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Abstract: Fingerprints have been used for decades to verify the identity of an individual for various
security reasons. Attackers have developed many approaches to deceive a fingerprint verification
system, ranging from the sensor level, where gummy fingers are created, to gaining access to the
decision-maker level, where the decision is made based on low matching criteria. Even though
fingerprint sensor-level countermeasures have developed advanced metrics to detect any attempt to
dupe the system, attackers still manage to outwit a fingerprint verification system. In this paper, we
present the Micro-behavioral Fingerprint Analysis System (MFAS), a system that records the micro-
behavior of the user’s fingertips over time as they are placing their fingerprint on the sensor. The
system captures the stream of ridges as they are formed while placed on a sensor to combat the attacks
that deceive the sensor. An experiment on 24 people was conducted, wherein the fingerprints and
the behavior of the fingertip as it is placed were collected. Subsequently, a gummy finger was created
to try to fool the system. Further, a legitimate user was chosen to participate in an experiment that
mimicked an attempt to use their fingertip unwillingly to detect coerced fingerprint placement. After
applying the micro-behavior, the system reported 100% true positives and 0% false-negatives when
providing legitimate vs. gummy-based fingerprints to authenticate a malicious user. The system also
reported a 100% accuracy in differentiating between a voluntary and a coerced fingerprint placement.
The results improve the fingerprint robustness against attacks on a fingerprint sensor by factoring in
micro-behavior, thus helping to overcome fake and coerced fingerprint attacks.

Keywords: fingerprint verification; micro-behavioral; system design; fingerprint sensor; coercion
detection; behavioral biometrics

1. Introduction

Authenticating identity is a major step in most security systems because access levels
and privileges are based on that identity. As authentication measures, including knowledge-
based, possession-based, and biometric-based systems, are advancing to offer more robust,
accurate, and user-friendly capabilities, attacks on authentication systems have been ad-
vancing as well, resulting in the development of the ability to trick an authentication system
so that an imposter gains access to resources as a legitimate user. As a result, research
has advanced to mitigate such threats and vulnerabilities that an authentication system
may experience. Some measures are policy-based, and others are technical. Among all of
the authentication systems, biometrics has shown an advantage over other authentication
systems, including knowledge- or possession-based systems. For example, biometric-based
technologies cannot be forgotten or lost, as opposed to other authentication-based systems.
Further, biometric-based systems reveal the identity of a user overtly or covertly, making
identity authentication an automated process. Further, biometric systems show a greater
robustness against attacks when compared to knowledge- or possession-based systems.
Biometric-based technologies include physiological-based measures such as the fingerprint,
iris, retina, and face recognition, as well as behavior-based measures such as the signature
and gait.
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Since fingerprint technology is the most used and accepted among users, as opposed to
iris- or retina-based technologies, and is more accurate when compared with behavior-based
biometric systems [1], it has been adopted by the latest smartphones to authenticate a user
and provide them access. This has resulted in attacks focusing on fooling fingerprint-based
biometric systems and mainly circumventing the fingerprint sensor.

Fingerprint technologies inherit the general known vulnerabilities to attacks on any
biometric system, as shown in Figure 1. The first vulnerability is attacking and fooling
the sensor, where an attacker provides a fake fingerprint. Numerous approaches tackle
fake fingerprint attacks using liveness detection, where a system determines if a provided
fingerprint is alive or fake. Some examples of fingerprint liveness detection include pulse
rate, pore changes over time, and oxygen-level detection. Further, the sensor level attacks
include forcing and coercing a user to place their fingerprint to authenticate and gain
access. A few solutions were proposed, such as using a specific finger to authenticate,
which provides limited access or access to a fake interface while reporting the incident.
The second inherited vulnerability in biometric systems is attacking the channel between
the sensor and the feature extractor, where an attacker records the signals that are sent
from the sensor and then replays the signals to fool the biometric system. A few solutions
were provided such as implementing a challenge-response metric where a sensor sends a
unique seed number each time it is used, and a feature extractor validates the seed number
before accepting and analyzing the signal that is sent to the feature extractor. The third
vulnerability is attacking the feature extractor component with an override attack, where
a feature extractor does not extract any features but limited ones from the fingerprint
where any fingerprint may match a stored template. The fourth vulnerability is attacking
the channel between the feature extractor and the matcher, where a synthesized feature
vector is embedded into the channel, and the matcher will always report a high matching
score for the attacker to gain access. The fifth vulnerability is in attacking the channel
between the feature extractor and the template database with a channel interception, where
a template is modified or altered prior to storage. The sixth vulnerability is in attacking the
template database itself by replacing templates with the attacker’s template. The seventh
vulnerability is in attacking the matcher, where a matcher always returns a high matching
score despite the true matching score. Finally, the eighth vulnerability is in overriding the
final decision, where a decision is always to allow access despite any of the previous steps
in a biometric system. A typical solution to attacks 3–8 is applying the challenge-response
method to ensure that the data being received are from a trusted unaltered component
of the biometric system. All oval shapes in Figure 1 represent the possible attack, and all
rectangular shapes represent a typical biometric component to authenticate a user.
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All inherited vulnerabilities create the potential for successful attacks on any fingerprint-
based biometric system to fool the authentication system and provide an impostor access.
Since most of the attacks (2–7), except for the sensor-level attacks, are similar to those used
against any biometric system and can include solutions such as encryption, the cancella-
tion of biometrics [1], and challenge-response mechanisms [2], we find that the research
community has carried out substantial work to strengthen this form of security control.
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However, the sensor-level attacks on fingerprint technologies weaken the technology and
require further advancements.

Two of the most successful attacks on the sensor level are fake fingerprints, where a
fingerprint is fake in its origin, e.g., a gummy finger, a reconstruction of a fingerprint from
a stored template [3], and coerced fingerprints, where a legitimate user’s willingness to
provide a fingerprint is not detected and where a user is forced to provide the fingerprint.
Although there is no willingness detection component in fingerprint-based biometric
systems, there are Liveliness Detection (LD) measures that have been proposed to combat
the threat and to ensure that the fingerprint comes from the real user and not from a
reconstructed latent impression left on the sensor. Various techniques for liveness detection
(LD) have been proposed; some are physiological, detecting the heartbeat or oxygen level
from the finger, and others are image-based analyses detecting the changes in pores over
time [4–7].

