
Citation: Wang, G.; Li, Z.; Yao, W.;

Xia, S. A Multi-Population

Mean-Field Game Approach for

Large-Scale Agents Cooperative

Attack-Defense Evolution in

High-Dimensional Environments.

Mathematics 2022, 10, 4075. https://

doi.org/10.3390/math10214075

Academic Editor: Ioannis G.

Tsoulos

Received: 28 September 2022

Accepted: 31 October 2022

Published: 2 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Multi-Population Mean-Field Game Approach for Large-Scale
Agents Cooperative Attack-Defense Evolution in
High-Dimensional Environments †

Guofang Wang 1,2,3 , Ziming Li 1,2 , Wang Yao 2,3,4,∗ and Sikai Xia 1,2

1 School of Mathematical Sciences, Beihang University, Beijing 100191, China
2 Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Ministry of Education,

Beijing Advanced Innovation Center for Big Data and Brain Computing, Beijing Advanced Innovation
Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China

3 Peng Cheng Laboratory , Shenzhen 518055, China
4 Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
* Correspondence: yaowang@buaa.edu.cn
† This paper is an extended version of our paper published in Proceedings of the Genetic and Evolutionary

Computation Conference Companion (GECCO’22), Association for Computing Machinery, New York, NY,
USA, 9–13 July 2022.

Abstract: As one of the important issues of multi-agent collaboration, the large-scale agents’ coopera-
tive attack–defense evolution requires a large number of agents to make stress-effective strategies to
achieve their goals in complex environments. Multi-agent attack and defense in high-dimensional
environments (3D obstacle scenarios) present the challenge of being able to accurately control high-
dimensional state quantities. Moreover, the large scale makes the dynamic interactions in the attack
and defense problems increase dramatically, which, using traditional optimal control techniques, can
cause a dimensional explosion. How to model and solve the cooperative attack–defense evolution
problem of large-scale agents in high-dimensional environments have become a challenge. We jointly
considered energy consumption, inter-group attack and defense, intra-group collision avoidance,
and obstacle avoidance in their cost functions. Meanwhile, the high-dimensional state dynamics
were used to describe the motion of agents under environmental interference. Then, we formulated
the cooperative attack–defense evolution of large-scale agents in high-dimensional environments
as a multi-population high-dimensional stochastic mean-field game (MPHD-MFG), which signifi-
cantly reduced the communication frequency and computational complexity. We tractably solved
the MPHD-MFG with a generative-adversarial-network (GAN)-based method using the MFGs’ un-
derlying variational primal–dual structure. Based on our approach, we carried out an integrative
experiment in which we analytically showed the fast convergence of our cooperative attack–defense
evolution algorithm by the convergence of the Hamilton–Jacobi–Bellman equation’s residual errors.
The experiment also showed that a large number of drones can avoid obstacles and smoothly evolve
their attack and defense behaviors while minimizing their energy consumption. In addition, the
comparison with the baseline methods showed that our approach is advanced.

Keywords: large-scale agents; attack and defense; multi-population mean-field game; high-dimensional
solution space; neural networks

MSC: 91A16; 93-10; 49N80

1. Introduction

Cooperative control among multiple agent has always been an important research topic
in swarm intelligence [1]. Game theory, as a branch of modern mathematics, studies optimal
decision-making problems under conflicting adversarial conditions and can provide a
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theoretical basis for multi-agent cooperative decision-making problems. This paper is
oriented toward the large-scale agents’ cooperative attack–defense evolution, one of the
important issues of multi-agent collaboration, which requires a large number of agents to
make stress-effective strategies to achieve their goals in complex environments [2]. The
multi-player continuous attack–defense game, as the mainstream research method for
multi-agent attack–defense evolution, is a differential game between two adversarial teams
of cooperative players playing in an area with targets. The attacker attempts to reach the set
destination. The goal of the defender is to delay or stop the attacker by catching it [3]. The
attack–defense game problem can be described as an optimal decision-making problem
under complex multi-constraint conditions [4].

The classic attack–defense games have long been studied in multi-agent cooperative
control. The multiple-pursuer-one-evader problem has been well documented. In [5],
the Voronoi diagram construct was used for the capture of an evader within a bounded
domain. Based on differential game theory and optimal control theory, differential game
models have been established to solve optimal strategies by setting some rules and as-
sumptions. In [6], based on the geometric relationship between two pursuers and an
evader, a differential game model was established through coordinate transformation to
solve the optimal cooperative strategy. Paper [7] studied the optimal guidance law of two
missiles intercepting a single target based on the hypothesis of the missile hit sequence.
Reference [8] proposed an online decision-making technique based on deep reinforcement
learning (DRL) for solving the environmental sensing and decision-making problems in
the chase and escape games. For the case of N-pursuers and M-evaders, more complex
interactions need to be analyzed. Paper [9] studied a multiplayer border-defense prob-
lem and extended classical differential game theory to simultaneously address weapon
assignments and multiplayer pursuit–evasion scenarios. Papers [10,11] proposed some
methods based on linear programming, and applied deep reinforcement learning methods
to deal with a simplified version of the RoboFlag competition [4]. An approach to the
task allocation of many agents was proposed in [12], where Bakolas and Tsiotras used the
Voronoi diagram construct to control the system. To solve general attack–defense games,
the Hamilton–Jacobi–Isaacs (HJI) approach is ideal when the game is low-dimensional.
However, because its complexity increases exponentially with the number of agents, the
HJI approach is only tractable for the two-player game [13]. However, the above methods
cannot be directly applied to the large-scale attack–defense game we are concerned with,
because these traditional optimization and control technologies deal with the dynamic
interactions between individuals separately. Moreover, to conduct more accurate real-time
control for agents, the state variables used to characterize their kinematics are usually
high-dimensional. Thus, with the increase in the agents’ number, the modeling process of
cooperative attack–defense problems tends to be complex, and the difficulty of solving the
optimal strategy will increase significantly.

