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Abstract: For the problem that rolling bearing fault characteristics are difficult to extract accurately
and the fault diagnosis accuracy is not high, an unsupervised characteristic selection method of
refined composite multiscale fluctuation-based dispersion entropy (RCMFDE) combined with self-
paced learning and low-redundant regularization (SPLR) is proposed, for which the fault diagnosis is
carried out by support vector machine (SVM) optimized by the marine predator algorithm (MPA).
First, we extract the entropy characteristics of the bearings under different fault states by RCMFDE
and the introduction of the fine composite multiscale coarse-grained method and fluctuation strat-
egy improves the stability and estimation accuracy of the bearing characteristics; then, a novel
dimensionality-reduction method, SPLR, is used to select better entropy characteristics, and the local
flow structure of the fault characteristics is preserved and the redundancy is constrained by two
regularization terms; finally, using the MPA-optimized SVM classifier by combining Levy motion and
Eddy motion strategies, the preferred RCMFDE is fed into the MPA–SVM model for fault diagnosis,
for which the obtained bearing fault diagnosis accuracy is 97.67%. The results show that the RCMFDE
can effectively improve the stability and accuracy of the bearing characteristics, the SPLR-based
low-dimensional characteristics can suppress the redundancy characteristics and improve the ef-
fectiveness of the characteristics, and the MPA-based adaptive SVM model solves the parameter
randomness problem and, therefore, the proposed method has outstanding superiority.

Keywords: characteristic extraction; refine composite multiscale fluctuation dispersion entropy;
self-paced learning and low-redundant regularization

1. Introduction

As a key transmission component in rotating machinery, rolling bearings are widely
used in important fields such as metallurgy, chemical industry, aerospace, and so on,
and are also one of the main sources of failure of rotating machinery in large equipment
such as gas turbines, air compressors, and wind power generation units. The operating
environment of this equipment is mostly high temperature, high speed, heavy load, etc.,
which greatly improves the failure rate of rolling bearings, and its working state also has a
direct impact on the safety of mechanical equipment operation. Cerrada M. et al. [1] pointed
out that nearly 40% of mechanical equipment faults are caused by bearing faults; therefore,
research on fault characteristic extraction and fault diagnosis methods of rolling bearings
is particularly important. Effective fault characteristic extraction strategies and reliable
fault diagnosis models can improve the safety and reliability of mechanical equipment and
reduce maintenance and repair costs.

Traditional linear and stationary signal analysis methods inevitably have some limita-
tions in the analysis of non-stationary and nonlinear signals [2]. Entropy is a measure that
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monitors kinetic mutations and time series randomness, which can not only measure the
randomness between different variables, but also has the characteristics of good stability
and strong noise immunity. Therefore, the entropy method is very suitable for characteris-
tic extraction and characteristic analysis of nonlinear non-stationary signals. The existing
entropy characteristic extraction methods include permutation entropy (PE) [3], approxi-
mate entropy (AE) [4], sample entropy (SM) [5], fuzzy entropy (FE) [6], multiscale entropy
(MSE) [7], multiscale fuzzy entropy (MFE), etc. In 2016, Rostaghi et al. [8] proposed disper-
sion entropy (DE), which can overcome the defect of the original entropy value and detect
the change in noise bandwidth, frequency, and amplitude. In 2018, Hamed et al. [9] further
proposed multiscale dispersion entropy (MDE), which is a fast signal complexity analysis
method. Zhang et al. [10] extracted the MDE characteristics of the bearing and applied them
to the identification of the type and degree of fault. However, the coarse-grained process of
MDE has the problem of information loss. In 2017, Hamed [9] proposed refined composite
multiscale dispersion entropy (RCMDE), and the coarse-grained information loss problem
of MDE was improved. Azami [11] verified that RCMDE has higher stability and reliability
than MDE through Gaussian white noise and 1/f noise and logic diagrams. Refs. [12–14]
applies RCMDE to bearing fault diagnosis and achieves good results. However, the dis-
persion entropy only considers the absoluteness of the amplitude without considering the
relativity; therefore, it is unable to evaluate the fluctuation of the signal. Therefore, the
accuracy and stability of the entropy estimation of bearing fault characteristics can still be
further improved. In 2021, Hong Yang et al. [15] proposed refined composite multiscale
fluctuation-based dispersion entropy (RCMFDE), and it was used for the characteristic
extraction of ship radiation noise in complex marine environments. It can be seen from
the analysis that RCMFDE has good characteristic extraction performance; however, there
are still shortcomings such as characteristic redundancy and high dimension. In addition,
RCMFDE only now, for the first time, being used for bearing fault characteristic extraction,
and its use will provide a good method reference for fault diagnosis.

In this paper, RCMFDE is applied to the extraction of bearing fault characteristics;
however, the extracted entropy characteristics have high dimension, characteristic re-
dundancy, and characteristic noise. Therefore, characteristic dimension reduction and
characteristic selection are particularly important. Manifold learning is a nonlinear dimen-
sional reduction method that can more accurately reflect the nature of things. Commonly
used manifold learning methods are isometric mapping (ISOMAP), local tangent space ar-
rangement (LTSA), locally linear embedding (LLE), linear local tangent space arrangement
(LLTSA), etc. Chen [16] applied the ISOMAP algorithm to the selection of eigenvalues.
Lu et al. [17] applied LTSA for characteristic fusion to reduce redundant characteristics in
high-dimensional characteristic sets. Zhang et al. [18] applied the improved LLE to the
fault diagnosis of bearing data. Chen et al. [19] applied LLTSA to the study of planetary
gear degradation state recognition. However, in the manifold learning method described
above, part of the local structure information is easily lost during the characteristic ex-
traction process, which ultimately affects the expression ability of the extracted main
manifold structure. Since the original local neighborhood graph is destroyed, the neigh-
borhood matrix must be reconstructed, which increases the number of calculations and
leads to a long calculation time [20]. In 2022, Li et al. [21] proposed self-paced learning
and low-redundant regularization (SPLR), which effectively solved the problems of the
above method. SPLR utilizes a self-paced learning framework to exclude outliers, while
introducing regularization terms in the subspace space learning framework to select low-
redundancy characteristics. SPLR considers both characteristic and data diversity, and
preserves the local manifold structure of the data. Therefore, in this paper, SPLR is used
to extract superior RCMFDE low-dimensional characteristics, and the redundancy of the
entropy characteristics is reduced and the reliability is improved.

