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Abstract: Among existing wireless and wearable indoor pedestrian tracking solutions, the ultra-
wideband (UWB) and inertial measurement unit (IMU) sensors are the popular options due to their 
accurate and globally referenced positioning, and low-cost and compact size, respectively. How-
ever, the UWB position accuracy is compromised by the indoor non-line of sight (NLOS) and the 
IMU estimation suffers from orientation drift as well as requiring position initialization. To over-
come these limitations, this paper proposes a low-cost foot-placed UWB and IMU fusion-based in-
door pedestrian tracking system. Our data fusion model is an improved loosely coupled Kalman 
filter with the inclusion of valid UWB observation detection. In this manner, the proposed system 
not only adjusts the consumer-grade IMU’s accumulated drift but also filters out any NLOS in-
stances in the UWB observation. We validated the performance of the proposed system with two 
experimental scenarios in a complex indoor environment. The root mean square (RMS) positioning 
accuracy of our data fusion model is enhanced by 60%, 53%, and 27% compared to that of the IMU-
based pedestrian dead reckoning, raw UWB position, and conventional fusion model, respectively, 
in the single-lap NLOS scenario, and by 70%, 34%, and 12%, respectively, in the multi-lap 
LOS+NLOS scenario. 

Keywords: data fusion; NLOS; indoor pedestrian positioning; IoT; IMU; PDR; sensor network; 
UWB; wearables 
 

1. Introduction 
With the emergence of the Internet of Things (IoT), indoor location-based services 

(ILBSs) to assist daily life tasks (such as smart healthcare, real-time mobility monitoring, 
etc.) are becoming a trending topic [1–3]. The key issue for ILBSs is to accurately locate 
the pedestrians (patients) indoors [4]. For precise pedestrian tracking, although, non-
wearable vision-based solutions are available [5–7]; these are expensive, passive, and 
short-range systems [6]. Moreover, these solutions are unsafe for user privacy and sensi-
tive to indoor light illumination and occlusion [7]. Therefore, there is a demand for afford-
able, compact-size, accurate, globally referenced, active, and wide-range wearable indoor 
pedestrian tracking solutions. To meet the target application’s demands, the candidate 
solutions can be distributed into the globally (e.g., WiFi, Bluetooth (BLE), UWB, etc.) and 
locally referenced (e.g., pedestrian dead reckoning (PDR)) indoor pedestrian tracking sys-
tems [8,9]. The positioning accuracy of the WiFi and BLE is at the meter-level, and so 
cannot be rated as a high-precision indoor pedestrian tracking system. On the other hand, 
the UWB-based indoor pedestrian tracking system provides a centimeter-level position-
ing accuracy [10]. 

The UWB positioning system is generally considered a high-precision tracking solu-
tion. Nevertheless, it requires a clear line of sight (LOS) to guarantee the centimeter-level 
error [11,12]. For that reason, the UWB positioning accuracy drops significantly in a 
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complex indoor environment where the UWB signal is blocked by obstacles such as fur-
niture and building infrastructure (walls and pillars) [13]. To address the indoor NLOS 
problem using the UWB positioning system, numerous research schemes have been con-
ducted. Barral et al. [14] present the machine learning- (ML) based NLOS recognition and 
mitigation approach for low-cost UWB devices. However, their approach requires a cus-
tom-designed firmware to access the UWB signal’s features, such as CIR (channel impulse 
response) and RSS (received signal strength), followed by the storage of a big dataset to 
train the ML model, which makes this approach impracticable for many real-time appli-
cations due to its heavy computation load. Jiménez et al. [15] tackle the UWB indoor NLOS 
issue by increasing the number of UWB beacons (anchors) up to 12. This scheme has the 
advantage of realizing an accurate positioning but using too many anchors increases the 
system cost and requires an optimal survey to set up anchors in the frequent NLOS region. 
Elsanhoury et al. [16] suggest a sensor fusion to trade off the UWB indoor NLOS instances 
with other systems’ observations, such as PDR. The sensor fusion seems more practical 
for real-time indoor pedestrian tracking as it does not require complex and deep pro-
cessing to distinguish and mitigate the NLOS instances in the UWB position measure-
ments. 

The PDR positioning system is based on the IMU sensor (a combination of the accel-
erometer and gyroscope) to estimate the pedestrian’s position relative to the starting point 
[9]. The IMU can track pedestrians at faster sample rates with a low-cost and compact size. 
At the same time, the IMU is robust against external environmental factors such as indoor 
NLOS and magnetic field interference. On the other hand, the IMU results in high-preci-
sion position tracking only for the short-term and deteriorates the position accuracy in 
longer distances, especially multi-lap trajectories, due to the accumulation of the gyro-
scope’s drift [17]. Furthermore, the IMU tracks the pedestrian position relative to the start-
ing position, not in the global frame. The magnetometer is usually integrated with the 
IMU to correct the orientation drift accumulation [18] and improve the tracking accuracy 
in the global frame, i.e., earth north [19]. The downside of magnetometers is their strong 
susceptibility to indoor magnetic field interference caused by electronic appliances [20]. 
In addition, an initial calibration is needed to match the heading angle with the building 
reference frame [19]. The UWB, due to its insensitivity to magnetic field interferences, 
could be a better substitute for magnetometers for fusion with the IMU. Corrales et al. [21] 
and Hol et al. [22] have successfully demonstrated the UWB+IMU data fusion’s ability to 
address the IMU drift issue in regard to accurate tracking of the human subject in the 
building/global reference frame. 