To solve the communication and calculation difficulties caused by agents’ interactions on
a large scale, mean-field games (MFGs) were proposed by Lasry and Lions [14–16] and Huang,
Malhame, and Caines [17–19] independently. MFGs have been widely used in industrial
engineering [20–22], crowd motion [23–26], swarm robotics [27,28], epidemic modeling [29,30],
and data science [31–33]. In the MFG, each agent can obtain the evolution of the global or
macroscopic information (mean-field) by solving the Fokker–Planck–Kolmogorov (FPK)
equation. The optimal strategy of each agent is found by solving the Hamilton–Jacobi–
Bellman (HJB) equation [34]. Recently, a machine-learning-based method, named APAC-net,
has been proposed to solve high-dimensional stochastic MFGs [35]. Intuitively, the large-
scale attack–defense problems are more consistent with the multi-population model. The
multi-population mean-field game is a critical subclass of mean-field games (MFGs). It is
a theoretically feasible multi-agent model for simulating and analyzing the game between
multiple heterogeneous populations of interacting massive agents. We proposed a numerical
solution method (CA-Net) for multi-population high-dimensional stochastic MFGs in [36],
and studied the large-scale attack–defense problem in a 3D blank scenario based on CA-Net
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in [37]. In this paper, we focus on a 3D obstacle scene. The presence of multiple obstacles in the
3D space brings qualitative changes to the attack and defense decisions of large-scale agents,
i.e., a “diversion” phenomenon. How to model and solve the cooperative attack–defense
evolution problem of large-scale agents in 3D obstacle scenarios has become a challenge.

Inspired by the above-mentioned cutting-edge works, in this paper, we jointly consid-
ered energy consumption, inter-group attack and defense, intra-group collision avoidance,
and obstacle avoidance in their cost functions. Meanwhile, the high-dimensional state
dynamics were used to describe the motion of agents under environmental interference.
Then, we made the following main contributions:

• We formulated the cooperative attack–defense evolution of large-scale agents in high-
dimensional environments as a multi-population high-dimensional stochastic mean-
field game (MPHD-MFG), which significantly reduced the communication frequency
and computational complexity.

• We propose ECA-Net, an extended nonlinear coupled alternating neural network
composed of multiple generators and multiple discriminators. We tractably solved
the MPHD-MFG with the ECA-Net algorithm using MFGs’ underlying variational
primal–dual structure.

• We carried out an integrative experiment in which we analytically showed the fast
convergence of our cooperative attack–defense evolution algorithm by the conver-
gence of the Hamilton–Jacobi–Bellman equation’s residual errors. The experiment
also showed that a large number of drones can avoid obstacles and smoothly evolve
their attack and defense behaviors while minimizing their energy consumption. The
comparison with the baseline methods showed that our approach is advanced.

Our approach accomplishes a breakthrough from few-to-few to mass-to-mass in terms
of attack–defense game theory in 3D obstacle scenarios.

In Section 2, we model the cooperative attack–defense evolution of large-scale agents
in a 3D obstacle scene and formulate it as an MPHD-MFG. In Section 3, we propose ECA-
Net to tractably solve the MPHD-MFG. Section 4 shows the performance of our algorithm
with numerical results, and in Section 5, we draw our conclusions.

2. Modeling and Formulating

The system model consists of the objective function and the kinematics equation,
which describe how large-scale agents evolve paths through attack–defense relationships.
We considered a 3D obstacle attack–defense scenario with N agents, as shown in Figure 1.
The blue side N1 as the attacker with N1 agents hopes to break through the red side’s
interception and successfully reach the destination; the red side N2 as the defender with
N2 agents hopes to complete the interception against the blue side in the given area to
prevent the blue side from penetrating. The state of agent i is denoted by xp

i (t) ∈ Rn; p = 1
represents the blue side; p = 2 represents the red side, i ∈ N1 or N2, and N1 + N2 = N.
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Figure 1. Vertical view of large-scale agents attacking and defending in 3D obstacle scene.

2.1. Kinematics Equation

Each agent i ∈ N = N1 ∪ N2 belongs to a population p(i) ∈ Q = {1, 2} and is
characterized by a state xp

i (t) ∈ Rn at time t ∈ [0, T]. We considered that the continuous-
time state xp

i (t) of player i of population p has the dynamic–kinematic equation of the
following form

dxp
i = hp

i (x
p
i , xp−

i , x−p−

i , up
i )dt, (1)

where up
i : [0, T] → Up ⊆ Rm is the control input (strategy) implemented by agent i

in view of the state xp
i at time t, xp−

i : Rn × [0, T] → P2(Rn) is the states of all other

intra-group agents, x−p−

i describes the states of all other inter-group agents, and hp
i :

Rn ×P2(Rn)2 ×Up → Rn is the nonlinear evolution function, p = 1, 2.

2.2. Objective Function

For player i of population p, p = 1, 2, we considered the cost function of the follow-
ing form:

Jp
i (x

p
i , xp−

i , x−p−

i , up
i ) =

∫ T

0
Lp

i (x
p
i (t), up

i (t)) + Fp
i (x

p
i (t), xp−

i (xp
i (t), t), x−p−

i (x−p
i (t), t))dt

+ Gp
i (x

p
i (T), xp−

i (xp
i (T), T), x−p−

i (x−p
i (T), T)),

(2)

where Lp
i : Rn ×Up → R is the running cost incurred by agent i based solely on its actions,

Fp
i : Rn ×P2(Rn)2 → R is the running cost incurred by agent i based on its interactions

with the rest of the same population and the other population, and Gp
i : Rn ×P2(Rn)2 → R

is a terminal cost incurred by agent i based on its final state and the final states of the whole
of the related populations.

