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When adopting remote sensing techniques in precision agriculture, there are two
main areas to consider: data acquisition and data analysis methodologies. Imagery and
remote sensor data collected using different platforms provide a variety of information
volumes and formats. For example, recent research in precision agriculture has used multi-
spectral images from different platforms, such as satellites, airborne, and, most recently,
drones. These images have been used for various analyses, from the detection of pests
and diseases, growth and water status of crops, to yield estimations. However, accurately
detecting specific biotic or abiotic stresses requires a narrow range of spectral information
to be analyzed for each application. In data analysis, the volume and complexity of data
formats obtained using the latest technologies in remote sensing (e.g., a cube of data for
hyperspectral imagery) demands complex data processing systems and data analysis using
multiple inputs to estimate specific categorical or numerical targets. New and emerging
methodologies within artificial intelligence, such as machine learning and deep learning,
have enabled us to deal with these increasing data volumes and complex analyses.

This Special Issue (SI) mainly focused on (i) advanced methodologies for remotely
sensed data collected by different types of sensors and platforms for precision agriculture
and (ii) the implementation of various sensors for specific targets in precision agriculture.
High-quality research was published in this SI from researchers from various countries,
including China, the USA, Slovenia, Spain, Germany, Brazil, Australia, and Singapore. The
SI’s studies have been ordered following the application within the soil–plant–atmosphere
continuum starting with the soil salinity precision monitoring using unmanned aerial
vehicles (UAV) and multispectral imagery [1]; the evaluation of optical sensors for the
diagnosis of nitrogen content for wheat plants [2]; the detection of root-knot nematode
infestation in potato plants using hyperspectral imagery [3]; detection of powdery mildew
using hyperspectral, thermal, and RGB imagery [4]; leaf area index estimations for wheat
using hyperspectral reflectance data [5]; vineyard canopy characteristics and vigor assess-
ment using UAV and satellite imagery [6]; estimation of crop vegetation parameters using
satellite and UAV spectral remote sensing [7]; above-ground biomass estimation of oat
plants using UAV remote sensing and machine learning [8]; wheat lodging estimation using
multispectral UAV imagery and deep learning [9]; yield estimation for guinea grass using
UAV remote sensing [10]; and wheat yield prediction from satellite imagery, meteorological
data, and machine learning modeling [11].

Different sensor technologies, such as SPAD, Dualex 4, and RapidSCAN, were imple-
mented to assess the accuracy of estimating nitrogen levels in winter wheat, with Dualex 4
being the sensor with the best performance [2].

Different machine and deep learning analytical methods were employed to analyze
imagery and the numerical data from various research studies. For soils, among the
methodologies used were partial least square (PLS) back propagation neural networks
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(BPNN), support vector machines (SVM), and random forests (RF) to construct retrieval
models to estimate soil salinity using regression models [1]. The latter was the most
accurate method resulting in determination coefficients of R2 = 0.724 for the modeling
stage and 0.745 for validation. For roots and disease estimation, hyperspectral imagery
for disease detection on potato tubers (diseased and non-diseased), and machine learning
modeling using SVM classifiers plus dimensionality reduction methods with accuracies
over 60% [3]. Other multisource vegetation indices extracted from hyperspectral, thermal,
and RGB imaging have been used coupled with RF and SVM regression algorithms to
target a powdery mildew index on wheat. The former machine learning methodology
resulted in higher and more stable performances and R2 > 0.86 [4].

In terms of canopy architecture, hyperspectral reflectance data from winter wheat was
used as inputs for a combination of algorithms at different phenological stages to estimate
LAI as targets. The best performance was obtained in flowering and filling stages with
0.87 < R2 < 0.71 for modeling and 0.84 < R2 < 0.77 for validation, respectively [5]. Other
canopy-related parameters for vineyards, such as the normalized differential vegetation
index (NDVI) obtained from UAV and satellite multispectral data using simple linear
regression from individual plants and clusters of plants according to the spatial footprint
of imagery. The NDVI was then related to the tree row volume resulting in moderate R2

for vigor estimation [6]. Other multispectral/hyperspectral parameters from satellite–UAV
data comparisons were performed to estimate crop vegetation parameters, such as LAI, leaf
chlorophyll concentration, and canopy water content, with no clear superiority for either
remote-sensed data on the estimations [2]. For above-ground biomass estimation of oats,
UAV-based remote sensing multispectral imagery and derived vegetation indices (VIs) were
coupled with PLS, SVM, and artificial neural networks (ANN) and RF algorithms. These
studies’ results showed various low to moderate accuracies in predicting above-ground
biomass [8]. The highest accuracy was obtained by combining RGB + digital surface model
(DSM) with 89% [9]. Deep learning based on convolutional neural networks (CNN) with
different architectures to analyze RGB from a UAV platform was used to estimate dry
matter yield for guinea grass resulting in correlation coefficients of 0.79 < R < 0.62 [10].
Furthermore, RF algorithms were also used for wheat yield prediction based on satellite-
based NDVI combined with meteorological data in Australia, resulting in 0.89 < R2 < 0.42
for different locations [11].

After climatic anomalies, plants can suffer from lodging, such as wheat, and the
damage estimation can be helpful in decision-making. Multispectral imagery from a UAV
platform was used to estimate lodging in wheat coupled with a lightweight network model
method based on RGB-DSM with 89% accuracy in the lodging estimation.

It has been shown in this SI that remote sensing coupled with artificial intelligence and
machine learning are powerful tools to estimate parameters from soil salinity, plant biotic
and abiotic stresses/damage, canopy architecture characteristics, and yield estimation.
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