According to [20], shoes are the preferable wearable mount for human tracking use 
cases due to: (i) the foot is the primary limb for active detection of an individual’s walking 
behavior and position change; (ii) the integration of technology on shoes is relatively non-
obtrusive and non-stigmatizing, which increase the pedestrian’s acceptance and long-
term adherence. Therefore, for the effective utilization of the proposed system, we placed 
our low-cost UWB+IMU wearable module on the pedestrian’s right shoe. Focusing on the 
fusion of a foot-placed UWB+IMU wearable, few research studies have been reported to 
improve the pedestrian’s indoor position accuracy. Fischer et al. [23] propose a precise 
pedestrian tracking solution using a foot-placed IMU sensor. Still, their outcome is appli-
cable only for a quality-grade expensive IMU sensor which usually generates a stable state 
estimation with negligible drift. Zihajehzadeh et al. [24,25] design the pedestrian’s lower 
body motion tracking system using UWB+IMU data fusion. However, their UWB+IMU 
fusion depends upon the multi-estimator and a magnetometer [25] and does not demon-
strate the performance under the NLOS. Zhang, H. et al. [26] propose an EKF-based cost-
effective foot-placed UWB+IMU fusion. Yet, their results do not show the effectiveness 
against the UWB NLOS and long-term IMU drift. Zhang, Y. et al. [27] suggest a robust 
solution against the UWB NLOS but using the multi-estimator, such as particle filter (PF) 
and EKF, and investigated the suggested solution only for the short-term IMU drift in a 
single lap. Nilsson et al. [28] present a dual-foot cooperative fusion approach. Their 
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method corrects the long-term IMU drift using the UWB inter-ranges of the moving agents 
but in the relative frame. Xu et al. [29,30] describe the novel fusion approaches to address 
the NLOS. However, they mounted the UWB tag on the upper back and the IMU on a 
foot; moreover, their approaches depend upon the two estimators and a magnetometer. 
In summary, most of the existing research has shown the dependency on more than one 
estimator and a magnetometer when solving the UWB NLOS and IMU drift problems. 
Furthermore, these studies are limited to either revealing the robustness against the IMU 
drift or UWB NLOS but not both issues in the same study. 

Unlike previous research works, our proposed work addresses the UWB NLOS and 
IMU drift issues of a low-cost foot-placed UWB and IMU module using a single estimator 
without the need for a magnetometer. The main contributions of this paper are summa-
rized as follows: 
• We propose a low-cost foot-placed UWB and IMU fusion-based indoor pedestrian 

tracking system to overcome the practical limitations of UWB and IMU wearable sen-
sors. Our data fusion model processes the valid UWB observation by inspecting the 
residual error to exclude any NLOS instances. As a result, it tackles the UWB’s indoor 
NLOS and IMU’s accumulated drift issues; it provides a simple but effective indoor 
pedestrian tracking solution for IoT applications. 

• The system hardware is built using off-the-shelf devices. We assembled a prototype 
of a foot-placed UWB and IMU module to shape a compact-sized battery-powered 
wearable IoT device, in addition to reducing its cost by up to USD 40, and to incor-
porate the open-platform software for facilitating the flexible data handling needs of 
an IoT use case with no additional expense. 

• The performance of our system is validated using a Hokuyo Lidar in comparison 
with an IMU-based PDR, raw UWB position, and conventional fusion model. We 
conducted two experimental scenarios, a single-lap NLOS and a multi-lap 
LOS+NLOS, in a complex indoor environment to demonstrate the robustness of our 
solution against the UWB indoor NLOS and IMU long-term drift. 
The remainder of this paper is organized as follows. Section 2 describes the materials 

and methods required for our proposed system implementation including hardware, the 
operation principle of the UWB positioning, and the detailed structure of the proposed 
UWB and IMU fusion. Sections 3 and 4 present the experiment description and experi-
ment results, respectively, of the proposed data fusion. The discussion and future work 
appear in Section 5. The conclusion is summarized in Section 6. 

2. Materials and Methods 
In this section, we explain our proposed system (Figure 1) by first presenting the sys-

tem hardware and data acquisition in terms of characterizing the UWB sensor, showing 
the design of a low-cost foot-placed module, and describing the working principle of the 
UWB positioning system. In the end, we illustrate the proposed UWB+IMU fusion struc-
ture in detail. 
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Figure 1. Block diagram of a low-cost foot-placed UWB and IMU fusion-based indoor pedestrian 
system. 

