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Abstract: Infrared images have good anti-environmental interference ability and can capture hot
target information well, but their pictures lack rich detailed texture information and poor contrast.
Visible image has clear and detailed texture information, but their imaging process depends more on
the environment, and the quality of the environment determines the quality of the visible image. This
paper presents an infrared image and visual image fusion algorithm based on deep learning. Two
identical feature extractors are used to extract the features of visible and infrared images of different
scales, fuse these features through specific fusion methods, and restore the features of visible and
infrared images to the pictures through the feature restorer to make up for the deficiencies in the
various photos of infrared and visible images. This paper tests infrared visual images, multi-focus
images, and other data sets. The traditional image fusion algorithm is compared several with the
current advanced image fusion algorithm. The experimental results show that the image fusion
method proposed in this paper can keep more feature information of the source image in the fused
image, and achieve excellent results in some image evaluation indexes.

Keywords: deep learning; image fusion; multi-scale image

1. Introduction

With the development of science and technology, more and more data are collected
using sensors, and more and more information is obtained from them. From black and
white images and color images taken by optical cameras at the beginning to hyperspectral,
infrared images, and radar images taken by various sensors today. With the increase in
image types, the use of images is also increasing. However, these images are generated by a
single sensor, which has some shortcomings. A single sensor has limitations, so it is difficult
to collect all the information about the scene, which leads to no image containing all the
information about the scene. Image fusion technology is to fuse the image information
collected by different sensors into a new image by some means. The new image contains
both the information of the original image and reduces redundant information between
many images, which improves the use rate of the image.

Traditional image fusion methods can extract image features and fuse them well,
but these algorithms have defects, resulting in noise and poor image quality in the fused
image. The appearance of deep learning brings a new research direction for image fusion
algorithms. A large number of image fusion algorithms based on deep learning have
emerged. The convolutional neural network has a good ability to extract image features.
However, the traditional convolutional neural network entering the bottleneck period,
researchers have gradually abandoned the convolutional neural network and started
to study Transformer. However, some scholars are still studying convolutional neural
networks, and proposed a pure convolutional neural network ConeNeXt [1] in 2022. Fewer
activation functions and larger convolution kernels are used in ConeNeXt. Although
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ConvNeXt does not propose new structures and methods, ConvNeXt reduces the use of
activation functions, making ConvNeXt have faster reasoning speed and higher accuracy
than Swin Transformer [1]. There is no doubt that convolution neural networks have a
good ability to extract image features. Researchers use pre-trained AlexNet [2], VGGNet [3],
GoogleNet [4,5], ResNet [6], DenseNet [7], CNN [8], etc. to extract image depth features
and restore them to images after fusion. Besides being a tool for extracting image features,
neural networks can also be used in end-to-end image fusion. The representative network
models are FusionGAN [9], IFCNN [10], PPTFusion [11].

In the self-coding network framework, the network is composed of an encoder and
a decoder. The encoder is used to extract image features, and the decoder is used to
restore features to images. The encoder and decoder are independent, so the network
structure of the self-coding network is very flexible. Because the self-coding network
fusion framework is flexible and extensible, a large number of fusion algorithms based
on the self-coding networks have been produced.In 2018, researchers proposed the first
image fusion algorithm based on self coding network and named it DenseFuse [12,13].
NestFuse [14,15] was proposed in 2020, etc.

This paper uses the idea from the Inception module in GoogleNet for reference to
build an encoder to extract features from the input images. The basic structure of the
Inception module is shown in the Figure 1. There are three important parts to the Inception
module. Firstly, 1 ∗ 1 convolution kernel for lifting dimensions to reduce the calculation of
subsequent feature maps. Secondly, the convolution kernel size and output feature map
size of each branch is different, which ensures the multi-scale of the image. Finally, the
feature maps of each branch are spliced to obtain all feature maps.
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Figure 1. The Architecture of Inception module

This article mainly has the following work and contributions:

• The Inception module is added to the network model to increase the feature extraction
ability of the network.

