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Abstract
In retail 85% of sales occur in physical stores. In the U.S. alone,

people spend roughly 37 billion hours each year waiting in line in physical
stores. This leads to 4.4 billion potential work productive hours lost or
comparatively 4.4 billion hours of leisure, rest or time with your loved
ones lost. Autonomous stores can remove customer waiting time by
providing a receipt without the need for scanning the items. Autonomous
stores in the grocery sector can further serve locations, so called ’food
deserts’, that would otherwise not have access to grocery stores. This is
done by reducing the physical size of these stores while still maintaining
the commercial opportunity through automation.

Understanding physical object ownership transfer is a key element of
physical commerce, and is central to the understanding of when and how
people grab products off of a store. For a machine to understand this
it not only needs to sense and identify individual objects in a constraint
physical space but also how their ownership changes over time. Humans
are often at the center of such transfers and detecting and character-
izing human object ownership over time opens the possibility for mul-
tiple applications to improve through automation. Applications such
as inventory counting, surveillance, supply chain management, inven-
tory management, and checkout-free retail all benefit from the ability
to understand human object ownership over time by allowing automatic
decisions to be made. In this thesis I will use the autonomous retail as
a guiding application to demonstrate the applicability of this approach.

Approaches such as using manual intervention (e.g. cashiers at a
supermarket), on-object sensing (e.g. RFID tags), contextual modeling
through vision only or combining computer vision with other sensors
can be used in applications that require the understanding of object
ownership transfer, these however require directly, or indirectly, a large
amount of human labor making it impractical to scale in real-world ap-
plications. Furthermore, the general low accuracy and throughput of
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these approaches further hinders their applicability in a broader real-
world context.

This work explores the automatic tracking of human object owner-
ship over time. In this thesis I propose a framework for detecting and
characterizing human object ownership and introduce a method where
physical context of the application is combined with the available sens-
ing modalities. By modeling the static physical context (e.g. location,
appearance, weight, volume), dynamic physical context (e.g. human
motion, temporal-spatial proximity) and the physical relations (e.g. his-
torical ownership, relative motion) between objects and people, sensing
data can be combined with such context to enhance the detection and
tracking of object ownership changes.

Resulting from the combination of physical context modeling with
the multiple sensing modalities, this approach significantly reduces the
computation requirements while maintaining high accuracies which in
turn enables the scale requirements of a real-world deployment. This
method is validated across several retail applications, which due to its
trading nature include a rich set of annotated ownership transactions.
In the context of inventory monitoring our tracking approach achieved
92.6% item identification accuracy, a 2x reduction in error compared to
the 86% accuracy reported for self-checkout stations. For autonomous
retail stores, we maintained an average of up to 96.4% receipt accuracy
over 1 year of operation, across over 65,000 transactions with a total of
1653 total different products being sold.
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Chapter 1

Introduction

Autonomous shopping systems, or more generally Autonomous Retail, refers to
technology where parts of the shopping experience are automated. These systems
are designed to make selling and buying consumer goods more efficiently. Brick-and-
mortar stores still represent more than 85% of shopping transactions and since the
pandemic–COVID-19– autonomous retail in physical stores has seen a bigger rate
of adoption (whether on payment, queuing, or delivery). Automation at this level
allows stores to operate in locations where it wasn’t previously commercially viable,
such as food deserts, or smaller locations closer to consumers, increasing consumers
access to food and fundamental goods. Other benefits stem from being able to save
people’s time from waiting lines. Americans spend 37 billion hours waiting in line
each year.

However, in order to achieve these benefits or level of automation a retail system
needs to understand the shoppers behavior, similar to how a cashier does. More
importantly the moments where ownership of the products is transferred between
the store and their shoppers, or more simply the system needs to understand when
a shopper grabs a product and leaves with it. Given how normally people behave
when interacting with objects Human Object Ownership Tracking is generally
challenging for single modal sensing systems to achieve. Single modal sensing sys-
tems are subject to occlusions and ambiguity, sensing noise present, or introduced,
in the system, or are simply not accurate enough to understand everything in a real-
world application. On the other hand multi-modal sensing systems perform better
by having devices collaborate to gain a better understanding of the surroundings,
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these however still need to understand the physical context of the environment in
order to accurately operate in the real-world.

This raises the Human Object Ownership Tracking through Physical
Context Modeling using Multi-Modality Sensing problem: in order to rec-
ognize and track, in space and time, that a object has been transferred between
owners, multiple sensing devices need to share a common physical understanding
and context of the world to associate each sensed event to the correct object and
correct person.

This common physical context is typically done through data driven methods
that implicitly declare the relationship between two or more sensing features (e.g.
an image of a red basket close to a person with a blue jacket is defined as a employee
restocking products in a store, or an image with a person extending their hand is
linked to a pressure change sensed on a shelf to define that an object is being picked
up). While this can be highly efficient at defining very specific actions and scenar-
ios, it remains a challenge to solve a more general problem such as understanding a
transfer of ownership of a product, which can be done under a variety of conditions,
in under almost an uncountable number of ways. Defining every possible pair or con-
nection between different sensing modalities across large enough datasets is highly
labor intensive and has shown impractical for real-world applications. Therefore,
modeling the physical context and leveraging the physical properties and knowledge
of the environment, and objects, to define explicitly the relationship between people
and objects across different sensing modalities is extremely important as it enables
applications to operate in the real-world.

Different approaches have been proposed to solve the human object ownership
transfer. They can be broadly categorized into 2 independent axis: invasive vs.
noninvasive and supervised vs. unsupervised. Invasive approaches require direct
interference with the person interacting with the objects. For instance solutions
that require a person to carry a device and register every object picked (i.e. Scan &
Go), or that instead require that a final validation and recount of all objects picked
at the end (i.e. Self Checkout) are considered invasive, because they require the
person to change their behavior for the purpose of tracking their otherwise normal
interaction with objects. While these are generally easy to deploy they tend to be
inaccurate given the inconsistency of the person registering the objects’ interactions.
On the other hand, noninvasive approaches trade-in deployment ease and operation
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labor for the lack of explicit behavioral interference, making them more accurate
and consequently more broadly adopted.

Supervised approaches require a human observer that does not participate in the
event to label the object transfer, this can be done either in-situ or remotely (i.e.
Amazon Go). Unsupervised solutions while less labor intensive are perceived less
accurate. Therefore finding better ways to improve accuracy under noninvasive and
unsupervised conditions is crucial to enable wide adoption of this technology.

1.1 Thesis Statement

The statement presented in this thesis is as follows: tracking of objects’ own-
ership through multi-modal sensing devices is enabled by modeling the
physical context of those objects’ and surrounding people. This work fo-
cuses in the retail environment, where sensors can be placed in the infrastructure,
such as cameras in the ceiling or sensors on the surfaces (e.g. floor, shelves, entrance,
etc.). Furthermore I explore the automatic tracking of human object ownership over
time and space. For example, when a shopper enters a grocery stores and picks a
drink from a shelf, this can be sensed by weight sensors on the shelf as well as seen
by cameras nearby. In this case, continuous time-series event detection equations
can be combined with motion estimation through both the sensor and camera to
understand this behavior. Due to the vast number of objects (products) and poten-
tial people present in the store, these systems require a common physical context
to be able to localize this event in order to attribute this ownership to the right
person. Similarly knowing the physical characteristics of the object (weight, vol-
ume, appearance) allows for the correct object to be accurately detected across its
close-by neighbours. Other context such as historical ownership transfer events or
relative human motion and proximity allow for further disambiguation of who, or
what is being interacted with by eliminating the non physically possible scenarios.

In order to enable the wide adoption of autonomous retail through physical con-
text modeling using multi-modality sensing, the approach needs to be noninvasive,
this means that the people are not required to change their behavior to register
their interactions, as this has shown impractical and inaccurate. In addition the
identification and tracking of the ownership transfer must be done without hu-
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man intervention, as this leads to increased human labor impeding wider adoption.
Furthermore the system is required to provide an accurate result, such that retail
operations become successful.

1.2 Research Questions

Achieving accurate tracking of the transfer of objects’ ownership through informa-
tion collected by multiple sensing devices across an unconstrained set of human be-
havior comes with several challenges. These challenges can be grouped into 3 main
topics: shared multi-modal physical context definition (common physical environ-
ment definition), human object ownership interaction modeling (ownership transi-
tion state definition), human object spatial-temporal relationship modeling (human
to object ownership transfer matching). The following subsections detail each of
these challenges and describe each of research questions addressed in this thesis.

1.2.1 Multi-modal individual object ownership transfer

Multi-modal systems’ imply that sensing devices observe different physical represen-
tations of the same event. In order to combine information obtained by these sensing
devices it is necessary to model the physical context in which these devices operate.
Furthermore, an object ownership transfer is defined by a combination of multiple
pieces of information (who, what, where and when), it becomes important to cor-
rectly combine the partial information obtained by each modality. However, given
the unconstrained human behavior many times occlusion of individual modalities
can occur, and the object ownership information has to be inferred from the avail-
able sensing information. The main research questions that consider these issues
are the following:

• How to model the physical shared environment between different sensing modal-
ities?

• How to fuse partial information from each sensing device into a complete object
ownership transfer detection?

• How to leverage different modalities information under occlusion or ambiguous
estimates when combining multi-modal object ownership transfer predictions?
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1.2.2 Object ownership transfers between humans

In order to correctly track object ownership transfers a system needs to understand
when and where such transitions occur. When the available set of sensing devices is
exposed to the human interaction leading to a object ownership transfer, it is possible
to model the trigger that defines such transition. However, many times there are
occlusions, or simply there is a lack of one sensing modality in a particular ownership
transfer and the event has to be inferred from combining contextual information.
Correctly predicting the object ownership transfer under these conditions involves
answering the following research questions:

• How to model the human object relationships that define an object ownership
transfer?

• How to account for partial lack of line of sigh when detecting a object owner-
ship transfer?

• How does a object ownership transfer detection impact historical object own-
ership transfer information?

1.2.3 Simultaneous object ownership transfers with multiple

humans

In most real-world shopping applications multiple humans are part of the equation.
Accurately tracking the history of object ownership changes requires to disambiguate
between several people and several objects that interact simultaneously withing the
same system. It becomes important to model the interactions between different ob-
jects and different people. Therefore, the research questions related to simultaneous
interactions with multiple humans are the following:

• How to model the physical interactions–e.g. relative motion, historical ownership–
between different objects and different people?

• How to disambiguate between multiple humans and multiple objects when
concurrent object ownership transfers are detected?
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1.3 Contributions

This thesis presents a methodology where physical context of the environment is
combined with multiple sensing modalities in order to enhance the detection and
tracking of objects’ ownership changes over time. In this section I provide a summary
of the three main contributions of this work.

1.3.1 Using objects physical context to enable Multi-modal

individual object ownership transfer

The physical characteristics of the objects in the scene are great individual iden-
tifiers of the objects, allowing, in conjunction with the sensors, to make statistical
inferences about which objects are interacted with. The location, position and size
of the objects along with their sensed appearance –visual in case of cameras and
weight in case of weight sensors– enable an adaptive sensor fusion approach, where
similarities in the sensing domain (occlusions or similar weights) can be atoned by
the use of the model. i.e. a coca-cola and a coca-cola diet are being interacted with,
their location model quickly resolve any confusion between the objects.

Leveraging the explicit physical context (object and owner: location, appearance,
weight, volume) to detect individual object ownership transfers in our experiments
has achieved a 92.6% item identification accuracy in a noninvasive and unsupervised
manner. These experiments were done across 400 shopping events, including 85
items disposed to mimic a fixture of a 7-Eleven convenient store, instrumented with
weight sensors on the shelves and 4 cameras in the ceiling. The results were close to
2x reduction in error when compared to the 86% accuracy reported for self-checkout
stations.

1.3.2 Modeling human-object physical relationship to enable

ownership transition detection

Even with an explicit physical context of the objects present in the environment
defined, to correctly detect and identify the transfer of ownership of objects it is
important to understand when and where such transitions occur. Typically these
transitions, in stores, occur at the shelf (selling space) area, allowing for proper
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instrumentation of these locations to be done. However given the unconstrained
behavior of people, ownership transition can occur between people at any time and
place making partial sensor information (e.g. force sensor in shelf) irrelevant.

I tackle the detection of the transition moment between owners by focusing on
the human behavior through motion, which can be estimated through vision. Uti-
lizing prior knowledge of what a human looks like, traditional object detection and
tracking techniques can find the position of each human from vision. Furthermore,
by modeling the distances and relative motion of all people with each other and
objects of interest we can reduce the search space. Estimating joint velocity and
proximity with zones of interest allows for triggering such interactions even in the
absence, or occlusion, of direct sensing modalities.

Finally when faced with dynamic objects, objects that are in motion (carried
by someone) before the transition occurs, we are faced with an added challenge of
understanding when and where this transition has occurred. This can be simplified
by modeling the physical relationship between humans and objects. Understanding
how these two move together allows for indirect inference, this means, that we can
estimate the location of an object if we observe the motion of its carrier. i.e. We can
estimate the location of a bag of chips that sits on a cart, even if there are occlusions
by leveraging the knowledge that after the bag is placed in the cart, it will move
in the same trajectory as the cart (which is not occluded). This type of modeling
permits the transfer of object ownership and allows indirect sensing improving the
human object ownership interaction detection.

1.3.3 Matching multiple human object ownership transfers

by modeling spatial-temporal interactions between hu-

mans and objects

Similar to detecting the moment when a transition of ownership occurs, matching
the correct person to the transition in the presence of simultaneous interactions
with multiple people can benefit from the modeling of human motion. For instance,
inside a store, when a group of friends are deciding which product to buy, they
may interact closely to each other and with very close-by products. Exploiting the
physical dynamics of a human interacting with and object, and creating a model of
how humans interact with objects (i.e. A person picking a mug tends to use their
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hands to hold the wing of the mug.) can allow the correct matching between different
people and products’ ownership. In this case the typical location in the object as well
as the motion of the human when interacting with the object define this model. Such
model improves the spatial-temporal confusion that might occur when the system
is faced with multi-humans interacting simultaneously with multiple objects, each
person will interact slightly differently providing information about which object
they are interacting with.

This approach was evaluated in an live operating convenience store covering
800 square feet with 1653 distinct products, over 65,000 ownership transfer events
and more than 20,000 available items. Over the course of 13 months of operation
achieving a receipt daily accuracy of up to 96.4%. The multiple people matching
approach yielded over 2x error reduction in cases where more than 3 people were
interacting close-by (within a radius of 2 meters).

1.4 Thesis Organization

This thesis is organized as follows: Chapter 1 introduces the topic of ’Human Ob-
ject Ownership Tracking’ along with the challenges and research questions therein.
Next, Chapter 2 presents some background around the autonomous retail as well as
highlights limitations/gaps in existing approaches. Then, Chapter 3 describes the
proposed methodology and overall system architecture to tackle the human object
ownership transfers in autonomous retail. Chapter 5, concentrates on the model-
ing of the physical context of objects. Chapter 4, addresses the model of physical
relationships between humans and objects to enable the detection of ownership tran-
sitions, while Chapter 6 focuses on the modeling of physical interactions between
humans and objects to improve the matching of simultaneous ownership transfers
between multiple humans with multiple objects. Finally, Chapter 7 summarizes the
conclusions of this work.
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Chapter 2

Background

Physical retail requires understanding of what the customer is intending to purchase
in order for a correct sale to occur. Traditionally this happens through a manual
cashier system. In other words, an employed person reviews every item for purchase
and registers each one manually into a system in order to subsequently charge the
customer the correct amount. While this approach works and is broadly adopted,
it creates a bottleneck in the physical sales process. This process is inherently slow
and generates queues. Furthermore, in order to sustain the economical viability of
the physical retail space, the profit of a store has to be sufficient to justify the labor
cost at the cashier. In grocery and convenience stores profit proportionally grows
with the number of products available for sale, which implies that larger physical
spaces unlock more cashiers. Leaving a gap either in smaller retail spaces, or in
spaces where the cost of operations surpasses the benefit of operating there. There
exists a wide range of prior works that have tackled this issue, and they can be
grouped into manual, on object-based sensing and infrastructure-based sensing.

Manual methods of registration of the products to be sold to a customer do not
rely on systems’ detecting individual object ownership transfers as they occur, but
instead require the person shopping to process each individual product through a
checkout stage before leaving, such as: giving the products to a cashier [74, 112] or
registering themselves the products with a retailer system (self-checkouts) [4]. While
these are the most used approaches, they are slow and labor intensive [71]. There
are other manual methods such as single queue management [112], which tackles this
issue by predicting the shoppers traffic patterns and allocating more cashiers when
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needed. However this approach is limited by the availability and the on-boarding
and off-boarding speed of the cashiers– it is impractical to find a workforce available
to work unpredictably for an arbitrary amount of time and then go home. In order
to address this, others have used remote cashiers [82, 105]. However, this requires
cashiers with remote visibility access to the object ownership transfer occurring in
the store. This approach displaces the labor force into more cost effective locations,
but it creates a delay in the delivery of the receipt which shoppers who are more
budget conscious and that come with the mindset of how much they will spend
for their shopping reject. This is driven by the fact that in-store discounts and the
"smart-shopper feelings" towards pricing act as a major component of the emotional
response affecting shoppers’ behavior to favor in-store price confirmation [13, 62, 77].
We therefore need automated ways of tracking object ownership transfers.

On object-based sensing approaches, on the other hand, do not require the cus-
tomer to go through a labor intensive checkout process. These approaches identify
the objects to be purchase by ensuring that each object has a unique method of
identification, and that its ownership transfer can be tracked out of the sale space.
Such as using RFID tags [60, 84, 88, 125], or individual product slot location (i.e.
vending machine, hotel minibar) [64]. While these are highly accurate, they have
not shown to be practical in terms of cost, deployment (tagging every single item for
sale) or operations (having to position every product for sale in a single constrained
slot).