Even though the current literature shows a great capability of detecting a fake fin-
gerprint, attackers can still develop ways to deceive the liveness detection components.
Simulating a heartbeat and including changes in pores have become easily executed pro-
cesses that have shown success in fooling the fingerprint-based biometric systems at the
sensor level. However, none of the previous approaches took into consideration the micro-
behavioral aspects of the fingerprint impression while it is being placed on the sensor over
time. None of the previous work evaluated the possibility of evaluating the fingerprint
impression shape construction over time as a behavioral measurement to detect a fake fin-
gerprint, where a micro-behavior is an involuntary movement measured in micro-seconds.

In this paper, we propose a behavioral measurement of a fingerprint while it is placed
on the sensor to improve the liveness detection component and propose a willingness
detection component with the behavioral measurement. An attacker may simulate a
heartbeat but will not be able to provide the genuine behavior of the user’s finger when
placed on the sensor to verify the fingerprint. Additionally, the behavior of a user, willing
or forced, is expected to differ when analyzing the behavior to detect willingness. Not
only do the characteristics of the fingerprint matter, but the behavior of the user’s finger
while leaving the print and while being placed on the sensor also matter. The proposed
components take into account the spread of the fingerprint, the formation of the ridges and
valleys, as well as the duration and angle.

1.1. Contributions

The main contributions of this article are:

1. a novel micro-behavioral-based measurement component in fingerprint-based bio-
metric systems to improve their resistance to sensor-level fingerprint attacks such as
constructed and coerced fingerprints.

2. a behavior-based fingerprint liveness detection.
3. a behavior-based fingerprint willingness detection.
4. a classification model that determines if a fingerprint is legitimate.
5. a classification model that determines the willingness level of a user.
6. a placement of the proposed components in fingerprint-based biometric systems.
7. evaluating the potential of the proposed micro-behavioral component in detecting

attacks on sensor-level fingerprint systems.

1.2. Scope

The scope of this paper covers providing fingerprint-based biometric systems with two
micro-behavioral components that enhance the results of the liveness detection and detect
if a user is willing to provide the fingerprint to ensure that the provided fingerprint does
not just match in terms of shape with the stored template but also passes the behavioral
characteristics of the temporal micro-behavioral measurement while placing the fingerprint
on the sensor surface.
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The remainder of this paper is organized as follows: the literature review is provided
in Section 2. In Section 3, the hypotheses and objectives are proposed. In Section 4, the
system design is proposed and detailed. In Section 5, the methodology, experiment design,
and data analysis are given. In Section 6, the results are provided. In Section 7, the results
are discussed, and the limitations are given. Finally, the conclusion and future work are
provided in Section 8.

2. Literature Review

Fingerprint-based authentication systems are robust against various biometric-based
attacks due to the various features that can be detected in a single fingerprint, as well as the
research conducted to strengthen biometric technologies. Fingerprints, in particular, have
seen worldwide acceptance due to the advancements in technology that make them one
of the best choices for human authentication. Currently, smartphones include fingerprint
technology to unlock the smartphone, because biometric-based technology does not require
information to be remembered or even typed. The broad adoption of the technology has
made it subject to numerous attacks intending to gain access to the sensitive informa-
tion stored on smartphones and to impersonate an individual by fooling the biometric
system. Fingerprint-based technologies cannot be forgotten or lost, as contrasted with
other authentication systems, but introduce a new realm of vulnerabilities that need to be
addressed. Fingerprint technologies have shown a great deal of strength against various
attacks, but according to [8–10], they can still be deceived at the sensor level, where an
attacker presents a sample that might be fake or forces a user to provide their biometric
trait. Various approaches have been proposed to combat the two sensor-level attacks, fake
samples and coercion, as detailed in the next two subsections.

2.1. Liveness Detection as Sensor-Level Attack Mitigation in Fingerprint-Based Systems

Liveness Detection (LD) technologies have been proposed to combat the use of fake
or decapitated fingerprints to ensure that the presented fingerprint is alive and authentic.
The authors in [11] used digitized statistical image features with sampling from Gaussian
distribution to detect fake fingerprints as a method for liveness detection. They concluded
that the points from the center of the fingerprint present more information to help detect a
fake fingerprint than the pixels from the edge. As a result, they were able to improve the
traditional digitized statistical image feature from 85% to 91% accuracy.

The authors in [12] used joint time frequency analysis to detect a fake fingerprint.
They tested a profiling approach that reached 90% accuracy, a wavelet-based approach
using a Daubechies wave that reached 81% accuracy, and a cascaded system reaching 100%
accuracy in differentiating between a live fingerprint and a silicon one.

Other researchers used convolutional neural networks (CNN) to detect fake finger-
prints. In [13], the authors used CNN to evaluate the LivDet 2019 database, which is a
liveness detection competition that includes 2000 live and fake fingerprints, reaching 95%
accuracy. The authors in [14] also used CNN with an enhancement, reaching 98% in terms
of accuracy in differentiating between fake and real fingerprints. Further, the authors in [15]
used Slim-ResCNN applied to the LivDet 2017 database and reached 95.25%.

An evaluation of liveness detection-based software was carried out by [16] using
CNN and local binary patterns, reaching 95.2% accuracy. Moreover, a density-connected
CNN was used and optimized using a genetic algorithm to achieve a liveness detection
rate reaching a 98.22% accuracy [17]. The authors in [18] also used CNN on the LivDet
2015 database and reached 95.5% accuracy based on 50,000 fake and real fingerprints.
Finally, the authors in [19] used a template-probe CNN on the LivDet 2015 database,
reaching 97.24% accuracy in differentiating between real and fake fingerprints.

Various other approaches have been proposed to detect liveness in a fingerprint, in-
cluding using a score-level fusion [20], reaching 96.88% accuracy, using automatic template
updating using the fusion of ECG and Fingerprint [21], reaching 97.4% accuracy, using
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a two-layer parallel SVM network based on aggregated local descriptors [22], reaching
95.32% accuracy, and using SVM [23], reaching 100% accuracy.

Table 1 summarizes the methods described in the literature and the accuracy reached
in differentiating between fake and real fingerprints.

Table 1. Summary of methods described in the literature and the accuracy achieved for Liveness Detection.

Method Accuracy Ref.