• Dense blocks are added to the branches of the network, and dense modules are used
for feature extraction and image generation.

• The use of activation functions is reduced, and activation functions are used only after
the first convolution.

2. The Architecture of Network

The network model proposed in this paper is mainly composed of three parts: encoder,
fusion strategy, and decoder, as shown in Figure 2.
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Figure 2. The Architecture of Network

2.1. The Encoder Architecture of Network

The encoder network is used to extract network features. Branch 1 uses a larger
convolutional kernel to perform preliminary feature extraction of the input image, and then
uses the Inception module to extract the image for multi-scale feature extraction, and then
again through the smaller convolutional kernel to obtain feature 1. Branch 2 is structured
similarly to Branch 1, but Branch 2 uses two convolution operations and then feeds features
into the Inception module to get Feature 2. Branch 3 is similar to the structure of branch
2, convolution is performed again on the structure of branch 2 to obtain feature 3, branch
4 uses dense connections to extract features from the image, and feature 4 is obtained.
Splicing features 1, 2, 3, and 4 on dim = 1 so that the resulting features contain the features
of the previous 4 branch features. The encoder network is shown in Figure 3. A detailed
table of encoder parameters, as shown in Table 1.
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Figure 3. The Encoder Architecture of Network.
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Table 1. The Encoder Architecture of Network.

Branchs Layers Kernel_Size Stride Padding Activation

branch 1
layer 1 7 ∗ 7 1 3 Gelu
layer 2 Inception - - -
layer 3 3 ∗ 3 1 1 -

branch 2
layer 1 5 ∗ 5 1 2 Relu
layer 2 1 ∗ 1 1 0 -
layer 3 Inception - - -

branch 3

layer 1 3 ∗ 3 1 1 Relu
layer 2 1 ∗ 1 1 0 -
layer 3 Inception - - -
layer 4 3 ∗ 3 1 1 -

branch 4 Dense Blocks - - - -

2.2. The Decoder The Encoder Architecture of Network

The architecture of the decoder is shown in Figure 4. In the design of the decoder, we
did not use multiple 3 ∗ 3 convolutional kernels like other image fusion algorithms for
multiple feature channel operations, but also added an Inception module on the decoder to
reduce the parameters of the network at the same time, as far as possible to retain more
features, after the Inception module added a dense connection module, the use of dense
connection module can better extract features, this article here will be used to reduce the
characteristic channel, achieved good results. Finally, the decoder network reduces the
number of feature channels to 1 through a 3 ∗ 3 convolutional kernel, and then connects a
Sigmoid activation function to restore it to an image. The specific network parameters are
shown in Table 2.

features features

img

features

1880*128*128 512*128*128 192*128*128

Figure 4. The Decoder Architecture of Network.

Table 2. The Decoder Architecture of Network.

Layers Kernel_Size Stride Padding Activation

layer1 Inception - - -
layer2 Dense Blocks - - -
layer3 3 ∗ 3 1 1 Sigmoid

2.3. The Loss Function of Network Model

This paper uses the improved SSIM [16,17] function as the loss function of the network,
which is mainly used to calculate the structural similarity between images. Self-coding
network, the most important feature is an encoder to extract image features, and a decoder
to restore the feature map to an image. In the training phase, the main task is to enable the
encoder to extract features as much as possible and make the image restored by the decoder
close to the source image. Therefore, it is very effective to use SSIM to calculate the error
between the source image and the image restored by the decoder. its calculation formula is:

SSIM(img_a, img_b) =
2 ∗ X̄img_a ∗ X̄img_b + c1

X̄2
img_a + X̄2

img_b + c1
∗

2σimg_a∗img_b + c2

σ2
img_a + σ2

img_b + c2
(1)
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where X̄ represents the average value, σ represents the standard deviation, and the
value of SSIM is in [0, 1]. the value of SSIM closer the value is to 1, the higher the structural
similarity of image A and image B is, and vice versa. So the Loss function is designed
as follows:

Loss = 1 − SSIM(img_a, img_b) (2)

2.4. The Fusion strategy of Network Model

This paper mainly uses the strategy of averaging the characteristics, and the calculation
formula is as follows :

Fimg_ f useed(x, y) =
Fimg_a(x, y) + Fimg_b(x, y)

2
(3)

where Fimg_ f useed represents the fused image, Fimg_a , Fimg_b represents the source image a,
b, (x, y)represents the corresponding pixel position of the image, and the value of (x, y)
depends on the size of the input image.