Finally, infrastructure-based systems instrument the physical space of a store
in order to keep track of the object ownership transfers in spite of the type and
number products in the store. This infrastructure instrumentation can vary from
vision only [25, 41, 50, 116, 119] which focuses mainly on the object recognition and
misses the objects’ motion or its owner, to vision with additional sensors. These
combined approaches use devices such as weight sensors [56, 60], vibration sensors
for people detection and tracking [67, 68] and inertial wearable sensors [92]. Their
main limitation is that they lack a unified view of the physical context and dynamic
of the objects and people in the space. With regards to this limitation, this thesis
directly addresses this gap by presenting a framework to track object ownership
transfers through physical modeling of the context and dynamic of objects and
people, providing higher tracking accuracies.
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Chapter 3

Methodology

In this Chapter I describe the methodologies applied in this Thesis. The overall
methodology can be described as contextually enhanced multi-modal sens-
ing, which consists in explicitly describing the physical contextual characteristics
of the people, objects and structures of the underlying environment in order to
enhance the processing of the information gathered from the multi-modal sensing
devices. To demonstrate this methodology I focus on a representative application:
Autonomous retail. More specifically tracking objects ownership transfers within
a physical store, which benefits from contextually enhanced multi-modal sensing.
This methodology is applicable to all the elements in the physical environment of
systems that track automatically object ownership transfers. Elements such as, the
static physical context (e.g. location, appearance, weight, volume), the dynamic
physical context (e.g. human motion, temporal-spatial proximity) and the physi-
cal relations (e.g. historical ownership, relative motion) between objects, structures
and people. While this work may specifically target autonomous retail, the insights
and approaches obtained throughout this thesis can be applied for a broader set
of problems related to tracking objects being transferred between people and other
objects, in a instrumentable physical space (e.g. Warehouse inventory monitoring).

3.1 Terminology

In this section the terms used throughout this thesis are defined. Human-Object
Ownership refers to the relationship of ownership from objects to humans. The
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types of objects referred by this term are best demonstrated by Figures 3.1 and
3.2. The transfer of ownership occurs the moment the objects starts sharing higher
bounds (similar motion, velocity and location) with another owner. In this thesis
ownership has no relationship to the financial or legal ownership of objects, but
exclusively with its physical characteristics.

In Fig. 3.1 we can see an example of a human driving a forklift and delivering
boxes into a warehouse. This figure demonstrates the multiple elements that consti-
tute a Human-Object Ownership transfer. In this case we can see a Single Human
carrying a Single Object– multiple items of the same object (boxes).

Human

Warehouse

Human

Objects

Objects

Object

Object

Ownership Transfer

Figure 3.1: Representation of a warehouse with a single type of object (boxes) being
carried by a single person. Concepts of interest are highlighted in green: Human, Object
and Warehouse. The red arrow represents the Ownership Transfer that occurs when the
boxes are unloaded from the forklift and left inside the warehouse.

Figure 3.2 shows a scenario with multiple examples of Ownership Transfers inside
a store. Here we can see highlighted ownership transfers where a single person picks
up multiple different objects (in purple) and a second example where multiple people
pick up multiple different objects (in blue).
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Human

Store

Object

Object

Object

Object

Human

Human

Objects

Object

ObjectOwnership Transfer

Ownership Transfer

Ownership Transfer

Figure 3.2: Representation of a store scenario with multiple examples of ownership trans-
fers. Concepts of interest are highlighted in green: Human, Object and Store. Purple
highlights an Ownership Transfer where a single person picks up multiple different objects.
Blue highlights Ownership Transfers where multiple humans pick up simultaneously mul-
tiple different objects. The red arrow represents the Ownership Transfers that occurs in
theses two scenarios.
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3.2 ’Human-Object Ownership Tracking’ Frame-

work

Tracking objects that are being transferred between people requires an understand-
ing of objects’ location relative to the people. This is traditionally done implicitly
and within a particular sensing modality. For example, when a camera is observ-
ing a scene and detects a person passing his friend a bottle of water it does so by
observing the pixel distance between the identified bottle and the detected people
present.

This however could be enhanced by the explicit knowledge of how big a bottle
of water is, that it needs to be supported by something (i.e hand) or even where the
camera in physically located. Without this information, perspective mistakes and
ambiguous results can be obtained. Figure 3.3 shows the ‘Human Object Ownership
Transfer’ framework used in this thesis to address these types of issues. The following
sections provide an overview of the framework’s components and provide insight into
what contextual information is used to define the models at each component.

3.3 Shared physical context definition

In attempting to track objects a key step to achieve accurate results is defining a
model of the objects in question. Typically that means either creating or generating
a dataset of those objects where they are exposed to the particular sensing modality
and labelled in that feature space. For example, in a visual dataset created for track-
ing apples you would see several images of several types of apples, taken from various
different angles with several different backgrounds. This is done in the attempt to
generalize and extract the meaningful features of what an apple is. However, the
apple’s physical context is mostly missed. In other words, this model would benefit
from understanding a typical apple volume in relationship to other objects, or that
apples cannot fly (without being thrown) and require a holding element (person,
floor, surface). Or even more specifically, that in a particular application such as a
grocery store, most of the time apple’s will either be in the fruit section, someone’s
hand or in their basket (object contextual location). With this information, better
more effective and accurate systems can be designed.
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Object Behavior Model
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Camera

Real World

Figure 3.3: ‘Human Object Ownership Tracking’ Framework. Physical context of the
structure, humans and objects is combined with the available sensing information to define
the behavior models of humans and objects, and finally their respective interaction models.
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In this framework the first stage focuses in defining an explicit shared physical
context across all sensing modality. The insight is that regardless of the modalities
in question there is a common physical reality that binds all sensors together, and
that modeling that bound allows for impossible hypotheses to be pruned out at
the moment of detection and tracking. In particular I propose to focus on the
people, physical structures (floor, columns, walls, etc.), and objects’ of interest
contextual location and ’appearance’ in the available sensing modalities (e.g. shape,
color, weight, vibration response, volume). This allows multi-modal systems’ to
combine sensing information an context for accurate tracking of objects [28, 89],
while reducing the required computation by focusing the attention into the areas
that make physical sense [91]. Chapter 5 explains in further detail this technique
and the process of designing each model and explicitly sharing it across sensing
modalities.

3.4 Multi-modal ownership transition detection

After defining an explicit shared physical context, sensing modalities can then have
a common context to collaborate when detecting objects and people. However a
successful object transfer relies not only on the ability to sense the objects and peo-
ple, but also on triggering when a tranfer occurs. Human ownership of an object
is defined as the moment when the motion features of an object directly, or indi-
rectly, reflect the motion features of a human. This means, that and object sharing
the same trajectory, relative motion and location with a person is owned by them.
Consequently a transfer of ownership occurs when these motion features similarities
switch between owners. This change is sensed differently between different modal-
ities (weight change event, hand acceleration towards object, RF signal strength
change). But similarly to the physical ’appearance´, this transfer has an inherent
contextual behavior that can be modeled and shared.

By designing a system that can model the behavioral patterns of humans and
objects being transferred between one another, we enable the possibility for sensing
modalities to trigger one another to focus on a particular event (e.g. a load sensor
providing a higher confidence to a camera that an event is occurring in a partic-
ular location) [28, 29]. Furthermore, when individual modalities are partially, or
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completely, occluded this behavioral model is key in ensuring a correct ownership
transfer detection, by providing visibility into which sensing devices are providing
accurate information [89]. Details on how the methodology is applied and behav-
ioral models leveraged for multi-modal ownership transition detection are provided
in Chapter 4.

3.5 Spatial-Temporal Multi-Human-Object Match-

ing

As with any sensing system that operates in the real world, its performance is
affected by the breadth of possible interactions occurring. More simply, the system
accuracy and general performance is dependant on the complexity of the behavior of
its actors. For example, in a convenience store multiple people can simultaneously
perform several types of interactions, with typically several thousands of products
available. These interactions can increase the difficulty of a sensing system to detect
ownership, through occlusions or ambiguity in nearby object interactions.

Similarly to detecting when a transition occurs, to disambiguate who is interact-
ing with an object a system benefits from the modeling of human motion. However
in this case the defining aspects of motion are the characteristics that link the object
to the person rather than the general human behavior [29]. These characteristics
closely match a particular human to a type of object, such as the spatial proximity
of specific joints of a human, or the relative motion required to carry such object.
For example, a heavy large box might require two hands to carry while a single
cup does not, therefore when simultaneous people are interacting with these objects
and ambiguity arises this information allows to make a further distinction. These
interaction characteristics are further described and evaluated in Chapter 6.
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Chapter 4

Individual Object Ownership
Transfer by Modeling Objects’
Physical Context

In any sensing system tasked to identify the transfer of objects’ ownership, it is
necessary to identify the objects of interest, and to do so the first step is to extract the
features that define the object, in the sensing space of interest. This means mapping
raw sensing data, such as vibration signals or video footage, and map higher level
characteristics of this signal to the object in question. While these identity features,
or ownership transfer features, can be learned with enough training data, it is often
impractical if not impossible to collect and label enough instances when faced with
real-world deployments.

In this Chapter I focus on how to model the physical context of both the objects
(color, size, relative position, motion) and the scene (zones of ownership interest,
physical realism of location of objects) in order to provide higher accuracies and
reduce the number of labels required to deploy such a system.

The publication of large-scale object recognition datasets has enabled an un-
precedented use of camera-based systems using deep learning. While supervised
learning approaches have shown success in classification, detection, and segmen-
tation, these, however, fail to generalize well in the absence of large-scale labeled
datasets [97]. Particularly in inventory monitoring applications where a large num-
ber of specific objects – e.g. products in retail store, products flowing in and out of
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Figure 4.1: Typical warehouse setup with forklifts moving the pallets in and out. Di-
verse set of environmental factors are observed: motion specific to forklifts, camera angle
limitation, varying lighting conditions impacted by the weather.

a warehouse; and a vast diversity of task-specific environmental factors are present
(see Figure 4.1). Such applications require immense human labor to label data and
parameterize the model, making it impractical for real-world adoption.

In order to address this issue, recent techniques, such as domain adaptation tech-
niques [118], data augmentation [100], incremental learning [124], few-shot learning
[81] and automatically labeling techniques [91], have appeared to reduce the amount
of human labor required in order to adapt the learned models to the domain and
data distribution of the specific application. Using the physical context in order to
generate synthetic data allows for the creation of large datasets out of a very small
amount of labels by varying characteristics of the original labeled sample and the
creation of a model of the object and the deployment. While this allows the trained
model to become robust to such variances, it will further over-fit to the patterns in
the augmentation itself.

In this Chapter, we present PIWIMS which explores different ways of generating
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Product Appearance Model

Warehouse Model

Figure 4.2: PIWIMS consists of two steps: randomly sampling a background image and
a target crop, selecting the PIWIMS approach, and generating the dataset according to the
desired physical characteristics of the scene and the object. The generated dataset is used
to train the product appearance model that is fed to the Inventory Monitoring System.
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synthetic warehouse datasets by leveraging the physical context of the deployment
setup and objects through compositing augmentation to bind the generative parame-
ters closer to the physical reality with minimal human annotation. The contributions
are as follows:

1. We propose a new generative data-augmentation technique PIWIMS, which
leverages physical context –scene lighting, camera position and angle, and
object motion, size, and shape– to model the objects, and scene, and generate
datasets that more closely resemble the deployment data distributions with
minimum human annotation labor.

2. We present an analysis of a 4 month deployment of PIWIMS used in a real
world warehouse inventory monitoring system.

3. We demonstrate the ability of PIWIMS to generalize across camera deploy-
ments with varying position and angle.

The remaining chapter is as follows: Section 4.1 describes in detail the approach
use in PIWIMS. Section 4.2 presents the experimental results and analysis of PI-
WIMS in real-world warehouse setting. Section 4.3 shows previous works on data
augmentation techniques and learning with limited labeled data. Finally, we con-
clude this chapter in Section 4.4.

4.1 PIWIMS Overview

PIWIMS takes inspiration from the ability humans have to look at an image and
project different placements for objects of interest. To project an object to a different
place in an image, humans have to have a rough understanding of the physical layout
of the scene (where the floor is, natural orientation of the object, sources of light,
natural motion). This rough understanding of the physical context of a scene is
designed into our approach.

Like other compositing techniques [26, 110], PIWIMS requires as input a back-
ground image, b, and a target image crop, c. Our approach requires as well a linear
transformation function, T , and a color correction function, M , and finally applies
an alpha blending technique [54] to compose the positive training case. The ap-
proach focuses on constraining the parameters of T and M closer to the bounds of
physical possibility, while still exploring a larger data distribution. In the simplest
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case, the final training image is then computed by: i = b ⊕M(T (c)) (where "⊕"
corresponds to the alpha blending). However, we can consider multiple c’s and end
up with the following formulation:

i = b⊕Mx1(Ty1(c1))⊕Mx2(Ty2(c2))

...⊕Mxn(Tyn(cn)), ∀x ∈M,∀y ∈ T (4.1)

Note that each Mx and Ty are different color correction and linear transforma-
tions respectively.

4.1.1 Physically informed linear transformation

The linear transformation defined by T in Eq. 4.1 is further defined by the input
parameters (X, θ, s). X represents the final location of the center of mass of the
cropped image (c) inR2. X can vary randomly to any point in the image. Θ however
is constrained by the maximum rotation that c can see given the application-specific
setup. This is computed manually by placing c in its original background b at
the highest/lowest rotation possible. By manually placing the crop c, PIWIMS is
bounding the space of possible rotations for c. We define the possible set of rotations
as Y .

Similarly, the size S of the crop c is equally computed by manually placing c
in the original background b. In this case, the annotator will resize the crop to
the largest and smallest possible perceived size given the application-specific setup.
Once again, bounding the possible sizes of c to the physically reasonable ones. The
size of c is defined by the ratio of the area (number of pixels) of the crop c and the
area of b, and its possible space is defined as S. Finally T ∈ T where T = (Y ,S).

4.1.2 Physically informed color correction

When bounding the possible synthetic images in the color space, we focused on light-
ing. This is formulated through the function M present in Eq. 4.1. M represents
the color space of the c image in HSL (Hue, Saturation and Lightness) space. In
order to encode the lighting characteristics (origin, color, and intensity) easily intu-
ited by humans, PIWIMS requires the annotator to understand the lighting in the

23



application-specific setup and place the cropped image c in the original background
b, and, similarly to subsection 4.1.1, search for the maximum/minimum hue and
lightness value possible. The range computed between the maximum and minimum
values define the spaceM. Our approach ignores saturation based on the fact that
c is extracted from the same source that the model will operate in, which already
includes the data characteristics of the light sensor. This assumption can further be
alleviated to improve the model.

While this is a homogeneous color mapping transformation, we believe that it is
possible to enhance this model with a directed lighting source.

4.1.3 Target Motion

Even though the motion is associated with a continuous set of images (video), it can
still be perceived in a static image. Motion blur can be detected in a single image,
indicating a natural motion that creates a loss of detail due to the capture rate of
the camera’s sensor. The same principles applied in Section 4.1.1 and Section 4.1.2
can be applied here. Motion blur can be applied by a convolution between a kernel
k, defining the direction and intention of the motion, and the image c.

In cases where the ordered series of images is available, motion can further be
used through a pre-processing step of background subtraction [101]. PIWIMS trans-
forms the background image b using a synthetic background subtraction removal
function f . f randomly samples the coordinate space of b and converts that pixel
into a black pixel with probability p. In case one of its 8 neighboring pixels has been
converted to black its "turning black" probability doubles becoming (1 +p)/2. This
is defined as such:

P (bx,y = 0|p) =

{
p ,∀x, y where b|x−1|,|y−1| 6= 0

(1+p)
2

, ∀x, y where b|x−1|,|y−1| = 0
(4.2)

We have identified empirically that p = 0.53 has the best performance when re-
producing the effects of background subtraction. See 4.2c). for an example of a
resulting background images with f(b, 0.53).
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Figure 4.3: The top three images show the effect of random dataset generation that lies
outside the physical reality of the application. The bottom three images demonstrate the
generation process based on PIWIMS linear transformation, color correction and negative
sampling.

4.1.4 Occlusion and Negative Sampling

When blending the background, b, with the multiple target cropped images, c’s,
[110] has demonstrated that the artifacts created by composing the final image can
be identified by the training model, which leads to it expecting such artifacts in
the application-specific images. Therefore PIWIMS further adds similarly shaped,
to c, extra cropped images denoted as v with content from the different random
background, in order to create negative samples with the compositing artifacts. (See
Fig. 4.3). The last step of PIWIMS is to remove samples generated with extreme
occlusions by applying NMS (non-maximum suppression) with a threshold of 0.8 on
the generated c images.

4.2 Real-World Evaluation at an operating ware-

house

In this section, we present a component-wise analysis of the different stages of PI-
WIMS and the results of the deployment of PIWIMS in a real-world operating
warehouse monitoring system. In partnership with ThaiBev, we have deployed a
warehouse inventory monitoring system based on the data generated by PIWIMS.
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We analyze in this chapter 4-month of operation of this warehouse. And further eval-
uate each component of PIWIMS in Sections 4.1.1, 4.1.2 and 4.1.3 (See Fig. 4.2).

4.2.1 Warehouse camera deployment and dataset generation

We deployed two cameras at a ThaiBev’s warehouse for varying camera positions and
angles. The cameras’ placement is chosen in a way to capture the maximum activity
occurring at each door. The cameras operated at 15fps and recorded all activities
during the four months of the deployment. The deployment was coordinated to
record the 4 busiest months of the year. We have further obtained the inventory
count from a separate warehouse monitoring system (WMS) for comparison.

Ground truth was generated by manually annotating 35 hours of randomly
selected video frames from different days and cameras. We further evaluate the
effectiveness of our approach by comparing our visual inventory monitoring results
with ThaiBev’s WMS results.

Dataset generation was achieved by extracting 32 cropped product images
of the highest selling item in the warehouse from each deployed camera, cn. We
have further leveraged the Indoor Scene Recognition Dataset [80] to generate our
backgrounds b for an increased variety of backgrounds which facilitates the gener-
alization process. By following the approach describe in Sec. 4.1, we create fully
synthetic datasets of 30,000 images out of the 32 cropped sampled images (with a
20:20:60::validation:testing:training dataset composition), for each component pro-
vided in Sec. 4.1 (See Fig. 4.2). We then train a FasterRCNN [85] model with the
synthetically generated datasets for the different steps in PIWIMS.