2.1. System Hardware and Data Acquisition 
2.1.1. UWB Sensor Characterization 

We utilized a UWB sensor network called MDEK1001 (DecaWave, Ireland) [31] to 
track the foot-placed UWB tag’s position. The MDEK1001 development kit consists of 
twelve DWM1001DEV and costs about USD 199 [32], which is relatively low. Moreover, 
each DWM1001DEV is based on the DWM1001C chip and can be assigned to multiple 
operating modes such as anchor, tag, and data receiver called listener and bridge. We 
adopted the bridge option as it suits well the IoT application. The anchor and bridge are 
static devices while the tag is a movable device. The DWM1001DEV can be easily config-
ured via an Android smartphone over BLE to specify each device’s operation mode and 
to set up the UWB infrastructure. The currently deployed UWB infrastructure comprises 
four anchors and one gateway which are mounted on the ceiling and wall, respectively. 
Moreover, the coordinates of the four anchors are manually measured using a precise in-
strument, i.e., the BOSCH GLM 150C laser range finder. The four anchors perform the 
TWR measurements with a tag and the 3D position is calculated at the tag, similar to the 
concept illustrated in Section 2.1.2. The data acquisition from the UWB infrastructure is 
achieved by connecting a bridge with the Raspberry PI 3B+ header, which is collectively 
regarded as a gateway. The gateway receives the tag position over the UWB channel and 
publishes it over the WLAN (wireless local area network) as an MQTT (message queuing 
telemetry transport) message for the external use case. The MQTT message can be sub-
scribed to the cloud anywhere with a specified message topic. The gateway topology also 
supports expanding the UWB coverage and forming a multi-room and multi-agent indoor 
tracking system [31]. In this work, all UWB sensors, i.e., six DWM1001DEV, are configured 
with the UWB parameters of channel 5, data rate 6.81 Mbps, PRF (pulse repetition fre-
quency) 64 MHz, preamble length 128, and preamble code 9. 

As the tag is supposed to be foot-placed, it is preferable to mount minimalistic hard-
ware rather than a standard DWM1001DEV (dimensions = 62.0 mm × 43.0 mm). For this 
sake, we reclaimed a DWM1001C chip (dimensions = 26.2 mm × 19.1 mm) from the sixth 
DWM1001DEV and soldered the necessary pins, i.e., the power supply and firmware up-
load, to operate the customized DWM1001C like a standard tag. Figure 2 characterizes the 
UWB sensor hardware as an anchor, bridge, and customized tag. 
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Figure 2. Characterization of UWB sensors (left side = bridge; center = anchor; right side = custom-
ized tag). 

2.1.2. Working Principle of UWB Positioning System 
The UWB positioning system works similarly to any other wireless sensor network 

(WSN) [16] in which some sensors should be deployed on known coordinates and some 
kept floating on unknown coordinates. The sensors with known coordinates are called 
anchors (A ) while the sensors with unknown coordinates are called tags (T). To locate a 
tag in two dimensions (2D), at least three anchors are required, and locating a tag in three-
dimension (3D) space requires at least four anchors. Figure 3 briefly introduces the con-
cept of a UWB positioning system to locate a tag in 3D using four anchors with known 
position coordinates. 

Generally, the position of a tag in a UWB positioning system can be computed in 
three steps. Firstly, the anchors’ coordinates can be measured manually using a precise 
instrument such as a handheld laser range finder to decrease human error. Secondly, the 
ranges can be measured among anchors and tags using the two-way ranging (TWR) 
method [16]. Finally, an algebraic trilateration technique [16] can be applied to calculate 
the position of a tag as presented in (1) and (2). 

𝑥 ,, 𝑦 , 𝑧 = (𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) + (𝑧 − 𝑧 ) − 𝑟  (1) 

𝑟 = c (𝑡 −𝑡 )2  (2) 

where 𝑖 is the number of anchors, i.e., 𝑖 = 1, 2, 3, 4, (𝑥 , 𝑦 , 𝑧 ) is the known coordinates 
of each anchor, (𝑥 , 𝑦 , 𝑧 ), and 𝑥 ,, 𝑦 , 𝑧  are the unknown tag positions before and 
after error minimization of an algebraic trilateration technique [16], respectively. 𝑟  is the 
TWR measurement between each anchor and a tag. 𝑡  is the time period on a tag from 
sending the poll message to receiving the response message, 𝑡  is the time period on 
an anchor from receiving the poll message to sending the response message, and c (= 3 × 
108 m/s) is the speed of light. In this work, for a quick and easy integration of off-the-shelf 
hardware into our system, we relied on the MDEK1001 positioning and networking stack 
(PANS) library [31] for the UWB positioning. 
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Figure 3. Infrastructure layout and concept of UWB positioning system. 