2.2.1. Blue-Side Control Problem

In the 3D obstacle space, the blue side’s agents traveling from a common source hope
to break through the red side’s interception while avoiding obstacles and successfully
reach the destination, where a straight line segment in the area above the red side’s initial
distribution is set as the destination. At time t ≥ 0, the i-th agent controls its strategy u1

i
to minimize its: (1) motion energy, (2) red side capture, (3) blue side inter-agent collision,
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(4) collision of the blue side with the obstacles, and (5) travel time during the remaining
travel to the destination. The running cost L1

i is given by

L1
i = c1‖u1

i (t)‖2︸ ︷︷ ︸
(1) motion energy minimization

, (3)

where c1 is a constant. The running cost L1
i denotes the control effort implemented by agent

i. The interaction cost F1
i is given by

F1
i = c2

(
− 1

N2

N2

∑
k=1

∥∥∥p1
i (t)− (p2

k(t) + ere)
∥∥∥)︸ ︷︷ ︸

(2) red side capture minimization

+ c3

(
1

N1

N1

∑
j 6=i

1‖p1
i (t)−p1

j (t)‖≤e0

)
︸ ︷︷ ︸

(3) blue side inter-agent collision avoidance

+ c4

(
1

N1

N1

∑
i=1

{
∑A

a=1 γobs,a
1

Qa(pi ,t)
if pi ∈ Ωobs,trn

0 otherwise

)
︸ ︷︷ ︸

(4) blue side obstacle collision avoidance

,

(4)

Ωobs,trn =
A⋃

a=1

Ωobs,trn,a (5)

Ωobs,trn,a : Qa(x, y, z) =
1

3v2
1,a

(x− x0,a)
2 +

1
3v2

2,a
(y− y0,a)

2 +
1

3v2
3,a

(z− z0,a)
2 ≤ 1.1, a = 1, . . . , A, (6)

Ωobs,a = {(x, y, z)||x− x0,a| ≤ v1,a, |y− y0,a| ≤ v2,a, |z− z0,a| ≤ v3,a}, a = 1, . . . , A. (7)

where p = (x, y, z) is the agent’s usual Euclidean spatial coordinate position, e is the unit
vector of the spherical coordinate system, er is the capture radius of the red side agent, e0 is
the safe distance between agents, c2, c3, c4 are constants, γobs,a, a = 1, . . . , A, is the repulsive
force gain coefficient between the agent i and other obstacles, (x0,a, y0,a, z0,a) is the center
of the corresponding obstacle, and (±v1,a,±v2,a,±v3,a) are its vertices, which are parallel
with the x, y, z axes, respectively. The interaction cost F1

i denotes the sum of the trajectory
collision loss of the intra-group, inter-group, and with obstacles about agent i.

Remark 1. In our 3D obstacle scene, obstacles were rectangular solids Ωobs. For training, the
cuboid obstacle repulsion is formulated as a differentiable unit ellipsoid repulsion function 1

Q [38].
To better reduce the collision between agents and obstacles, the radius of Ωobs,trn is 10% larger than
that of the unit circumscribed ellipsoid of Ωobs. Our algorithm was trained by using ellipsoidal
repulsion, which can produce gradient information smoothly in obstacles, stimulating the model to
learn trajectories to avoid obstacles [39].

The terminal cost G1
i is given by

G1
i = c5‖x1

i (T)− x0‖2︸ ︷︷ ︸
(5) travel time minimization

, (8)

where c5 is a constant, x1
i (T) is the final state of agent i, and x0 is the target state in which we

want the agents to reach the objective. The terminal cost G1
i denotes the distance between

agent i’s terminal state and the desired state.
In summary, by defining the cost function as (2), the optimal control problem faced by

agent i of the blue side is given by

inf
u1

i ∈U1

J1
i (x

1
i , x1−

i , x2−
i , u1

i )

s.t. dx1
i = h1

i (x
1
i , x1−

i , x2−
i , u1

i )dt.
(9)
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2.2.2. Red Side Control Problem

The red side’s agents traveling from a common source avoid obstacles and hope to
complete the interception against the blue side to prevent the blue side from penetrating.
At time t ≥ 0, the i-th agent controls its strategy u2

i , to minimize its: (1) motion energy, (2)
distance to the blue side, (3) red side inter-agent collision, and (4) the collision of the red
side with the obstacles during the remaining travel time. The running cost L2

i is given by

L2
i = l1‖u2

i (t)‖2︸ ︷︷ ︸
(1) motion energy minimization

, (10)

where l1 is a constant. The running cost L2
i denotes the control effort implemented by agent

i. The interaction cost F2
i is given by

F2
i = l2

(
1

N1

N1

∑
k=1

∥∥∥p2
i (t)− p1

k(t)
∥∥∥)︸ ︷︷ ︸

(2) distance to blue side minimization

+ l3

(
1

N2

N2

∑
j 6=i

1‖p2
i (t)−p2

j (t)‖≤e0

)
︸ ︷︷ ︸

(3) red side inter-agent collision avoidance

+ l4

(
1

N2

N2

∑
i=1

{
∑A

a=1 γobs,a
1

Qa(pi ,t)
if pi ∈ Ωobs,trn

0 otherwise

)
︸ ︷︷ ︸

(4) red side obstacle collision avoidance

,

(11)

where l2, l3, l4 are constants. The interaction cost F2
i denotes the sum of the trajectory

collision loss of the intra-group, inter-group, and with obstacles about agent i.
In summary, by defining the cost function as (2), the optimal control problem faced by

agent i of the red side is given by

inf
u2

i ∈U2

J2
i (x

2
i , x2−

i , x1−
i , u2

i )

s.t. dx2
i = h2

i (x
2
i , x2−

i , x1−
i , u2

i )dt.
(12)

To this end, the cooperative attack–defense evolution for large-scale agents in the 3D
obstacle scene is formulated as a non-cooperative differential game. Thus, an N-player
non-cooperative game is formed. Its obvious solution is the Nash equilibrium, that is no
agent can unilaterally reduce its cost under this control decision [16].