After obtaining the fault entropy characteristic, it is also necessary to establish the
correspondence between the entropy characteristic and the fault category through the
classifier. Supervised learning refers to the machine learning method of learning predictive
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models from labeled data, in which classified learning is the most common supervised
learning problem. Supervised learning is widely used in fault diagnosis, showing great
advantages for marked sample data [22,23]. In common supervised learning methods, arti-
ficial neural networks can easily fall into local extreme value, and the speed of convergence
is slow. The decision tree is prone to overfitting, ignoring correlations between attributes.
Support vector machine (SVM) is a particularly powerful and flexible supervised learning
model that analyzes data for both classification and regression [24], which has unique
advantages in solving nonlinear and small-sample characteristic data. In addition, the SVM
algorithm has good robustness and generalization, effectively avoiding local extreme value.
Therefore, SVM has been widely used in fault diagnosis research, and SVM has also made
remarkable achievements in other pattern recognition applications. Bie [25] uses resonance
sparse signal decomposition and SVM to accurately identify the faults of gearboxes. Wang
et al. [26] utilized integrated fault characteristics and support vector machines to provide
both high-precision and fast fault detection. However, SVM also has some defects, such as
that the diagnostic accuracy of SVM depends on the selection of kernel function and penalty
parameters. Therefore, the optimization of SVM parameters is particularly important. Com-
mon parameter optimization algorithms include the genetic algorithm and particle swarm
optimization algorithm. Genetic algorithm programming is complex, the search speed is
slow, and the particle swarm algorithm will appear premature and easily fall into the local
optimum. Compared with the traditional SVM optimization algorithm, in 2020, Faramarzi
et al. [27] proposed the MPA algorithm to simulate the behavior between marine predators
and prey. At present, MPA has been widely used in reservoir operations [28], frequency
regulation in multi-microgrid systems [29], multilevel threshold image segmentation [30],
and other fields. The MPA algorithm has faster convergence speed, stronger global search
ability, and higher stability. Therefore, in this paper, MPA–SVM is used to establish the
corresponding relationship between entropy characteristics and fault categories, and the
accuracy of fault diagnosis has been greatly improved.

In summary, in order to solve the problems of bearing fault characteristics being diffi-
cult to accurately extract, high characteristic dimension, and low fault diagnosis accuracy,
we propose a fault diagnosis method based on the RCMFDE-SPLR entropy characteristic
set and MPA–SVM. Firstly, the entropy characteristics of bearings under different fault
states are extracted by RCMFDE; then, a better entropy characteristic is selected by SPLR;
finally, the fault characteristic set is fed into the MPA-optimized SVM model. The proposed
method is applied to the experimental data analysis process of rolling bearing fault diag-
nosis, and the results show that the method can effectively and accurately distinguish the
types of various working conditions. The innovations and contributions of this paper are
summarized as follows:

(1) Aiming at the problem of information loss in the MDE coarse-grained process, a
fine composite strategy is introduced to improve the stability of entropy characteristics.
Aiming at the problem that the characteristic trend of RCMDE is ignored, the fluctuation
distribution mode is introduced, and the accuracy of the entropy value is further improved;

(2) Aiming at the problem that the entropy characteristic dimension is too high and
there is characteristic redundancy, we select effective low-dimensional characteristics
through the latest and most effective SPLR. Those low-dimensional characteristics that
are beneficial for identification are effectively retained, the burden of SVM fault diagnosis
model is further reduced, and the computational complexity of the method is improved;

(3) A fault diagnosis method based on RCMFDE characteristic extraction, SPLR char-
acteristic selection, and MPA–SVM is proposed, which improves the accuracy and effective-
ness of mechanical equipment fault diagnosis.

The rest of this article is arranged as follows: in Section 1, the theory of refine composite
multiscale fluctuations dispersion entropy is introduced; in Section 2, the theory of self-
paced learning and low-redundant regularization is introduced; in Section 3, the marine
predator algorithm and support vector machine theory are introduced; in Section 4, we
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describe the advantages of RCMFDE-SPLR characteristic optimization and the MPA–SVM
fault diagnosis method in detail.

2. Refined Composite Multiscale Fluctuation-Based Dispersion entropy
2.1. Dispersion Entropy

Dispersion entropy simultaneously detects changes in bandwidth, frequency, and
amplitude. The calculation time is also greatly shortened, and the anti-interference is strong,
which can effectively reflect the fault characteristics of the bearing. The univariate time
series with length N is expressed as:

x =
{

xj
∣∣j = 1, 2, . . . , N

}
(1)

(1) Map x to y =
{

yj
∣∣j = 1, 2, . . . , N

}
yj ∈ (0, 1) using the normal distribution function.

yj =
1

σ
√

2π

∫ xj

−∞
e
−(t−u)2

2σ2 dt (2)

where u is the expectation; σ is the standard deviation.
(2) Map each yj to an integer in the range of [1, c] using a linear algorithm:

zc
j = round

(
cyj + 0.5

)
(3)

where round() is the rounding function; zc
j is the j-th element of the classification se-

quence zc.
(3) Use formula (4) to calculate the embedding vector.

zm,c
i =

[
zc

i , zc
i+d, . . . , zc

i+(m−1)d

]
i = 1, 2, . . . , N − (m− 1)d (4)

zc
i = v0, zc

i+d = v1, zc
i+(m−1)d = vm−1 (5)

where m is the embedded dimension, d is the delay, and the total number of dispersion
modes of zm,c

i is cm.
(4) The probability of each dispersion mode rv0v1 ...vm−1 is:

p
(
rv0v1 ...vm−1

)
=

N(rv0v1 ...vm−1)

N − (m− 1)d
(6)

(5) According to Shannon’s definition of information entropy, the dispersion entropy
ED(x, m, c, d) can be expressed as:

ED(x, m, c, d) = −
cm

∑
r=1

p(rv0v1 ...vm−1) ln p(rv0v1 ...vm−1) (7)