2.1.3. Wearable IoT Device: A Low-Cost Foot-Placed UWB and IMU Module 
To qualify as an IoT device, our designed prototype is compact-sized, battery-pow-

ered, and capable of communicating both with fellow devices and a central computer over 
a wireless interface such as UWBs and WiFi, respectively. Our module, as shown in Figure 
4a, is placed on the right shoe of the pedestrian. It includes a DWM1001C as the UWB tag, 
a D1MINI (WEMOS, China) as the WiFi transceiver, an MPU6050 (InvenSense, USA) as 
the IMU, and a lithium battery 650 mAh as the power source. The lithium battery is di-
rectly connected to D1MINI which further powers the DWM1001C at 3.3 V. In addition, 
both the DWM1001C and D1MINI can also process information onboard. The DWM1001C 
runs the default PANS library to measure the four anchors’ ranges, and to compute and 
then transmit the 3D position over the UWB channel for the external use case. Meanwhile, 
the D1MINI executes the Arduino firmware for the acquisition of the IMU 6 degree-of-
freedom (DOF) data via I2C communication, initial calibration of the IMU to remove off-
sets caused by the manufacturing, and transmission of the calibrated 6DOF data stream 
over WiFi UDP (user datagram protocol) to the outer application. Figure 4b highlights the 
circuit diagram of the custom board to accommodate the above-mentioned tasks. The 
sampling rates of the UWB 3D position and the IMU 6DOF data measurements are set to 
10 Hz and 100 Hz, respectively, and the lithium battery can last up to 5.30 h at these sam-
pling rates. The IMU has a sensitivity of 8 g for the accelerometer and 2000°/s for the gy-
roscope. Table 1 illustrates the specifications of our module. 

 
 

(a) (b) 

Figure 4. Wearable IoT device. (a) Placement of UWB and IMU module at right shoe; (b) circuit 
diagram of custom board. 
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Table 1. Specifications of low-cost foot-placed module. 

Device Name Dimensions Price 
DWM1001C 26.2 mm × 19.1 mm × 2.6 mm USD 18 [32] 

MPU6050 21.2 mm × 16.4 mm × 3.3 mm USD 4 [33] 
D1MINI 34.2 mm × 25.6 mm × 7.0 mm USD 5 [33] 

Lithium battery 650mAh  35.0 mm × 20.0 mm × 10.0 mm USD 3 [33] 

2.2. Proposed UWB and IMU Fusion Structure 
Theoretically, the correctly initialized IMU can produce accurate state estimates after 

zero velocity update (ZUPT) [23]. However, it is not applicable for the consumer-grade 
low-cost IMU in which the errors accumulate swiftly due to the mathematical integration 
and small measurement biases. The globally referenced sensor such as a magnetometer is 
normally fused to improve the position accuracy. Still, the magnetometer is strongly in-
fluenced by indoor magnetic field interference caused by electronic appliances and needs 
extra calibration to match the building reference frame. In this paper, we fuse the UWB 
position observation with the ZUPT-assisted IMU algorithm, which is an improved 
loosely coupled Kalman filter (ILCKF), as we directly read the UWB position from the 
MDEK1001 PANS library. Figure 5 portrays the insight into the proposed UWB and IMU 
fusion structure. For a clear understanding of our fusion structure, we added three flow 
points, O1, O2, and O3, to indicate the outputs from the strap-down mechanism, ZUPT-
assisted IMU, and ILCKF, respectively. 

The ZUPT-assisted IMU is a fundamental approach for PDR when the IMU sensor is 
placed on a foot [23,34]. It mainly consists of a Kalman filter with the strap-down mecha-
nism-assisted state propagation and ZUPT-assisted state correction stages. Figure 6 details 
the block diagram of a typical ZUPT-assisted IMU navigation system. 

 
Figure 5. Structure of proposed UWB+IMU fusion. 



Sensors 2022, 22, 8160 8 of 19 
 

 

 
Figure 6. A typical ZUPT-assisted IMU navigation system. 

2.2.1. Strap-Down Mechanism 
We used a set of equations that estimates the inertial navigation state of the IMU in 

three parts. First, it integrates the gyroscope’s turn rates to calculate the orientation and 
rotation matrix. Second, it transforms the accelerometer’s forces from the body to the 
earth’s navigation frame and removes the earth’s gravity. At last, it integrates the trans-
formed accelerometer’s forces to calculate the velocity followed by the position. The basic 
equation utilizing the IMU 6DOF data to compute the propagated navigation state [34] is 
as follows 𝑝𝑣𝑞 = 𝑝 + 𝑣 𝑑𝑡𝑣 + (𝑞 𝑎 𝑞∗ − g)𝑑𝑡12 Ω(𝑤 𝑑𝑡)𝑞  (3) 

where 𝑘 is the time iterator, 𝑑𝑡 is the time differential, g = 0 0 9.81  is the gravity, 𝑎 ∈ ℝ  are the accelerometer’s forces in the body frame, 𝑤 ∈ ℝ  are the gyroscope’s 
turn rates, 𝑝 ∈ ℝ  is the pedestrian’s position, 𝑣 ∈ ℝ  is the pedestrian’s velocity, and 𝑞 ∈ ℝ  is the quaternion describing the system orientation. The triple product 𝑞 𝑎 𝑞∗  denotes the rotation of 𝑎  by 𝑞 , and Ω(𝑤 ) is the skew-symmetric matrix of 
the quaternion form of angular velocity. 