2.3. Multi-Population High-Dimensional Mean-Field Game

With the increase of the number N of game participants, the complexity of solving
differential games will increase significantly. For the current agent in the cooperative attack–
defense problem (16), the neighborhood interactions of intra-group collision avoidance, the
inter-group interactions of attack and defense, and the ecological interactions of obstacle
avoidance will lead to the need for a large amount of communication and computing
resources. Traditional optimization and control methods usually deal with the increasing
interactions separately, leading to the dimension explosion problem. The mean-field game is
able to overcome the communication and computational difficulties associated with a large
scale, and its core technology is to inscribe a large number of interacting swarm intelligence
problems as coupled sets of partial differential equations (PDEs). Therefore, we propose
the multi-population high-dimensional stochastic MFG (MPHD-MFG) reformulation of
the cooperative attack–defense problem (16). Under the framework of the MPHD-MFG,
a generic player only reacts to the collective behaviors (mean field) of all players instead
of the behavior of each player, which greatly reduces the amount of communication and
computation. Here, “mean-field” means the states’ probability distribution. Now, we
can drop the index i since players are indistinguishable within each population of the
MPHD-MFG. Let ρp(xp, t) : Rn × [0, T]→ P2(Rn) denote the probability density function
of state xp at time t, then the cost function (2) is transformed into



Mathematics 2022, 10, 4075 7 of 18

Jp(xp, ρp, ρ−p, up) =

E
[∫ T

0
Lp(xp(t), up(t)) + Fp(xp(t), ρp(xp(t), t), ρ−p(x−p(t), t))dt + Gp(xp(T), ρp(xp(T), T), ρ−p(x−p(T), T))

]
=
∫ T

0

{∫
Ω

Lp(xp(t), up(t))ρp(xp, t)dx
}

dt +
∫ T

0

{∫
Ω

Fp(xp(t), ρp(xp(t), t), ρ−p(x−p(t), t))ρp(xp, t)dx
}

dt

+
∫

Ω
Gp(xp(T), ρp(xp(T), T), ρ−p(x−p(T), T))ρp(xp, t)dx

=
∫ T

0

{∫
Ω

Lp(xp(t), up(t))ρp(xp, t)dx
}

dt +
∫ T

0
F p(xp(t), ρp(xp(t), t), ρ−p(x−p(t), t))dt

+ G p(xp(T), ρp(xp(T), T), ρ−p(x−p(T), T)),

(13)

where Ω ∈ Rn is the state space containing all possible states of the generic agent and
variational derivatives of functionals F ,G for ρ are the interaction and terminal costs F and
G, respectively. Meanwhile, the state dynamic–kinematic equation in (1) is transformed into

dxp = hp(xp, ρp, ρ−p, up)dt + σpdWp
t , (14)

where σp ∈ Rn×m denotes a fixed coefficient matrix of a population-dependent volatility
term and Wp means an m-dimensional Wiener process springs from the environment, in
which each component Wp

k is independent of Wp
l for all k 6= l, p = 1, 2. According to Ito’s

lemma [40], (14) can be expressed in terms of the mean field ρp(xp, t) and then will be
equivalent to the Fokker–Planck (FPK) equation given by

∂tρ
p − σp2

2
∆ρp +∇ · (ρphp) = 0. (15)

With cost function (13) and FPK Equation (15), the multi-population high-dimensional
MFG, which describes the cooperative attack–defense evolution of a large number of agents,
is now summarized as

inf
ρp ,up

Jp(xp, ρp, ρ−p, up)

s.t. ∂tρ
p − σp2

2
∆ρp +∇ · (ρphp) = 0, ρp(xp, 0) = ρ

p
0 (x

p)

∂tρ
−p − σ−p2

2
∆ρ−p +∇ · (ρ−ph−p) = 0, ρ−p(x−p, 0) = ρ

−p
0 (x−p)

p = 1, 2,

(16)

where ρ
p
0 is the initial probability distribution of population p’s agents. To this end, the

cooperative attack–defense evolution for large-scale agents in the 3D obstacle scene is
formulated as a multi-population high-dimensional MFG. For every population p = 1, 2,
each agent i of population p(i) forecasts a distribution {ρp(·, t)}T

t=0 and aims at minimizing
its cost, which eventually reaches the Nash equilibrium, where no agent can decrease its
individual cost by changing its control strategy unilaterally. The formulaic representation,
for every xp ∈ Rn:

Jp(xp, ρp, ρ−p, ûp) ≤ Jp(xp, ρp, ρ−p, up), ∀up : [0, T]→ Up, (17)

where ûp is the agent’s equilibrium strategy at state xp. Here, we assumed that the agent is
small, and its unilateral actions will not change the density ρp. Reference [41] provides a
sufficient condition for the solution to the multi-population MFG PDEs, and Reference [42]
provides the necessary one.
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Remark 2. Under appropriate assumptions, the MFG’s solution will offer an approximate Nash
equilibrium (ε-NE) for the corresponding game with a large, but finite number of agents [41].