2.2. Refined Composite Multiscale Fluctuation-Based Dispersion Entropy

Fluctuation dispersion entropy (FDE) is a normal cumulative distribution function
(NCDF) map that calculates only the first-time scale. Multiscale fluctuation dispersion
entropy (MFDE) is mainly based on FDE for the multiscale research of time series. However,
the MFDE does not take into account that there is a certain relationship between the
segmented data, and it is likely that the statistics will be lost and that there will be some
deviation from the initial position. Compared with MFDE, the preprocessing process of raw
data is further refined in RCMFDE. When the scale factor is τ, the original data are divided
into several non-overlapping segments of length τ and the average of these segments is
taken as the RCMFDE characteristic. The specific steps of RCMFDE are as follows:
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Step 1: The k-th coarse-grained time series xτ
k =

{
xτ

k,1, xτ
k,2, . . . , xτ

k,j

}
is calculated as

follows:

xτ
k,j =

1
τ

k+jτ−1

∑
b=k+τ(j−1)

ub, 1 ≤ j ≤ N
τ

, 1 ≤ k ≤ τ (8)

Step 2: RCMFDE is defined as follows:

RCMFDE(m, c, x, d, τ) = −
(2c−1)m−1

∑
q=1

p(qv0v1 ...vm−1) ln p(qv0v1 ...vm−1) (9)

p
(
rv0v1 ...vm−1

)
is the average value of the dispersion mode probability corresponding

to the coarse-grained sequence, and the expression is as follows:

p
(
rv0v1 ...vm−1

)
=

1
τ

τ

∑
k=1

p(τ)k (10)

where p(τ)k is the probability of the dispersion pattern corresponding to the k-th coarse-
grained sequence at scale τ. The RCMFDE multiscale coarse-grained process is shown in
Figure 1, where τ is set to 2.
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Figure 1. Coarse-grained process of RCMFDE(τ = 2).

RCMFDE averages multiple initial point positions, which can reduce the influence of
initial point positions on entropy and avoid the loss of statistical information.

3. Self-Paced Learning and Low-Redundant Regularization

SPLR integrates a self-paced learning and subspace learning framework, and the
redundancy of characteristics is constrained by two regularization terms and the local
popular characteristics are retained. The SPLR algorithm parameters are shown in Table 1.

Table 1. SPLR algorithm parameters.

Notation Description

X ∈ Rn×d Original data matrix
W ∈ Rd×K Projection matrix
H ∈ RK×d Reconstruction matrix
S ∈ Rn×n Similarity matrix of characteristic space
Z ∈ Rd×d Similarity matrix of data space

tr(X) The trace of X

‖X‖F The Frobenius norm of X, i.e., ‖X‖F =

√
n
∑

i=1

d
∑

j=1
x2

ij

‖X‖p,q The Frobenius norm of X, i.e., ‖X‖p,q =

 n
∑

i=1

(
d
∑

j=1

∣∣∣xij

∣∣∣p)
q
p


1
q
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3.1. Self-Paced Learning Framework

In 2009, Bengio et al. [31] proposed curriculum learning. Based on this, M. Kumar
et al. proposed self-paced learning (SPL) [32], for which the expression is as follows:

min
w,v

E(w, v; λ) = (viL(yi, g(xi, w))) + f (vi, λ) (11)

where vi is the weight of xi, f (vi, λ) is a regularization term, and L(yi, g(xi, w) is the loss
function, which represents the residual between the true label yi and the predicted g(xi, w).

SPLR integrates hybrid regularizers in a self-paced learning framework. Not only can
the importance of samples be distinguished but, also, when the losses of samples xi and xj
are small enough, their weights are set to 1, which tolerates small errors. The expression of
the hybrid regularizer and the corresponding solution are as follows:

f M(v; λ, γ) = γ2

v+γ/λ ,

v ∗ (λ, γ; l) =


1, i f l ≤ ( λγ

λ+γ )
2
;

0, i f l ≥ λ2;
γ( 1√

l
− 1

λ ), otherwise

(12)

3.2. Low-Redundant Regularization

The learning framework of the low-redundancy subspace is as follows:

argmin
W,H

1
2‖X− XHW‖2

F + λ1tr(STW1WT)

s.t.W ≥ 0, H ≥ 0, WTW = EK
(13)

where the first term is the subspace learning framework, and the second term is the pairwise
similarity regularizer. Based on the fact that similar samples existing in the original space
should be similar when embedded in the subspace, the above objectives can be met by
minimizing the following problems.

argmin
W

1
2∑

i,j

∥∥xiW − xjW
∥∥2

2zij = tr(WTXT LXW) (14)

where, zij is the similarity value between samples, L is the Laplace matrix, and D is the
diagonal matrix. In combination with formulas (13) and (14), the expression of the low-
redundancy subspace learning framework that preserves local manifold characteristics is
as follows:

argmin
W,H

1
2‖X− XWH‖2

F + λ1tr(STW1WT) + λ2tr(WTXT LXW)

s.t. W ≥ 0, H ≥ 0, WTW = EK
(15)

In addition, a sparsity regularization term is added, and by taking advantage of
the advantages of l2,1/2 norm, the final objective function of the proposed algorithm is
expressed as follows:

min
W,H,v

n
∑

i=1
vi‖xi = xiWH‖2

2 +
n
∑
=1

γ2

vi+γ/η + λ1tr(STW1WT)

+λ2tr(WTXT LXW) + α‖W‖1/2
2,1/2

s.t.0 ≤ vi ≤ 1, i = 1, 2, . . . , n, W ≥ 0, H ≥ 0, WTW = IK

(16)

where α > 0, λ1 > 0, and λ2 > 0 are trade-off parameters and γ > 0 is an interval control
parameter. The first and second terms in formula (16) are intended to maintain the global
reconstruction information and mitigate the influence of noise to some extent. The third
item is introduced to reduce redundancy between characteristics. The fourth item is for
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the preservation of local geometry. The fifth term aims to promote row sparsity of the
projection matrix.