2.2.2. ILCKF Prediction Stage 

The Equations (4)–(6) describe the ILCKF prediction stage. 𝑋 =  𝑝 𝑣 𝑞  (4) 𝑃 =  𝐹 𝑃 𝐹 + 𝑄  (5) 

 𝑄 =  0 × I × 𝑑𝑡 0 ×0 × I × σ 𝑑𝑡 0 ×0 × 0 × σ 𝑠 𝑠 𝑑𝑡
𝑠 =  12 −𝑞 −𝑞  −𝑞 𝑞 −𝑞  𝑞 𝑞 𝑞 −𝑞−𝑞   𝑞  𝑞 ⎭⎪⎪

⎬⎪⎪
⎫

 (6) 

where 𝑋  ∈ ℝ  is the state propagation, 𝑃  is the propagated covariance matrix, 𝐹  is 
the state transition matrix which can be deduced from (3), and 𝑄  is the process noise 
covariance matrix. σ  and σ  are the standard deviations of accelerometer and gyroscope 
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noises, respectively.  𝑠 𝑠  represents the quaternion dynamics. 0 ×  and I ×  (m is 
the number of rows and n is the number of columns) are the zero and identity matrices, 
respectively. 

2.2.3. ILCKF Correction Stage1: ZUPT 
For the IMU’s orientation drift compensation, the ZUPT is applied periodically at 

every stance phase detection [23] as follows stance phase = 1;  𝑤ℎ𝑒𝑛 |𝑤| ≤ ψ 0;  𝑤ℎ𝑒𝑛 |𝑤| > ψ  (7) 

where |𝑤| is the magnitude of gyroscope 3DOF values and ψ is the zero velocity detec-
tion threshold. Figure 7 describes the result of stance phase detection in a red color square 
waveform. Now, the ILCKF correction stage for the ZUPT can be expressed as 𝑋 =  𝑋 + 𝐾 (0 × − 𝑣 ) (8) 𝑃 = (I × − 𝐾 H)𝑃  (9)  𝐾 = 𝑃 H (H𝑃 H + R) H = 0 × I × 0 × ) R = I × σ   (10) 

where 𝑋  is the corrected navigation state, 𝑃  is the corrected covariance matrix, and 𝐾  
is the Kalman gain. 0 ×  is the ZUPT observation value, H and R are the ZUPT observa-
tion matrix and observation noise covariance matrix, respectively, and σ  is the standard 
deviation of zero velocity noise. 

   
Figure 7. Result of implemented stance phase detection. 

2.2.4. ILCKF Correction Stage2: UWB Observation Update 
It is understood that the UWB positioning accuracy degrades in NLOS and upgrades 

in LOS. Thus, to ensure the LOS condition, we checked the validity of every UWB obser-
vation by making use of the short-term accurate positioning characteristics of the IMU 
(Section 2.2.3). The valid UWB position detection is expressed as follows valid UWB = 1;  𝑤ℎ𝑒𝑛 |𝑝 − �̂� | ≤ Ʈ 0;  𝑤ℎ𝑒𝑛 |𝑝 − �̂� | > Ʈ  (11) 

where 𝑝 ∈ ℝ  is the UWB position observation, �̂� ∈ ℝ  is the ZUPT corrected position, |𝑝 − �̂� | is the absolute residual error, and Ʈ is the threshold value which is also re-
garded as a radial distance. Figure 8 presents the block diagram of valid UWB observation 
detection. 
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Figure 8. Block diagram of valid UWB observation detection having valid UWB position at left side 
and invalid UWB position at right side. (Black dot = IMU estimated position; green dot = UWB po-
sition in LOS; red dot = UWB position in NLOS). 

After the success of the UWB position validity check, the current UWB position ob-
servation is processed in the second ILCKF correction stage as stated in (12), (13), and (14). 𝑋 =  𝑋 + 𝐾 (𝑝 − �̂� ) (12) 𝑃 = (I × − 𝐾 H )𝑃  (13)  𝐾 = 𝑃 H (H 𝑃 H + R ) H = I × 0 × 0 × )R = I × σ  (14) 

where 𝑋  is the UWB corrected navigation state, 𝑃  is the UWB corrected covariance ma-
trix, and 𝐾  is the UWB Kalman gain. H  and R  are the UWB observation matrix and 
observation noise covariance matrix, respectively, and σ  is the standard deviation of the 
UWB position noise. In all equations, the non-italic symbols represent the constant values 
and matrices.  

The presence of valid UWB position detection improves the reliability of our fusion 
model by enabling pedestrian tracking in an NLOS-prone indoor environment. Moreover, 
the dependency on a simple position difference (i.e., an absolute residual error) transforms 
our system into a practical solution for IoT applications. 

3. Experiment Description 
This section describes the experimental setup used for the validation of the devel-

oped algorithm along with the data processing at the central computer and performance 
criteria. 