3. Experiments and Results

This paper uses 80,000 images from the MSCOCO dataset [18], 19-to-multi-exposure
images from the Exposure dataset [19,20], 50 pairs of images from the Road dataset [21],
and 21 pairs of images from the TNO dataset [18] as training sets and test datasets for
the network.

The entire experiment was conducted in an environment of: CPU: AMD R7 1700 and
GPU: NVIDIA RTX3060, Memory 32GB , Pytorch 1.10.1+cu113.

3.1. Training Network

In the training stage, this paper ignores the fusion strategy, mainly using the encoder
to extract image features, using the decoder to restore the image,In this paper, the Adam
optimizer is selected as the optimizer of the network, and the batchsize = 6 of the training,
the image size is 128 ∗ 128, the learning rate is 0.0001, and the number of iterations is
20 times, The MSCOCO dataset is divided into 5000 images, 20,000 images, and 60,000
image samples, and the network model is trained to obtain the model.

3.2. Image Fusion

In the image fusion stage, two identical encoders extract two different source images
to get two feature maps. The two feature maps are merged into one feature map through
the fusion strategy. The decoder is used to restore the feature map to an image and output
320 ∗ 320 fused images.

3.3. Evaluation of Experimental Results and Image Quality

Common ways to evaluate images are Entropy (EN) [22], Mutual information (MI) [23],
Structural similarity (SSIM) [24], Multi-scale SSIM [25], Visual information fidelity (VIF) [26],
Spatial Frequency (SF) [27], Image Quality (Quality,Qab/ f ) [28], Noise(Nab/ f ) [29], Defini-
tion (DF) [30], Standard Deviation (SD). Except for the image noise method, the lower the
value obtained, the better, the higher the value obtained by other methods.

3.4. The Road Dataset Experiments

This paper uses the above method to evaluate the image generated by the fusion of
the model proposed in this paper. At present, the more advanced algorithms in the field
of image fusion, IFCNN,DenseFuse [12] CBF [31], CNN [8,32], DeepDecFusion [23], MEF-
GAN [33], FusionGAN [9], DualBranchFusion [14], are compared, and the experimental
results are shown in Table 3:
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Table 3. Objectively evaluate the classical and latest fusion algorithms.

Model SF EN Qab/ f SSIM MS-
SSIM Nab/ f MI VIF SD DF

CNN 15.02189 7.27064 0.57479 0.68032 0.91450 0.02794 14.54127 0.76436 44.95776 6.93236
IFCNN 15.06840 6.97300 0.51500 0.70457 0.87985 0.03152 13.94600 0.62485 35.81602 7.04094

MEFGAN 11.91592 7.16128 0.19600 0.47106 0.55244 0.08239 14.32256 0.60731 69.20427 5.17243
Densefuse 9.58711 6.69415 0.35699 0.72426 0.85074 0.00183 13.38829 0.35059 30.82709 4.62602

FusionGAN 8.63996 7.17533 0.27373 0.61422 0.73517 0.01682 14.35067 0.42558 42.30396 3.92426
DeepDec-Fusion 10.78846 6.75995 0.38301 0.69378 0.82358 0.00945 13.51990 0.38246 31.83394 4.81932

Dual-Branch-Fusion 28.80572 7.08938 0.34721 0.59138 0.66963 0.10966 14.17876 0.51860 44.41719 11.78575
Ours 15.35358 7.31037 0.44858 0.66609 0.91937 0.16426 14.62074 0.72256 47.34091 7.20294

The red number represents the best, and the blue number represents the second best.