4. Adaptive SVM Model Based on Ocean Predator Algorithm
4.1. Support Vector Machine Theory

A small sample classification method maximizes the distance between different classes
of samples on both sides of the hyperplane by constructing an optimal hyperplane. When
using support vector machines to make correlation predictions, for a given training set,
we always hope to get a regression modelsuch as f (x) = ωT ϕ(x) + b, so that f (x) is as
close as possible to the actual value y, the weight vector w and the offset b are the model
parameters to be determined, and ϕ(x) is a nonlinear mapping. The dual problem of SVM
can be obtained by introducing a Lagrange multiplier:

max
m
∑

i=1
(α̂i − αi)yi −

m
∑

j=1
(α̂j + αj)ε

− 1
2

m
∑

i=1

m
∑

j=1
(α̂i − αi)(α̂j + αj)K(xi, xj)

(17)

where αi, α̂i, αj and α̂j are Lagrange multipliers; K(xi, xj) is the kernel function.
Solving formula (17) can obtain the SVM regression model:

f (x, α̂i, αi) =
m

∑
i=1

(α̂i − αi)K(xi, xj) + b̂ (18)

4.2. Marine Predator Optimization Support Vector Machine

MPA is mainly inspired by the foraging strategies of marine predators—the optimal
encounter strategies of Levy and Eddy motions and interactions between predator and
prey. Levi’s flight includes random motions of small-step walks and occasional large-step
long jumps, which can be accurately and deeply searched. Brownian motion can track and
explore distant regions. MPA initializes the prey location by searching the spatial range:

X0 = Xmin + rand(Xmax − Xmin) (19)

where, Xmax and Xmin are the upper and lower limits of the search space, respectively;
rand( ) is a random number in the range of [0,1].

In view of the advantages of marine predator optimization algorithm, which is applied
to the optimization process of SVM, and the flow chart of marine predator optimization
support vector machine is shown in Figure 2. The specific steps are described as follows:

Step 1: Input the samples to the SVM;
Step 2: Set the algorithm parameters and initialize the population;
Step 3: Calculate the fitness value of prey matrix P, record the optimal position, and

calculate the predator matrix E;
Step 4: According to the iteration stage, the predator selects the corresponding update

method to update the predator position;
Step 5: Calculate the fitness value and update the optimal position;
Step 6: To solve the eddy current formation and FADs effects, the algorithm jumps

out of the local optimal solution as much as possible during the iteration process;
Step 7: Determine whether the stopping condition is satisfied, if not, repeat steps 3~6,

otherwise output the optimal result of the algorithm (c, g);
Step 8: Build a predictive model of the SVM and make predictions about the test set.
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5. Experimental Analysis
5.1. Experimental Data and the Method of This Paper

In order to get closer to the slight stage of rolling bearing fault, the bearing data of
Case Western Reserve University in the United States were used to verify the effectiveness
and accuracy of the diagnosis method proposed in this paper. Figure 3 shows the rolling
bearing experimental platform of Case Western Reserve University. In order to enhance
the persuasiveness, for the selection of vibration signal, the influence of bearing fault type
and fault degree were fully considered in the experiment. The sampling frequency of the
data selected in the experiment was fs = 12,000 Hz, the bearing test speed was 1797 r/min,
and the motor load (horsepower) was 0. These data are vibration data collected by the
accelerometer. The accelerometer was placed on the drive end, fan end and base of the
motor housing; therefore three different types of data were generated. The acceleration
data of the driving end was selected for the experiment.

Entropy 2022, 24, x FOR PEER REVIEW 9 of 21 
 

 

was 1797 r/min, and the motor load (horsepower) was 0. These data are vibration data 
collected by the accelerometer. The accelerometer was placed on the drive end, fan end 
and base of the motor housing; therefore three different types of data were generated. 
The acceleration data of the driving end was selected for the experiment. 

 
Figure 3. Case Western Reserve University rolling bearing testing platform and schematic dia-
gram. 

The experimental data specifically include vibration signals under four different 
working conditions (normal state, inner ring fault, outer ring fault, and rolling element 
fault). Table 2 details the label information of the experimental data. Among them, each 
group of fault data has 120,000 sampling points. Each sample takes 2000 sampling 
points, and each group of fault data has 60 samples. There are 10 groups of fault data 
with a total of 600 samples. A total of 1~60 are normal data; 61~120, 121~180, and 
181~240 are inner ring fault data; 241~300, 301~360, and 361~420 are outer ring fault data; 
421~480, 481~540, and 541~600 are the rolling element fault data. In this paper, a fault di-
agnosis method for RCMFDE-SPLR entropy characteristic optimization and MPA–SVM 
classifier is established. The process is shown in Figure 4. Specific steps are as follows: 

Step 1: Under the condition that the sampling frequency fs is 12 k, 60 groups of vi-
bration acceleration signals of 10 different working conditions are collected; 30 groups 
are selected as training samples under each working state, and the remaining 30 groups 
are used as test samples; 

Step 2: Calculate the RCMFDE entropy values of the training and test samples 
through the RCMFDE algorithm, and combine them into the original high-dimensional 
fault characteristic set 𝐹 × × , where 𝜏 is the scale factor; 

Step 3: Compress the original high-dimensional characteristic set through the SPLR 
algorithm to obtain a low-dimensional sensitive characteristic vector𝐹′ × ×  where d 
is the intrinsic dimension; 

Step 4: The low-dimensional characteristic sets of training samples and test samples 
are input into the MPA–SVM multi-fault classifier to identify and diagnose the type of 
working condition. 

Table 2. Bearing experimental data. 

Category Size/mm Abbreviation Rotating Speed/(r/min) Label 
Normal 0 NOR 1797 1 

Inner ring failure 
0.007 IR1 1797 2 
0.014 IR2 1797 3 
0.021 IR3 1797 4 

Outer ring failure 
0.007 OR1 1797 5 
0.014 OR2 1797 6 
0.021 OR3 1797 7 

Balling failure 
0.007 B1 1797 8 
0.014 B2 1797 9 

Figure 3. Case Western Reserve University rolling bearing testing platform and schematic diagram.

The experimental data specifically include vibration signals under four different
working conditions (normal state, inner ring fault, outer ring fault, and rolling element
fault). Table 2 details the label information of the experimental data. Among them, each
group of fault data has 120,000 sampling points. Each sample takes 2000 sampling points,
and each group of fault data has 60 samples. There are 10 groups of fault data with a total
of 600 samples. A total of 1~60 are normal data; 61~120, 121~180, and 181~240 are inner
ring fault data; 241~300, 301~360, and 361~420 are outer ring fault data; 421~480, 481~540,
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and 541~600 are the rolling element fault data. In this paper, a fault diagnosis method for
RCMFDE-SPLR entropy characteristic optimization and MPA–SVM classifier is established.
The process is shown in Figure 4. Specific steps are as follows:

Table 2. Bearing experimental data.