4.2.2 Metrics for Product detection and Product flow count-

ing

Inventory Monitoring requires the vision systems to detect the products of interest
and track their flow over time. For this purpose, we have divided our analysis of the
results into Product detection accuracy and Product flow counting.

Product Detection is a localization and classification task, which we evaluate
using the F1-score @ 0.8 IoU, that is |G

⋂
P |

|G
⋃
P | >= 0.8, where G is the ground truth

bounding box and P is the predicted bounding box.
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Figure 4.4: Detection Accuracy results with IoU = 0.8, using fully synthetic datasets
generated using various data augmentation techniques. We show that PIWIMS with min-
imum human labor (only 32 manually labeled images) outperforms the other techniques
for both the deployments.

Product flow counting aims to estimate the locations of products in a video
sequence and yield their individual inflow/outflow count based on the entrance and
exit zone in the warehouse, which we evaluate using the F1 score. If the ground
truth states a product inflow/outflow at time t1, and the predicted time states a
product inflow/outflow at time t2, it is considered a true positive if |t1 − t2| <= 50,
where we consider 50 frames (equivalent to 3.5 seconds) to accommodate for human
annotation errors.

4.2.3 PIWIMS data augmentation performance

In order to evaluate the performance of PIWIMS we have leveraged several data
augmentation techniques and used them for the warehouse inventory monitoring
deployment. We compare our model with Albumentations [9], and various tech-
niques from Keras Image Data Generator [16] on product detection and product flow
counting subtasks. The results show that all the components of PIWIMS perform
better or on-par with the baseline on respective tasks (See Fig. 4.4 and 4.5).
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Figure 4.5: Inventory Count Evaluation Results for different models, using synthetic
datasets generated with only 32 manually labeled images. Our approach, PIWIMS has an
8% performance increase compared to Albumentations [9] 31% error reduction as compared
to WMS (dotted line).

Product Detection: Following the apporach in Sec.4.1 we create detection
models from the synthetically generated datasets for PIWIMS, Albumentations [9]
and Keras Image Data Generator [16] methods. We demonstrate in figure 4.4 that
with a minimum amount of human labor (only 32 cropped samples), a combination
of all the components of PIWIMS achieves 99% F1-score @ 0.8 IoU.

Product Flow Counting: We detect the inventory by running our trained
models and then use SORT [123] to track the movement in 2D of the products
across time. We further define an entrance and exit zone in the image, determining
whether a moving product is considered inflow or outflow. Figure 4.5 shows that we
see an 8% improvement in F1-score for the first camera and on-par performance for
the second camera as compared to other data augmentation techniques.

Furthermore, we compare our model with WMS data (See Figure 4.5), the 3rd
party warehouse industry average. The results demonstrated that our models re-
sulted in a 31% reduced error as compared to WMS.
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4.2.4 Generalization across different camera angle and posi-

tion

In order to demonstrate the ability of PIWIMS to generalize across different camera
installations, we deployed a second camera at the same warehouse (see Figure 4.1).
The second camera is deployed at the same height from the warehouse platform
as the first camera. As both cameras are deployed in the same warehouse, similar
physical information is extracted when generating the synthetic datasets.

In Table 4.1 we list the factors that impact the physical parameters used in
PIWIMS. As the second camera is deployed at the same height as the first camera,
the linear transformations S remain similar across cameras. However, the linear
transformations Y is adjusted according to the angle of the second camera. The
color space M for images collected from the second camera differs from the first
camera. This occurs since the first camera is installed close to the door with direct
sunlight access, but this is not the case for the second camera installation. Motion
blur and occlusion parameters are similar across camera installations as they are
specific to the warehouse, and the product of interest moves at similar speeds from
both perspectives.

Evaluation was done by running the same trained model produced for the first
camera on the second camera. We randomly selected 10 hours of video from the
second camera, from different days and times of the day of the four months of
the deployment. This data was annotated by manually looking at the video and
registering how many inflows and outflows of the desired product occurred during
this 10 hours period. Figure 4.4 and 4.5 demonstrate that PIWIMS generalizes well
across different camera installations without added human labor for annotation.
PIWIMS exhibited a 19% improvement on product detection subtask compared
to the other data augmentation techniques and on-par performance on product
counting subtask.

4.3 Related Work

There is a significant amount of work in synthetic data generation with the intent of
overcoming the burden of labeling large datasets for training neural networks. How-
ever, most of these works lack the optimization for the target application and focus
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Physically informed parameters Impacted by
Linear Transformations (Y) Camera angle and position
Color Correction (M) Lighting angle and intensity
Motion Blur Warehouse product motion
Occlusion Parameters Camera position

Table 4.1: Analysis of physical realities that impact the paramters used for data gener-
ation in PIWIMS. Notice that, in general, linear transformations and color correction are
derived from camera placement motion blur and occlusion parameters are specific to the
warehouse characteristics.
on just slightly perturbing the available data distribution. These can be grouped
into learning-based image synthesis, photo-realistic mapping and contextual image
composition.

Learning-based image synthesis: In order to synthesize positive examples
for training object detection models prior works [6, 109, 127] leverage pre-existing
labeled datasets and vary its characteristics (i.e. saturation, brightness, orientation,
etc.) to augment the data distribution with the attempt at maintaining the patterns
that make such an example a positive one. These parameters can be learned by a
model to generate these synthetic images [14, 19] or generated through adversarial
examples [5, 78, 110]. ST-GAN [54] uses spatial composition to generate new images,
however, without the contextual understanding of the target application. These,
however, still require a large available labeled dataset to learn meaningful patterns
and generate image samples that improve the training performance.

Contextual image composition: Image composition refers to the technique
of cropping separate images and composing them in such a way that new images are
generated with, ideally, similar data distribution to the target context. While these
techniques [26, 27, 117] have shown an increase in performance through the random
placement of images crops on random backgrounds, they tend to generate unrealistic
datasets, limiting its ability to adapt to new domains [26]. To improve this, data
augmentation techniques have adopted a parameterized method to limit the distri-
bution of the composition [6]. However these parameters require a large amount
of human labor to fine-tune its performance for each composition. To address this,
prior works use heuristical [27] techniques or contextual cues [70] to improve the
realism of the composition.

Photo-realistic mapping: Photo-realistic 3D simulation engines, such as
game engines, have recently gained popularity for data augmentation purposes [42,
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86, 113]. These approaches provide a large degree of control over the possible trans-
formations done to available data and into the realism of the resulting dataset.
However, the significant downsides of this approach are the domain gap between
simulated images and the real application and the hidden need for human labor to
generate and ingest 3D data into the simulator.

4.4 Chapter Summary

We introduce PIWIMS, a physics-informed synthetic data generation technique for
real-world deployments. PIWIMS utilizes the physical constraints of the environ-
ment and the objects to generate realistic datasets. Our approach requires minimal
human annotation, and we demonstrate that with an empirical study of inventory
monitoring in a warehouse, where we achieve 87% accuracy in inventory tracking
with only 32 manually labeled images.

While these results show great promise in deploying a vision system with virtually
no available data and with minimal human labor, they are still preliminary. Future
work will involve evaluating this approach against an increasing variety of products
and an increase variety of deployments. In addition, further exploration is required
to understand the minimum required number of manually annotated samples are
required to perform well.

31



32



Chapter 5

Ownership Transition Detection by
Modeling Physical Relationships
between Humans and Objects

In Chapter 4 I showed how to model the physical characteristics of the objects and
scene (structures) present in a deployment. While this showed significant improve-
ments in reducing the amount of required labels to track certain objects it focuses
on a limited subset of ownership transitions where the original, and final, location of
the object define its owner (i.e. moving a crate from outside an warehouse to inside).
However there are other scenarios where the location of the objects may change but
it does not define its ownership (e.g. moving a chocolate inside a store from a shelf
to another). In these cases we have to model the physical relationship between the
person and the object, to understand when ownership changes. Furthermore, an
understanding of the physical relationship between the people and objects, such as
the insight that people tend to grab objects with their hands, reduces the search
space required to track the objects in the first place. In this Chapter I will focus
on inventory tracking in a retail store setting, which is subject to several objects
and people behaviours that require the modeling of their relationships in order to
accurately track the objects’ ownership transfers.

Traditional retail stores face significant labor costs to monitor shelf inventory
regularly, often postponing this operation until off-peak hours. A delay in inventory
monitoring causes high sales losses when a particular item is gone from the shelf
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Figure 5.1: FAIM scenario and real implementation. Through weight sensors and cam-
eras, the goal is to autonomously detect and identify what item(s) customers take.

though additional stock existed in the warehouse. An ordinary convenience store
faces out-of-shelf stockout rates of 5-10%, which results in a loss of up to 4% of
sales [39]. In North America alone, this accounts for approximately $93 billion
annual losses [52].

In order to address this issue, current approaches focus on three ways to monitor
shelf stock: manual, on-item tags, and vision-based sensing. Manual approaches
are the norm and mainly rely on visual inspection of the shelves to reorganize and
restock when needed. Employees bandwidth typically only allows for up to a few
checks a day, leading to high cost and minimal effectiveness especially in high traffic
stores.

Other approaches use sensors on every item (e.g. RFID tags) to monitor re-
maining stock of each product [8, 20]. However, the added cost of the tags together
with the labor cost of labeling every item make this approach impractical other
than for high-end goods, such as electronic consumer goods or apparel [20, 69].
More recently, cashier-less stores using a variety of sensors are being explored. Most
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approaches still require human operators for proper functioning and have highly
constrained stocking requirements. While some stores are already operational, such
as Amazon Go [1], their automated accuracy has not been revealed and several re-
ports point out that they heavily rely on employees watching the cameras to avoid
low receipt accuracy [82, 106].

In this chapter, we present an Autonomous Inventory Monitoring system, FAIM,
which tracks shelf-level stock in real-time as the customers pick up or return items.
Using weight sensors on each shelf, our system identifies the item being taken based
on the location and absolute weight change of an event, which is fused with vi-
sual object identification once the item is in the customer’s hand. FAIM leverages
physical knowledge about the customer–shelf interaction to focus the attention of
the visual classifier only on the item being interacted with. We fully implemented
FAIM on a 5 shelf setup with 4 cameras and 60 weight plates. To evaluate the sys-
tem in a real-world setting, we used 85 items from 33 unique products and mimicked
the item layout of a local 7-Eleven. Therefore, our contribution is three-fold:

• FAIM, the first fully autonomous shelf inventory monitoring system without
human-in-the-loop.

• An adaptive sensor aggregation algorithm to combine information from dif-
ferent sensing modalities, in particular shelf weight differential, visual in-hand
item recognition and prior knowledge of item layout (i.e. product location).

• A visual item recognition model training methodology that leverages tradi-
tional visual descriptors along with an implementation and evaluation in a
real-world market setup with 33 products replicating the layout of a 7-Eleven
store.

The rest of the chapter is organized as follows. First, Section 5.4 discusses related
works and background. Section 5.1 describes the design of the FAIM system. In
Section 5.2 we present the fusion algorithm that combines location, weight and
vision information. Next, Section 5.3 provides results and analysis of the real-world
evaluation in our store setup. Finally, we conclude in Section 6.7.
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5.1 System Design

To the best of our knowledge, FAIM is the first fully autonomous shelf inventory
monitoring system without human-in-the-loop. This section provides our system
design choices and assumptions.

5.1.1 System Overview

Figure 5.2 shows FAIM’s system framework. It utilizes multi-modal sensing to
improve item identification accuracy. In particular, I focus on three sources of in-
formation: item layout, weight and appearance. FAIM’s pipeline is triggered when
a change in the total weight of a shelf is detected. From that it extracts two fea-
tures: the absolute weight difference and the spatial distribution of the weight. The
weight change-based prediction computes the probability of each product class by
comparing the absolute weight difference to each product’s average weight. The
location-based prediction computes the probability of each product class by com-
bining the spatial distribution of the weight change on the shelf with prior knowledge
of item layout. The vision-based prediction leverages human pose estimation and
background subtraction to focus the visual object classifier’s attention to identify
the object(s) in the customer’s hand. Finally, FAIM fuses all three predictions by
applying an adaptive weighted linear combination.

5.1.2 Assumptions

Handling all the intricacies and corner cases of a fully autonomous system for in-
ventory monitoring is a very challenging task. I limit the scope of this chapter in
order to fully address the problem defined: handling pick up and put back events
under normal shopping behavior. While I am aware that cultural, age, and other
factors impact what’s considered normal behavior, I observe some general trends
on customers shopping in convenience stores. I make the following assumptions in
order to scope this chapter:

1. At any given time, at most one customer is interacting with a partic-
ular shelf. Unlike big supermarkets, convenience stores observe a much lower
customer density albeit a higher foot traffic. In addition, most customers shop
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Figure 5.2: FAIM system overview. Top: Vision-based pipeline (yellow). Bottom:
Location- and Weight change-based prediction pipeline (blue). Right: Fusion algorithm
(green). Prior knowledge of item layout, weight and appearance (pink).

individually and respect other customers’ personal space –i.e., if someone is
picking an item from the same shelf they want an item from, they wait for the
other customer to get their items first. This assumption is particularly true
recently given the necessity of social distancing –due to COVID-19, people
remain 6 feet apart–. This physical separation and the typical size of a shelf
(3 to 4 feet) make this a reasonable assumption.

2. Customers don’t place outside objects on shelves. It is common for
customers to enter the store carrying certain objects, such as a purse or a drink,
but unless they are purposefully trying to fool the autonomous system, they
rarely leave anything on a shelf that wasn’t picked inside the store. Therefore,
while users are free to return items they do not want anymore, FAIM can
safely assume any put back event corresponds to items from the inventory.

3. Customers don’t alter items’ properties (weight or appearance) be-
fore putting something back. For instance, our system assumes that cus-
tomers won’t pick a bag of chips, eat half of them and put them back on a
shelf.
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4. Customers pick one item a time. When customers want multiple items
from the same shelf, it is uncommon to pick different items with each hand at
the same time –i.e., even if they use both hands, they usually pick a product
with one first, then the other, so FAIM would correctly flag them as two
separate events. Note that this assumption could be relaxed by considering
all combinations of up to N items being picked up, though N should be kept
small to limit computational complexity.

5.1.3 Hardware design decisions

There are many design choices involved in the instrumentation of smart retail stores
for inventory monitoring. In this section, I discuss some insights I gained by imple-
menting FAIM and working with actual retailers, as well as the impact and tradeoffs
of different hardware approaches.

Weight sensing

An interesting tradeoff to consider when instrumenting retail store fixtures with
weight load cells is the size of each weight-sensing plate, that is, the size of each
independent platform suspended over one or more weight sensors. On the one hand,
larger sensing areas –e.g., one per shelf or even one per fixture– means lower hard-
ware cost and processing, but also lower signal resolution (the load cells need to
support a larger maximum capacity) as well as lower spatial resolution (more items
per plate, which increases the chances of having multiple items with very similar
weights). In Section 5.3 I explore the impact of different plate sizes on FAIM’s
accuracy.

Furthermore, weight plate size and design can have a big repercussion on item
layout flexibility, an often desired demand by retailers. Product dimensions vary
in a wide range, and so does the stock offered at convenience stores and their item
layout. Therefore, limiting each product to a single sensing plate, while helping
weight sensing by isolating each product, would lead to a hard constraint on the
possible products on display, limiting its practical use.

Retailers’ profit margins are very low and maximizing item density is of utter
importance (see Figure 5.8 for an example of a typical fixture layout in a conve-
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nience store). I therefore adopted a flexible hardware design that can be easily
mass-produced to bring costs down, as shown in Figure 5.1. Our single-size design
consists of narrow weight plates (4" width, divisible by the standard 48" fixture
length) laid contiguous to each other. This design has the added advantage that
such small weight plates won’t have as much weight on top, allowing for lower maxi-
mum capacity load cells thus higher weight resolution (sub-gram) without requiring
expensive ADCs (Analog-to-Digital Converters). Moreover, Section 5.1.4 details
how FAIM handles cases where items span across multiple weight plates (the weight
difference in each individual plate does not correspond to the total weight of the
item, hence the product prediction has to cluster neighboring weight cells into a
single event for a correct item identification).

Vision sensing

There are also many design considerations related to installing cameras in retail
stores, from camera specifications, to camera placement and even number of cameras
to deploy. As vision processing improves, camera specification constraints can be
relaxed. From our initial experiments, camera resolution doesn’t play a huge role
(in fact most deep learning networks downsize the input image to about 300-720
pixels wide for training and computation efficiency purposes). As for frame rate,
I have empirically observed 25-30fps to be enough to get at least one good frame
of the item being picked. In addition, optimal lighting might help get sharper and
more consistent views of the products, but that is out of the scope of this chapter.

Camera quantity and placement pose trade-offs worth exploring more in depth in
future work. Overall, the intuition is that by having multiple cameras spread across
different viewing angles, the system can minimize the likelihood of visual occlusions.
While this is true, the added hardware, setup, power and computational cost can
dramatically impact the benefits of autonomous inventory monitoring. For instance,
the first Amazon Go [1] store in Seattle features hundreds of cameras –hanging from
the ceiling, on top of each fixture and even below each shelf– and still relies on
a human-in-the-loop approach to resolve uncertainties [82, 106]. From our initial
experiments I empirically noticed weight sensors to be a much more robust –and
cheaper– predictor of what item was picked up or put back on a shelf. Therefore, I do
not consider shelf-mounted cameras in this chapter. Section 5.3.2 however analyzes
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our experiments (raw in light blue, filtered in dark blue), as well as the events detected by
FAIM (orange) and the annotated ground-truth (purple). Two products were picked up in
this section of the experiment.

the impact of any combination among four different camera placements –top-down,
sides and in front of each fixture– on FAIM’s accuracy.

5.1.4 Customer-shelf interaction detection

The first step in FAIM’s pipeline is to detect when an event took place (i.e., a
customer picked up or put back an item on a shelf). In our proposed system ar-
chitecture, displayed in Figure 5.2, the processing of every change in the inventory
starts with a weight change trigger. After carefully analyzing some initial experi-
ment data, I came to the conclusion that, even during normal shopping behavior
–i.e., customers not trying to fool the system–, visual occlusions from hands or the
body are highly likely (especially for smaller items), which makes vision much less
reliable than weight for triggering events. Unless someone purposefully drops an
object of similar weight as they pick an item from a shelf –which would break As-
sumption 2–, the weight difference on the load sensors is generally enough to detect
an event.