Binarized statistical image feature with sampling from Gaussian distribution 91% [11]
Joint time frequency analysis 100% [12]

CNN 95% [13]
CNN-Enhanced 98% [14]
Slim-ResCNN 95.25% [15]

CNN 95.2% [16]
Density-connected CNN 98.22% [17]

CNN 95.5% [18]
Template-probe CNN 97.24% [19]

Score-level fusion 96.88% [20]
ECG Fusion 97.4% [21]

2-Layer Parallel SVM 95.32% [22]
SVM 100% [23]

The literature documents a high accuracy in differentiating between fake and real fin-
gerprints using various approaches. However, none of the previous approaches examined
the analysis of the micro-behavior during fingerprint placement to detect if a fingerprint is
fake or real.

2.2. Approaches for Fingerprint-Based Coerced User Attacks Detection on the Sensor Level

Although biometric systems provide convenience and a high level of security, and be-
cause the presentation of the biometric features is not always subject to a user’s acceptance
or denial when compared to knowledge- or possession-based authentication mechanisms,
users are subject to coercion, wherein a user, at gunpoint, is forced to present their finger-
print to provide an attacker access. The research community provided various solutions to
address this specific sensor-level attack.

The authors in [10] provide a general overview of coercion detection in biometric
systems and indicate that there are three techniques that can be used to detect coercion:
involuntary, where a system automatically detects coercion based on analyzing the user’s
behavior, a voluntary technique where a user provides indications of coercion, and environ-
mental techniques, where cameras or proximity sensors detect multiple individuals close to
an authentication system. The authors further detail several considerations when designing
a coercion detection system, such as performance implications, where systems require more
than 15 min of gathered data to determine coercion. The authors state that lying, stress, and
fear are the primary emotions that accompany coercion. However, the accuracy of detecting
a lie, or stress and fear, has a low accuracy of 71% and 82%, respectively. Other research
has reached 90% accuracy in detecting these emotions [24]. The other consideration is
the diversity of operating devices and their configurations that impact the accuracy of a
coercion detection system, as well as cultural, medical, and user acceptance for gathering
data to detect coercion.

One of the novel techniques for detecting coercion is the tangible key technique (TKT),
where a user can trigger a coercion detection by pressing a button. The other techniques
involve skin conductivity responses to detect a user’s emotions, such as stress and fear.
The third technique is the intentional false authentication (IFA), which is widely adopted
by banks, where a user clicks or writes their password reversed or authenticates using
another fingerprint to trigger the coercion detection system. Finally, there is the facial micro-
movement (FMM) method, where micro-movements caused by facial micro-expressions
are observed to detect fear.
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Further, the authors in [25] provided an analysis of coercion resistance in a wiretapping
coercer by analyzing changes in skin conductance while authenticating to detect the change
in the user’s emotion as a sign of coercion.

Although numerous valid countermeasures were proposed to safeguard a system from
sensor-level attacks, such as developing liveness detection, coercion, where a legitimate
user is forced to place their fingerprint on the sensor, has not been widely covered. The
convenience of current fingerprint technology, by authenticating a legitimate user in less
than a second, has led to the possibility of placing the sensor on the legitimate user’s finger
to gain illegitimate access.

Even though the literature shows a tremendous effort to provide a reliable LD and
coercion detection metrics especially with the new approach of detecting fingerprints in a
touchless way [26] that was proposed by Priesnitz et al., none of the previous works used
the micro-behavior characteristics that are unique to the user and which differ from a fake
fingerprint and are different when a user is forced vs. willing to provide their fingerprint.
DeutschmannNeil et al. [27] and Marc et al. [28] were issued US patents that allow for
creating a behavioral profile of a user by collecting their acceleration, gryo, and gps data for
the first and facial cues and the user voice to create a user profile to determine if a legitimate
user is the one placing their fingerprint; however, the micro-behavior of the fingerprint
itself has not been tested.

The next section details the hypotheses and objectives to provide a behavioral-based liveness
detection and a metric for coercion detection from the sensor level for testing and evaluation.

3. Hypotheses and Objectives

Attacks on the sensor-level of a fingerprint-based biometric system have been ad-
dressed by introducing Liveness Detection (LD); however, attackers have developed mea-
surements to fool and bypass the LD component [29]. Therefore, there is a demand to
introduce a new metric that strengthens the LD component to reduce the success of sensor-
based attacks. Further, the detection of a user’s willingness in order to prevent coerced
fingerprints as an attack on sensor-level fingerprint systems has not been addressed. Be-
cause a behavior-based measurement on the micro-level, where an attack on the sensor
becomes harder to achieve, may serve that purpose, we developed the following hypothe-
ses to combat the threat and make the sensor level of a fingerprint-based biometric system
more robust.

3.1. Hypotheses

The main hypothesis is that “the micro-behavioral measurement of the fingertip as it
is placed on the touch-based sensor surface over time until a fingerprint is fully formed is a
valid mechanism to verify whether the fingerprint is fake or real and if a user is coerced”.

The rationale of the main hypothesis is that fingertips, when placed on the surface
of the touch-based sensor, possess skin characteristics and fingertip formations that are
different from gummy fingers made from different materials such as gelatin, Play-Doh, 3D
materials such as nylon, polypropylene, thermoplastic elastomers (TPE) or thermoplastic
polyurethane (TPU), or simply silicone. The spread of the fingerprint on the sensor surface
over time, the contour shape changes, the angle, the speed, the contact locations, and the
size are expected to differ when compared with other materials, when placed by someone
other than the legitimate user, or when a legitimate user is coerced to place their fingerprint
in the sensor.

To support the main hypothesis, we developed a supporting hypothesis that states
that “skin and known fake fingerprint material show a difference when compared with
each other at different times”. Additionally, we developed a second supporting hypothesis
that states that “a fingertip, when placed by the legitimate user, shows a difference when
compared with a fingertip placed by an attacker, whether using a fake fingerprint or forcing
the legitimate user to place their fingertip on the sensor”.
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3.2. Objectives

To test the hypotheses, we developed the following objectives

1. To design the micro-behavioral fingerprint analysis system
2. To test the first supporting hypothesis of whether the micro-behavior of fingertips,

when placed on the sensor surface over time, shows a difference between skin and
other materials

3. To test the second supporting hypothesis of whether the micro-behavior of a finger-
tip, when placed on the sensor surface over time, shows a difference between the
legitimate user placing their fingertip and an attacker using a constructed fingerprint

4. To test the second supporting hypothesis of whether the micro-behavior of finger-
tips, when placed on the sensor surface over time, shows a difference between the
legitimate user placing their fingertip and a coerced but legitimate user

5. To evaluate the micro-behavioral fingertip analysis system in terms of its capability to
improve liveness detection and the detection of the willingness of fingerprint placement

6. To test the main hypothesis of whether a micro-behavioral fingertip analysis system
in a fingerprint-based biometric system can mitigate attacks on the sensor level with a
fake fingerprint or coerced user

4. Micro-Behavioral Fingerprint Analysis System (MFAS) Design

Advancements in sensing technology have made it possible to detect micro-movements,
multiple movements measured at the micro-level, and, therefore, micro-behavior, that is,
unintentional and uncontrolled movements [30,31]. This capability allows for designing
a micro-behavior fingerprint analysis system (MFAS) to strengthen the sensor level of a
fingerprint-based biometric technology by detecting fake or coerced fingerprints and to
support the hypotheses of this research work.