3. GAN-Based Approach for MPHD-MFG

In this section, we put forward a generative-adversarial-network (GAN)-based method
for solving the multi-population high-dimensional MFG in (16). Inspired by Wasserstein
GANs [43], APAC-Net [35], and CA-Net [36,37], we formulated (16) as a convex-concave
saddle-point problem using MFG’s variational primal–dual structure. Then, we propose an
extended coupled alternating neural network (ECA-Net) algorithm to solve the MPHD-
MFG in (16).

3.1. Variational Primal–Dual Structure of MPHD-MFG

We reveal the underlying primal–dual structure of the MPHD-MFG, then deduce the
convex–concave saddle-point problem equivalent to (16). Denote Φp : Φp(xp, t) = infup Jp

(xp, ρp, ρ−p, up) as the Lagrange multiplier; we can add the differential constraint (15) (FPK
equation) into the cost function (13) to obtain the extended cost function:

sup
Φp

inf
ρp ,up

{∫ T

0

∫
Ω

Lp(xp(t), up(t))ρp(xp, t)dxdt +
∫ T

0
F p(xp(t), ρp(xp(t), t), ρ−p(x−p(t), t))dt

+ G p(xp(T), ρp(xp(T), T), ρ−p(x−p(T), T))

−
∫ T

0

∫
Ω

Φp(xp, t)(∂tρ
p − σp2

2
∆ρp +∇ · (ρp(xp, t)hp(xp, ρp, ρ−p, up)))dxpdt

−
∫ T

0

∫
Ω

Φ−p(x−p, t)(∂tρ
−p − σ−p2

2
∆ρ−p +∇ · (ρ−p(x−p, t)h−p(x−p, ρ−p, ρp, u−p)))dx−pdt

}
.

(18)

The Hamiltonian Hp : Rn ×P2(Rn)2 ×Rn → R, p = 1, 2 is defined as

Hp(xp, ρp, ρ−p, zp) = sup
up
{−Lp(xp, up)− zp>hp(xp, ρp, ρ−p, up)}. (19)

Utilizing (19) and integrating by parts, we can rewrite (18) as

inf
ρp

sup
Φp

{∫ T

0

∫
Ω
(∂tΦp +

σp2

2
∆Φp − Hp(xp,∇Φp))ρ

p(xp, t)dxpdt +
∫ T

0
F p(xp(t), ρp(xp(t), t), ρ−p(x−p(t), t))dt

+ G p(xp(T), ρp(xp(T), T), ρ−p(x−p(T), T)) +
∫

Ω
Φp(xp, 0)ρp

0 (x
p)dxp −

∫
Ω

Φp(xp, T)ρp(xp, T)dxp

+
∫ T

0

∫
Ω
(∂tΦ−p +

σ−p2

2
∆Φ−p +∇Φ−p · h−p)ρ−p(x−p, t)dx−pdt +

∫
Ω

Φ−p(x−p, 0)ρ−p
0 (x−p)dx−p

−
∫

Ω
Φ−p(x−p, T)ρ−p(x−p, T)dx−p

}
.

(20)

Here, our derivation path follows that of [44–46]. The formulation (20) is the cornerstone of
our approach.

3.2. ECA-Net for Cooperative Attack–Defense Evolution

We solved (20) by training a GAN-based neural network. The solving network of
the multi-population MFG in the 3D obstacle scene is an extended nonlinear coupled
alternating neural network formed by multiple generators and multiple discriminators,
named ECA-Net. We coupled the obstacle avoidance loss term in the design of the loss
function of the ECA-Net algorithm. The structure and training process of ECA-Net are
shown in Figure 2.
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Figure 2. Visualization of the structure and training process of ECA-Net. Its training process is
divided into two pairs of coupled alternating training parts—generators and discriminators.

First, we initialized two pairs of neural networks Np
ωp(xp, t) and Np

θp(yp, t), p = 1, 2. Let

Φp
ωp(xp, t) = (1− t)Np

ωp(xp, t) + tGp(xp), G,
p
θp(yp, t) = (1− t)yp + tNp

θp(yp, t), (21)

where yp ∼ ρ
p
0 is a sample drawn from the initial distribution. The formulation of Φp

ωp

(the value function for the generic agent of population p) and G,
p
θp (the density distribution

of population p) in (21) automatically encodes the terminal condition Gp(·, T) and initial
distribution ρ

p
0 (·), respectively. Moreover, ECA-Net encodes the underlying structure of

the MPHD-MFG by (20) and (21), exempting the neural network from learning the entire
game solution from scratch.

Our approach for training this neural network includes parallel–alternate training of
two pairs of G,

p
θp and Φp

ωp , p = 1, 2. Intuitively, to gain the equilibrium of the MPHD-MFG
of the cooperative attack–defense problem, we trained an extended coupled alternating
neural network (ECA-Net) about multi-group distributions and agent controls. Specifically,
we trained Φp

ωp by first sampling a batch {yp
b}

B
b=1 from given initial distribution ρ

p
0 , another

batch {y−p
b }

B
b=1 from given initial density ρ

−p
0 , and {tb}B

b=1 uniformly from [0, T]. Then, we
computed the push-forward states xp

b = G,
p
θp(y

p
b , tb), x−p

b = G,
−p
θ−p(y

−p
b , tb) for b = 1, . . . , B.