There are numerous prior works to detect events based on weight change on a
load sensed surface [73, 98]. In essence these approaches compute the mean and
variance of the weight values over a sliding window, and classify the state as either
stable –no interaction– or active –an interaction is taking place– by comparing the
moving variance to a threshold. Once the state is back at stable, the mean weight
before and after the active state is extracted and reported as the weight difference
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of the event, where the sign indicates whether it was a pick up or a put back.

Furthermore, inevitably –even with physical separation between the weight-
sensing plates– there might be cases where items lay on more than one plate. In
those scenarios, looking at the individual plate scale would yield erroneous weight
difference values. Instead, I aggregate all weight plates in each shelf and detect
events at the shelf level. This also makes the event detection more robust to light
items laying on more than one plate –which might go undetected at each individual
plate, but would still provide a big enough change on the aggregate moving variance
and mean. See Figure 5.3, which shows the shelf aggregated weight data along with
the weight moving variance, mean and the events detected.

Mathematically, let wns,p define the weight on the pth weight plate on shelf s at
discrete time n. I compute the shelf’s aggregated weight as:

wns =
∑

p
wns,p (5.1)

Then, the shelf’s aggregated moving mean and variance are, respectively, µns and
νns :

µns =
1

2Nw + 1

n+Nw∑
t=n−Nw

wts (5.2)

νns =
1

2Nw + 1

n+Nw∑
t=n−Nw

|wts − µts|2 (5.3)

where Nw is the sliding window half-length in samples, which corresponds to 0.5s in
our implementation (2Nw + 1=61).

An event is detected according to Equations 5.4:

Event begins on shelf s: νts > εν , ∀t ∈ [nb, nb+Nh) (5.4a)

Event ends on shelf s: νts ≤ εν , ∀t ∈ (ne−Nl, ne] (5.4b)

Temporal consistency: ne > nb (5.4c)

where Nh and Nl correspond to the minimum length the weight variance has to
exceed or fall short of the threshold εν in order to detect the beginning and end
of an event. Based on some initial experiments I empirically set the values to
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Nh =Nl =30 (0.5s) and εν =0.01 kg2. Once an event has been detected, the Weight
Change Event Detection module determines the event weight difference ∆µ and the
location –set of weight plates {ps}– according to Eq. 5.5:

Event weight difference: ∆µ = µne
s − µnb

s (5.5a)

Event location: L = { ps : |µne
s,p − µnb

s,p| ≥ εµ} (5.5b)

where εµ indicates the minimum weight contribution of a single plate in order to
be included in the event, which I set to εµ = 5 g. Once the event weight difference
∆µ is determined, this module further computes the event weight distribution –set
of weight contributions {∆µ%

s,p}– according to Eq. 5.6

Event weight distribution: D =

{
∆µ%

s,p :
|µne

s,p − µnb
s,p|∑

p′ |µ
ne

s,p′ − µ
nb

s,p′ |

}
(5.6)

I define Equations 5.5a, 5.5b and 5.6 as the output of the Weight Change Event
Detection block (as seen in Figure 5.2). I leverage these definitions inWeight change-
based item Prediction (Sec. 5.2.2) and Location-based Item Prediction (Sec. 5.2.1).

5.1.5 Vision event extraction

Understanding customer–item interactions and identifying the products picked from
or returned to a shelf from video streams is very computationally expensive (espe-
cially for higher camera densities). For this reason, FAIM only saves a small buffer
of recent history and uses the Weight Change Event Detection trigger from Section
5.1.4 to start analyzing the images. For put back events I directly analyze the buffer
as soon as an event is detected, whereas for pick up events I delay the vision anal-
ysis until the oldest frame in the buffer coincides with the event trigger, ne from
Equation 5.4b.

The Vision Event Extraction pipeline is divided in two sequential tasks: Vision
Event Preprocessing and Product Detections Spatial Selection. The former gathers
different sources of visual evidence and is composed of the Human Pose Estimation,

42



Lysol all purpose: 0.52

(b)(a)

Figure 5.4: Human pose estimation provides us an estimate of the location of the cus-
tomer’s hand, where the visual classifier will look for items (a). I also apply background
subtraction to the original image to remove detected items present around the hand (b),
such as the objects remaining on the shelf.

Background Subtraction and Product Detection & Classification modules. The lat-
ter then aggregates all the information and determines which object detections to
keep or reject based on the customer’s hand location (See Figure 5.4). As the out-
put of the Vision Event Extraction pipeline, those detections together with their
associated product probabilities, are fed into the Vision-based Item Identification
module (Sec. 5.2.3) which tries to determine what product was picked.

Vision Event Preprocessing

Ideally, this step should only be comprised of Product Detection & Classification.
However, visual object classifiers, such as [41, 85], provide a set of (location, object
class) for anything found on an image (i.e., they would also detect all products on
the shelves). In order to focus just on the item that was picked, the Vision Event
Preprocessing takes additional steps, as shown in Figure 5.2. On the one hand,
it performs Human Pose Estimation, a popular research topic in the Computer
Vision literature which tries to localize the joints of each person. There are many
works in this domain such as [10, 12, 75, 120] which, through different approaches,
are all quite mature and robust to varying lighting conditions, clothing and even
substantial occlusion. On the other hand, leveraging the fact that cameras are
stationary, Background Subtraction techniques such as [40] can be used to "hide"
all the products that remain on the shelf and therefore focus the attention of the

43



Figure 5.5: Weight distribution of each product used in our experiments.

visual classifier only on the moving foreground, where it can find the item being
taken or returned.

Product Detections Spatial Selection

From the skeleton of the customers, the location of their wrists represents a simple-
yet-effective attention mechanism: by ignoring any detections with centroids further
away from the hand than a given threshold, FAIM eliminates most detections of
the object classifier that do not correspond to the item the customer is picking
or putting back. I call this threshold Rc

h, for each camera c, and pick its value
empirically based on the camera–shelf distance. This spatial selection can be very
useful to complement Background Subtraction when there is more than one customer
moving in the scene or when the customer interacting with the shelf has products
on the other hand which they had previously picked.

5.1.6 Inventory prior knowledge

FAIM relies on three sources of information to produce an accurate estimate of what
item was returned or taken from a shelf by a customer. In order to do so, the system
needs to be informed about certain properties of each product. These models can be
categorized based on the source of information they provide: item layout (product
location), weight and appearance model.

Item layout model

Item layout is a mapping between each product and their –initial– location in the
store. The granularity or resolution of this layout could dramatically vary due to
different factors, such as store size, complexity of the layout or even time and cost
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associated with manual annotation. Let I represent the set of products in the
inventory and i ∈ I be any particular product (e.g., Scotch Brite sponge, Fabric
Febreeze, etc.). In a generic way, item layout can be defined as a function l (·) →
{i ∈ I} that returns the set of products expected to be found at any query location.
The resolution of the item layout can then be defined as the smallest change in
location which yields a different value of l. Given the narrow width of our weight
plates, the highest resolution considered in this chapter is the plate level: I constrain
the query location to a given shelf s and plate p such that l (·) can be rewritten as:

ls,p = {i ∈ I | product i is stocked at plate p on shelf s} (5.7)

Where |ls,p| is the total number of items at plate p on shelf s. This way, I can
simulate lower spatial resolutions by recording the item layout at virtual plates p′

that aggregate multiple real plates, e.g., as,p′ = as,p1 ∪ as,p2 ∪ as,p3 (I call p′ a bin of
width 3). I evaluate the impact of three different levels of item layout granularity
–plate, half-shelf and shelf– in Section 5.3.2. Throughout the chapter, I will refer to
the item layout model as:

L = {ls,p}, ∀s,∀p (5.8)

Item weight model

In order to predict which product was picked, FAIM first needs to have some knowl-
edge about the weight distribution of each product in the inventory, W (i). This
one-time calibration step consists in weighing every item and then parametrizing
the distribution, which can be approximated by a Gaussian distribution (character-
ized by its mean µ and standard deviation σ) as displayed in Figure 5.5. The item
weight model W is therefore just a list of µ and σ pairs:

W =
{

(µi, σi) : W (i) ∼ N (µi, σ
2
i )
}
, ∀i ∈ I (5.9)

Note that in general, most products have a fairly consistent weight distribution,
thus once estimated, new items would not need to be weighed on restocking.
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Item appearance model

There are many ways to encode a visual representation of each item, as discussed
in Section 5.4.2. Since the focus of this chapter is on how to combine the different
sources of information to produce an accurate product prediction and not in how to
improve each source in particular, I follow state-of-the-art approaches for modelling
the visual appearance. That way, FAIM is not constrained to a particular object
detector and can directly benefit from any improvements in the state-of-the-art.
Currently, the best visual identification results are obtained through two data-driven
approaches: 1) using visual descriptors as defined by the MPEG-7 standards [111].
This approach extracts contextual content associated with images, such as Color,
Texture, Shape, Motion and Location. It is most often applied in the domain of
search engine for images; 2) Convolutional Neural Network (CNN) based models,
such as the ones mentioned in Section 5.4.2 [35, 41, 83, 85]. Either approach requires
a large data collection process. I provide more details of our data generation, for
both approaches, and training implementation of deep learning models to recognize
different object classes –also known as instance segmentation– in Section 5.3.1.

In this chapter I applied both approaches. I trained a CNN and generated visual
descriptors for all 33 products. I then used the visual descriptors to validate the
training accuracy for similar looking products. To achieve this I’ve collected 20
second videos from multiple angles and distances of a single item of each product
placed in a turntable. Then, I cropped the product using background subtraction.
For each generated image I’ve extracted color [63], texture [93] and shape descriptors
[7]. Through observation of the distribution of these descriptors I’ve noticed that
each product produces, maximally, four clusters for a full 360o revolution of the
product. Therefore I’ve extracted the centroid of these clusters and used them to
measure the mahalanobis distance between the centroids of each class (see Figure
5.6). I see that the products in our database are visually distinguishable from each
other. This is natural as different brands continuously attempt to create their unique
visual identity in order for consumers to easily pick out their products from all the
similar competitors’ products. Although this technique allows us to distinguish the
object based on visual information, it is highly sensitive to occlusions. I therefore
use this technique as an indicator of which objects are more similar to each other
in order to then test and validate the performance of our trained CNN with those
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Figure 5.6: Dominant Color Descriptor distribution of each product trained in our model.
Each dot represents a centroid of a cluster of dominant color descriptors obtained for
different angles of each product. Statistical Neighboring Embedding was used to visualize
the similarity between different products. Dots that are closer to each other represent
products that are similar in dominant color. E.g. "Palmolive Ultra strength" and "7
Select Dish Liquid" seen on the right.

(a) (b) (c) (d) (e)

Figure 5.7: An example of the data generation for training. I collected videos of the
items from three different angles shown in (a). (b) illustrates the view from one of camera
angles. From (b) I removed the background (c) and overlaid the multiple cropped objects
(d) onto images from the COCO Dataset [55]. Finally, a Faster R-CNN [85] model was
trained with 30k images like (e).

products.
I’ve further used common data augmentation techniques and generated 30k

multi-item images (like the ones on Figure 5.7d) for the network to learn a model
of the visual appearance of each product.

5.2 Combining location, weight and vision

The previous section described the item layout, weight and appearance models that
FAIM relies on. Here, we detail how each sensing modality estimates the likelihood
of the item in the event belonging to each product class, i ∈ I by leveraging this in-
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ventory prior knowledge (Sections 5.2.1-5.2.3), and how these sources of information
are then all combined to emit the final product prediction (Section 5.2.4).

In this chapter P (I = i) is considered uniformly distributed, given that we
have generated the receipts by picking randomly from each class of products, using
a uniform distribution. However this assumption can change if more information
about which products are picked up more regularly is available. A better model of
P (I = i) could provide better estimates of which product was picked.

5.2.1 Location-based Item Identification

From the item layout model (L, Eq. 5.7-5.8) and the event location information
(L= {ps}, Eq. 5.5b), the Location-based Item Identification module estimates the
likelihood of the item in the event belonging to each product class, i ∈ I. A simple
approach would predict PL (I = i | L) according to:

All items arranged at location L: LL =
⋃

ps∈L
ls,p (5.10a)

PL (I = i | L) =

{
1/ |LL| i ∈ LL

0 otherwise
(5.10b)

where |LL| indicates the number of different products stocked at the weight plates
L= {ps}. Note that since a location L might be composed of multiple plates, we
first need to take the union (Eq. 5.10a). Then, any item in the resulting set would
have equal probability of being picked, and any item outside of the event’s location
would be ignored.

However, such approach would be disregarding some useful information: some
plates may have observed a much larger portion of the total weight change than
others, and it is therefore more likely that the item comes from those particular
plates. For this reason, FAIM uses a weight change-guided location-based item
identification:

PL (I = i | D) =
∑

p : i∈ls,p

|∆µ%
s,p|

|ls,p|
(5.11)

Where PL(I = i | D) is computed by summing each plate’s weight change,
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weighted by the amount each plate contributed to the total weight change of the
shelf. We then use PL in our fusion computation, in Sec. 5.2.4 to calculate the final
product prediction.

5.2.2 Weight change-based Item Identification

Product prediction based on weight change is fairly straight-forward. The main idea
is to estimate how close the event’s weight change ∆µ is to the distribution of each
product, given by the item weight model. It is important to also account for the noise
affecting the weight sensor readings, which is generally approximated by a normal
distribution with zero mean and some standard deviation estimated empirically
(σw=5g in our experiments). We define then ∆M and ∆Mm as random variables of
the true weight displaced and themeasured weight displaced in the event respectively.
And ∆µ and ∆µm as the values selected from these variables. Furthermore the
probability of ∆µm given ∆µ can be defined as a normal distribution, such that:

P (∆Mm | ∆M = ∆µ) ∼ N (∆µ, σw) (5.12)

Then, using the Bayes’s rule the probability of the item belonging to each product
class is determined by:

PW (I = i | ∆Mm = ∆µm) =
P (∆Mm = ∆µm | I = i)P (I = i)

P (∆Mm = ∆µm)
(5.13)

where, in our experiments, P (I = i) is uniformly distributed and P (∆Mm = ∆µm)

is constant since we have the measurement. We obtain:

PW (I = i | ∆Mm = ∆µm) ∝ P (∆Mm = ∆µm | I = i) (5.14)

We include ∆M in the calculation of PW by marginalizing the joint conditional
probability P (∆Mm = ∆µm,∆M = ∆µ | I = i), obtaining:

PW (I = i | ∆Mm = ∆µm) ∝
+∞∫
−∞

f∆Mm,∆M |I=i(∆µm,∆µ) d∆µ (5.15)
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Given the chain rule:

f∆Mm,∆M |I=i(∆µm,∆µ) = f∆Mm|∆M=∆µ,I=i(∆µm) · f∆M |I=i(∆µ)

(5.16a)

therefore: PW (I = i | ∆Mm = ∆µm) ∝
+∞∫
−∞

f∆Mm|∆M=∆µ,I=i(∆µm) · f∆M |I=i(∆µ) d∆µ

(5.16b)

We assume conditional independence of ∆Mm and I given ∆M = ∆µ, obtaining:

PW (I = i | ∆Mm = ∆µm) ∝
+∞∫
−∞

f∆Mm|∆M=∆µ(∆µm) · f∆M |I=i(∆µ) d∆µ (5.17)

In Equation 5.17 the right side of the integral (f∆M |I=i(∆µ)) follows Equation 5.9
and is therefore normally distributed given a particular i. In Sec. 5.2.4 we combine
Weight change-based Item Identification with Location-based Item identification by
leveraging Eqs. 5.11-5.17.

5.2.3 Vision-based Item Identification

While the Product Detections Spatial Selection module (Sec. 5.1.5) already deter-
mines the set of detected objects with high probability of being on the customer’s
hands, these predictions need to be combined together –for all frames in the buffer–
to output a single probability value for each product class. Unlike weight and loca-
tion, which are very hard to occlude, visual classifiers often suffer from temporary
occlusions –especially for smaller items or when customers carry multiple items in
their hand. As a consequence, simply concatenating (i.e. multiplying) the logits
(classification score) of all objects would lead to undesired results, since an item not
detected in a frame would end with a probability of 0 regardless of how confident all
other frames were. We instead propose using a noisy OR model, which in essence
computes the probability PV (I = i) that each product was seen by taking the com-
plement of the probability that the product was never seen. Mathematically, let V
represent the set of valid detections for the current event –output by the Product
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Detections Spatial Selection module– and vi ∈ [0, 1] the classification score for each
product class i ∈ I, then:

PV (I = i | V) = 1− P (i not seen in V) = 1−
∏
v∈V

1− vi (5.18)

This approach is also easy to extend to multi-camera deployments: given the detec-
tions Vc of each camera c ∈ C, the overall probability PV (I = i | Vc1 , . . . ,VcC ) =

PV (I = i |
⋃
c∈C Vc)

5.2.4 Item identification combining all sensing modalities

FAIM’s last stage of the pipeline fuses all sources of information to emit a final
product prediction, and the one with the highest probability score will be selected.
Following Bayesian inference, this fusion would be mathematically described as:

P (I = i | ∆µ,VC) =
P (∆M = ∆µ,

⋃
c∈C Vc | i) · P (I = i)∑

i∈I P (∆M = ∆µ,
⋃
c∈C Vc | i) · P (I = i)

(5.19a)

îMLE(∆µ,VC) = arg max
i

P (∆M = ∆µ,VC | i) (5.19b)

The main challenge in this sensor fusion arises from the difficulty of estimating
the joint conditional probability P (∆M = ∆µ,VC | i), since the visual features
and the weight change may not be conditionally independent on i. In this chapter,
we approximate this likelihood as a weighted linear combination of each individual
sensor modality –weight and vision– prediction. We compute the probability P i

weight

that item i was picked up/put down, from the weight sensing modality, using:

P i
weight = P (I = i | ∆Mm = ∆µm, D) (5.20a)

=
P (∆Mm = ∆µm, D | I = i)P (I = i)

P (∆Mm = ∆µm, D)
(5.20b)

Although ∆Mm and D are not independent, they are however conditionally inde-

pendent given I = i. This is true because once i is set, a product is selected. Thus,
the location from where the product was taken is independent of its measured weight
and vice-versa. We therefore obtain:
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P i
weight =

P (∆Mm = ∆µm | I = i)P (D | I = i)P (I = i)

P (∆Mm = ∆µm, D)
(5.21)

Using Bayes’s Theorem for the conditional probabilities in Equation 5.21 we get:

P i
weight =

P (∆Mm = ∆µm)P (D)

P (∆Mm = ∆µm, D)P (I = i)
P (I = i | ∆Mm = ∆µm)P (I = i | D)

(5.22)

As in our experiments P (I = i) is uniformly distributed and all terms in the
first fraction are constant –given that we have the measurement taken ∆µm and its
weight distributionD. Equation 5.22 can therefore be combined with Eqs. 5.11-5.17,
obtaining the following:

P i
weight ∝ PW (I = i | ∆Mm = ∆µm) · PL(I = i | D) (5.23)

In general, information from weight modality (P i
weight i.e., Location- and Weight

Change-based Item Identification) is a more robust product predictor –partially
because it is less affected by occlusions–, thus we assign it a higher relevance when
alpha-blending (α= 0.7 gave us the best results). It is also worth noting that, as
discussed in Section 5.2.3, cameras can be occluded, lighting conditions may change,
etc. therefore an object not being seen should not result in a final probability of 0.
For these reasons, FAIM sums both modalities predictions instead of multiplying to
fuse them. Furthermore, while our vision pipeline tries to ensure that only the item
being picked or put back is seen by the Product Detection & Classification module,
it may happen that several object detections get selected by the Product Detections
Spatial Selection (e.g., when the customer has other items in their hand). In those
cases, it doesn’t make sense that probabilities add up to 1 (e.g. 25% confident
that it saw 4 objects), but rather that each product was seen with probability 1.
Consequently, FAIM does not normalize the vision product predictions before alpha
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blending. Therefore Eq. 5.19b becomes:

Pi
weight ∝ PW (I = i | ∆Mm = ∆µm) · PL (I = i | D) (5.24a)

Pi
vision = PV (I = i | V) (5.24b)

Pi
fusion = αP i

weight + (1− α)P i
vision (5.24c)

î∗ = arg max
i

Pi
fusion (5.24d)

where î∗ is the product predicted for the event.