Category Size/mm Abbreviation Rotating
Speed/(r/min) Label

Normal 0 NOR 1797 1

Inner ring failure
0.007 IR1 1797 2
0.014 IR2 1797 3
0.021 IR3 1797 4

Outer ring
failure

0.007 OR1 1797 5
0.014 OR2 1797 6
0.021 OR3 1797 7

Balling failure
0.007 B1 1797 8
0.014 B2 1797 9
0.021 B3 1797 10
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Step 1: Under the condition that the sampling frequency fs is 12 k, 60 groups of
vibration acceleration signals of 10 different working conditions are collected; 30 groups
are selected as training samples under each working state, and the remaining 30 groups are
used as test samples;

Step 2: Calculate the RCMFDE entropy values of the training and test samples through
the RCMFDE algorithm, and combine them into the original high-dimensional fault charac-
teristic set F(10×60)×τ , where τ is the scale factor;

Step 3: Compress the original high-dimensional characteristic set through the SPLR
algorithm to obtain a low-dimensional sensitive characteristic vector F′(10×60)×τ where d is
the intrinsic dimension;

Step 4: The low-dimensional characteristic sets of training samples and test samples
are input into the MPA–SVM multi-fault classifier to identify and diagnose the type of
working condition.

5.2. Experiment Analysis of RCMFDE Characteristic Extraction

In a complex environment, the key of characteristic extraction is to obtain more
representative target characteristic parameters. When the rolling bearing of the motor
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breaks down, the amplitude of the vibration signal will change correspondingly, and the
entropy value can accurately identify this change. Therefore, it is necessary to introduce
the concept of entropy. First, the vibration signal is multi-scaled to obtain the RCMFDE
coarse-grained time series. The experiment intercepts the vibration signal of the bearing
in normal state with a data length of 2000 and the vibration signal of the inner ring fault,
outer ring fault, and rolling element fault with a fault size of 0.007 mm, and draws the
original vibration signal spectrum and the RCMFDE coarse-grained sequence spectrum.
Figure 5 is the spectrum of the original vibration signal, and Figure 6 is the spectrum of the
RCMFDE coarse-grained sequence. In the figure, NOR, IRF, ORF, and BF represent normal
signal, inner ring fault, outer ring fault, and rolling element fault, respectively. Among
them, the scale factor of RCMFDE is τ = 3, the sampling frequency is f = fs/3, that is,
f = 4000 Hz, and the spectral bandwidth is 2000 Hz. It can be seen from the figure that the
RCMFDE coarse-grained sequence spectrum is basically the same as the original vibration
signal spectrum.
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Then, we extract the RCMFDE entropy characteristic. Taking the first sample, NOR,
as an example, Table 3 shows the extracted first 24-dimensional entropy characteristics.
Figure 7 shows the analysis results of 10 groups of RCMFDE entropy characteristics with
different working states. Figure 7a is a box diagram of the 24-dimensional entropy of
the first fault data, which shows the range of entropy. The graph reflects the central
position and dispersion range of 24-dimensional entropy features. The red mark in the
figure indicates the outlier of the dimensional feature, that is, the value separated from
other entropy values. The outlier of the first dimension data in Figure 7a corresponds
to the value of Abscissa 1~60 of attrib1 in Figure 7b. Figure 7b shows the visualization
of the entropy values in the first four dimensions, and the entropy values of 10 different
working states are shown in each dimension. Among them, the abscissa represents the
sample, and the ordinate is the entropy value. Every 60 samples represent a running state.
Furthermore, 1~60 represent normal samples, 61~240, 241~420, and 421~600 represent
inner ring fault, outer ring fault, and rolling element fault samples, respectively. It can be
seen from the figure that there is partial aggregation between the samples, and the normal
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samples are separated from the rest of the samples. In order to verify the characterization
performance of RCMFDE for bearing fault characteristics, we also extracted the RCMDE,
MFDE, MFE, and MDE fault characteristics of each signal sample for comparative analysis.
Figure 8 is the entropy analysis curve of 10 groups of different working states. It can
be roughly seen that the RCMFDE entropy curve is relatively sparse, which can better
characterize the characteristics of different working states. In Figure 8a, when the scale
factor is less than 1, the RCMFDE entropy values for normal working conditions are lower
than the other entropy values. With the increase in scale, the entropy curves of different
running states appear as obvious separation, and, for the same fault type, the trend of
entropy curves is roughly the same. Figure 9 is the entropy curve of four different working
conditions: normal, inner ring, outer ring, and rolling element. In Figure 9a, when the scale
factor is greater than 1, the entropy curves of different working conditions have no cross
phenomenon. In general, the RCMFDE entropy value of the normal state is larger than the
restof the entropy values in most cases. The RCMFDE entropy curve is distinguishable.

Entropy 2022, 24, x FOR PEER REVIEW 11 of 21 
 

 

mance of RCMFDE for bearing fault characteristics, we also extracted the RCMDE, 
MFDE, MFE, and MDE fault characteristics of each signal sample for comparative analy-
sis. Figure 8 is the entropy analysis curve of 10 groups of different working states. It can 
be roughly seen that the RCMFDE entropy curve is relatively sparse, which can better 
characterize the characteristics of different working states. In Figure 8a, when the scale 
factor is less than 1, the RCMFDE entropy values for normal working conditions are 
lower than the other entropy values. With the increase in scale, the entropy curves of dif-
ferent running states appear as obvious separation, and, for the same fault type, the 
trend of entropy curves is roughly the same. Figure 9 is the entropy curve of four differ-
ent working conditions: normal, inner ring, outer ring, and rolling element. In Figure 9a, 
when the scale factor is greater than 1, the entropy curves of different working condi-
tions have no cross phenomenon. In general, the RCMFDE entropy value of the normal 
state is larger than the restof the entropy values in most cases. The RCMFDE entropy 
curve is distinguishable. 