From Table 3, it can be seen that the network model proposed in this paper is the best
in 3 of 10 evaluation indexes. Another 4 indicators are suboptimal. It can be seen from
Figure 5 that the part of the red frame in the Infrared Image image cannot see the texture of
the wall, but the texture of the image can be clearly seen in the Visible Image. Through the
experimental comparison, it is found that in addition to the overexposure of the images
obtained by the MEF-GAN model, the proposed model, and other comparable models can
retain more texture information of the background wall. However, the brightness of the
images after the fusion of the DeepDecFusion and Densefuse models is not as high as that
of the proposed model. In addition, in the blue frame, the model proposed in this paper
retains the contour information of flowerbed plants to the greatest extent.

Visible ImageInfrared Image

Ours

CNN DeepDecFusion

Densefuse IFCNN FusionGANMEF-GAN

Visible ImageInfrared Image CNN DeepDecFusion

Densefuse IFCNN MEF-GAN FusionGAN

Ours

Figure 5. The Result of Road Datasets.
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Besides, in the blue rectangle, the car outline in DeepDecFusion and FusionGAN is not
clear, and the person’s outline is not clear. Densefuse, IFCNN, CNN, DeepDecFusion, and
Ours have clear car outlines. In the purple rectangle, the Infrared image can see a crack. In
contrast, in the Visible image it is almost invisible, MEF-GAN, closer to the Visible image,
Densefuse, DeepDecFusion, IFCNN, and FusionGAN can see the crack inconspicuously,
but CNN and Ours can clearly see the crack.

In summary, the network model proposed in this paper retains the various information
of Infrared Images and Visible Images to a certain extent.

3.5. The Other Experiments
3.5.1. TNO Dataset

In the infrared and visible image fusion dataset, there are 21 pairs of different infrared
and visible image images in TNO dataset. In this paper, these images are converted into
grayscale images for experiments and comparison. The specific experimental results are
as follows :

The red font in Table 4 indicates that the network model proposed in this paper has
the highest score in 4 of the 7 evaluation indicators. In Figure 6, the clouds in the sky
cannot be seen in the red box of the visible light image, but the trees in the white box
can be clearly seen. In the red box of the infrared image, you can see many clouds and
contour information, but you can’t see trees. Other images are obtained by various image
fusion algorithms. There are many noises in CBF. IFCNN and DenseFuse retain more
details of trees and clouds. The images fused by the network model proposed in this paper
retain both the cloud layer information in the red box of the infrared image and the tree
information in the white box of the visible image, and there is no noise in the fused image
to affect the quality of the fused image.

Table 4. The result of TNO datasets.

Model SF EN MI VIF SD DF SSIM

Densefuse 5.79225 6.17638 12.35276 0.28447 22.55032 2.78489 0.74928
CBF 13.59145 6.85749 13.71498 0.71849 35.91254 6.78595 0.59957

IFCNN 11.49526 6.59729 13.19457 0.59228 31.61534 5.79491 0.73158
Ours 11.12396 7.08364 14.16728 0.83255 39.79600 5.42090 0.70152

Visible Image Infrared Image CBF

IFCNN OursDenseFuse

Figure 6. The Result of TNO Datasets.
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Therefore, the network model proposed in this paper can better retain more informa-
tion in infrared images and infrared images.

Besides, to prove the effectiveness of the proposed network model, we also fuse and
test other images, such as images with many exposures and images with different focuses.
The specific experimental results are as follows:

3.5.2. Exposure Dataset

In multiple Exposure datasets, Exposure dataset has a total of 19 color images with
different exposures. In this paper, these color images are converted into grayscale images
for experiments and comparison. The specific experimental results are as follows :

The red font in Table 5 indicates that this indicator has the highest score. The network
model proposed in this paper has the highest score in 4 of the 7 evaluation indicators.
In Figure 7, the background in the blue box of image A is under-exposed, while the
background in the red box is under-exposed. In general, image A is under-exposed. The
background in the blue box of image B is exposed, while the red box is over-exposed. In
general, image B is over-exposed. Other images are obtained through various image fusion
algorithms. CNN, Densefuse, and IFCNN images are over-exposed. However, the images
fused by the network model proposed in this paper can be seen in the blue box, and also
conform to the distribution of light sources. In the red box, you can see the grid under the
light without over-exposure to the light effect.