The micro-behavioral fingerprint analysis system (MFAS) consists of seven compo-
nents and six features, as depicted in Figure 2:
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Figure 2. The MFAS steps to detect a fake vs. a real and a willing vs. a coerced fingerprint.

1. Sensor: The MFAS system is composed of a Samsung Note 20 smartphone camera
placed under a clear thin glass surface with 330 dots per inch (dpi) resolution and
960 images per second.

2. Fingerprint capture: The capture component is an automated trigger to capture a print
once a fingertip is in the scan frame, prior to touching the glass surface. It captures
960 images per second for 6 s. It captures the first touch of the fingertip on the sensor
until the fingerprint is fully formed, with no changes, and then keeps on capturing for
another 2 s while the fingerprint is stationary.
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3. Image enhancement: The component enhances all captured images by applying
smoothing, segmentation, enhancement, digitization, and then thinning to allow the
system to detect the minutiae on the fingerprint. This step is important in capturing
and analyzing the formation of the ridges over time.

4. Micro-behavioral-based Fingerprint Feature Extraction component: It detects six
features from the captured images while a fingerprint is being formed on the surface
of the sensor:

a. The sequence of features appearing over time and the location of each feature
b. Duration of fingerprint formation, acceleration between each captured image,

and standard deviation
c. The angle of the fingerprint formation
d. Contour shape changes detection
e. Fingerprint direction of changes
f. Fingerprint micro-movement while stationary

Each of the features will be detailed in the data analysis section of this article and a list
of abbreviations is provided in Abbreviations.

5. Micro-behavior model creation: The MFAS then captures the feature vector and creates
a one-to-one behavioral matching model for the user.

6. Matcher: The matcher component is fed the stored behavioral model and the newly
created behavioral model and returns a matching score.

7. Decision maker: The decision-maker component allows the user to pass to the next
checkpoint on the fingerprint-based biometric system if the matching score of micro-
behavior is above a specific threshold or rejects the sample on a non-matched behavior
basis, which could be due to a fake fingerprint or a coerced submission of a fingerprint.

The seven components in Figure 2 depict the micro-behavioral fingerprint analysis
system (MFAS), as well as the detected features, to build the fingerprint behavioral model
for matching. Figure 3 depicts a typical fingerprint-based biometric system equipped with
a liveness detection system, where the liveness detection system stands between the sensor
and the feature extractor and can reject a fingerprint if it is fake prior to sending the data
from the sensor to the feature extractor. Figure 4 depicts the placement of the proposed
micro-behavioral fingerprint analysis system (MFAS), where it stands between the sensor
component and the typical liveness detection system and can reject a coerced fingerprint
placement prior to forwarding the fingerprint details to the feature extractor.
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evaluate the potential of the system to detect fake or coerced fingerprints after building a
dataset of fake vs. real fingerprints and willingness vs. coerced datasets.

5. Methodology, Experiment Design, and Data Analysis
5.1. Methodology

To achieve Objectives 2 through 6, test the hypotheses, and provide a quantitative
analysis and evaluation of the proposed MFAS system and its capability in detecting if a
fingerprint possesses the behavioral characteristics of a legitimate user while providing the
fingerprint and that the fingerprint is provided voluntarily and willingly and is not coerced,
we elected to use human-based experimentation to collect the behavioral characteristics,
analyze them in accordance with the MFAS system, and then report the results.

5.2. Experiment

The experiment follows a between-subject design, where subjects are divided into two
groups: legitimate users and attackers, where legitimate users provide their fingerprints
and attackers create a gummy finger using play-dough to try and deceive the system. Then,
a within-subject design is used by requesting legitimate users to provide their fingerprints
with less of a willingness to evaluate the users’ willingness using the MFAS system. All
behavioral data, as well as the fingerprints, are collected and then fed into the MFAS system
for analysis, identifying each group in the process.

5.2.1. Experiment Goal

The main goal of the experiment is to provide reliable data that enable the evaluation
of the proposed MFAS system, achieve the objectives, and test the hypotheses. It is designed
so that legitimate users’ behavioral characteristics and fingerprints can be collected, and
then attackers who have access to the fingerprint try to attack the system by exploring two
cases, with and without the MFAS system, and report the results. Further, the willingness
of the legitimate users is evaluated using the MFAS system to detect if a user is coerced or
willing to provide their fingerprint.

5.2.2. Subjects

In a controlled environment, 24 female and male subjects aged between 20 and 47 years
old participated in the experiment. All subjects were right-handed and had no fingerprint
concerns, such as scars or not having a clear fingerprint, which might have impacted the
reliability of their fingerprint acquisition. The subjects were informed that a fingerprint
system was being evaluated, and the one who can trick the system will get a gift card. The
rationale of the award was to motivate participants to try their best to fool the system and
to create motivation when participating, which is important to compare willingness to
provide a fingerprint vs. unwillingness.

