0.8090
􏼢 􏼣, πij(2) �

− 0.6399 0.3512

0.6879 − 0.8090
􏼢 􏼣,Where i, j � 1, 2. (46)

Without loss of generality, consider Π11,1 � − 2.5, Π12,1 �

1.3512,Π21,1 � 1.6879, Π22,1 � − 0.8090,Π11,2 � − 0.6399,

Π12,2 � 0.3512,Π21,2 � 0.6879, andΠ22,2 � − 0.8090.Te time-
varying delay is assumed to be ℘(t) � 0.25+

0.05 sin(10t), 0≤℘≤ 0.3 and the sampling interval is

represented as h(t) � 0.36 + 0.25 sin(5t), 0≤ h≤ 0.7. More-
over, to verify the feasibility of the attained results, the following
parameter values are fxed as ] � 0.55, ϱ0 � 0.25, β � 0.1. Te
following gain matrices are obtained using the MATLAB LMI
Control toolbox by solving the LMIs in Teorem 2:

K1 �

− 1.1805 0.6879 0 0 0 0

0.6529 − 1.5785 0 0 0 0

0 0 − 0.7084 0.2683 0 0

0 0 0.2554 − 1.8076 0 0

0 0 0 0 − 1.0587 − 0.0386

0 0 0 0 − 0.1150 − 2.3360

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K2 �

− 2.0261 − 0.7108 0 0 0 0

− 0.7242 − 2.6163 0 0 0 0

0 0 − 2.7165 0.5003 0 0

0 0 0.5501 − 3.0811 0 0

0 0 0 0 − 1.6637 − 0.6717

0 0 0 0 − 0.8431 − 4.6084

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(47)

Te initial values of the state nodes were set as
z1(0) � [4; − 1]T, z2(0) � [− 5; 2]T, z3(0) � [− 3; 4]T and the
isolated nodes were set as s(0) � [4; − 1]T. Te error tra-
jectories without control input are shown in Figure 1.
Furthermore, from the obtained gain matrices and non-
uniform sampled-data controller, we obtained the syn-
chronization error trajectories shown in Figure 2 and also,
note that these trajectories converge to zero within a sat-
isfactory time interval. Figure 3 shows the responses of the
control input. Te external disturbances are depicted in

Figure 4. In addition, Figure 5 shows the semi-Markov
jumping mode process during the simulation, and Figure 6
presents the randomness occurred during information ex-
change. As a conclusion, based on the above discussions, it
can be strongly mentioned that the system performance
under nonuniform sampled data controller is efective and
efcient to handle semi-Markov jump and the randomness
behaviour. Terefore, it is of great signifcance to consider
the nonuniform sampled data control strategy for stochastic
CDNs.
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Example 2. Consider a single Rossler oscillator for the error
system (37) described by the following dimensionless form:

x
.

1(t) � − x2(t) + x3(t)( 􏼁,

x
.

2(t) � x1(t) + c1x2(t),

x
.

3(t) � c2x1(t) + x3(t) x1(t) − c3( 􏼁,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(48)

where c1 � 0.2, c2 � 0.2, c3 � 5.7. Te outer and inner
coupling matrices are given by

B �

− 1 0 1

0 − 1 1

1 1 − 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Γ1 �

1 0 0

0 1 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, Γ2 �

2 0 0

0 2 0

0 0 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (49)

Also, the nonlinear function is represented as g(zq(t)) �

[− 2.3z(t) + tanh(0.2z(t)) + 0.2z(t)0.95z(t) −

tanh(0.75z(t))0] with sector bound condition satisfying (4),

along with U �

1 0 0
0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ and V �

0.9 0 0
0 0.9 0
0 0 0.9

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦. Te noise

intensity function is W(t, z(t)) � 3.1 sin(2.5z(t)) +1.1 sin

(5.2z(t − ℘(t))). In addition, the transition rates of the
model for the semi-Markov jump topology were chosen as

πij(1) �
− 0.2 0.2

0.3 − 0.3
􏼢 􏼣, πij(2) �

− 0.3 0.3

0.2 − 0.2
􏼢 􏼣(i, j � 1, 2).