  
(a) (b) 

  
(c) (d) 

Figure 5. Raw vibration signal spectrum. (a) NOR, (b) IRF, (c) ORF, (d) BF. 

  
(a) (b) 

  
(c) (d) 

Figure 6. RCMFDE coarse-grained sequence spectrum. (a) NOR, (b) IRF, (c) ORF, (d) BF. 

  
(a) (b) 

Figure 7. RCMFDE analysis results of different working conditions of rolling bearings. (a) Box
diagram of RCMFDE; (b) Multidimensional visualization of RCMFDE.
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Figure 8. Analysis curve of entropy value under 10 different working states. (a) RCMFDE,
(b) RCMDE, (c) MFDE, (d) MFE, (e) MDE.

Table 3. RCMFDE values for different dimensions.

Number 1 2 3 4 5 6 7 8

RCMFDE 1.2393 1.7110 1.9494 2.0398 2.0500 1.9940 1.8413 1.6508
Number 9 10 11 12 13 14 15 16

RCMFDE 1.4647 1.3704 1.3503 1.3645 1.4019 1.4648 1.5402 1.6051
Number 17 18 19 20 21 22 23 24

RCMFDE 1.6361 1.6307 1.6174 1.6081 1.5910 1.5856 1.5920 1.6009

Entropy 2022, 24, x FOR PEER REVIEW 12 of 21 
 

 

Figure 7. RCMFDE analysis results of different working conditions of rolling bearings. (a) Box di-
agram of RCMFDE; (b) Multidimensional visualization of RCMFDE. 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 8. Analysis curve of entropy value under 10 different working states. (a) RCMFDE, (b) 
RCMDE, (c) MFDE, (d) MFE, (e) MDE. 

  
(a) (b) 

0 10 20 30 40 50
Scale

0

0.5

1

1.5

2

2.5

3

3.5

En
tro

py

NOR
IR1
IR2
IR3
OR1
OR2
OR3
B1
B2
B3

0 10 20 30 40 50
Scale

0

0.5

1

1.5

2

2.5
NOR
IR1
IR2
IR3
OR1
OR2
OR3
B1
B2
B3

En
tro

py

0 10 20 30 40 50
Scale

0

0.5

1

1.5

2

2.5

3

3.5

En
tro

py

NOR
IR1
OR1
B1

Figure 9. Cont.



Entropy 2022, 24, 1696 13 of 21Entropy 2022, 24, x FOR PEER REVIEW 13 of 21 
 

 

  
(c) (d) 

 
(e) 

Figure 9. Entropy curve under different working conditions. (a) RCMFDE, (b) RCMDE, (c) MFDE, 
(d) MFE, (e) MDE. 

Table 3. RCMFDE values for different dimensions. 

Number 1 2 3 4 5 6 7 8 
RCMFDE 1.2393 1.7110 1.9494 2.0398 2.0500 1.9940 1.8413 1.6508 
Number 9 10 11 12 13 14 15 16 

RCMFDE 1.4647 1.3704 1.3503 1.3645 1.4019 1.4648 1.5402 1.6051 
Number 17 18 19 20 21 22 23 24 

RCMFDE 1.6361 1.6307 1.6174 1.6081 1.5910 1.5856 1.5920 1.6009 

To illustrate the superiority of RCMFDE bearing characteristics, we input the ex-
tracted entropy characteristics into a classifier for experimental analysis. In the experi-
ment, the embedding dimension m = 2, the delay tau = 1, and the number of categories c 
= 5. In order to verify the influence of the scale factor 𝜏 on the experimental results, we 
analyze the experimental results of different scale factors  𝜏. Figure 10 shows the recogni-
tion accuracy of multiple sets of entropy characteristics (RCMFDE, RCMDE, MFDE, 
MDE, and MFE) at different 𝜏. As can be seen from the figure, compared with other en-
tropy characteristics, RCMFDE has the highest recognition accuracy. At the same time, it 
can be seen that, with the increase in the scale factor 𝜏, that is, the increase in the charac-
teristic dimension of entropy value, the accuracy of MPA–SVM recognition has fluctuat-
ed slightly. As shown in Figure 11 below, there are many outliers in the generated 32–
50-dimensional characteristics, which means invalid characteristics. Therefore, the pre-
dicted recognition rate eventually reaches a stable value. It can be seen from Figure 10a 
that the recognition accuracy reaches 97% with the increase in the RCMFDE entropy di-
mension. RCMFDE improves the stability and noise resistance of entropy characteristics, 
and the accuracy of entropy values is further improved, making it very suitable for char-
acteristic extraction of bearing vibration signals in complex industrial environments. 

0 10 20 30 40 50
Scale

0

0.5

1

1.5

2

2.5
NOR
IR1
OR1
B1

En
tro

py

Figure 9. Entropy curve under different working conditions. (a) RCMFDE, (b) RCMDE, (c) MFDE,
(d) MFE, (e) MDE.

To illustrate the superiority of RCMFDE bearing characteristics, we input the extracted
entropy characteristics into a classifier for experimental analysis. In the experiment, the
embedding dimension m = 2, the delay tau = 1, and the number of categories c = 5. In order
to verify the influence of the scale factor τ on the experimental results, we analyze the
experimental results of different scale factors τ. Figure 10 shows the recognition accuracy
of multiple sets of entropy characteristics (RCMFDE, RCMDE, MFDE, MDE, and MFE) at
different τ. As can be seen from the figure, compared with other entropy characteristics,
RCMFDE has the highest recognition accuracy. At the same time, it can be seen that, with
the increase in the scale factor τ, that is, the increase in the characteristic dimension of
entropy value, the accuracy of MPA–SVM recognition has fluctuated slightly. As shown in
Figure 11 below, there are many outliers in the generated 32–50-dimensional characteristics,
which means invalid characteristics. Therefore, the predicted recognition rate eventually
reaches a stable value. It can be seen from Figure 10a that the recognition accuracy reaches
97% with the increase in the RCMFDE entropy dimension. RCMFDE improves the stability
and noise resistance of entropy characteristics, and the accuracy of entropy values is further
improved, making it very suitable for characteristic extraction of bearing vibration signals
in complex industrial environments.
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Figure 10. Recognition accuracy of multiple entropy values with different scale factors. (a) RCMFDE,
(b) RCMDE, (c) MFDE, (d) MFE, (e) MDE.
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5.3. Experimental Analysis of SPLR Characteristic Optimization