5.3 Evaluation

This Section presents our implementation of FAIM, the experimentation setup, the
metrics used to evaluate the performance of different approaches, and the actual
experiment results.

5.3.1 System Implementation

Our system utilizes a large array of weight and vision sensors. Below we describe
the details about our hardware implementation and training procedure, followed by
how the experiments were carried out and the evaluation metrics.

In order to understand the effect of having weight sensors at different spatial
resolutions, we designed narrow (4") weight plates which fit nicely on standard 48"
shelves used by many retailers. This allows us to simulate plates of different widths
(which we call bins) and evaluate the bin size parameter.

For vision sensors, we utilized 720p IP cameras and wrote scripts to record
all video and weight data to disk. Although we process the results offline, our
algorithms run in real-time on a cluster of 3 Nvidia GeForce GTX 1080 GPUs for
our vision pipeline –the computation required for the weight change- and location-
based predictions is negligible.

As Figure 5.8 shows, in order to fully evaluate a real-world setup, we went to a
local 7-Eleven convenience store, purchased all items on a fixture (Fig. 5.8(b)) and
arranged them in the same manner on our shelves (Fig. 5.8(a)). In the process, we
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initialized our system by:

1. Weighed every item and fitted a Normal distribution to generate the item
weight model (displayed on Fig. 5.5).

2. Marked what items lie on what plates (e.g., 409 is stocked on plates 1 and 2
on shelf 1) to generate the item layout model.

3. Extracted general information descriptors from the frames collected for train-
ing of each product. Specifically Dominant Color Descriptor (DCD) [103]
(displayed in Fig. 5.6), Homogeneous Texture Descriptor [93] and Region-
based Shape Descriptor (RSD) [47]. While these descriptors are not suited
to distinguish the object during a pick-up/put-down, due to occlusions, they
provide insights into the visual similarity of the products.

4. We replicated [121]’s approach for training the visual product recognition
pipeline. While rotating 360◦ on a white turntable (facilitates background re-
moval), three cameras at different angles and distances simultaneously recorded
an item of each product class, placed on its back as well as front side. From
those videos, the items could be segmented out and overlaid on top of ran-
dom images in random positions, sizes, rotations, etc. (see Figure 5.7). We
pre-trained a Faster R-CNN [85] model (using ResNet-50 and FPN) on [121]’s
dataset, trimmed the last (classification) layer, changed the number of out-
put classes to 33+1 (background) and trained on our dataset of 30k images
generated from such cropped products.

5. Evaluated the item appearance model by collecting data on the most similar
products guided by the product visual similarity obtained in Step 3.

Experiment Settings

We designed our experiments to try to simulate a real shopping experience where
customers have a notion of what they want to purchase but may not know where
items are located. Our 8 participants had never seen this item layout and, at
the beginning of each trial (5 repetitions per person) they were given a randomly
generated shopping list with 3 to 6 items (repetitions allowed). To incentivize the
presence of some put back events, with 20% probability subjects were asked to return
one of their items (without specifying where they should put it). Participants were
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(a) (b)

Figure 5.8: In order to follow a realistic item layout and understand potential failure
cases in real deployments, we replicated the layout of a 7-Eleven store.

instructed to leave the experiment area once they thought they had collected all
items in their list. We set up the 4 cameras to cover the fixture (set of shelves) from
all the main angles: top-down, in front and both sides, as shown in Figure 5.1.

Metrics

The main area this chapter tackles is item identification. We define the average item
identification accuracy, Avg. ID accuracy for short, as:

Avg. ID accuracy =
# correct items predicted

# events
(%) (5.25)
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Its complement, the average identification error, can then be easily defined as:

Avg. ID error =
# incorrect predictions

# events
(%) (5.26)

It is worth noting that the whole framework relies on a successful event detection,
that is, missing an event or detecting two consecutive events as a single event would
have a direct negative impact in the identification accuracy. However, since event
detection accuracy tends to be high and it is out of scope for this work, we focus
on the evaluation of item identification (measured by the Avg. ID accuracy). In the
next subsection, we analyze our experiment results and the dependency of FAIM’s
Avg. ID accuracy on different system parameters.

5.3.2 Real-world experiments

In order to fully evaluate the system in a real-world setting, we conducted the
“7-Eleven fixture” experiments described above, and present the results here. We
want to understand how the resolution or amount of information on a given sensing
modality affects the identification performance.

For weight sensing, one of the system parameters that impacts the spatial res-
olution is the bin width. As a reminder from Figure 5.1, we refer to a bin as a
virtual plate that aggregates (sums) multiple real plates, where bin width indicates
how many plates make up a bin. In Figure 5.9, we can see how location-based (PL,
in light brown) item identification suffers the most as bins get wider –and therefore
more items lie inside– dropping from 76.1% at bin width 1 to 11.9% when we only
have one plate per shelf (bin width 12). On the other hand, weight change-based
(PW , in orange) identification is independent on the bin width, since it only takes
as input the total weight change on the whole shelf. Of course, some items are very
close in weight to others (see Fig. 5.5) so only relying on the absolute weight change
yields an accuracy of 68.2%. By combining these two weight sensing-based sources
of information (Pweight = PL · PW , in brown), the accuracy rises to 91.5% and the
impact of larger bin widths is reduced, only dropping to 79.0% for bin width 12.
Finally, as we investigate deeper below, fusing the weight with visual information
(Pfusion, in blue) can bump the accuracy all the way to 93.2% for bin width 3 (slightly
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Figure 5.9: Item identification accuracy for weight sensor densities. As the weight sensor
density increases (higher spatial resolution) performance –slowly– increases.
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Figure 5.10: Item identification accuracy for different resolutions of item layout (i.e., how
knowing what products are in each plate, in every half-shelf or only in every shelf affects
performance). Half-shelf offers a great compromise between accuracy and hardware cost.

higher than bin width 1, and corresponds to the width of most of the items in the
inventory).

However, it isn’t only bin width that affects weight-based predictions. The res-
olution of the item layout model, L, can also significantly impact performance. As
shown in Figure 5.10, we consider three different resolutions: plate-level (L con-
tains which items could be located at each individual plate), half-shelf-level (L only
records which items lie on the left 6 or right 6 plates of each shelf) and shelf-level (L
only logs the product–shelf mappings). What we observe is that a half-shelf layout
model is almost as good as the plate-level layout (90.9% vs 92.0% for FAIM’s fusion
or 90.3% vs 91.5% for weight-based), while requiring a lot less effort to generate and
maintain. On the other hand, when the item layout resolution is at the shelf level,
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the accuracy drops to 80.1% and 79.0% respectively, a likely unacceptable level for
real deployments.

Figure 5.11 explores the benefits of using different amounts and combinations of
cameras. For short, we refer to them as Left, Right, Top and Back (their exact
location with respect to the shelves can be seen in Figure 5.1). For this comparison,
we use two different baselines for vision-based item identification:

a) Simply taking the arg max on PV (dark red), which often contains multiple
items with probability 1 –and would report a lower accuracy.

b) Thresholding on PV , e.g., considering an event was correctly identified as long
as the ground-truth product had a 0.9 or higher visual score –which captures
better whether vision would help the fusion or not.

From the results it is interesting to observe that just using Left and Right cameras
already leads to the fusion scores up to 92.6%. It is also worth noting that the
low vision-based accuracies reported here are a combination of multiple factors: the
domain adaptation gap between the lighting and environmental conditions where
the item appearance model was collected and the experiments were conducted, the
imperfections on the background subtraction to crop the items and the difficulty of
focusing the attention of the visual classifier on the item in the customer’s hands,
to name a few. But even with this room for improvement, FAIM’s fusion approach
still can extract useful visual information and achieve up to 3.4% higher accuracy
than without cameras, which reduces error from 21 to 17.6% (Figure 5.12), a 19%
reduction in error. Cameras contribute the most to the system when less sensors
are used, or the knowledge of the item layout is reduced.

It is relevant to note that vision plays an important role as the weight sensor
density and item layout resolution decrease. In other words, as the number of
sensors, and the granularity of the knowledge of where the products are in the shelf,
reduce, cameras compensate for the reduction in available information (See Figures
5.9-5.10). 92.6% is also an improvement over the reported accuracy of current self-
checkout systems, which can give results of only 86% [4] and still is widely used in
retail stores.

In the real world there are other factors that contribute to the accuracy of FAIM,
such as the number of people interacting simultaneously with the shelves or the
density of item arrangement. Sensing signals obtained from pick ups or put downs
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Figure 5.11: Item identification accuracy for different camera combinations (Left, Right,
Top, Back [see Fig 5.1]). With only Left+Right FAIM already achieves highest accuracy
(92.6%).
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Figure 5.12: Item identification error for different bin widths. Note the reduction in
error when vision assists weight (FAIM, beige, is consistently better than no fusion, green).
Starting at 2 bins/shelf the Avg. ID Error is already smaller than Self-Checkout [4].

of items in the shelves are affected by multiple people interacting simultaneously, this
presents further challenges in the weight change detection module. To address this
it is necessary to identify who is interacting with the shelf. This can be done with
infrastructure sensing [68], vision [15] or both. However this stayed outside the scope
of this chapter, unfortunately due to COVID-19 it became impossible to conduct
more experiments and collecting multiple people interacting simultaneously with a
shelf. In our future work we intend to study the system performance in crowded
scenarios and higher density stores to understand the reliability and deployability
of such a system.
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5.4 Related Work

There exists a significant amount of work on object identification from weight as
well as appearance features, though most focus on only one sensing modality. While
there are solutions that can successfully identify objects solely by their weight, they
fall short in tackling the inventory monitoring domain, where many sets of products
weigh similarly (e.g., soft drinks, energy bars). Although vision-based object iden-
tification would be able to tackle the above cases when their packaging is different,
the convenience retail market is filled with similar-looking items that have distinct
content (e.g. any yogurt vs. its fat-free version). Futhermore there are works
that attempt to identify the person interaction using visual and inertial fusion ap-
proaches [92], however these are outside the scope of the Chapter given that we are
only addressing at most one customer interacting at a time (see Section 5.1.2).

None of these solutions, alone, is capable of fully addressing the autonomous
inventory monitoring problem due to the nature of the sensing modalities and the
complexity of the environment. Sections 5.4.1 and 5.4.2 cover the state-of-the-art
in weight- and vision-based object identification, respectively, and their individual
limitations.

5.4.1 Weight-based object identification

The location of an event is a key piece of information to understand what object was
picked –or placed– and is used by most prior works to complement the magnitude
of the total change in weight. Different hardware approaches have been proposed
to measure the weight on a surface and identify objects placed on it. A common
solution consists in instrumenting a platform, such as a table or a shelf, with multiple
load cells to measure the total weight of the objects on the platform [72, 73, 99].
While this makes it possible to identify objects by tracking changes in the total
weight, it cannot handle cases where certain object weights are multiples of each
other. In addition, location information can only be retrieved during an event and
for that particular object.

To overcome these limitations, some stock-level monitoring approaches rely on
capacitive weight-sensing mats [36, 38, 58, 65, 66, 87]. By measuring the change in
capacitance between two parallel plates, these works analyze the presence, absence
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or shape of individual items to identify and count them. However, such approaches
become hard to utilize when the sensing material is facing the harsh environment
of an operating convenience store: liquids spilling, continuous impact, friction, per-
manent deformations and cost dramatically constrain their practicality in a store
setting. Furthermore any weight-based only object identification method suffers
from low accuracy when dealing with categories of items that contain a high vari-
ance of weight (e.g. fruits, vegetables or packaged salads). For such classes of objects
other sensing modalities are required.

Finally, a small subset of prior works have attempted to complement weight
sensing with vision, for applications such as grocery re-identification in a fridge [46,
99]. Despite the small scale and highly controlled environment, these works indicate
the benefits of multi-modal sensing for item identification.

5.4.2 Vision-based object identification

There are two major approaches for visual object identification:
Traditional feature-based and descriptor-based techniques, such as Bag of

Features (BoF) [76], shape descriptors for object retrieval [61], Local Binary Pattern
(LBP) [33] and Speeded-Up Robust Features (SURF) [102], rely on different sets
of features designed to extract meaningful characteristics of regions in an image,
which allows the detection and classification of objects. In practice, these approaches
involve a high degree of parameter tuning, limiting their scalability and adaptability
to new scenarios –such as different lighting conditions or camera angles [62].

On the other hand, Deep Learning techniques try to overcome this issue with a
data-driven approach. Mask R-CNN [41], Faster R-CNN [85], Yolo [83], Center-
Net [25], NormalNet [116], FoveaBox [50], all leverage a big amount of data, both in
3D and 2D, to generalize the characteristics of the objects to be identified. While
in theory they should not require human input, the training procedure still involves
some hyper-parameter tuning. In addition, in order to achieve high accuracy levels,
these models require thousands of images of each object, under different conditions,
with different backgrounds and from different angles. These images require labeling
of the ground-truth for training, this can either be done manually, creating a labor
intensive problem, in a semi-supervised [107] or fully automated fashion [91].

In the retail domain, several prior works have tackled the item identification
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problem [48, 79, 108, 121] but current state-of-the-art is still limited in accuracy
due to the great similarity in appearance across products (e.g., chocolate bars of
the same brand with different sizes, flavors or textures). On top of that, none of
these works take videos as input, meaning an added layer of scene understanding is
required in order to figure out which of the detected products is the one the customer
took (vs. products which remain on the shelf).
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Chapter 6

Multi-Human Multi-Object
Matching by Modeling Interactions
between Humans and Objects

The previous two chapters’ experiments face a common limitation that is present in
most sensing system, the fact that real-world deployments are subject to multiple
people interacting with multiple objects simultaneously. In the previous example
of a retail store, I focused on a situation where multiple objects were present but a
single person would be interacting with them. I further exemplified it by designing a
system that leverages the framework present in this thesis by focusing on the models
of the objects and of the relationships between people and objects. In this chapter
I am taking that example further and expanded the system to a entire convenience
store that operates normally, that is, with several people and several thousands of
objects available for purchase.

In 2020, 90% of retail sales are still happening in physical stores [21, 22, 114]. In
these physical stores customers suffer from having to wait in long lines to checkout
(get their receipts and pay). These long lines are the most common reason for
shopping trip abandonment. Over half of shoppers are willing to spend less money
in a store, or even walk away entirely, to avoid a slow checkout [32]. Having to wait
in long lines affects customers’ satisfaction and loyalty. The checkout experience
and length of the checkout line influences the shopping decisions of close to 40% of
shoppers [32].
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Figure 6.1: ISACS deployed autonomous checkout store. This store is deployed by
Carrefour SA. inline with their convenience store format.

Autonomous stores have started to emerge in order to address this issue. Compa-
nies (such as Amazon, Grabango, Zippin) have started to experiment with checkout-
less stores. In these stores the wait time is removed by providing a receipt without
the need for a cashier to scan the products [1, 37, 126].

These autonomous stores can be grouped into three main approaches: vision-
only, a combination of computer vision with additional sensors, or a combination
of computer vision with sensors and human product recognition. Vision-only ap-
proaches for autonomous stores are most common. However, these approaches re-
quire a large number of cameras in multiple places to minimize blind spots. This
approach also require high computation requirements to scale to a store-level de-
ployment. In addition, there is also a very large human labor required to train vision
systems to identify products. Tens of thousands of labelled images are required from
different angles with different illuminations. Furthermore these prior approaches
look at images without obstructions from humans shopping. The best approaches
have only been able to reach 85% accuracy in unobstructed retail datasets [94]. This
15% loss is unacceptable for retail businesses, where stores need to operate at a max-
imum loss of approximately 10% [44]. In order to improve the accuracy, companies
such as Amazon Go have added a human-in-the-loop to generate the receipt in the
cloud. As the customer leaves a "cloud cashier" will manually review the transaction
and images of the items, then the customer will be charged accordingly [1, 82, 106].
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This process can generate more accurate receipts, but can cause delays that are up
to hours [24]. Amazon has been leading the autonomous checkout space with several
Amazon Go stores deployed, however these stores are being developed and deployed
behind closed doors, and many of the learning’s and details are lost to the broader
community.