(50)

Without loss of generality, consider Π11,1 � − 0.2,Π12,1 �

0.2,Π21,1 � 0.3, Π22,1 � − 0.3,Π11,2 � − 0.3,Π12,2
� 0.3,Π21,2 � 0.2,Π22,2 � − 0.2. Te time-varying delay was
set as ℘(t) � 0.25 + 0.05 sin(10t), 0≤℘≤ 0.3 and the non-
uniform sampling interval was set as
h(t) � 0.36 + 0.25 sin(5t), 0≤ h≤ 0.7. To demonstrate the
efectiveness of the obtained results, the remaining pa-
rameter values were set as
] � 0.4, κi � 0.4, ϱ0 � 0.25, β � 0.45. Using the MATLAB
LMI Control toolbox to solve the LMIs in Corollary 1, we
obtain the following gain matrices: K1 � diag K11, K12, K13􏼈 􏼉

and K2 � diag K21, K22, K23􏼈 􏼉 where

K11 �

− 3.1165 0.5989 − 0.2761

0.6938 − 3.0729 − 0.3872

− 0.2038 − 0.3273 − 1.2857

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, K21 �

0.0050 − 0.0088 0.0088

− 0.0158 − 0.0022 0.0116

0.0054 0.0066 − 0.0759

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

K12 �

− 4.0978 0.8297 − 0.3585

0.9565 − 4.3148 − 0.6072

− 0.2786 − 0.5296 − 1.3420

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, K22 �

0.0047 − 0.0091 0.0091

− 0.0155 − 0.0025 0.0112

0.0054 0.0069 − 0.0794

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

K13 �

− 4.0978 0.8297 − 0.3585

0.9565 − 4.3148 − 0.6072

− 0.2786 − 0.5296 − 1.3420

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, K23 �

0.0047 − 0.0091 0.0091

− 0.0155 − 0.0025 0.0112

0.0054 0.0069 − 0.0794

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (51)

In the simulation, the initial values for the state and
isolated nodes were represented as z1(0) � [4; − 2; 3],
z2(0) � [1; 3; − 2], z3(0) � [− 5; − 1; 4], and s(0) � [4; − 2; 3].
Ten, according to the aforementioned controller gain, the
synchronization of the error system is illustrated in Figure 7.
In addition, the nonuniform sampling data controller is
shown in Figure 8, and it can be seen from Figure 9 that the
synchronization of the state responses converges to zero.Te

external disturbances are depicted in Figure 10. In addition,
Figure 11 presents the randomness of the time-varying
delay, and Figure 12 shows the chaotic attractor of the
Rossler system. Eventually, based on the simulations carried
out above, we conclude from these that the design of the
nonuniform sampled data controller works efectively in the
presence of a noise intensity function and random time-
varying delay.
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Figure 1: Trajectories of error system (5) with control inputs.
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Figure 2: Trajectories of error system (5) without control inputs.
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Figure 5: Mode transitions of semi-Markov jump CDNs.
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Figure 7: Trajectories of error system (37) with control inputs.
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Figure 8: Trajectories of control inputs.
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Figure 9: Trajectories of state system with control inputs.
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5. Conclusions

In this study, the exponential synchronization of semi-
Markov jump CDNs with random delayed information
exchanges among dynamical nodes was investigated. In
particular, to describe the information exchanges between
nodes, a stochastic variable obeying the Bernoulli distri-
bution was incorporated to model randomly occurring
phenomena. Te nonuniform sample data controller has
been utilized to achieve the desired synchronization of
considered CDNs. By constructing a suitable LKF using the
Wirtinger-type inequality, sufcient criteria were obtained
in terms of LMIs. Finally, numerical examples were pre-
sented to illustrate the efectiveness of the proposed method.
Future work will focus on the framework of denial-of-service
attacks and event-triggered control for a class of stochastic
complex dynamical networks to obtain more industrial-
oriented results.
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