The main loss term for training the discriminator Φp
ωp is given by

lossΦp =
1
B

B

∑
b=1

Φp
ωp(x

p
b , 0) +

1
B

B

∑
b=1

{
∂tΦ

p
ωp(x

p
b , tb) +

σp2

2
∆Φp

ωp(x
p
b , tb)− Hp(∇xp Φp

ωp(x
p
b , tb))

}
. (22)

We need to consider adding a dual term for the distribution of the neighboring population:

penaltyneighbors = η

{
1
B

B

∑
b=1

[
∂tΦ

−p
ω−p(x

−p
b , tb) +

σ−p2

2
∆Φ−p

ω−p(x
−p
b , tb) +∇x−p Φ−p

ω−p(x
−p
b , tb) · h−p(x−p

b , xp
b , tb)

]}
(23)
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to correct for the density update of the other population (which tends to obey the FPK
equation) [36]. We can optionally add a regularization term:

penaltyHJB = λ

{
1
B

B

∑
b=1
‖∂tΦ

p
ωp(x

p
b , tb) +

σp2

2
∆Φp

ωp(x
p
b , tb)− Hp(∇xp Φp

ωp(x
p
b , tb)) + Fp(xp

b , x−p
b , tb)‖

}
(24)

to penalize deviations from the HJB equations. Finally, we backpropagated the total loss
`total to update the weights of the discriminator Φp

ωp .
To train the generator, we again sampled {yp

b}
B
b=1, {y−p

b }
B
b=1 and {tb}B

b=1, p = 1, 2 as
before and computed

lossG,
p =

1
B

B

∑
b=1

{
∂tΦ

p
ωp (G,

p
θp (y

p
b ), tb) +

σp2

2
∆Φp

ωp (G,
p
θp (y

p
b ), tb)− Hp(∇xp Φp

ωp (G,
p
θp (y

p
b ), tb)) + Fp(G,

p
θp (y

p
b ), G,

−p
θ−p (y

−p
b ), tb)

}
. (25)

Finally, we backpropagated the total loss ζtotal to update the weights of the genera-
tor G,

p
θp .
In conclusion, in each time slot t ∈ [0, T], the ECA-Net will be trained. The generator

G,
p
θp will generate the state distribution of population p at time t, and the discriminator Φp

ωp

will obtain the result of the value function of population p at time t, p = 1, 2. Please refer to
Algorithm 1 for the detailed operation flow.

Algorithm 1 ECA-Net for cooperative attack–defense evolution.
Require: σp diffusion parameter, Gp terminal cost, Hp Hamiltonian, Fp interaction term,
p = 1, 2.
Require: Initialize neural networks Np

ωp and Np
θp , batch size B.

Require: Set Φp
ωp and G,

p
θp as in (21).

While not converged, do
train Φp

ωp :

Sample batch {(yp
b , tb)}B

b=1, {(y−p
b , tb)}B

b=1, where yp
b ∼ ρ

p
0 , y−p

b ∼ ρ
−p
0 and tb ∼ Unif(0, T).

xp
b ← G,

p
θp (y

p
b , tb), x−p

b ← G,
−p
θ−p (y

−p
b , tb) for b = 1, . . . , B.

`
p
0 ←

1
B ∑B

b=1 Φp
ωp (x

p
b , 0)

`
p
t ← 1

B ∑B
b=1

{
∂tΦ

p
ωp (x

p
b , tb) +

σp2

2 ∆Φp
ωp (x

p
b , tb)− Hp(∇xp Φp

ωp (x
p
b , tb))

}
`

p
n ← η

{
1
B ∑B

b=1

[
∂tΦ

−p
ω−p (x

−p
b , tb) +

σ−p2

2 ∆Φ−p
ω−p (x

−p
b , tb) +∇x−p Φ−p

ω−p (x
−p
b , tb) · h−p(x−p

b , xp
b , tb)

]}
`

p
HJB ← λ

{
1
B ∑B

b=1 ‖∂tΦ
p
ωp (x

p
b , tb) +

σp2

2 ∆Φp
ωp (x

p
b , tb)− Hp(∇xp Φp

ωp (x
p
b , tb)) + Fp(xp

b , x−p
b , tb)‖

}
`

p
total ← `

p
0 + `

p
t + `

p
n + `

p
HJB

Backpropagate total loss `total = ∑p `
p
total to ω = (ωp)p=1,2 weights.

train G,
p
θp :

Sample batch {(yp
b , tb)}B

b=1, {(y−p
b , tb)}B

b=1, where yp
b ∼ ρ

p
0 , y−p

b ∼ ρ
−p
0 and tb ∼ Unif(0, T).

ζ
p
t ← 1

B ∑B
b=1

{
∂tΦ

p
ωp (G,

p
θp (y

p
b ), tb) +

σp2

2 ∆Φp
ωp (G,

p
θp (y

p
b ), tb)− Hp(∇xp Φp

ωp (G,
p
θp (y

p
b ), tb))

+Fp(G,
p
θp (y

p
b ), G,

−p
θ−p (y

−p
b ), tb)

}
Backpropagate total loss ζtotal = ∑p ζ

p
t to θ = (θp)p=1,2 weights.

end while

4. Simulation Results

In this section, we carry out an integrative experiment based on Algorithm 1 and
demonstrate the feasibility and effectiveness of our approach via the following numerical
simulation results. To prove the advanced nature of our approach, we finally compare its
performance with that of baseline methods.