Other more traditional retailers have started to experiment with automation in
their stores by installing self checkout and scan and go checkout systems [31, 51, 115].
In order to remove the servicing time scan and go technology requires the customers
to carry a device from the store and scan every item they intend to purchase as they
pick them up, avoiding then the time required for the employee to scan the items
at the checkout station [31]. However, retailers that used self checkout stations did
not see a reduction in the customers’ wait time due to unfamiliarity of customers
to the checkout process. Furthermore, those who deployed scan and go technology
in their stores found an added product loss of as much as 1% for every 10% of scan
and go sales [2].

While Amazon is currently operating their Amazon Go stores it is quite hard
to estimate their system accuracy, as these numbers are not public information.
However prior published approaches which also combine vision and weight sensors
can achieve up to 94% accuracy in identification by including weights of the item
in addition to visual data [89]. However, this approach fails when multiple people
are present at the store at the same time due to confusion from multiple people to
multiple objects matching. Furthermore, the accuracy is limited in this approach due
to the assumptions made in a traditional operating stores’ setup, while a dedicated
autonomous store setup can have high impacts on the accuracy.

In this chapter, we present an In-Store Autonomous Checkout System for retail,
ISACS, which tracks multiple shoppers throughout their shopping journey, combin-
ing a physical model of the store and customers, with live inventory monitoring and
multi-human 3D pose estimation in order to produce a receipt and present it to the
customer in less than 2 seconds. ISACS greatly reduces the computational require-
ments by only using weight sensors on each shelf to track items coming in and out of
the shelves while identifying them. Our approach combines the 3-D physical model
of the customers and their item interactions with item tracking on the shelves to
match multiple people with multiple products in close proximity.

In order to fully evaluate the autonomous setup, operation, and accuracy, we fully
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implemented ISACS on a 800 sqft store with 52 cameras and 580 weight sensing
shelves for 13 months in a store owned and operated by Carrefour SA, in Massy
France. The store contained on average 1653 unique items, with a real stock of close
to 20000 products (See Fig. 6.1). This store had an average traffic volume of around
140 transactions daily before COVID-19 and close to 110 daily transactions during
the pandemic. We present our results and lessons-learned throughout the pre- and
during COVID’19 pandemic period.

The main contributions of this chapter are:

1. An open and transparent analysis of a deployment for a in-store autonomous
checkout system, where a receipt is automatically produced before the cus-
tomer leaves the store, without human intervention.

2. An algorithm that combines 3D body pose estimation, physical modelling of
people and their interaction with the store, and inventory knowledge to enable
multiple people and multiple products matching.

3. Analysis and experiences of the deployment and operations of our system in
an 800 square feet operational convenience store with 1653 distinct products,
over 13 months in a store owned and operated by Carrefour SA, in Massy
France.

The rest of the chapter is organized as follows. First, we discuss the background
works in people tracking, inventory management and inventory to people association
in Section 6.6. Next, we introduce our system in Section 6.1. Then in Section 6.2 we
present the association algorithm that combines 3D pose estimation with inventory
management. We then describe our evaluation of ISACS in the real world in Section
6.3. In Section 6.4, we discuss our experiences and lessons from deploying ISACS
in the real world, and how we improved the operations of our system over time.
Finally, we conclude in Section 6.7.

6.1 ISACS Overview

ISACS is the first deployed, fully operational autonomous checkout system with
in-store receipts. ISACS 1) accurately produce receipts in a real-world convenience
store setting, while the shopper is in the store (a key and legal requirement for
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Figure 6.2: ISACS System overview. Left: Weight sensing pipeline for inventory mon-
itoring (blue). Middle: Multi-human to Multi-product matching pipeline (green). Right:
Computer vision pipeline for Multi-human 3D Pose Estimation (yellow). Models of the
store, Items and Item location (pink). The corresponding sections of each component are
noted as Sec. X.Y

operational stores) and 2) does not require human-in-the-loop during checkout. In
this section, we provide an overview of our system.

Figure 6.2 shows ISACS system framework. ISACS combines a physical model of
the store, multi-human 3D pose estimation, and live inventory monitoring to improve
the accuracy of the match between the selected products and the customers. ISACS
is constantly doing cross-view multi-human 3D pose estimation for every camera in
the store. As a customer walks in the field of view of more than one camera he/she
gets an anonymous ID assigned to him/her. When the customer picks up a product
from a shelf, the inventory monitoring and multi-human to multi-product matching
pipelines are triggered. With the knowledge of the physical model of the store, the
system is able to understand the 3D location of the product being picked up –where–.
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From there the ISACS’s multi-human to multi-product matching pipeline determines
the probability of each person picking up the object –who– by looking at the physical
distance of each hand over a small window of time during the interaction –when–.
The inventory monitoring section will compute the probability of the product(s)
being picked up –what–, as well as the quantity, based on an updated knowledge of
the inventory on the shelves and people. A similar process occurs when a customer
puts back the objects. Finally as the customer enters a virtually geo-fenced defined
area (checkout area), a receipt is then computed based on each event and delivered
to the terminal for payment.

6.1.1 Assumption

Our intention was to operate a normal convenience store with minimal impact to
the way customers behave in a normal store, in order to validate ISACS’s ability
to operate with real world constraints. However we made the assumption that the
last customer who removes a product from a store’s shelf and leaves with
it is the customer charged for that product. While this naturally occurs in
most transactions, it does not happen for all transactions. In our deployment we
educated the customers about this limitation by adding visual diagrams/instructions
explaining this.

6.1.2 Physical Store Model

ISACS relies on a centimeter accurate physical model of the store to produce an
accurate matching between the movement of products and people. In order to do
so, the system needs to know where each shelf and camera are located, in 3D, and
their orientation.

We define 4 types of spatial entities: a gondola, a shelf, a bin and geo-fenced
areas. We can define all of these by their origin location, dimension and rotation
(Xo, Xd, θ) (See Fig. 6.3). We assume that gondolas can only be rotated over the
z (height) axis; shelves can only rotate on the y (horizontal, for tilt) axis; while
a bin and a geo-fence cannot rotate. We mathematically define Gi as gondola, Si

shelf, and Bi bin with index i. And Gi
c, Sic, Bi

c as the center of these volumes. We
formalize the location of the gondolas/shelves/bins, such that (note that G can be
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(a) Shelves (b) Bins

(c) Multi-human 3D Pose Track-
ing

Figure 6.3: Physical store model showing the origin and dimensions of a gondola (a),
shelf (a) and bin (b) and 2 people being tracked (c). ISACS’s uses this this information to
accurately map the inventory changes to the shopper.

swapped with S and B to denote a shelf or a bin):
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A gondola represents a physical fixture that contains multiple shelves stacked
vertically. A shelf contains multiple sensing platforms and multiple bins. A bin
is a virtual concept that is defined by the space that an integral number of plates
a product occupies on a shelf. Each bin contains only 1 product assigned to be
placed inside it. This means that changing the placement of the products implies a
simple substitution of the old bin location –containing the products being changed–,
with the new bin location with respect to the shelf. Geo-fences are also defined for
regions of interest, such as entry, exit and checkout areas. These areas along with
the shelves and cameras seldom change.

In addition ISACS requires the knowledge of the location of the cameras and
their orientation. This can be obtained via traditional methods for multi-camera
calibration. These methods produce a map of relative position and orientation of
the cameras without scale. To further obtain the scale and align the two world
coordinate systems, ISACS uses a visible anchor vector in the form of a sheet of
paper with a ArUco pattern, with a fixed size of 20cm, laid on the floor during the
calibration step [3].

6.1.3 Inventory Monitoring

ISACS uses live inventory monitoring, achieved through weight sensors, in order
to compute the list of products that a person is shopping. ISACS uses a similar
approach as FAIM [28], that is, each shelf is instrumented with multiple plates,
suspended over 2 weight sensors each, along the depth axis (See Fig. 6.4). Depending
on the width of the shelf, each shelf contains 4, 6, 9 or 12 sensing plates. Each
sensing plate is 12cm-wide and each sit contiguous to each other. This one-sized
narrow sensing plate allows for ease of manufacture-ability as well as low cost given
that they will not have much weight sit on top of it, allowing for a lower maximum
capacity load cell thus higher weight resolution without expensive ADCs (Analog-
to-Digital Converters).

ISACS does not use computer vision to further improve the object identifica-
tion. From prior work results [28], we have observed that the small added value of
computer vision comes at the expense of very high computation needs, which limits
this approach from scaling to a store level deployment. Furthermore this computer
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Figure 6.4: ISACS’s weight sensor shelves showing a deeper view into how a shelf is
divided into multiple bins, each with multiple plates, each with 2 load cells. Top Right
image shows a real image of the shelves used with the load cells exposed for clarity. Bottom
Right image shows a plot of the resulting measurements used in ISACS.

vision addition only provides extra information in the case the prior knowledge of
the location of the objects is not deterministic. In other words computer vision for
inventory monitoring only plays a role when objects are either misplaced or sitting
in the same sensing plates as other different products. From experience we have
observed that misplacements seldom occur in an organized convenience store. So
ISACS enforces that each sensing plate has only 1 product type sitting
on it, placing a physical barrier (metal separator, see Fig. 6.5) between products,
and that store employees properly re-stock and organize the store once a day.

Inventory monitoring in this context is measured as the quantity of products
sitting on a shelf at any point in time. This means that when a customer or employee
picks up a product, or puts it down (whether in the right or wrong place), ISACS
tracks all of these changes and updates its inventory correspondingly. This leads to
ISACS accommodating normal shopping behaviors, such as, picking up a product
to further inspect it and putting it down without getting charged for that product.
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Figure 6.5: Typical gondolas in the store showing each bin separated by metal dividers
(red arrows) containing only 1 type of product per bin with multiple items inside.
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6.1.4 Weight Change Bin Detection

The triggering point that initiates the association process between a product and a
person is the moment the person picks up, or puts down, a product from a shelf.
ISACS detects this event by continuously processing the signals coming from the
sensing plates. These plates are aggregated into bins and processed together as such
(See Fig. 6.3b).

In prior work we have computed the mean and variance of the weight values over
a sliding window, and classified it as stable or active. This way we can observe the
weight values at the beginning and end of the activity and compute the difference
in weight. Furthermore, we have observed from previous studies that the smaller
the bin width the higher accuracy we obtain for item identification. So we made
every bin in the store contain one product only, and cover the minimum consec-
utive amount of plates that is sufficient to support the product. This makes the
event detection more robust to multiple people interacting with the same shelf
simultaneously by treating each interaction separately. Collision cases still occur if
2 or more customers pick from the exact same bin simultaneously. This means that
upon a weight change detection occurring, if there are multiple hands within the
associated bin, the system has no valid way to detect which hand is the correct one
and will decide in favor of the first one that arrived at that location. We have never
observed such a case with real shoppers outside of our intentional tests.

Prior work defines mathematically wng,s,p as the weight on the pth weight plate on
shelf s, gondola g at discrete time n. We also defined (L) as the Item Layout Model
such that:

lg,s,p = {i ∈ I | product i is stocked at plate p on shelf s and gondola g} (6.2a)

L = {lg,s,p}, ∀g,∀s,∀p (6.2b)

And |lg,s,p| as the total number of items at plate p on shelf sand gondola g. ISACS
further defines a bin b as a set of consecutive weight plates {pg,s}, defined according
to the physical store model and constrains the location of the products such that
|lg,s,p| = 1. Given this we then compute the bin’s aggregated weight as:

wng,s,b =
∑

p∈b
wng,s,p (6.3)
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Then, the bin’s aggregated moving mean and variance are, respectively, µng,s,b and
νng,s,b:

µng,s,b =
1

2Nw + 1

n+Nw∑
t=n−Nw

wtg,s,b (6.4)

νng,s,b =
1

2Nw + 1

n+Nw∑
t=n−Nw

|wtg,s,b − µtg,s,b|2 (6.5)

where Nw is the sliding window half-length in samples, which corresponds to 0.5s in
our implementation (2Nw + 1=61).

An event is detected according to Equations 6.6:

Event begins on gondola g and shelf s, bin b: νtg,s,b > εν , ∀t ∈ [ni, ni+Nh) (6.6a)

Event ends on gondola g, shelf s, bin b: νtg,s,b ≤ εν ,∀t ∈ (ne−Nl, ne]

(6.6b)

Temporal consistency: ne > ni (6.6c)

where Nh and Nl correspond to the minimum length the weight variance has to
exceed or fall short of the threshold εν in order to detect the initial and ending
timestamp of an event. Based on some initial experiments we empirically set the
values to Nh = Nl = 30 (0.5s) and εν = 0.01 kg2. Once an event has been detected,
the Weight Change Bin Detection module determines the event weight difference
∆µ for every bin for which the event occurred.

6.1.5 Multi-human 3D Pose Estimation

Understanding customer motion throughout the store is done through images cap-
tured from cameras placed on the ceiling of the store, given this is the place with
the most unobstructed view into the people in the store. In Section 6.4 we discuss
the camera placement and its impact in the accuracy of the system. In this section
we describe the Multi-human 3D pose estimation approach used by ISACS.

The multi-human 3D pose estimation pipeline is broken down into 2 main com-
ponents: human pose estimation and 3D tracking. The human pose estimators com-
pute the set of keypoints: {khead, kneck, kshoulderL, kshoulderR, kelbowL, kelbowR, kwristL,
kwristR}, kn ∈ R2 for all humans present in an image using the same approach as in
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[11, 15]. These 2D key points are computed for all cameras in the store and passed
on to the 3D tracking component. At this stage the 3D tracking uses a temporal
and spatial affinity metric to match the multiple keypoints across different views.
Finally by using the camera placement provided by the Physical store model the 3D
pose tracker triangulates the multiple views into separate consistent 3D people [15].
(See Fig. 6.3c) ISACS’s human pose estimator was trained using the CMU panoptic
dataset [45] and enhanced with data collected and annotated from several other de-
ployments provided by AiFi Inc. These deployments included a diverse set of racial,
gender, age and clothing. However they were collected from real stores. This means
that intentional odd patterns in clothing or masks were not contemplated in these
datasets.

We’ve measured the accuracy of our tracking model in two ways: consistency
of shopper identification across its shopper journey (between entering and exiting),
and location accuracy of the joints predicted. By counting the number of people
coming into the store and coming out of the store, and looking at the consistency of
the trajectory we were able to determine that across the 2 weeks dataset (Detailed
in Sec. 5.3) we only had 12 incorrect ids tracked out of 1874 transactions, this
is approximately 99.36% accuracy in consistent identity tracked. The location of
the joints however was measured empirically by our testers. This measurement was
done by placing a hand in the center of every bin in the store and verifying if the
visualization of the 3D projection matched the center location of the bin. In this
case the spatial accuracy of our tracking solution was within 1 bin length of the
expected bin. This translates to an average accuracy of approximately 10cm when
not occluded. All measurements with respect to shoppers mentioned in this chapter
are relative to this tracking system. Section 6.2 further details the impact of the
measurements taken by the tracking system in the matching of people to products
taken.

While ISACS mainly leverages the approach presented in [15], it improves that
approach by adding physical contextual information to the tracker. By leveraging
the Physical Store Model we improved the people detection accuracy by initializing
and eliminating people tracks only at the entrance and exit of the store. This
prevented the tracker from generating contextual impossible 3D tracks, such as,
someone appearing in the middle of a store or on top of a gondola. It further allows
for a person to be missed in some frames, due to occlusions or inaccurate model

75



detection, and
Even our human pose estimation model provided confidence level for the predic-

tion of each joint, our system did not fully leverage this information. In the case the
joint was predicted with a confidence level of above 80% ISACS would use that pre-
diction. However, a more promising approach would be to use the confidence level of
each joint prediction when doing the matching between products and humans. This
information could be useful when deciding between two competing hands picking a
certain object.

6.2 Multiple Human to Multiple Products Match-

ing

The previous section described the inventory monitoring and multi-human 3D pose
estimation pipelines that ISACS relies on. Here, we detail how ISACS aligns the in-
ventory triggering mechanism with the pose information (Section 6.2.1) and further
leverages the pose information and the physical store model to select the correct
people interacting with the shelves (Sections 6.2.2) and how this selection is then
combined with the proximity of the event to emit a prediction of people interacting
with the shelf (Sections 6.2.3-6.2.4).

6.2.1 Visual Event Timing

After an event is detected and triggered by the Weight Change Bin Detection module
ISACS looks at who was interacting with that shelf at the event time. However,
timing between the sensor readings and the video requires synchronization. While
all the cameras are able to synchronize via NTP (Network Time Protocol), the
custom weight sensing hardware is not. ISACS addresses this issue by making use
of a 3D Pose Buffer.

3D Pose Buffer

In order to properly match the timing of the event with the right set of estimated
3D people in the store, ISACS keeps a running buffer of 3D Pose estimated people.
This buffer ensures that a fast motion of pick up/put down can still be detected an
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accounted for.
We define mathematically pni as the set of 3D keypoints (Section 6.1.5) defining

the ith person at discrete timestamp n. We also defined (P) as the location of all
people in the store at any given time, such that:

pni =


khead, kneck,

kshoulderL, kshoulderR,

kelbowL, kelbowR,

kwristL, kwristR

 , km ∈ R3 (6.7a)

P = {pi}, ∀i (6.7b)

And |Pn| as the total number of people in the store, at any given time n.

Event Trigger

We define the moment an event is detected from Weight Change Bin Detection
(Section 6.1.4) as ni and the moment it is triggered nt, such that nt > ni. These 2
times are never exactly the same given the delay created by the detection mechanism.

6.2.2 People Pose Selection

Once detected an event, in order to accurately match multi-humans with multi-
products ISACS assigns different likelihood to the 3D Poses in the buffer, based on
the timing and physical distance of each 3D Pose to the triggering bin’s location.