5.2.3. Procedure and Discussion

Subjects began by signing a consent form that stated that they were asked to enroll in
a fingerprint-based biometric system and then verified their identity by providing their
fingerprint. This step was important in testing the capability of the system in matching
fingerprints correctly. Participants were then requested to create a fake fingerprint for
themselves and to try to dupe the system. Some Play-Doh was given to each participant,
and they were taught how to reconstruct their fingerprint from a latent image remaining
on a glass surface obtained when they enrolled. Each participant was then asked to place
the fake fingerprint on the sensor. The fake fingerprints were then randomly assigned to
other participants to try and fool the system. In this case, a participant enrolls, creates a
fake fingerprint, and tests it. If it is successful in deceiving a traditional fingerprint-based
biometric system, we assign the fake fingerprint to an attacker to try to fool the system by
using the assigned fake fingerprint. This is important in evaluating the MFAS functioning
between subjects, even when using the same fake fingerprint.
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We then informed each participant of the privacy implications if one’s fingerprint
details are revealed, since anyone can then reconstruct a fake fingerprint based on theirs
and then impersonate them using the fake fingerprint. Then, we told the participants that
they now needed to allow us to publish their fingerprint in our research paper; if permission
was denied, their participation would not be approved. This step was important in creating
the unwillingness of providing a fingerprint and then comparing it with the first fingerprint
they provided when enrolling and hoping to win the gift card. After the participants
provided their fingerprints again, we informed them that no fingerprint would actually be
published but that this was done to create the state of unwillingness and compare it with
the opposite state of willingness which was needed to build a system that prevents coerced
fingerprints in the MFAS.

By the end of the experiment, we obtained the necessary fingerprints and the micro-
movement characteristics of the following conditions:

1. Enrollment with willingness behavior
2. Fake fingerprint used by the legitimate user
3. Fake fingerprint used by an attacker
4. Unwillingness fingerprint behavior

In each of the four cases, participants participated once with a dry fingerprint and then
with a wet fingerprint to detect if the skin condition would affect the results of the MFAS.
They then participated again after we placed a drop of water on the glass surface, in dry
skin and wet skin conditions, to see if the surface condition affected the results of the MFAS.
A total of four trials were performed per participant. To ensure that the sequence of the
conditions did not affect the results of evaluating the MFAS, we randomized the sequence
of the conditions per each participant. Some started with dry skin and a dry surface, while
others started with wet skin and a wet surface.

The participation in each of the conditions collected the overall shape of the fingerprint
and the six features listed in the MFAS design, including the following:

1. The sequence and location of the features appearing over time
2. The duration of fingerprint formation, the acceleration between each captured image,

and the standard deviation
3. The angle of the fingerprint formation
4. Contour shape changes detection
5. Fingerprint direction of changes
6. Fingerprint micro-movement while stationary

Figure 5 depicts the smartphone and glass surface setup and the fingerprint capture
over time. Table 2 summarizes the trials per participant in each of the conditions where,
during the unwillingness trials, 17 out of 24 participants participated hesitantly.
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Table 2. Trials per participant in each of the conditions.

Trial
Condition

Dry Skin
Dry Surface

Dry Skin
Wet Surface

Wet Skin
Dry Surface

Wet Skin
Wet Surface

Enrollment with willingness behavior 24 24 24 24
Fake fingerprint used by the legitimate user 24 24 24 24

Fake fingerprint used by an attacker 24 24 24 24
Unwillingness fingerprint behavior 17 17 17 17

Total trials 89 89 89 89

5.3. Data Analysis
5.3.1. Data Analysis for a Traditional Fingerprint-Based Biometric System Using the
Experimental Data

After collecting the behavioral data from the 24 participants in all four trials, enroll-
ment occurred, which involves a willing fingerprint placement, testing their fake fingerprint,
an attacker trying to fool the system with another’s fake fingerprint, and, finally, the un-
willingness of providing a legitimate fingerprint. All of the trials were performed under
four conditions using different skin and surface conditions. The dataset was then set and
ready for analysis to test how a traditional fingerprint-based biometric system, with and
without the MFAS, behaved. We then reported the results.

A traditional fingerprint-based biometric system only needs the full images of the
fingerprints, fully formed, without the behavioral measurements. It works by enhancing the
fingerprint images by applying smoothing, segmentation, enhancement, and digitization and
then thinning and extracting the fingerprint features, such as bifurcation and termination.
The more features are used, the more accurate the system is and the more resources and
time it needs to match a single fingerprint. Therefore, we only trained a neural network
on bifurcation and termination with the directions and locations in each fingerprint. The
template was then stored in a database, taking advantage of the first trial for all participants.
All fingerprints were enrolled into the database successfully with 100% accuracy.

Next, we used the fake fingerprint images that were created by legitimate users and
placed on the sensor. Only fully formed fingerprints were extracted and enhanced and
then matched against the enrolled fingerprint. The same was carried out with the fake
fingerprints that were used by the attackers, and the same analysis was performed on the
unwilling fingerprint activity carried out at the end of the experiment, which was matched
against the stored fingerprint template.

The analysis was conducted to test whether the dataset is good enough for a traditional
fingerprint-based biometric system and to see if any of the fake fingerprints could gain
access for the attackers.

The results show that all 24 participants’ fingerprints were enrolled successfully into
the system and were verified when providing unwilling fingerprints. This meant that,
regardless of whether a user is willing to provide their fingerprint or is forced to do so,
the system still provides access, as the fingerprint is the same in each condition. Rolling
out in overly wet and overly dry conditions, the system still gives 100% accuracy in
matching the fingerprints. In the case of fake fingerprints, an average of 93.5% were able to
authenticate using their fake fingerprints, and an average of 95.5% were able to authenticate
using another’s fake fingerprints in optimal wet conditions. Only when the skin or the
fingerprinting surface is wet do the fingerprint features become visible, since overly dry
or overly wet conditions make the ridges of a fingerprint nonvisible. Figure 6 depicts the
impact on the skin and surface conditions for the visibility of a fingerprint. These results
show how important it is to incorporate liveness detection to safeguard a fingerprint-based
biometric system that can be attacked even with simple Play-Doh. Table 3 shows the results
per condition.
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Table 3. Results of a traditional fingerprint-based biometric system with no MFAS.

Trial Condition Average

Dry Skin
Dry Surface

Dry Skin
Wet Surface

Wet Skin
Dry Surface

Wet Skin
Wet Surface All Optimal

(One Wet)

Enrollment with willingness behavior 79% 100% 100% 83% 90% 100%
Fake fingerprint used by the legitimate

user 61% 96% 91% 64% 78% 93.5%

Fake fingerprint used by an attacker 64% 94% 97% 65% 80% 95.5%
Unwillingness fingerprint behavior 77% 100% 100% 81% 89% 100%

The above results show how a traditional system can behave against the fake and
coercion-based attacks on the sensor of a fingerprint-based biometric system and show that
the system authenticates an attacker as being legitimate. It also authenticates a legitimate
user, whether they are willing or coerced to provide a fingerprint. The next step is to
provide the micro-behavioral data using the MFAS to test its capability to protect the users
in the case of fake fingerprints or coerced conditions.