Mathematics 2022, 10, 4075 11 of 18

4.1. Experimental Setup

For the attack–defense obstacle scenario in Figure 3, the initial density of the two pop-
ulations is discrete uniform distributions ρ

p
0 , p = 1, 2. The initial spatial coordinates (x, y, z)

of the blue and red sides are located in the cuboid areas ((−5, 5), (−9,−7), (−9,−7)) and
((−5, 5), (7, 9), (−9,−7)), respectively. Note that we set all other initial coordinates to zero—
initial angular position, initial velocity, and initial angular velocity were all set to zero. The
coordinates of the terminal line were set to (·, 8, 8). Two obstacles were placed between the
attacking and defending groups. The obstacles were represented by cuboids, specified by the
coordinates of their vertices. The first obstacle was placed at ((−3,−1), (−2, 2), (−10, 10)),
and the second obstacle was placed at ((1, 3), (−2, 2), (−10, 10)).

x

10 5 0 5 10

y

10

5

0

5

10

z

10
5
0
5
10

Figure 3. The 3D attack and defense experimental scenario.

We examined with this high-dimensional scene where the dynamics was that of
quadrotor crafts. The dynamic–kinematic equation of the generic quadrotor craft i of
population p, p = 1, 2, is given by

ẋp = vxp

ẏp = vyp

żp = vzp

ψ̇p = vψp

θ̇p = vθp

φ̇p = vφp

v̇xp =
up
mp

(sin(φp) sin(ψp) + cos(φp) cos(ψp) sin(θp))

v̇yp =
up
mp

(− cos(ψp) sin(φp) + cos(φp) sin(θp) sin(ψp))

v̇zp =
up
mp

(cos(θp) cos(φp))− g
v̇ψp = τ̃ψp

v̇θp = τ̃θp

v̇φp = τ̃φp

, (26)

which we compactly denote as ẋp = hp(xp, up), where hp is a 12-dimensional vector func-
tion in the right-hand side of (26), xp = [xp, yp, zp, ψp, θp, φp, vxp , vyp , vzp , vψp , vθp , vφp ]

>

∈ R12 is the state with velocities vp = [vxp , vyp , vzp , vψp , vθp , vφp ]
> ∈ R6, and up =

[up, τ̃ψp , τ̃θp , τ̃φp ]
> ∈ R4 is the control. In the stochastic case, we added a noise term to

the dynamics: dxp = hp(xp, up)dt + σpdWp
t , where W means a standard Brownian motion,

meaning the quadcopter suffers from noisy measurements. The cost functions of the blue
side and red side are given in Section 2.2.

For the model hyperparameters, we set c1 = 0.5 (in (3)), c2 = 1, c3 = 20, c4 = 5 (in (4)),
c5 = 5 (in (8)), l1 = 0.5 (in (10)), and l2 = 1, l3 = 20, l4 = 5 (in (11)). For ECA-Net, both
networks have three linear hidden layers with 100 hidden units in each layer. Residual
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neural networks (ResNets) were used for both networks, with a skip connection weight
of 0.5. The tanh activation function was used in Φp

ωp , while the ReLU activation function
was used in G,

p
θp . For training, we used ADAM with β = (0.5, 0.9), learning rate 2e− 4 for

Φp
ωp , learning rate 5e− 5 for G,

p
θp , weight decay of 1e− 4 for both networks, batch size 50,

λ = 2 (the HJB penalty coefficient), and η = 2.5e− 3 (the neighbors’ penalty coefficient)
in Algorithm 1. As in standard machine learning methods, all the plots in Section 4.3 and
Appendices A.1 and A.2 were generated using validation data (data not used in training),
to ensure the general adaptability of ECA-Net.

4.2. Convergence Analysis

The convergence of the MPHD-MFG method and the ECA-Net algorithm can be ob-
served by checking the convergence of the HJB residual errors, along with the convergence
of the total loss. In Figure 4a, we plot the HJB residual errors of the red and blue sides,
i.e., `p

HJB in Algorithm 1, which measures the deviation from the objective function (13)
and shows the convergence of the theoretical model, the MPHD-MFG. Without an efficient
strategy control, the HJB residuals under different stochasticity parameters (ν = σ2

2 = 0,
0.04, 0.08) were relatively high. The HJB residuals dropped fast after we applied a series of
controls. After around 2× 105 iterations, the error curves tended to be bounded and stable
when we obtained the optimal control for the drones. In Figure 4b, we plot the total loss of
the red and blue sides, i.e., `p

total in Algorithm 1. After around 2× 105 iterations, the total

loss value curves under different stochasticity parameters (ν = σ2

2 = 0, 0.04, 0.08) tended to
be bounded and stable, which means that the weight update of the neural network was
completed, proving the good convergence of the solution algorithm, ECA-Net.
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Figure 4. Convergence analysis. (a) Convergence of HJB residual; (b) Convergence of total loss.

4.3. Performance Analysis

We set the same number for the blue side and red side, N1 = N2 = 100. Now, we
obtained the model from the above training and predicted the trajectories of the red and
blue sides. Assuming that the blue side is not aggressive and the red side is aggressive, if
the blue UAV is surrounded by two or more red UAVs within er, the blue individual will
be captured. We give the evolutionary trajectories of the red and blue sides under different
stochasticity parameters (ν = σ2

2 = 0, 0.04, 0.08) and different capture radii (er = 0.7, 0.9,
1.1), as shown in Figure 5. When stochasticity parameter ν was fixed, observing Figure 5a–c
over time t, respectively, the UAVs successfully avoided obstacles while minimizing their
energy consumption; the smaller the capture radius of the red side, the higher the survival
rate of the blue side is. At the same capture radius er and at the same moment t, the
larger the stochasticity parameter, the more scattered the distribution of the UAVs is, which
increases the difficulty for the red side to completely capture the blue side. For example, in



Mathematics 2022, 10, 4075 13 of 18

the case of er = 1.1, comparing the first line of Figure 5a–c, the larger ν is, the higher the
survival rate of the blue side. In particular, Figure 5c shows the diversion phenomenon. At
ν = 0.08, the third moment, the UAVs are flying through the obstacles. In order to avoid
collision with the obstacles, the UAVs choose three different paths, i.e., a diversion occurs,
which demonstrates the adaptive nature of the UAV. In addition, the corresponding 3D
run diagram of Figure 5 is placed in Appendix A.1. Appendix A.2 shows and analyzes the
offensive and defensive effects of the UAV swarms in the asymmetric case.