From the 3D Pose Buffer (P , Eq. 6.7b) and the time the event was detected
ni (Eq. 5.4b) the People Pose Temporal Selection estimates the likelihood of a
person on P belonging to that event. Such that:

Event Time Window: E = {n : ni − εt < n < nt},∀n ∈ P (6.8a)

PT (p | E ,P) =

{
1/ |ni − n| ∀n ∈ E

0 otherwise
(6.8b)
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This means that the closest a person is to the detected timestamp ni, the higher
the likelihood that that person is the one that created the event. ISACS considers
the event to have a duration of εt. Although an event is detected using the weight
sensors, the motion of a pickup/put back spans a larger time window than the
measure sensing window. We empirically set the value of εt = 3.5 seconds based on
initial experiments.

The People Pose Spatial Selection further estimates the same likelihood
using the spatial proximity of the detected person to the events location (Section
6.1.2), such that:

PS(p | B,P) =

{
1 B(pni (wrist*)) = b,∀i,∀n ∈ P

1− min∗(|pni (wrist*)−Bb
c |)∑

i∈P |pni (wrist*)−Bb
c |

B(pni (wrist*)) 6= b,∀i,∀n ∈ P
(6.9)

This Equations assigns a probability of 1 to a certain person (p) in case the
location of either hand of a person is estimated to be inside the bin (b) that generated
the event. It further assigns a normalized decaying likelihood to the closest hand of
each person inside the buffer.

Extruded Bins. When calculating the spatial probability of each pose for each
event in the entire dataset, we have observed that PS(p|B,P) = 1 rarely occurred.
This happened because when the event takes place the hands of the person are inside
the shelf –which most of the time is occluded by the upper shelves (except on the
top shelf)– leading the 3d Pose estimation to incorrectly predict the position of the
hands. Therefore we have extruded the size of the bins towards the front of the shelf
by εx = 10cm. This ensured that we could capture the position of the hand while it
was coming in and out of the bin, and consider it inside the volume. We show the
results of these approaches in Section 6.3.

6.2.3 Proximity Buffer and Matching Prediction

In this stage of the pipeline ISACS filters out all estimated people from the 3D Pose
Buffer that have a likelihood of 0 based on Equations 6.8 and 6.9. This creates a
much smaller buffer, the Proximity Buffer, which contains the estimated people
that are close to the event in both time and space. Finally the Eqs. 6.8 and 6.9 are
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combined, such that:

P i
pose = PS(p | B,P) · PT (p | E ,P) (6.10)

This Equation creates a list of likelihoods for every 3D Pose inside the Buffer
(P , Eq.6.7b).

Hand inventory information during put backs. During put backs, ISACS
leverages an extra piece of information: the inventory in the hands of the people.
This means that once a Put Back occurs, at this stage, ISACS removes from the
likehood model pipose all i’s that do not have the products for which the Inventory
Monitoring pipeline has predicted, leaving only those who could have placed that
item in the shelf, in the first place. We show the results of the approaches in Section
6.3.

6.2.4 Maximum Distance Thresholding

The last step in making a prediction on Who interacted with the shelves is a thresh-
olding on maximum distance. This means that predictions where |pi(kwrist∗)−Bc| >
εs are ignored.

This threshold exists to remove events that are created based on ambient noise
on the sensors or any faulty signal artifact. In this case if a sensor triggers an event
but there is no person close to the shelf we can safely assume that this is a false
trigger and ISACS ignores the event. We’ve defined empirically εs = 2meters, given
that most people will not be physically able to pick any items from the shelves if
they are standing 2 meters away from it.

6.3 Real-world evaluation at an operating conve-

nience store

In this Section we present our implementation of ISACS, the experimentation setup,
the metrics used to evaluate the performance of our multiple human to multiple
product matching algorithm, as well as the natural experimentation results. We
further demonstrate how the store setup (proper placement of the products/shelves)
can affect the performance of the system, and the steps taken to address these issues.
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Figure 6.6: 3D physical store model (left) and 3D rendering of the store, with a focus
on the payment terminal and 3 gondolas showing the density, distribution and product
assortment (right). This store has 52 gondolas, with 6 to 10 shelves each, 6 large refriger-
ation units with double open doors and 7 shelves each. These were decided and deployed
by Carrefour which demonstrates the ability of ISACS to scale to a store level deployment.

6.3.1 System Implementation Designed for Retailers

We approached this deployment with the intention of ensuring that the store would
be designed by retailers and deployed by retailers, so that we would observe the
real life implications of ISACS. We have partnered with Carrefour SA to deploy
ISACS in a real setting. Due to privacy limitations the store was deployed inside
of Carrefour’s Headquarters, in France, with access only to employees or visitors of
the company. The employees were informed and gave consent to be recorded in this
store.

The store was designed in line with Carrefour’s convenience store format. This
means the number of products and variety truly reflects a real store, as well as its
disposition in the store.

Store Layout

The store has 52, 0.5 meter wide, gondolas with 6 to 10 shelves each. There are 6
large refrigeration units with double open doors and 6-7 shelves each. This store
is divided into several sections: fresh food, condiments, alcoholic drinks, regular
drinks, snacks, candy, chips and convenience items. (See Fig.6.6).

All shelves are instrumented with the weight sensors defined in Sec. 6.1. In
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the ceiling there are 52 IP cameras, laid out according to Sec.6.1. All cameras and
sensors are connected via Ethernet to a cabinet that holds our servers. These servers
are not connected to the internet, and only connect to the retailer’s POS (point of
sale), so that ISACS can provide the receipt to the payment terminal.

Store Entry and Exit.

This is an open store setting, where there is no gate/door to enter the store, so
anyone can get inside without any limitations. In order to present a receipt to
a customer that shops in an autonomous store there has to be a place where a
matching between the sensed person and the real person occurs. Therefore we have
placed 2 payment terminals at the exit. One for self checkout, in case the person
does not wish to be a part of the autonomous checkout experience, and a second
one with a autonomous terminal. This terminal operates just like the self checkout
providing similar payment methods, but automatically shows the receipt as the
person approaches the terminal, using ISACS.

In our system we leverage the fact that customers are used to going to a checkout
station at the end of their shopping journey to match the predicted receipt with
their payment method. ISACS uses a virtual geo-fence around the checkout area
to match the sensed customer with the real customer. It then presents the receipt
in the payment terminal inside that area. This way the association is done at the
moment of payment, reducing the need for any entry blocking mechanism. Similar
to a self-checkout station where the customer does not need to scan the products. In
most cases, when the cart is correct, the shopper chooses their method of payment
(credit/debit card, loyalty card, apple/android pay, etc.), the shopper would then
execute the payment and leave with the purchased items. In the cases where the
predicted receipt was incorrect, the shopper would be able to ask for help (there
was always a person by the payment terminals to assist shoppers). The employee
providing help would enter a correction mode, and scan any missing items, or remove
any extra items. This correction is then registered with ISACS and used for accuracy
measurements.
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6.3.2 Allowed Customer Shopping Journeys

There is a vast list of shopping journeys that customers can take inside a store.
From taking a cart, or basket, and filling it up with items, or just carrying them
around. Coming in alone or with their family. These are just a few of the options
possible. ISACS focuses on the journeys present in convenience stores which are the
ones in which the customer most values speed. This means that each customer is
tracked individually and is charged by the items that he, or she, picks up from the
shelves and does not put them back on any shelf. Passing items between people is
outside the setting of ISACS. This means that unless the customer leaves items in
the store in a place that is not a sensored shelf (i.e. floor or give them to someone
else) ISACS will correctly predict what items the customers are carrying out of the
store. In this context people tend to either carry the objects in their hands or put
than into a small bag.

6.3.3 Experimental Setting and Dataset Characteristics

Due to the nature of the operating store, data privacy and infrastructure require-
ments –approximately 1.5TB/operating day of local storage capacity– we have not
been able to evaluate our most recent approaches against all of the experiment.
However we recorded a total of 2 weeks of data and have evaluated our multi-
people matching with multiple objects in its multiple versions. In these 2 weeks
of data there were 1874 transactions, each with approximately 5 interactions per
transaction. There are a total of 7840 pick ups and 2093 put backs. These are real
shoppers entering the store purchasing products for their own use, so no instructions
were given to them and the number of items, duration of the trip and behavior is
completely natural.

For the same data privacy and store requirements reasons this chapter does not
address the impact of customer education throughout the length of the experiment.
It was impossible for ISACS to track recurring customers given that every new
customer that entered the store and became visible by the cameras was "initialized"
as a new "anonymous track" without any association to an account. At the moment
of payment, the "anonymous track" that stood in the geo-fenced area in front of the
payment terminal was then sent to the retailer’s payment system and no storing of
the payment identity is ever made in the ISACS system.
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This dataset was collected on the first 2 weeks of October 2020, using version 6
being operated (See Tables 6.1 and 6.2). Every interaction of the shoppers with the
shelves was recorded and manually labelled with the following information: times-
tamp, which person interacted, how many people surrounding the event, distance of
the people to the event, product(s) interacted with, quantity of products picked/put-
down, basket prior to interaction, and final basket. The final basket was further
validated with the POS information provided by the retailer.

During these two weeks the shoppers were not instructed any differently than
before, leading to their natural behavior which was present for the totality of the
experiment (13 months).

6.3.4 Multi-human to Multi-product Matching Metrics

In this chapter we evaluate the accuracy of the matching algorithm between multiple
people and multiple products. We define average matching accuracy as, Avg. Match
Accuracy for short, as:

Avg. Match Accuracy =
# correct person predicted

# events
(%) (6.11)

Its complement, the average matching error, can then be easily defined as:

Avg. Match Error =
# incorrect person predicted

# events
(%) (6.12)

Furthermore ISACS performance is dependant on the behavior of the customer,
this means that there is a performance difference in the case a customer does multiple
sequential events or multiple customers do a single event. In case of matching errors
the latter would affect multiple receipts however the first would only affect 1 receipt.
Therefore we further measure accuracy by looking at the final receipt accuracy and
final item accuracy as such:

Avg. Receipt Accuracy =
# correct predicted receipts

# receipts
(%) (6.13a)

Avg. Item Accuracy =
# correct items receipts

# items purchased
(%) (6.13b)
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It is worth noting that the metrics in Equation 6.13 are not only dependent on
the matching algorithm but are also affected by the accuracy of the Multi-Human 3D
Pose Estimation and the Inventory Monitoring pipelines. This is therefore reflective
of the overall ISACS framework performance. In the next subsection, we analyze
our experiment results and the dependency of ISACS’s Avg. Match Accuracy on
different customer behaviors.

Ground truth was collected through the POS (point of sale) of the store. Further-
more, in order to ensure the quality and accuracy of the data there was an employee
at all times present at the POS verifying the shoppers transactions and educating
the customers. Given there were only 2 registers at the exit, and the small average
basket size in this store, it was possible to maintain reliable transaction data.

6.3.5 Experiments at a Convenience Store Level Deployment

In order to fully evaluate the system in a real-world setting, we recorded the “store
level” shopping behavior described above, and present the results here. We want
to understand how the density of people around a pickup and a put down and the
distance of the people affect the matching performance for ISACS.

One of the parameters that affects the performance of the matching algorithm is
the amount of people surrounding the event as it happens. We define the number of
people surrounding a event as the number of people within a radius of 2 meters of
the center of the bin being interacted with. In Figure 6.7a we can see that when a
person picks up items the association with the head (in blue) of that person suffers
the most with the increase in density around the event. This accuracy drops from
82.35%, when there are 2 people, to 40% when there are 5 people around. However
when leveraging the hand keypoints for the matching (in yellow) we observe a smaller
effect of the density and a clear increase in accuracy, from 92.11% with only 2 people
to a 80% with 5. The effect of density also affects the ability to proper estimate the
hand location using the 3D Multi-Human Pose Estimation as it increases the natural
occlusions in a small area. Furthermore the moment an event occurs is when the
hand of the customer is mostly occluded by the upper shelves as it is inside the bin.
Because this phenomenon occurs almost in all shelves, except in the top ones, the
Extruded Bins only (Section 6.2.2) approach yields a higher accuracy with 97.27%
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(b) Putting down

(a) Picking up

Figure 6.7: Multi-human to Multi-product Matching accuracy for different people den-
sities around a: (a) pick up event, (b) put down event. The number of people are counted
within a radius of 2 meters around the bin location of the event. In (a) ISACS’s perfor-
mance decreases with the increase in density. However in (b) ISACS’s performs better by
leveraging the information about the inventory the people have.

with only 2 people and 90% with the highest density observed, 5 people. During pick
ups, the information provided by the inventory at hand does not add value to the
decision, hence the accuracy observed with ISACS (in green) equals the Extruded
Bins only approach (in red).
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It is important to note that the number of events that occur at higher densities
is much lower. There were only 10 pick ups and 5 put backs with 5 people around;
and only 4 put backs with 4 people around. This happened during a demonstration
of the store, and it is not a common occurrence in the dataset.

In Figure 6.7b we can see the equivalent metric for when people are putting
items down. We can see that the accuracies follow an equivalent pattern to Fig.
6.7a, however in this case ISACS’s performance gets an accuracy increase due to the
use of the inventory at hand (Section 6.2.3) as a another source of information for
deciding the person. ISACS’s accuracy got to 100% in most cases except in the case
of 3 people where it got to 90%. These failure cases occurred when 2 or 3 people are
shopping together and pick the same products and then 1 of them puts them back.
In this case the inventory at hand adds no value, leading to the same accuracy as
the Extruded Bins approach.

Furthermore we observe on Figure 6.7b the head approach (in blue) performed
at 60% while the hands inside only performed at 40%. This is observed only across
5 events. After investigation this occurs because in 1 case that hands of the person
putting down the item are not seen by any angle when inside the shelf while the heads
are clearly visible. The Extruded bins approach solves this situation by matching the
right person slightly before the hand is occluded, preforming at 80% with 5 people
around.

However it isn’t only people density that affect the performance of the matching
algorithm. The distance at which people stand from the event when multiple people
are interacting can also significantly impact performance. As shown in Fig. 6.8a,
when multiple people interact with the shelves we consider the distance
of the closest person to the event that did not perform the pick up or put
down. What we observe is that when people are very close to each other, closer
than 50cm, we see a significant out-performance from ISACS (85% under 20cm
and 87.4% between 20-50cm), when compared to the head (25% under 20cm and
77.3% between 20-50cm) and hands inside (65% under 20cm and 83.6% between
20-50cm) approach. During pick ups, there is no advantage of using the inventory
information of what the person has in their hands (Section 6.2.3), therefore this
approaches performance equals the one of the Extruded bins only.

On the other hand, during put downs, ISACS performance is unaffected by the
distance of the closest person, performing consistently above 99.2% (See Fig. 6.8b).
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Figure 6.8: Multi-human to Multi-product Matching accuracy for multiple people when:
(a) picking up, (b) putting down close to each other. The distance is measured from the
center of the bin being interacted with to the head of the closest person not interacting
with the bin. In (a) ISACS’s accuracy increases as people get further apart. However in
(b) ISACS’s accuracy is not affected by distance due to the added inventory information
at the hand of the person.

6.4 Lessons in deploying stores with real customers

We have deployed and evaluated ISACS in an operating convenience store covering
800 square feet with 1653 distinct products, and more than 20000 items in a store
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owned and operated by Carrefour SA, in Massy France.
Over the course of 13 months, we gathered data and experience that allowed

us to iterate over the hardware and software of the deployment, to withstand the
realities of an operating convenience store and improve the autonomous store setup
for higher accuracy. In this section we describe the design decisions taken to reduce
the impact of setup or operations, based on our deployment experience as well as
the lessons learned through multiple iterations of this project.

6.4.1 Unexpected ISACS’s Operation Challenges

When deploying ISACS we realized that the Item Weight Model was challenging to
obtain. Getting the operators of the store to weight every single item was not feasi-
ble. So we have initially approximated the weight distribution of the items by weigh-
ing 3 items of each type and generating a distribution for each type. This worked well
for pre-packaged goods. However fresh food, condiments and light weighted items
became difficult to identify and count accurately due to a much higher variance
in the weight distribution. In order to accurately count and predict these items
we have manually identified these high variance items and changed their weight dis-
tribution model accordingly. Furthermore we have trained the operator to identify
these items and label them as such. Up until version 5 ISACS had a fixed variance
threshold applied to every Weight Change Bin Detection (described in Sec. 6.1.2 ).
After the first COVID lockdown, the high variance issue started to became more
apparent given that the retailer started to sell more items that had higher vari-
ance, such as cups with pieces of cut fruit. These quickly became the most selling
items, severely impacting the accuracy of the system.The ability to set a particular
product as a high variance product was introduced to the restocking application
in version 6 (See Table 6.2). This meant that employees prior to restocking would
define products that had higher than 10% variance across units as high variance
products.

Another requirement of ISACS is an understanding of the placement/location
of the products in each shelf (L, Section 6.1.4). This information is commonly
available for large retailer which standardize their store layouts for store operations
efficiency. However in this experimental store we were faced with a continuously
changing items’ layout. We observed fluctuations, in version 1 & 2 (See Table 6.1
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(a) Consecutive shelves stacked too
close to each other.

(b) Items overflowing to neighboring
sensing plates.

(c) Items falling behind the shelf into
neighboring sensing plates.

Figure 6.9: Unexpected Challenges from real-world deployment due to normal retailer
operations.

and Fig. 6.10), of the accuracy of ISACS due to the changing of the items’ layout
without the respective change of the location model, L model in the system. This
was solved by training the operator to change the L model by using a simple mobile
application that allowed them to switch out a product, or place it in a different shelf
by simply scanning it on the phone. The mobile application used did not change the
system’s performance. Ultimately "synchronization" between the location model, L,
and the physical reality was the impacting factor to the system. Once trained, the
restocking employees were able to ensure an accurate sync between L and reality.

As time passes and the employees operate the store (restock and change product
locations) more regularly we observed another decrease in accuracy. This was due
to fact that the employees in order to increase the number of items available for
sale, increasing the density, started to hit certain limitations of the system. Such as,
placing items so close to each other that the physical separators between bins would
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Figure 6.10: Receipt accuracy across 1 year of ISACS’s deployment. The store was
locked down due to COVID-19 from 24-Feb-2020 up to 20-Jul-2020, as well as, 4 smaller
periods representing in light purple. ISACS’s achieved up to 96.4% Receipt accuracy over
the lifetime of the deployment.

actually not prevent the object from laying partial weight on neighboring
sensing plates (See Figs. 6.9b-6.9c). This lead to incorrect weight measurement
and inaccurate item counting. Further, the proximity of the shelves, in height,
was decided based on the minimum distance possible so that the customer can
see the product but also the retailer can fit as many as possibly vertically, notice
how vertically snug the objects are in Fig. 6.6. This lead to situations where
objects ended up squeezed in between 2 shelves, leading to a increase in weight
measurement due to the weight of the upper shelf (See 6.9a). These issues
were resolved with proper employee training and monitoring. You can observe these
accuracy swings and steadily increases as we address the issues in Fig. 6.10.