The scale factor τ is set to 50 above. Therefore, a 50-dimensional entropy value char-
acteristic is extracted. Although the RCMFDE entropy characteristic has achieved good
results, the characteristic set still has redundant information and reduces the recognition ac-
curacy. Therefore, this paper reduces the dimensionality of the RCMFDE fault characteristic
set through self-rhythm learning and low-redundant regularization (SPLR). In other words,
we select the optimal subset from the original characteristic space. SPLR is a dimensionality
reduction method that considers the training order of samples. At the same time, SPLR
eliminates the noise and redundancy characteristics that may suppress the performance
in the training process. Specifically, combining self-paced learning and subspace learning
frameworks not only reduces the effect of noise, but also makes the reconstructed informa-
tion more accurate. The basic idea of SPLR is to rank entropy characteristics according to
their importance. It can be seen from Figure 11 that the 33–50-dimensional characteristics
are mostly outliers. This results in SPLR not being able to obtain a unique sequence of
important characteristics. Therefore, the RCMFDE entropy value characteristics of from 1
to 32 dimensions are selected in the experiment. In the experiment, the algorithm runs for
1.873 s, which verifies the efficiency of this method. In the experiment, 30 sets of data under
different working conditions are selected as the training set, and the other 30 sets of data
are used as the test set. In order to evaluate the influence of SPLR on the fault recognition
rate, we input the selected fault characteristics into MPA–SVM for fault diagnosis.

For SPLR, there are five parameters that need to be studied, namely α, λ1, λ2, λ3, and
γ. According to the literature [33], γ is fixed to 2. Weiyi Li et al. [20] did multiple sets
of experiments, and the results showed that, with the change of α and λ3, the clustering
accuracy was relatively stable; however, with the change of λ1 and λ2, the clustering
accuracy fluctuated to a certain extent. That is, SPLR is not sensitive to α and λ3, but is
sensitive to λ1 and λ2. A smaller λ1 means that more redundant characteristics are selected,
and a larger λ1 means that the redundancy between characteristics is as small as possible
but the regularization term is too strong. The smaller the λ2 is, the more weakly the local
geometric structure is preserved. The larger the λ2 is, the more strongly the local geometric
structure is preserved; however, the regularization term is too strong. Therefore, with the
increase in the values of λ1 and λ2, no matter how many characteristics are selected, the
corresponding clustering accuracy will first rise and then fall.

In this experiment, the SPLR parameters are fixed as α = 1, λ3= 1, the interval
control parameter is β = 2, the update parameter of k is µ= 1.05, the maximum number
of iterations is maxIter=50, the subspace dimension is K=600, and K is consistent with the
number of samples. Considering that over-fitting will occur when λ1 and λ2 take {102, 103},
this paper selects parameters from {10−3, 10−2, 10−1, 1, 101} and conducts experimental
analysis. If the resulting dimensionality reduction sequence is not unique in the experiment,
the accuracy is set to a null value. The results are shown in Figure 12, where τ represents
the characteristic dimension after dimensionality reduction.

It can be seen from the figure that, when λ1= 10−1 and λ2= 10, the experiment has
achieved ideal results. Therefore, in this paper, λ1= 10−1, λ2= 10. In order to explore
the influence of the number of iterations on the experimental results, maxIter is set to 50,
100, 150, and 200, respectively, in the experiment, while other parameters are fixed. The
results are shown in Table 4. It can be seen from the table that the number of iterations,
50, has achieved the best results in multiple characteristic dimensions. Among them, the
accuracy of the characteristic prediction of the first seven dimensions reached 97.67%.
This shows that SPLR can extract more favorable low-dimensional fault characteristics,
and the burden of fault diagnosis model is further reduced. At the same time, when
d = 32, the prediction accuracy reaches 97%, which shows that the MPA–SVM algorithm
can avoid the redundancy of entropy characteristics to a certain extent. Although more
entropy characteristics can improve the diagnostic accuracy, the experimental results verify
that SPLR can effectively reduce high-dimensional characteristic sets and improve the
robustness of the learning method.
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Table 4. MPA–SVM recognition accuracy under different iterations.

Accuracy d = 7 d = 8 d = 9 d = 10 d = 32

maxIter = 50 97.67% 96% 96.33% 95.67% 97%
maxIter = 100 95.67% 96.67% 95.33% 95% 97%
maxIter = 150 96.67% 96.67% 95.33% 95.33% 97%
maxIter = 200 95% 95.33% 95.33% 94.67% 97%

5.4. Experimental Analysis of Bearing Fault Diagnosis

We randomly select 50% of the RCMFDE-SPLR characteristic samples as the training
set and 50% as the test set, that is, 300 training samples and 300 test samples. Subsequently,
the bearing fault types are diagnosed by the MPA–SVM model. To verify the superiority
of the RCMFDE-SPLR method, we compare it with RCMFDE, RCMDE, MFDE, MFE, and
MDE entropy extraction methods. In the MPA–SVM fault diagnosis model, the penalty
parameter is c = 4.0007, and the kernel parameter is g = 4.0006. The recognition rate of the
fault classifier to the test samples is shown in Table 5. For the MPA–SVM multi-classification
model, the proposed RCMFDE-SPLR characteristic obtains the highest diagnostic accuracy.
In addition, the accuracy of RCMFDE is higher than that of MFDE, and the accuracy of
RCMDE is higher than that of MDE. The results show that the fine composite coarse-grained
strategy reduces the coarse-grained loss of vibration signals and improves the entropy
stability. The accuracy obtained by RCMFDE is higher than that obtained by MFDE, and
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the accuracy obtained by MFDE is higher than that obtained by MDE, indicating that
the introduction of the fluctuation strategy can preserve the amplitude information of
the vibration signal sequence, which is more conducive to fault diagnosis. The accuracy
obtained by the four characteristics of MDE, MFDE, RCMDE, and RCMFDE in Table 5 is
89.33%, 93%, 94.33%, and 97%, respectively. Figure 13 is the multi-category confusion matrix
obtained by MPA–SVM. If the MDE characteristic is extracted, there will be misdiagnosis
among the six states of IR1, OR1, OR3, B1, B2, and B3, and the fault mode is difficult to
accurately identify. If the characteristics of MFDE and RCMDE are extracted, there will be
misdiagnosis among the five states. Compared with MFDE and RCMDE characteristics, if
RCMFDE characteristics are extracted, the probability of B2 being misdiagnosed as B3 is
reduced by 20% and 16%, respectively. If RCMFDE-SPLR characteristics are extracted, the
problem that 7% of IR1 samples in RCMFDE characteristics are misdiagnosed as OR1 and
B3 states is resolved. The experimental results show that the fine composite coarse-grained
strategy and the fluctuation dispersion entropy can effectively characterize the bearing
fault characteristics. At the same time, the RCMFDE-SPLR method can effectively improve
the accuracy of bearing fault diagnosis.
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Table 5. Fault recognition rate of each information entropy method.

