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Peripheral nerve injury is a clinically common injury that causes sensory

dysfunction and locomotor system degeneration, which seriously affects the

quality of the patients’ daily life. Long gapped defects in large nerve are difficult

to repair via surgery and limited donor source of autologous nerve greatly

challenges the successful nerve repair by transplantation. Significantly,

remarkable progress has been made in repairing the peripheral nerve injury

using artificial nerve grafts and a variety of products for peripheral nerve repair

have emerged been approved globally in recent years. The raw materials of

these commercial products includes natural/synthetic polymers, extracellular

matrix. Despite a lot of effort, the desirable functional recovery still remains

great challenges in long gapped nerve defects. Thus this review discusses the

recent development of tissue engineering products for peripheral nerve repair

and the design of bionic grafts improving the local microenvironment for

accelerating nerve regeneration against locomotor disorder, which may

provide potential strategies for the repair of long gaps or thick nerve defects

by multifunctional biomaterials.
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1 Introduction

Peripheral nerve injury mainly occurs in severe accidents such as work-related

injuries and traffic accidents often accompanied by symptoms such as sensory and

locomotor dysfunction, and it is poor repair would seriously affect the quality of the

patients’ daily life (Yi et al., 2019; Vijayavenkataraman, 2020). Peripheral nerve injury can

be divided into traction injury, cutting injury, firearm injury, ischemic injury and

iatrogenic injury. The phenotypes of peripheral nerve injury include nerve

entrapment, nerve hemisection, nerve transection, and nerve defects (Spinner and

Kline, 2000; Tezcan, 2017). Significantly, peripheral nerve injury can result in varying

degrees of neuronal degeneration, muscle atrophy, and fibrosis (Yang et al., 2022c). Due to
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the slow rate of regeneration (approximately 1 mm/day),

irreversible atrophy usually occurs before skeletal muscle

reinnervation. This seriously affects the functional

reconstruction of target muscles and the recovery of

locomotor function after nerve injury (Sun et al., 2021).

Therefore, assessment of functional recovery is critical to

determine the degree of regeneration following peripheral

nerve injury (Navarro, 2016), which is especially true for

studies devoted to developing tissue-engineered products to

replace autologous nerve grafts for peripheral nerve injury.

(Angius et al., 2012; Heinzel et al., 2020).

Traditionally, autologous nerve repair is the golden line for

repairing the injured peripheral nerves. However, it still has

many disadvantages: 1) Repairing the defective nerve with

normal nerves from other parts may cause secondary surgical

damage; 2) cable-like repair is not accurate 3) It is easy to cause

mismatched growth of regenerative nerves, resulting in neuroma;

4) Limited source can hardly meet the needs of long gaps or thick

nerve defects, and therefore limited its clinical applications

(Rutkowski and Health, 1998; Gvans, 2000).

Thanks to the continuous development of biomedical

materials for nerve repair, remarkable progress has been made

in the application of artificial nerve grafts in repairing the

peripheral nerve injury (Gu et al., 2011; Gu et al., 2015a).

There have been a variety of products for peripheral nerve

repair emerged in recent years. Generally, the ideal tissue-

engineered nerve grafts should be compounded with trophic

factors and bionic structures within the bioscaffold (Tang et al.,

2021b; Zhang Y. et al., 2022; Chen et al., 2022). Furthermore,

various kinds of cells can be seeded into bioactive implants to

promote the recovery of nerve function by differentiating into

locomotor neurons to innervate muscles or secreting

neurotrophic factors to repair injury (Du et al., 2018).

Therefore, how to choose ideal seed cells and neurotrophic

factors with appropriate concentration and combination to

further equip tissue engineering products for peripheral nerve

repair with better biosafety and bioactivity for functional

reconstruction of nerve tissue is a crucial in this fields. Thus,

this review discusses the research status and latest progress of

tissue engineering products for peripheral nerve repair.

2 Current approved nerve repair
grafts in China

Peripheral nerve repair grafts that have been approved in

China belong to Class III medical devices. Until March of 2022,

the Chinese Food and Drug Administration has approved a total

of five domestic and two imported medical device products

(Table 1). The raw materials of these products include

collagen, chitosan, polyglycolide lactide (PGLA), DL-lactide-

co-ε-caprolactone and polyglycolic acid (PGA), extracellular

matrix (ECM).