3.1. Experimental Setup 
We conducted the pedestrian tracking experiment in Room 513, Dasan Building, 

Gwangju Institute of Science and Technology (GIST). In our experiment, the pedestrian 
was a healthy male subject of 34 years of age and 1.78 m tall. Figure 9 details the experi-
mental space which comprised furniture and a pillar, which in general is a complex indoor 
environment. In order to investigate the qualitative and quantitative performances of the 
proposed fusion scheme, we deployed a state-of-art laser sensor, a Hokuyo Lidar UTM-
30LX (Japan), which has a 0.1 m−30 m range, ±30 mm accuracy from a 0.1 m−10 m range, 
±50 mm accuracy from a 10 m−30 m range, a 270° horizontal field of view, and a 25 ms 
scan speed. The Hokuyo Lidar was mounted on a tripod at the pedestrian’s head height 
for easy tracking of the pedestrian’s center position. 

In Figure 9, the blue circles and the square are the UWB sensors, the red triangle is a 
Hokuyo Lidar, the large black square is a pillar, and the other icons are furniture. Further-
more, the yellow and white trajectories describe the two reference paths on which the 
pedestrian walked at normal walking velocity during the experiment. The yellow trajec-
tory indicates the first experimental scenario, named the single-lap NLOS, and the addi-
tion of a white trajectory alongside the yellow trajectory formulates the second 
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experimental scenario, called the multi-lap LOS+NLOS. More details about the experi-
mental scenarios are provided in Section 4. Table 2 lists the coordinates needed for our 
setup configuration. Figure 10 shows the pedestrian’s head segmentation in the Hokuyo 
frame with red dots and the raw point cloud with white dots. The centroid or center po-
sition of the segmented points is the desired ground truth position of the pedestrian. 

 
(a) 

 
(b) 

Figure 9. Experiment environment. (a) Top view of experimental setup; (b) site photos with two 
views of hardware deployment. 

Table 2. Experimental setup configuration. 

Coordinate Value 
Anchor Number 

Hokuyo Lidar 
A1 A2 A3 A4 

X-axis (m) 0 4.20 4.20 0 0 
Y-axis (m) 0 0 10.45 10.45 2.30 
Z-axis (m) 2.51 2.51 2.51 2.51 1.70 
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Figure 10. ROS visualization of real-time Hokuyo Lidar’s scan in Hokuyo reference frame of same 
scene portrayed in Figure 9a (white dots = redundant surrounding boundaries; red dots = pedes-
trian’s head position; per unit box = 1 m × 1 m). 

3.2. Data Handling at Central Computer 

The overall data processing required for our experiment setup is portrayed in Figure 
11. The ROS (robot operating system) framework records data as a ROSBAG file synchro-
nized at the central computer’s clock, even though the data are streaming from three un-
synchronized ROS nodes: 40 Hz for Hokuyo, 10 Hz for UWB, and 100 Hz for IMU. The 
Hokuyo ROS node uses the standard ROS package to access the Lidar over a USB port 
and publishes the ROSTOPIC /tp1. The UWB and IMU ROS nodes are based on the cus-
tom ROS packages. In detail, the UWB ROS node subscribes to the tag 3D position coor-
dinates as an MQTT message from the gateway and publishes the ROSTOPIC /tp2. In 
addition, the IMU ROS node receives the 6DOF data stream over WiFi UDP and publishes 
the ROSTOPIC /tp3. Afterward, the recorded ROSBAG file is played for post-analysis of 
the proposed UWB+IMU fusion under the two experimental scenarios. 

 
Figure 11. Data recording and post-analysis structure using ROS framework. 

3.3. Performance Criteria 
We selected four criteria—the 2D trajectory, root mean square error (RMSE), cumu-

lative distribution function (CDF), and box plot—to investigate the pedestrian tracking 
performance of our fusion model in comparison with the IMU-based PDR [23], raw UWB 
position [31], and conventional fusion [26] algorithms. The positioning errors are calcu-
lated based on the RMSE criterion, but after transforming the ground truth position from 
the Hokuyo frame to the UWB global frame. It should be noted that to extract the realistic 
positioning error, we shifted the estimated position by 0.1 m (displacement between pe-
destrian’s head and foot) towards the ground truth position at every stance phase in-
stance. In a box plot, the inner red line and floating red plus of the blue box specify the 
median and mean values, while the bottom and top edges of the blue box indicate the 
positioning errors of 25% and 75%, respectively.  The outer black whiskers of the blue 
box show the minimum and maximum errors. 

We used MATLAB R2018A (MathWorks, USA) for the implementation and analyses. 
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During initialization, the noise parameters are tuned as σ = 0.001 m/s2, σ = 0.01 rad/s, σ = 0.001 m/s, and ψ = 0.6 rad/s for the ZUPT-assisted IMU propagation and update, 
and σ = 0.2 m and Ʈ =  3σ  for the UWB position update. 

4. Experiment Results 
This section validates and discusses the performance of the proposed system through 

experimental results under two scenarios. 