5.3.2. Data Analysis for a Traditional Fingerprint-Based Biometric System Using the
Experiment Data with MFAS

Each of the four conditions of the experiment for the four skin conditions is analyzed
according to the MFAS algorithm in this section. First, touch is detected once a border of a
fingerprint is present on the glass surface as an initial touch. In all, 960 images per second for
5 s for each of the fingerprints and 1920 images were collected per participant per condition
in the four conditions of enrollment. These included fake fingerprints tested by a legitimate
user, fake fingerprints tested by an attacker, and coerced fingerprint placement in the
four skin and surface conditions. We then applied smoothing, enhancement, digitization,
and thinning for every collected image. Each of the steps is performed in sequence to
enhance the quality of the images for extracting fingerprint features such as bifurcation
and termination and their angles and locations. Figures 7–9 depict the enhancement of the
fingerprint images. Although this may seem resource-consuming, it was necessary to have
as much information as possible and then test the system with less data and evaluate the
impact on the system’s accuracy and acceptability.
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Figure 9. Digitization and thinning.

Smoothing was carried out to remove any scars or dirt so the visibility of ridges is
clear, as depicted in Figure 7.

Further enhancement includes filling gaps in ridges, separating parallel ridges, and
removing noise using adaptive contextual filters. We used a frequency and orientation-
selective Gabor filter, as depicted in Figure 8.

Digitization was used to remove gray scale pixels using an adaptive threshold where
an eight-pixel representation is reduced to one pixel. Then, thinning was applied to
facilitate the work for minutia detection, where the width of a ridge is reduced to one pixel,
as depicted in Figure 9.

All of the bifurcation and termination features of a fingerprint are extracted, along
with their locations and directions. After the features extraction was carried out, the system
reported the sequence of detected features as they appeared. This shows the usual points in
a fingerprint that a user starts with and the sequence of those features while being placed
on the glass surface when providing their fingerprint. It is hypothesized to be unique
when compared to an attacker and serves as a behavioral feature to differentiate when
a user is coerced or willing to provide their fingerprint. Figure 10 depicts the detected
features at first touch, mid-touch, and final complete fingertip touch on the glass surface,
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and it clearly shows the gradual appearance of fingerprint features over time. However,
instead of capturing only three instances, all 960 images per second for 5 s were analyzed
to provide a detailed appearance of the sequence of fingerprint features and the location
and orientation of each feature, bifurcation, and termination of ridges, where each shape,
circle triangle or square, depicts the an instance of the fingerprint where new fingerprint
features were detected.
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Subsequently, the duration between each feature appearing and the newly discovered
other features are computed. This allows for computing the acceleration of the fingerprint
as it is placed on the glass surface and allows for detecting the first touch-point and the
spread of the fingerprint over time, along with at what speed and acceleration. Then, the
standard deviation of time between each feature discovered is computed to determine how
the deviation changes as the fingerprints are placed on the sensor. Is it placed smoothly with
no deviation, indicating comfort or the robotic, automated placement of a fingerprint, or does
it fluctuate? The answer may assist in detecting whether a fingerprint is being placed by a
legitimate user or an attacker, or whether it is placed with willingness or coercion.

This allows for detecting whether the angle of fingerprint formation is from top to
bottom or from left to right, noting the specific degree with a predefined threshold that
can be adjusted to improve the system’s accuracy so that it is not so specific that it denies
a legitimate user access and not so general that it allows an attacker access. The angle of
formation is detected by comparing the flow of discovered new features as a fingerprint is
being placed on the glass surface. Changes in the angle of formation indicate if a fingerprint
starts from top to bottom but then slides to the right and left.

These detected data points are essential in forming the micro-behavioral model for each
user to then compare it with fake fingerprints by the same user or an attacker, or when
comparing the willingness-based fingerprint placement against coerced fingerprint placement.

The contour of the fingerprint as it is being placed on the glass surface is then computed
over time, and the changes in the shape of the contour per frame are computed. This
provides the detail of the fingerprint surface shape as well as the detailed micro-behavior
of the user. Figure 11 depicts the fingerprint contour detection over time.

Finally, the system analyzes the final 1920 frames after a fingerprint is completely
placed on the glass surface and reports the micro-movements’ directional changes. A
fingerprint that is completely still, with no changes at all, may be considered a sign of a
fake fingerprint.

If this is the first time a user is using the system, the system creates a new template of the
overall fingerprint ridge features and creates the micro-behavioral model. It then stores them
in the database with the user’s ID. If the user is authenticating their identity, the system pulls
the two templates—the fingerprint ridge features and the behavioral model—and compares
them with the newly submitted fingerprint shape and behavioral model.
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For the creation of the ridge-based features template, we stored the ridge type, bifurca-
tion or termination, and the x, y coordinates of the ridges, as well as the angle of the tangent
line on the x-axis ridge following a typical fingerprint template, as per the FBI. The type is
given 1 bit and the location is given 18 bits of x and y values. The direction of the ending
is given 8 bits, for a total of 27 bits, following the Automated Fingerprint Identification
System (AFIS). A typical number of 10–100 features is usually detected in each fingerprint,
which is sufficient to differentiate individuals. For matching the ridge-based features, we
used correlation-based matching, where the alignment of the stored template and the new
fingerprint are fed into the system and the correlation is computed. For the creation of
the micro-movement behavior template, all micro-movement behavior, during and after a
fingerprint is provided, is fed into a One Class Support Vector Machine (OCSVM) to create
the class. For matching the micro-movement behavior, we used the OCSVM to evaluate if
the new behavior matches the class of the stored behavior template.

If the ridge-based features match the submitted fingerprint, the matching of the micro-
movement behavior of the fingerprint is accomplished if it passes a pre-defined threshold,
thus authenticating the user’s identity and providing access.

We concluded with four datasets:

1. A legitimate user providing their fingerprint.
2. A legitimate user providing their Play-Doh fingerprint.
3. An attacker providing the legitimate user’s Play-Doh fingerprint.
4. A legitimate user unwillingly providing their fingerprint.

All of the datasets are in four different conditions:

1. Dry surface, dry skin.
2. Dry surface, wet skin.
3. Wet surface, dry skin.
4. Wet surface, wet skin.

A total of 16 datasets were created, after being analyzed by the MFAS, to achieve the
objectives of this research work and support the hypotheses. The next section provides the
results obtained.