Method SVM
Recognition Rate

MPA–SVM
Recognition Rate

MDE 87.33% 89.33%
MFE 91% 93%

MFDE 93% 93%
RCMDE 89% 94.33%

RCMFDE 94% 97%
RCMFDE-SPLR 95.33% 97.67%

In order to verify the superiority of the MPA–SVM classifier over the fault diagnosis
of the motor rolling bearing, we input the extracted entropy characteristics into the SVM
and MPA–SVM classifier for diagnostic identification. Under the same entropy charac-
teristics, the diagnostic accuracy of the MPA–SVM model is greater than that of the SVM
model. Compared with the fault diagnosis method of MDE combined with SVM, the fault
diagnosis method of RCMFDE-SPLR combined with MPA–SVM improves the diagnosis
accuracy from 87.33% to 97.67%, which is improved by 10.34%. Moreover, we selected a
sampling frequency of fs = 12,000 Hz, bearing test speed of 1772 r/min and 1730 r/min,
and corresponding motor load (horsepower) of 1 and 3, respectively, for the experiment.
The recognition rate of the fault classifier to the test sample is shown in Table S1. Among
them, Figures S1 and S2 are their corresponding confusion moment matrices. The results
show that the RCMFDE-SPLR characteristic extraction method and the MPA–SVM fault
identification mode proposed in this paper are very effective.

In general, we can draw the following three conclusions: (1) The recognition rate size
relationship of the five entropy characteristic extraction methods is: RCMFDE > MFDE >
RCMDE > MDE > MFE; (2) compared with the RCMFDE characteristic extraction method
(the recognition rate is 97%), the RCMFDE-SPLR characteristic extraction method can
improve the recognition accuracy (increased by 1.33% and 0.67%, respectively) under both
SVM and MPA–SVM fault classifiers; (3) the fault recognition rate of the MPA–SVM multi-
fault classifier for the six entropy characteristics is higher than those of RCMFDE + SVM,
RCMDE + SVM, MFDE + SVM, MFE + SVM, and MDE + SVM.

There are three reasons for the above conclusion: (1) RCMFDE not only considers the
amplitude information of the vibration signal, but also overcomes the defect that the entropy
error will increase with the increase in the scale factor, so it has high diagnostic accuracy;
(2) the RCMFDE-SPLR characteristic extraction method removes the redundant information
of the characteristic; therefore, the recognition effect is better than the original RCMFDE
entropy characteristic, and the superiority of the SPLR algorithm is also verified. (3) The
MPA algorithm combines Levy flight and Brownian motion, and adopts different random
walk methods in different predation stages to achieve a balance between exploration and
development, which improves the SVM fault identification rate.

6. Conclusions

In complex operating environments such as high temperature and high speed, bearing
parts are damaged by coupling phenomenon and are interfered by noise, resulting in
nonlinear and non-stationary signals. In a complex operating environment such as those
having high temperature and high speed, the coupling phenomenon of bearing parts
occurs and is interfered with by noise, resulting in nonlinear and non-stationary signals.
However, the traditional MDE fault characteristic has three defects, that is, it does not
consider the relationship between segmented data, the loss of amplitude information, or
the poor stability of noise resistance. In addition, the SVM model is greatly affected by
parameters and the recognition accuracy is reduced. Therefore, this paper proposes the
fault characteristic extraction method of RCMFDE-SPLR, and constructs the MPA–SVM
diagnosis model. The diagnostic results of the bearing verify the superiority of the proposed
method, and the main work and analysis conclusions of this paper are as follows:
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(1) In the bearing diagnosis experiment, the accuracy of the method based on RCMDE
and SVM is 89%, which is higher than that of the method based on MDE and SVM, which
is 87.33%. The experiments show that the composite coarse granularity suppresses the loss
of information and improves the noise resistance of the fault features of mechanical parts.
In addition, after introducing the fluctuation strategy, the accuracy of RCMFDE combined
with SVM is improved to 94%. RCMFDE improves the stability of features, which further
improves the fault diagnosis accuracy. The proposed RCMFDE solves the problems of loss
of MDE feature information and the poor stability of noise resistance, which can effectively
identify and diagnose bearing faults, providing an idea for on-line monitoring of motor
rolling bearing faults under the background of strong noise.

(2) In the bearing diagnosis experiment, SPLR is added to select effective low-dimensional
characteristics from the extracted entropy characteristics. The method of RCMFDE-SPLR
combined with SVM improves the accuracy to 95.33%. It is shown that the subspace learn-
ing and the low-redundant regularization framework suppress the redundancy of entropy
characteristics, and the favorable characteristics are retained, which further improves the
diagnostic recognition accuracy.

(3) In bearing fault diagnosis, the method of RCMFDE-SPLR combined with MPA–
SVM improves the diagnosis accuracy to 97.67%. In summary, the accuracy of bearing fault
diagnosis has been increased from 89% to 97.67%, an increase of 8.67%. In addition, in the
case of the same entropy value characteristics, the diagnostic accuracy of the LPV-SVM
model based on Levy and Eddy is better than that of the SVM fault identification model,
and the classification accuracy and efficiency are improved. It is shown that the proposed
method can effectively diagnose different fault types of rolling bearings in 10 fault types.
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//www.mdpi.com/article/10.3390/e24111696/s1, Table S1: Analysis of fault recognition rate results
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MPA-SVM for RCMFDE-SPLR of data 2.
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