4.1. Single-Lap NLOS Scenario 
In this scenario, we revealed the performance of the proposed system mainly under 

the UWB NLOS situation. To emulate the severe NLOS phenomena in an indoor environ-
ment, we considered a path passing by the building infrastructure such as a pillar of 0.75 
m × 0.75 m thickness. As a pedestrian crosses the pillar, the UWB anchors, i.e., A3 and A4, 
are subjected to the UWB signal blocking which ultimately creates an NLOS phenomenon. 
Figure 9 displays this scenario with a yellow trajectory where the NLOS region is indi-
cated by an overlapped black trajectory. The pedestrian starts walking near the yellow 
arrow and walks for one lap in a counterclockwise direction. 

Figure 12 details the visual comparison among the PDR in the cyan line, the UWB 
positioning system (UWB) in the blue line, the conventional UWB+IMU fusion (CONV.) 
in the green line, the proposed UWB+IMU fusion (OUR) in the red line, and the Hokuyo 
reference system in the dotted black line. The PDR trajectory is smooth but has an orien-
tation drift even in a single lap, while the UWB depicts a large error in the NLOS region. 
On the other hand, the CONV. achieves a slightly improved trajectory compared to the 
UWB in the NLOS region, but still shows a diverted tail during the NLOS recovery region. 
Overall, OUR accomplishes a smooth trajectory in both regions, i.e., with and without the 
NLOS phenomenon. This signifies that the addition of the valid UWB observation detec-
tion produces high-precision pedestrian tracking compared to the other three algorithms. 
The CDF of the positioning errors among all the algorithms is visualized in Figure 13. At 
the 95th percentile, the UWB, PDR, CONV., and OUR exhibit errors of 1.45 m, 0.80 m, 0.65 
m, and 0.40 m, respectively. Figure 14 presents the box plot of the positioning errors for 
the four algorithms to highlight the mean, median, and extreme points of the positioning 
errors. It can be deduced from Figure 14 that the UWB shows the worst performance and 
OUR reflects the best performance. Table 3 states the positioning errors quantitatively as 
2D, X-axis, Y-axis, mean, median, and maximum errors. Both Figure 14 and Table 3 depict 
a similar performance trend where OUR reflects the smallest maximum error compared 
to the other three algorithms. 

 
Figure 12. Position trajectory of each algorithm in single-lap NLOS scenario. 
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Figure 13. CDF of positioning errors in single-lap NLOS scenario. 

 
Figure 14. Box plot of positioning errors in single-lap NLOS scenario. 

Table 3. Positioning errors in single-lap NLOS scenario. 

Algorithm 2D (m) X-Axis (m) Y-Axis (m) Mean (m) Med. (m) Max. (m) 
PDR 0.60 0.53 0.28 0.49 0.52 0.93 
UWB 0.52 0.50 0.17 0.38 0.28 1.66 

CONV. 0.33 0.29 0.16 0.26 0.23 0.80 
OUR 0.24 0.18 0.15 0.20 0.20 0.47 

All values have tolerance of ±0.03 m. 

In summary, our UWB+IMU fusion accomplishes a more enhanced performance in 
a complex indoor space than that of the algorithms without the valid UWB observation: 
53% and 27% better than raw UWB and conventional fusion models, respectively. It could 
also be concluded that when the UWB observation is corrupted or the UWB signal is lost 
in the NLOS region, the proposed fusion model successfully rejects the corrupted UWB 
observation by trusting the IMU position estimation. 

4.2. Multi-Lap LOS+NLOS Scenario 
This scenario emphasizes the evaluation of the robustness of the proposed system for 

longer distances, especially against the IMU’s accumulated drift under mixed surround-
ing situations. For this sake, we emulated a lengthier path just by increasing the same path 
repetition up to four laps for LOS white trajectory and three laps for NLOS yellow trajec-
tory, as shown in Figure 9. The pedestrian walks non-stop in both trajectories successively 
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and starts walking near the white arrow in a counterclockwise direction. The distance 
covered in each lap of the LOS white trajectory and NLOS yellow trajectory was about 20 
m and 10 m, respectively, so, collectively the pedestrian walked for 110 m, i.e., (4 laps × 20 
m) + (3 laps × 10 m). 

Figure 15 presents the comparative 2D position of the trajectories among the various 
algorithms, similarly to Figure 10. It can be seen that all of the algorithms have similar 
trajectories except the PDR. Moreover, the UWB position has a consistent and repeatable 
accuracy throughout the four laps of the LOS trajectory; on the other hand, due to the 
NLOS situation in the three laps of the NLOS trajectory, the UWB data have considerable 
noise. The fusion of UWB and IMU sensors significantly enhanced the pedestrian tracking 
performance in both LOS and NLOS situations, but OUR outperforms the CONV. due to 
the valid UWB observation detection. Figure 16 shows the comparative CDF of position-
ing errors among all of the algorithms. Evidently, OUR achieves a 0.45 m positioning error 
compared to the 1.63 m of the PDR at the 95th percentile. Figure 17 provides a box plot to 
visualize the mean, median, and extreme values of the positioning errors. Table 4 illus-
trates the quantitative values in terms of 2D, X-axis, Y-axis, mean, median, and maximum 
errors. According to Figure 17 and Table 4, the IMU-based PDR is the only algorithm to 
reveal the larger error values of all performance criteria in contrast with the UWB, CONV., 
and OUR. 