In summary, the MFAS system enhances all temporal images as they are collected and
then extracts the six features in all images. The MFAS then matches the newly acquired
micro-behavioral features with those already stored and returns the results. Figure 12 depicts
the overall MFAS data analysis as a fully automated fingerprint-based biometric system from
the start of fingerprint placement until a decision of access is granted or denied.
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6. Results

In this section, the experiment results are reported using all 16 datasets created after
applying the MFAS data analysis component. Objectives 2 through 6 are achieved, and the
hypotheses’ results are provided, showing that the MFAS system is capable of detecting a
fake fingerprint and a coerced fingerprint placement using the proposed micro-movement
behavioral characteristics. A discussion on the findings is then provided.

MFAS Results

The results reported on the traditional fingerprint system, using ridge-based matching,
show that traditional systems are not capable of detecting fake fingerprint placement by
an attacker, where 95.5% of all fake data in optimal sensor and finger wet conditions
are authenticated as being legitimate. Neither does it provide the capability of detecting
coerced fingerprint placement given that 100% of these fingerprints are authenticated as
being legitimate, as shown in Table 3, where a legitimate user at gun-point is forced to
provide their fingerprint to authenticate and provide access to an attacker.
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After analyzing the data using the MFAS, where the micro-movement behavior is cap-
tured while a fingerprint is being placed on the glass surface, the system shows a reduction
in fake fingerprints being categorized as legitimate and a reduction in the percentage of
matching when a user is willing to or coerced into provide their fingerprint. Table 4 shows
the results of the 16 datasets while using the OCSVM classifier.

Table 4. Results of a traditional fingerprint-based biometric system using MFAS with OCSVM
micro-movement behavior matching.

Trial Condition Average

Dry Skin
Dry Surface

Dry Skin
Wet Surface

Wet Skin
Dry Surface

Wet Skin
Wet Surface All Optimal

(One Wet)

Enrollment with willingness behavior 88% 96% 94% 91% 92.25% 95%
Fake fingerprint used by a legitimate user 68% 72% 71% 62% 68.25% 71.5%

Fake fingerprint used by an attacker 52% 57% 61% 55% 56.25% 59%
Unwillingness fingerprint behavior 59% 64% 67% 56% 61.5% 65.5%

The results show that the MFAS can differentiate between real skin and Play-Doh, even
if it is used by a legitimate user, since the spread of the skin has different micro-behavioral
characteristics when compared to the user’s skin. This has been shown in all 4 skin and
surface dry and wet conditions, which achieves the second objective, which states “To test
the first supporting hypothesis: if micro-behavioral fingertips, when placed on the sensor
surface, over time show a difference between skin and other material”, and supports the
first supporting hypothesis, which states “Skin and other known fake fingerprint material
show a difference when compared with each other”, with a difference of 20% in dry skin–
dry surface, 24% in dry skin–wet surface, 23% in wet skin–dry surface, and 29% in wet
skin–wet surface, an overall average of 24%, and an optimal condition average of 23.5%
between real fingerprints and Play-Doh-based fingerprints used by the legitimate user.

The results also show that the MFAS is capable of differentiating between the legitimate
user placing their fingerprint vs. an attacker using a Play-Doh-based fingerprint, with a
difference of 36% in dry skin–dry surface, 39% in dry skin–wet surface, 33% in wet skin–dry
surface, and 36% in wet skin–wet surface, an average difference of 36%, and an average
optimal condition of 36%. The results achieve the third objective, which states “To test the
second supporting hypothesis of whether a micro-behavioral fingertip, when placed on
the sensor surface, over time shows a difference between the legitimate user placing their
fingertip vs. an attacker using a constructed fingerprint”.

Further, the results show that the MFAS can differentiate between when a user provides
their fingerprint willingly or unwillingly, with a difference of 29% in dry skin–dry surface,
32% in dry skin–wet surface, 27% in wet skin–dry surface, and 35% in wet skin–wet surface,
an average difference of 30.75%, and an optimal condition average of 29.5%. The results
support the fourth objective, which states “To test the second supporting hypothesis of
whether micro-behavioral fingertips, when placed on the sensor surface, over time show a
difference between a legitimate user placing their fingertip and a coerced legitimate user”.
Together, the third and fourth objectives’ results support the second supporting hypothesis,
which states that “A fingertip, when placed by the legitimate user, shows a difference when
compared with a fingertip placed by an attacker, regardless of whether the attacker is using
a fake fingerprint or forcing the legitimate user to place their fingertip on the sensor”.

The overall results suggest that the MFAS is capable of detecting the liveness factor
of the fingerprint or if a user is coerced to submit their fingerprint by using the micro-
movement behavior while a fingerprint is placed on the sensor. This achieves the fifth
objective, which states “To evaluate the micro-behavioral fingertip analysis system in terms
of its capability to improve liveness detection and detect the willingness of fingerprint
placement”. Further, the results show that the MFAS is capable of mitigating attacks on the
sensor level with a fake fingerprint or a user being coerced to submit their fingerprint and
archives the sixth objective, which states “To test the main hypothesis of whether a micro-
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behavioral fingertip analysis system in a fingerprint-based biometric system can mitigate
attacks on the sensor level with a fake fingerprint or coerced use”. Finally, the results show
promise in terms of the capability of the MFAS in supporting the main hypothesis, which
states that “Micro-behavior measurement of the fingertip as it is placed on the touch-based
sensor surface over time until a fingerprint is fully formed is a valid mechanism to verify if
the fingerprint is fake or real and if a user is coerced”.

Figure 13 depicts the overall results, with and without the MFAS, in the four scenarios.
It clearly shows a decrease in the matching score between an attacker using a fake finger-
print and a legitimate user and between a legitimate user when willing to provide their
fingerprint and when being forced to do so.
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Figure 13. The overall results, with and without the MFAS, in the four scenarios, where 1 is a
legitimate enrollment, 2 is for a fake fingerprint used by the legitimate user, 3 is for a fake fingerprint
used by an attacker, and 4 is for an unwilling submission of a legitimate user’s fingerprint.

The results show that, if the predefined threshold of the micro-behavior matching
component is set to 72%, none of the attacks, whether using a fake fingerprint or forcing a
user to submit their fingerprint, would be successful, thus providing traditional fingerprint-
based biometric systems with a component that can mitigate such attacks.