Finally, ISACS does not take into account the restocking procedures. This ini-
tially meant that as an employee would restock the store, the system would be
tracking them attempting to understand what they would pick up and put back.
However employees behavior is far from a normal shopper: employees pick up a full
shelf worth of goods to look at the expiration date, put back items that are not
yet in the system to be monitored and also re-arrange the products orientation in
the shelf to have the branding facing the client in a neat way. For the purpose of
measuring the system we removed the carts generated for the employees.
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6.4.2 Uncontrolled Customer Behavior

Ultimately the biggest challenge that ISACS faces is the uncontrolled behavior of
the customers. There is a particularly challenging effect when deploying such a
store: the curiosity effect. When customers are faced with this store for the first
time they try to understand it, by stressing the system to the limits. Pressing
the sensors up and down, trying to hide the objects, running through
the store, shopping extremely close to each other are just a few of the
example behaviors we have observed. This effect takes place more strongly in
the beginning of the experiment. As time passes and the customers get used to the
experience we have observed that those behaviors almost completely disappear.

In order to understand the impact of the accuracy presented in Section 6.3 we
have measured the behavior of the shoppers, across the following dimensions:

• Average number of products in a receipt

• Average density of shoppers when interacting with a shelf

• Average distance of close-by shoppers to the interacted shelf

These variables affect ISACS performance both in people matching as well as in-
ventory detection and counting. Figure 6.11 shows the number of people present
–density– when an event (pick up/put down) occurs. We can observe that most
events occur with under 3 people close-by. Figure 6.12a presents the distance
of the close-by shoppers when an event occurs. This is showing that if an event has
more than 1 person close-by, that person will be no further than 2 meters and as
close as 20 centimeters. Notice the red line showing the threshold picked for 6.1,
where people outside the radius of 2 meters are not considered to be matched by
ISACS.

6.4.3 Hardware Resilience

There are three types of hardware equipment that need to operate continuously in
order to for ISACS to perform at its best: cameras, weight sensors and servers. While
cameras and servers are quite a mature product easily available and maintainable
the weight sensing shelves are not.
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Figure 6.11: People density around a pick up or put down event during 1 year of operating
ISACS. People density is measured as the % of events found with people within 200, 150,
100 and 50 cm (each color add up to 100%). Note that most interactions are with a single
person, up to a maximum of 5 people within 2 meters.

Weight Sensing Shelves

This store contained 580 sensing plates, each of them connected to a control box, at
the bottom of each gondola, which in turn was connected to the local network via
Ethernet.

Given the lack of maturity of these custom sensing shelves, we faced some initial
challenges in operating them. Particularly we observed that some shelves mistak-
enly would swap the sensing plate id with a different plate, for a few seconds, and
then return to the original id (See Fig. 6.13). This would occur more often inside
the refrigeration units given the sensitivity of shelves to the temperature
fluctuations. The result of this issue would be ’ghost’ weight detections of the
products siting on those sensing plates. If by chance a customer was close-by he or
she would get those objects attributed to them. This was observed before version 5
(See Table 6.1). This issue was caused by a design flaw in the sensing HW, where
the identifier of the plate –plateID– was being measured as an analog pin on the con-
troller for each plate, based on a combination of resistor dividers. This meant that
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Figure 6.12: Deployment statistics of a 1 year real world operations. (a) Average distance
between people when multiple people interact with the shelves at the same time (98% of the
multiple people interaction happen under 2 meters). (b) Number of products per receipt.
Average number of products taken is 1.83

depending on the tolerances of the resistors the plateID would change if the resulting
voltage would dip, or spike, due to the change in resistance caused by temperature
effects.
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Figure 6.13: ISACS’s weight sensor signal demonstrating the swapping of plate IDs being
reported. Notice the inside the blue dashed box that plate 12 (in red) jump to the same
line of plate 10 (in orange). This occurs because plate 10’s id started to report as if it was
plate 12’s causing incorrect weight changes detected.

Upon realization of this issue, 2 solutions were developed: the Max distance
thresholding –Sec. 6.1, and a packet reconstruction technique. The first approach
removes any association of a person who would be too far to actually have been
able to pick the products, while the second one would attempt to revert the ID
swap before the signal reached the Weight Change detection module. This was
accomplished by observing the continuity of the incoming signals and matching a
instantaneous discontinuity with another discontinuity on sensing plate of the same
shelf. These solutions were applied in Version 5 (See Table 6.1). A more proper
solution, but highly costly, would have been to redesign the sensing HW to store its
internal ID digitally and not be subject to environmental factors, and subsequently
swap all shelves.

Furthermore, during the first 3 weeks of the deployment, prior to opening of
the store, the shelves required significant attention and fixing due to the transport
impact on the shelves. Many internal connections were loose, and some control boxes
were not consistently working. However after the first iteration of shelf hardware
fixing, these shelves remained consistently working for the following years with very
minimal maintenance.
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Table 6.1: Version history of ISACS throughout the 13 months of deployment, showing
how multiple approaches of camera selections and the equivalent software changes required
to accommodate the hardware changes.

ISACS Hardware Date Start Date End
Version 1 34 RGB cameras 09-30-2019 10-30-2019

Version 2 v1 + 15 Top Down
Intel RealSense D435 10-30-2019 11-19-2019

Version 3 Angled 34 RGB 11-19-2019 12-12-2019

Version 4 52 RGB Cameras
34/15 (Angled/Top down) 12-12-2019 1-5-2020

Version 5 v4 + plateID reconstruction 1-5-2020 8-31-2020
Version 6 Version 5 8-31-2020 10-30-2020

Table 6.2: Version history of ISACS throughout the 13 months of deployment, showing
when different versions of ISACS were deployed and their respective durations.

ISACS Software Date Start Date End
Version 1 Head keypoint tracking 09-30-2019 10-30-2019
Version 2 v1 + Hand Depth Processing 10-30-2019 11-19-2019

Version 3 v1 + Keypoint tracking with
Hand prediction 11-19-2019 12-12-2019

Version 4 v3 + Top Down RGB Keypoint tracking
for hands 12-12-2019 1-5-2020

Version 5 v4 + event distance threshold 1-5-2020 8-31-2020
Version 6 v5 + High variance items 8-31-2020 10-30-2020
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Camera Selection and Placement

In placing cameras we have to consider 2 main aspects: people tracking and people
interaction with shelves. For people tracking it is best to place cameras in the
ceiling, given this is the place with the most unobstructed view into the people in
the store. An interesting trade off to consider when instrumenting an autonomous
store is the camera specification, that is, which king of visual sensor to use. Whether
a structure light sensor,a time of flight sensor, stereo sensors or a simple 2D RGB
sensor. With the recent advances in computer vision 2D RGB sensors are becoming
more and more powerful. Coupling this with their ease of use and accessibility we
have decided to use them for our application.

The cameras setup of this store went through 5 iterations as we experimented
with the best performing setup. As detailed in 6.2 ISACS uses the head and hands of
the person to make its matching prediction between the customers and the products.
With the advancements in the state of the art on people tracking we upgraded the
camera setup throughout the following versions:

Version 1 - Camera Setup. Initially we deployed cameras with that would cover
every volume of the store, when empty, with at least 3 angles. This was a require-
ment for tracking people accurately through the triangulation technique present in
[15]. This resulted in 34 cameras spread out throughout the ceiling of the store.

Version 2 - Depth and RGB Setup. As we started to observe the need for better
matching between people and products, we realized the need for better understand-
ing of the movement of the hands of the customers. Therefore we deployed 2 types
of cameras: depth cameras –Intel RealSense d435–, and regular RGB cameras. The
depth cameras were intended to enhance the hand position of the person as they
interacted with the shelves. These were placed top-down in the ceiling aiming just
in front of each gondola, in order to have the most unobstructed view of the place
of interaction with the shelf. While the others followed the principle layed out in
Version 1.

Version 3 - Angled RGB Camera Setup. Given the added complexity in depth
cameras –added computation, network requirements, physical device stability– we
decided to remove them and compute the hand location based solely on RGB 2D
images. This was achieved using the approach in [15] with cameras placed on the
ceiling angled between 20-70 degrees. This angled produced the required side images
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of people to which the models available were trained with.
Version 4 - Top Down and Angled RGB Camera Setup. We finally reached our

last version by adding top down RGB cameras to our system, given that better
models and more available data emerged and allowed the tracking modules to per-
form better with those angles, giving an particularly useful point of view. Top down
cameras are the most useful to understand who is interacting with a shelf given that
they suffer the least from occlusions.

Servers

ISACS runs on a server with 4 NVidia Tesla T4 GPUs. These hardware accelerator
cards are used for running human detection from all of the available cameras in the
store. In order to process the required frames for Multi-Human 3D tracking the
GPUs are fully occupied. These servers stay in a cabinet inside the store, to allow
for very low latency and provide the receipts instantly as the customer approaches
the payment terminal. Due to the stability of server technology, these servers did
not require any maintenance during the entire duration of the experiment.

6.4.4 ISACS Iterative Deployment Process

We have iterated through several approaches during the length of the experiment.
These can be seen in Table 6.2 and Figure 6.10. This figure shows the impact of the
changes in approach in the accuracy of the receipts.

It is worth noting that the daily fluctuation of accuracy occurs due to the uncon-
trolled nature of the human behavior, both from the employees as well as from the
customers. When the store setup was properly re-mapped (L, correctly estimated),
or a new approach was deployed, we can only confidently observe the improvements
over a multi day trend. The orange line represents the 7 day trailing accuracy. In
this line we can observe the upwards trend of the accuracy given every new iteration
of the approach.

The process of upgrading the system was lead by the previous versions’ results.
Each version would run for a minimum of 1 month to validate the accuracy impact
of that version’s changes. Any upgrades to the system were done during closed hours
of the store. This meant that the deployment process would not impact the normal
operations of the store.
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Over the course of 1 year of operation, ISACS achieved a receipt daily accuracy
of up to 96.4%. Which translates to a 3.5x improvement over prior reported self-
checkout accuracies.

6.5 Privatized Retail Systems Discussion

Amazon has shown to the world how autonomous stores can look like through their
Amazon’s Go technology. These stores provide an opportunity for the customer to
shop in the store by downloading the Amazon application scanning the app to enter
and "just walk out", with their receipt arriving within the next few hours [24].

While this has validated the customer experience of "just walking out" it un-
fortunately has been all done under closed doors, preventing the broader scientific
community from leveraging the learnings of such stores and expanding more broadly
beyond Amazon. Furthermore there are several media articles speculating how Ama-
zon operates their Go’s stores [106]. These [82] claim that Humans are leveraged in
the cloud to perform the final checkout for the customer, essentially displacing the
cashier workload to a remote one.

Furthermore, Amazon Go’s stores favors a particular demographic group: upper-
class, tech-savvy, and younger generation. The requirement of an application to
enter and shop and the delayed receipt upon exit becomes quite restrictive for a
more broad community to adopt. Shoppers who are more budget conscious usually
come with the mindset of how much they will spend for their shopping and require
validation before leaving the store. American consumer patterns are changing and
discount retailers are seeing an increased adoption from a larger population sample
which is more budget conscious [122]. To serve the broader community ISACS’s
presents an in-store receipt, despite the delayed receipt by Amazon. This is driven
by the fact that in-store discounts and the "smart-shopper feelings" towards pricing
act as a major component of the emotional response affecting shoppers’ behavior to
favor in-store price confirmation [18, 77, 96].
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6.6 Autonomous Checkout Background and Re-

lated Work

ISACS’s proposes a system that generates a receipt autonomously, i.e. no human
interaction, while the customer is inside the store by matching multiple people with
multiple item pick up/put down events. To achieve this, ISACS’s system contributes
to multiple fields of research, such as: multi-human tracking, object recognition and
tracking, methods for identifying retail products, 3D scene reconstruction and sensor
fusion. In this section we discuss existing works in these fields and how ISACS’s
leverages these prior works to enable Autonomous retail.

6.6.1 Autonomous Retail Enablers

The recent advancements of computer vision research in object recognition help
enable applications such as autonomous stores. These advancements can be grouped
into three main approaches: vision-only, a combination of computer vision with
additional sensors, or a combination of computer vision with sensors and human
product recognition.

Vision only

These solutions face two critical challenges: data availability for training and oc-
clusions. The latest work using deep learning techniques to do object recognition
–Self-attention-based [119], Mask R-CNN [41], Center-Net [25], NormalNet [116],
FoveaBox [50]– require a large amount of labelled data on every individual product
for training which is highly labor intensive and quickly becomes impractical. Some
solutions have alleviated this problem by automating this process either through the
use of sensors [91] or semi-supervised human labelling [107].

An added challenge for vision-only approaches are objects such as fruits and
vegetables. There are works such as [30] that focus on identification of these kinds
of products. Due to their visual variable nature, the approach is only accurate for
a small subset of fruits and vegetables. Furthermore this only identifies the item,
but doesn’t natively handle accurate counting or items sold by the weight –as is the
case for most fruits and vegetables.
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The above approaches are also very computationally intensive, which can be
limiting either in the excessive hardware provisioned in the store, or with the cost
of such computation in the cloud. Approaches like [34] attempt to simplify the
problem by leveraging Optical Character Recognition (a lower computationally in-
tensive approach), to identify the objects by their label. RGB-D cameras have also
been used to attempt at reducing computation and increasing accuracy of object
detection [43] at a prohibitive higher infrastructure cost.

Furthermore these approaches focus mainly on locating and classifying objects
in 2D images [95], which provides no information about the motion of the object,
and the owner of the object.

Vision with Additional Sensors

Works such as [28, 56, 89, 90] combine however multiple 2D views with additional
weight sensors, similar to ISACS, to generate an understanding of which objects
are being picked up or put back down. However these works are limited by only
one person interacting with one item at a time and are limited to a small amount
of products, preventing them to scale to a store-level deployment. Other sensors
have been explored for object identification such as RFID [60, 84, 88, 125], vibra-
tion sensors for people detection and tracking [67, 68] and inertial wearable sensors
[92] for product to people matching, however these solutions have not shown to be
practical in terms of cost, deployment (requiring customer to wear a device) or are
not accurate enough for the low margins a store needs to operate.

Vision, Sensors and Human Product Recognition

Given the high accuracy required to operate a profitable convenience store, compa-
nies like Amazon have leveraged humans-in-the-loop in their cashier-less stores [1,
82, 106]. This approach is quite restrictive: delaying the delivery of the receipt pre-
vents shoppers who are budget conscious from verifying their receipt before leaving
the store, affecting the lower end of the social economic spectrum. American con-
sumer patterns are changing, and discount retailers are seeing an increased adoption
from a larger population sample that is more budget conscious [122]. COVID-19
has further pushed this behavior and driven shoppers’ behavior towards a more tar-
geted spending [17]. Furthermore, the majority of shoppers make purchases based on
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in-store discounts and the "smart-shopper feelings" towards pricing, discounts and
promotions, act as a major component of the emotional response affecting shoppers’
behavior to favor in-store price confirmation [18, 77, 96]

6.6.2 Retail Technology

There are several works in the computer vision, robotic and sensing fields that have
pushed forward the retail technology domain. Robots that grab different kinds of
objects are faced with similar challenges in identifying objects [49]. These solu-
tions provide visual understanding of the objects in a fast manner even withing a
cluttered environment [57]. Others provide a multi-view approach for object pose
understanding, in this case for the purpose of robotic manipulation [53].

Counting and tracking people without interfering with their normal behavior is a
relevant problem that spans beyond the Autonomous Checkout domain. There are
works [13, 15, 23, 59] that focus on leveraging cameras to track people continuously
across multiple camera views [15], focused on dense environments [59] or on the
ability to reconstruct the 3D motion of people [104] in order to understand their
behavior.

While each of these works alone does not address the autonomous checkout
domain they share common challenges in visual understanding of the scene (store),
objects (products) and people (shoppers).

6.7 Chapter Summary

In this chapter, we presented ISACS (In-Store Autonomous Checkout System) for
Retail. Utilizing a centimeter accurate physical model of the store, multi-human
3D pose estimation and live inventory monitoring through weight sensors, ISACS
is able to match multiple people interacting with multiple products, maintain an
accurate store setup and provide a receipt within 2 seconds. ISACS has a receipt
accuracy of up to 96.4%, without a human in the loop, which is a 3.5x reduction in
error compared to the 86% accuracy reported for self-checkout stations.

This chapter demonstrates the performance of ISACS in a convenience store
where most transactions are done at an individual level. Therefore, the assumption
present in the chapter of: the last customer who removes a product form a store’s

101



shelf and leaves with it is the customer charged for that product is reasonable. How-
ever, it would be possible to relax this constraint by focusing on events that occur
in the entire store (i.e., floor or between people), rather than solely on the shelves.
This however presents an added challenge of where to focus the sensors and cameras
in order to properly identify these events, something that we intend to address in
our future work.

ISACS is the first fully autonomous system deployed in a convenience sized store
that leverages computer vision and sensors to provide a in-store receipt, without
relying on humans-in-the-loop.
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Chapter 7

Conclusion

In this work I proposed a framework for combining multi-modality sensing with
scene modeling in order to improve human-object characterization demonstrated in
the context of autonomous retail.

I’ve shown that multi-sensing modalities such as weight and vision can be com-
bined with physical models of the scene to improve the identification of the objects.
This was show to outperform state of the art, in retail stores, by 2x error reduction
in object identification. Furthermore this work demonstrates that the sensors and
cameras can be combined with a model of the interactions of the humans with the
objects to enhance the matching between humans and their respective interactions
even in a highly dense environment. This approach outperformed prior work by
3x reduction in erroneous automatically generated receipts. And finally I propose
as my future work to investigate the capabilities of combining a model of the re-
lationships between objects and humans to improve the human-object interaction
characterization under the constraint of dynamic objects.
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