 
Figure 15. Position trajectory of each algorithm in multi-lap LOS+NLOS scenario. 

 
Figure 16. CDF of positioning errors in multi-lap LOS+NLOS scenario. 
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Figure 17. Box plot of positioning errors in multi-lap LOS+NLOS scenario. 

Table 4. Positioning errors in multi-lap LOS+NLOS scenario. 

Algorithm 2D (m) X-Axis (m) Y-Axis (m) Mean (m) Med. (m) Max. (m) 
PDR 1.02 0.71 0.73 0.91 0.86 2.20 
UWB 0.46 0.35 0.29 0.41 0.38 2.17 

CONV. 0.34 0.21 0.26 0.29 0.26 0.80 
OUR 0.29 0.18 0.24 0.24 0.24 0.66 

All values have tolerance of ±0.03 m. 

In short, the proposed fusion performs 70%, 34%, and 12% better than PDR, UWB, 
and CONV., respectively. It can be also observed that the multi-lap pedestrian walking 
drastically and continuously accumulates the IMU drift; on the other hand, the UWB ob-
servation occasionally and discretely experiences the NLOS situation only when the pe-
destrian passes by the pillar. Hence, it is validated that the inclusion of the valid UWB 
observation update effectively compensates for the long-term IMU’s drift accumulation 
as well as UWB indoor NLOS. 

5. Discussion and Future Work 
To address the UWB NLOS and IMU accumulated drift problems, the existing foot-

placed solutions for indoor pedestrian tracking usually depend on involving quality-
grade expensive hardware [23], ML-based NLOS detection and mitigation [14], and more 
than one estimator alongside a magnetometer [25,29,30]. This ultimately increases the sys-
tem’s cost and complexity and makes it susceptible to indoor magnetic field interference. 
The goal of this work was to develop a low-cost foot-placed UWB+IMU fusion-based in-
door pedestrian tracking solution that can overcome the UWB’s indoor NLOS and con-
sumer-grade IMU’s accumulated drift in the long term. The proposed system was evalu-
ated by computing the RMS positioning errors using the pedestrian’s ground truth posi-
tion obtained from the state-of-the-art Hokuyo Lidar with a ±30 mm accuracy. The pedes-
trian tracking experiment, comprising of two scenarios, was conducted in a complex in-
door environment by walking on the predefined trajectories. Furthermore, the qualitative 
and quantitative performances were validated in comparison with the three algorithms: 
IMU-based PDR [23], raw UWB position [31], and conventional fusion model [26]. With 
the two experimental scenarios, we justified that the IMU estimation helps to select the 
valid UWB observation which further corrects the long-term IMU accumulated drift. 
Eventually, the proposed system accomplished the RMS positioning error of 0.29 ± 0.03 
m. 

Thanks to the off-the-shelf hardware and open-platform software ROS and Arduino, 
our system can be deployed with a low cost and easy accessibility for accurate indoor 
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pedestrian tracking IoT applications. In addition, the inclusion of the UWB positioning 
system brings the advantage of actively tracking the pedestrians in a building reference 
frame at a centimeter-level accuracy. At the same time, the need for special infrastructure 
is a downside of using the UWB positioning system. So far, the developed system was 
tested for room-scale single-unit pedestrian tracking in a mixed LOS+NLOS indoor envi-
ronment. However, in narrow corridors and crowded areas, the pedestrian tracking accu-
racy using our system might drop due to the long-interval blocking of the UWB signal 
and the severity of the NLOS situation compared to inside the rooms. In the future, we 
would like to extend our current work by considering dynamic NLOS situations in more 
complex and realistic indoor environments as well as the consumer-grade IMU parame-
ters uncertainties. We will optimize the sampling rates of IMU and UWB data acquisition 
to prolong the battery life by reducing power consumption. Moreover, we want to scale 
up the coverage area of the UWB sensor network to multiple units and track multiple 
pedestrians by incorporating the MDEK1001 suggested topology as portrayed in Figure 
18. Ultimately, we envision our wearable IoT device to be a part of future smart shoes that 
can track the patients’ walking patterns and automatically diagnose and prevent gait-re-
lated issues in real time. 

 
Figure 18. Networking topology to track pedestrians in whole building using UWB sensor network. 

6. Conclusions 
In this paper, we proposed a low-cost foot-placed UWB and IMU fusion-based in-

door pedestrian tracking system. Our system fused the off-the-shelf UWB and consumer-
grade IMU sensors to simultaneously counter their practical limitations such as the UWB’s 
indoor NLOS and IMU’s accumulated drift problems in a complex indoor environment. 
It was validated from the two experimental scenarios that the proposed system achieved 
a superior performance of 53% better than the raw UWB position in the NLOS situation, 
and 70% better than the IMU-based PDR in the long run. We expect that our outcomes 
can contribute to the adaption of low-cost wearables in the accurate and intelligent mon-
itoring of pedestrians for indoor IoT applications. 
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