The MFAS system provides a novel micro-behavioral-based measurement component
in fingerprint-based biometric systems to improve their resistance to sensor-level fingerprint
attacks such as constructed and coerced fingerprints. The micro-behavioral measurement
differentiates between a live fingerprint and a fake fingerprint and differentiates between a
willing and a coerced fingerprint placement, where an OCSVM is used to create a match
between a legitimate fingerprint and a fake fingerprint and a willingly placed fingerprint
and a coerced one. Finally, the micro-behavioral proposed component is placed in a
traditional fingerprint-based biometric system and shows promising results in terms of
improving the liveness detection of a fingerprint using the behavioral measurement and a
promising result in terms of determining if a user is willing to or coerced into providing
their fingerprint.

7. Discussions and Limitations

Although the MFAS shows promising results in differentiating between a legitimate
fingerprint and a fake fingerprint when placed by an attacker and shows a capability in
differentiating between a fingerprint being placed willingly and one coerced into being
placed, the system takes an unacceptable amount of time to authenticate a user. The average
data analysis is over 23 s, 7 s of which are required for the behavior capture and an average
of 16 s of which are required for the data analysis. Therefore, we re-analyzed the data at
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three intervals: the beginning, middle, and last part of a fingerprint placement, which is
equivalent to 1.5 s, on average. This was carried out without the analysis of the 2 s after a
fingerprint is stationary, which reduced the computational time for the analysis to under
5 s, on average. Although this improves the functionality in terms of the time of the MFAS,
it impacts the accuracy of the detection. Table 5 shows the MFAS results after reducing the
number of samples used when analyzing the micro-movement behavior of a fingerprint,
and Figure 14 depicts the overall results after the reduction.

Table 5. Results of a traditional fingerprint-based biometric system using MFAS OCSVM at a reduced
sample size for improving the acceptability of the system.

Trial Condition Average

Dry Skin
Dry Surface

Dry Skin
Wet Surface

Wet Skin
Dry Surface

Wet Skin
Wet Surface All Optimal

(One Wet)

Enrollment with willingness behavior 83% 90% 92% 87% 88% 91%
Fake fingerprint used by the legitimate

user 73% 78% 77% 69% 74.25% 77.5%

Fake fingerprint used by an attacker 59% 62% 68% 57% 61.5% 65%
Unwillingness fingerprint behavior 64% 72% 76% 62% 68.5% 74%
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The results show a reduction in the accuracy of the MFAS; yet, it is still capable of
detecting a fake fingerprint and a coerced user. With a requirement to increase the threshold
to a minimum of 78% instead of 72%, a difference of 6% is required. The trade-off between
security and convenience allows for a faster system that is still capable of detecting the attacks.

It is important to note that the data were not acquired over a long period of time
or with a change in the user’s sitting or standing position, and these factors may have
an impact on the accuracy of the MFAS. However, this research work is meant to show
that the proposed technology shows potential for detecting fake fingerprints and coerced
user attacks using micro-behavior analysis. The system has been tested in a controlled
environment to test and report its capabilities. The MFAS shows promising results, but
it has not been tested in real-life scenarios. Future work is required to strengthen the
technology, as discussed in the future work section.
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Although the authors in [32] proposed a method for detecting the liveness of a fingerprint
by analyzing the skin elasticity, which is the closest to our approach among the other research
studies in the literature, our approach shows a greater depth, a higher accuracy, and the ability
to use the system to detect not just fake fingerprints but also unwilling and coerced placements
of a fingerprint. The proposed method by the authors shows good accuracy in differentiating
between skin elasticity and other materials used for constructing a fake fingerprint, such as
Play-Doh. The correlation coefficient and the signal intensity are computed, as well as the
standard deviation of the fingerprint. The authors used the Fisher Linear Discriminate to
differentiate skin from other materials. They reached an EER of 4.78% when compared with
methods using odor analysis [33] and skin distortion [34,35], which reached EERs of 7.48% and
4.90% respectively, while in MFAS, we reached an EER of 0% for both sensor-level attacks and
fake or coerced fingerprint placements in the controlled environment. While the results are
very promising, further research in real-life settings is required.

8. Conclusions and Future Work

In this paper, a micro-behavioral component has been proposed to combat fake finger-
print attacks as a liveness detection method. Further, willing vs. coerced users providing their
fingerprints have been studied to investigate the proposed system’s capability of detecting
such attacks in comparison with the traditional fingerprint-based biometric systems.

The results support the main hypothesis, which states that “Micro-behavior measure-
ment of the fingertip as it is placed on the touch-based sensor surface over time, until a
fingerprint is fully formed, is a valid mechanism for verifying if the fingerprint is fake or
real and if a user is coerced”. This method has a threshold of 72% accuracy that is required
to match the fingerprint behavior to differentiate between the attacks and the legitimate
user. Further, a reduction in the sample size for evaluation was tested to improve the
system’s acceptability in terms of the amount of time needed for each assessment, reaching
a reduction in MFAS accuracy of 6%; however, it was still enough to differentiate between
the attacks and the legitimate user, with the threshold required to be at least 78% with an
EER of 0% in the controlled environment and created dataset.

Future work includes testing the system over time, with various scenarios, including
sitting and standing, at a specific urgency level, and at a specific stress level, to study the
impact on the behavior model. Further, the system may be tested with a hill-based attack
where a robotic arm-based system mimics the behavior of a user and retries until it reaches
an acceptable level. Solutions to such problems are on limiting the number of trials and not
reporting the matching score; however, studying if a robotic arm may still mimic a user’s
micro-behavior is of interest in attacking and strengthening the MFAS. Further, since the
smartphone used in the experiment was to utilize the slow-motion capability, it is interesting
to explore how one can connect smartphones with traditional fingerprint scanners to detect
coerced fingerprint placement or use smartphones to authenticate individuals utilizing the
slow-motion feature to detect if a user is being coerced to authenticate their identity using
their fingerprint. Finally, a hybrid approach between the current technologies that provide
fingerprint-based coercion detection and MFAS may limit the vulnerabilities in each system
and make it robust. Future work is important in order to strengthen the technology and
further help in understanding its advantages and disadvantages.
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Abbreviations

MFAS Micro-behavioral Fingerprint Analysis System
LD Liveliness Detection
CNN Convolutional Neural Networks
TKT Tangible Key Technique
IFA Intentional False Authentication
FMM Facial Micro-movement
TPE Thermoplastic Elastomers
TPU Thermoplastic Polyurethane
DPI Dots Per Inch
AFIS Automated Fingerprint Identification System
OCSVM One Class Support Vector Machine
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