0

(a)

0

(b)

Figure 5. Cont.



Mathematics 2022, 10, 4075 14 of 18

0

(c)

Figure 5. Vertical view of the large-scale UAV attack and defense behaviors under different stochas-
ticity parameters and different capture radii. (a) Snapshots of the distributions of the UAVs’ locations
under different capture radii when ν = 0; (b) Snapshots of the distributions of the UAVs’ locations
under different capture radii when ν = 0.04; (c) Snapshots of the distributions of the UAVs’ locations
under different capture radii when ν = 0.08.

4.4. Comparison with Baselines

We verified the progressiveness of our approach by comparing its performance with
that of some typical baseline methods for attack–defense games in Table 1. From Table 1, it
can be seen that our approach handled the most complex application scene and simplified
the large-scale communication. For more details about the following baseline methods,
please refer to the related References [7–9,37], etc.

Table 1. Comparison with baseline methods for attack–defense games.

Method Scene Scale of UAVs Scene Complexity Communication

[7] 3D blank scene Small 0.67 1 O(N) 2

[8] 2D obstacle scene Small 0.67 O(N)
[9] 2D blank scene Large 0.67 O(N)
[37] 3D blank scene Large 0.83 O(1)

Ours 3D obstacle scene Large 1 O(1)
1 The measurement method of scene complexity is as follows: here, it is a scoring system, [2D, 3D] = [1

′
, 2
′
]; [blank

scene, obstacle scene] = [1
′
, 2
′
]; [small, large] = [1

′
, 2
′
]. We accumulated the scores for each literature experiment

scene according to each item and finally normalized them. 2 O() is infinitesimal of the same order.

5. Conclusions

In this paper, we formulated the cooperative attack–defense evolution of large-scale
agents in high-dimensional environments as a multi-population high-dimensional stochas-
tic mean-field game (MPHD-MFG), which significantly reduced the communication fre-
quency and computational complexity of the swarm intelligence system. Then, we tractably
solved the MPHD-MFG with a generative-adversarial-network (GAN)-based method using
the MFGs’ underlying variational primal–dual structure. Based on our approach, we con-
ducted a comprehensive experiment. The good convergence of the MPHD-MFG method
and the ECA-Net algorithm was corroborated by checking the bounded stable convergence
of the HJB residual error and the total loss. Through simulations, we saw that a large
number of UAVs can avoid obstacles (even showing diversions) and smoothly evolve their
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attack and defense behaviors while minimizing their energy consumption.The comparison
with the baseline methods showed that our approach is advanced. In the future, we will
consider in-depth research in the asymmetric case of 3D obstacle scenarios, for example
the evolution of a cooperative attack and defense between multiple (greater than or equal
to three) large-scale swarms and the evolution of a cooperative attack and defense under
the existence of individual performance (speed, acceleration, turning range) differences
between attackers and defenders.
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Abbreviations
The following abbreviations are used in this manuscript:

MFG Mean-field game
3D Three-dimensional
UAV Unmanned aerial vehicle
GANs Generative adversarial neural networks
ECA-Net Extended coupled alternating neural network
HJB Hamilton–Jacobi–Bellman (partial differential equation)
FPK Fokker–Planck (equation)

Appendix A. The 3D Renderings of Numerical Results and More Experiments

Appendix A.1. The 3D Run Diagram Figure A1 about Figure 5

Here, we give the 3D experimental run diagram Figure A1 about its vertical view
Figure 5 for reference. In the following diagrams, time is represented by color. Specifically,
purple represents the starting time, red represents the final time, and the intermediate
colors represent intermediate times.

(a) ν = 0, er = 1.1 (b) ν = 0, er = 0.9 (c) ν = 0, er = 0.7

Figure A1. Cont.
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(d) ν = 0.04, er = 1.1 (e) ν = 0.04, er = 0.9 (f) ν = 0.04, er = 0.7

(g) ν = 0.08, er = 1.1 (h) ν = 0.08, er = 0.9 (i) ν = 0.08, er = 0.7

Figure A1. The 3D run diagram of large-scale UAV attack and defense behaviors under different
stochasticity parameters and different capture radii.

Appendix A.2. Asymmetric Case Study

Here, we set different numbers of the blue side and red side, N1 = 100, N2 = 60 or
N1 = 60, N2 = 100. Let ν = 0.08, er = 1.1 and the capture conditions be consistent with
Section 4.3. Now, we can predict its trajectory, as shown in Figures A2 and A3. Taking the
given parameters as an example, with the fixed stochasticity parameter and capture radius,
this section shows the deduction of the diversion obstacle avoidance and attack–defense
behaviors of the red and blue sides with asymmetric numbers.

Figure A2. Vertical view of the asymmetric case about large-scale UAV attack and defense behaviors
under ν = 0.08, er = 1.1.
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(a) (b)

Figure A3. The 3D run diagram of the asymmetric case about large-scale UAV attack and defense
behaviors under ν = 0.08, er = 1.1. (a) Blue side vs. red side: 100 vs. 60; (b) Blue side vs. red side: 60
vs. 100.
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