In conclusion, the network model proposed in this paper can better keep more infor-
mation in the under-exposed and over-exposed images. Thus, the model proposed in this
paper is effective and has achieved good results in other areas.

Table 5. The Result of Exposure Datasets.

Model SF EN MI VIF SD DF SSIM

Densefuse 14.34006 6.70196 13.40393 1.23703 38.99311 5.83722 0.59582
CNN 23.24008 6.52622 13.05245 1.81842 48.16440 9.65854 0.60547

IFCNN 25.97269 6.82564 13.65127 2.18844 47.34595 10.77438 0.59788
Ours 24.03095 7.09933 14.19865 2.33959 53.42360 10.29697 0.54275

A B CNN

DenseFuse IFCNN Ours

Figure 7. The Result of Exposure Datasets.
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3.6. Ablation Experiments

The ablation experiment part of this paper is mainly to replace the Inception mod-
ule and Denseblocks module on each branch of this article with a convolutional kernel
with a convolutional kernel size of 3 ∗ 3, and the other parts are not different from this
network model.

The red numbers in Table 6 indicate the optimal in this column.The value of gray
background is the score of the network model proposed in this paper on the datasets. The
values without background are the scores of ablation experiments on the datasets. With a
total of 30 indicators on all data, our model received 24 highest scores. All of the modules
in the network model in this article, as well as the Denseblocks, are useful and work well
on most of the datasets.

Table 6. The result of ablation experiments.

Model SF EN Qab/ f SSIM MS-
SSIM Nab/ f MI VIF SD DF

Exposure 23.57095 6.82891 0.39976 0.52032 0.83796 0.11205 13.65782 2.76957 55.54952 9.43259
Exposure 1 24.03095 7.09933 0.54653 0.54275 0.91675 0.06365 14.19865 2.33959 53.42360 10.29697

Road 11.44829 6.88796 0.39165 0.69868 0.85715 0.00744 13.77593 0.43175 34.13524 5.24988
Road 1 15.35358 7.31037 0.44858 0.66609 0.91937 0.16426 14.62074 0.72256 47.34091 7.20294

Tno 8.57529 6.32894 0.34281 0.71874 0.85294 0.00911 12.65789 0.35355 27.28184 3.89286
Tno1 11.12396 7.08364 0.45683 0.70152 0.93059 0.16616 14.16728 0.83255 39.79600 5.42090

1 The network model proposed in this paper.

4. Conclusions

Deep learning has achieved good results in many fields; this paper organically
combines deep learning with image fusion, and proposes an image fusion algorithm
based on deep learning. Tables 4–6 show that our model has achieved good results on
various datasets.

The multi-branch, multi-scale deep learning image network model proposed in this
paper extracts image features by adding multiple branches and introducing the Dense-
Blocks module in the design of the encoder. The activation function is not used after each
convolution in the entire network, and in the selection of activation functions, this article
does not use all of them one activation function but uses multiple activation functions. In
the design of the loss function, we use the SSIM values between images as a loss function
for the network. In the design of the decoder, we use Dense Blocks for dimensionality
reduction processing of images. The model proposed in this paper has largely preserved
the original image after the fusion and is very realistic and natural. Experiments have
proved that the network model proposed in this paper has achieved the best results on
most of the datasets.

In the future, we will try more methods of image fusion and study how to reduce the
super parameters of the network. Following this, we will improve the network efficiency
and strive to solve more problems in the field of image fusion.
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Abbreviations
The following abbreviations are used in this manuscript:

EN Entropy
MI Mutual information
SSIM Structural similarity
MS-SSIM Multi-scale SSIM
VIF Visual information fidelity
SF Spatial Frequency
Qab/ f Image Quality
Nab/ f Noise
DF Definition
SD Standard Deviation.
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