The decellularized allogeneic nerve repair material (trade

name: Shenqiao) is produced by Guangzhou Zhongda Medical

Instrument Co., Ltd., which is made from the peripheral

nerves collected from the human body (cadavers) followed

by decellularization. It is mainly composed of collagen fibers

and the extracellular matrix retaining the structure of nerve

basement membrane tube, perineurium,

epineurium and other supporting structures, which

is suitable for repairing 1–5 cm traumatic sensory nerve

defects.

Acellular matrix peripheral nerve repair membrane

produced by Shandong Junxiu Biotechnology Co., Ltd. Has

obtained the National Medical Device Registration Certificate

in 2019. It is a transparent or translucent film based on the

extracellular matrix of porcine peripheral nerves, which retains

the nerve scaffold structure and the active ingredients of the

abundant nerve extracellular matrix. This membrane is suitable

for auxiliary repair of non-defective or anastomosed peripheral

nerve injury.

Artificial nerve sheath tube produced by Beijing Tianxinfu

Medical Equipment Co., Ltd. is suitable for repairing

peripheral nerve defects those are less than 2 cm obtained

the National Medical Device Registration Certificate in 2016.

The material of this product is mainly derived from the bovine

achilles tendon with high-purity type I collagen and made into

a spongy collagen sheath to guide nerve growth. It has good

biocompatibility and can be degraded and absorbed within

3–6 months, degradation products of which are amino acids

and water.

Peripheral nerve repair graft from Jiangsu Yitong

Biotechnology Co., Ltd. is composed of a catheter and a

built-in fiber to guide directed nerve growth. The catheter

is prepared by freeze-drying chitosan, chitin and medicinal

gelatin. The built-in fiber is polyglycolide lactide (PGLA) fiber.

The graft is developed for repair of sensory function in the

digital nerve, superficial branch of the radial nerve, and

median nerve of the forearm with a defective length of less

than 30 mm, which can be degraded and absorbed within

3 months.

Neurolac Peripheral Nerve guide and GEM Neurotube

are two imported products from Polyganics Innovations

B.V. in Netherlands and Synovis Micro Companies

Alliance, Inc., which were both awarded the National

Imported Medical Device Registration Certificate. Neurolac

Peripheral Nerve guide possesses a tubular structure to

repair peripheral nerve defects up to 20 mm, prepared

from (DL-lactide-co-ε-caprolactone) copolymer. The

absorbable GEM Neurotube is an polyglycolic acid

mesh tube, of which the pipe wall is corrugated to

increase its strength and flexibility. It can be absorbed into

the human body through a hydrolysis process and used to

repair 8–30 mm digital nerve defects to restore the sensory

function.
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3 Research progress of peripheral
nerve grafts

Although a variety of tissue engineering products for

peripheral nerve repair have been approved, several

disadvantages still exist, such as the mismatch between

material degradation and nerve regeneration, the inability to

repair long-distance injuries, poor locomotor functional recovery

(Gu et al., 2014; Wu et al., 2017). In recent years, many studies

have focused on selection of raw materials, construction of

biomimetic structures, improvement of the regenerative

microenvironment and implantation with seed cells.

3.1 Raw materials

Ideal biomaterials should have good biocompatibility,

biodegradability and minimal immunogenicity, be non-

toxicity, non-teratogenic and non-carcinogenic, supporting for

nerve regeneration and recovery, etc. (Nectow et al., 2012; Fakhri

et al., 2020). The chemical and physical properties of biomaterials

directly affect their therapeutic effect for nerve regeneration,

emphasizing the importance of materials selection for tissue-

engineered nerve grafts. Recently, many biodegradable materials

have been used in designing scaffolds for neural tissue

engineering, including synthetic polymers such as polyglycolic

acid (PGA) (Kusuhara et al., 2019; Sayanagi et al., 2020),

polylactic acid (PLA) (Jahromi et al., 2020), polyglycolide

lactide (PGLA) (Xu et al., 2017; Dos Santos et al., 2019; Lu P.

et al., 2021; Manto et al., 2021), poly (ε-caprolactone) (PCL)

(Dong et al., 2020; Dursun Usal et al., 2022) and polyurethane

(PU) (Yang H. et al., 2022), etc. For example, Reid et al. used a

thin film of PCL to prepare nerve catheter for repairing 10 mm

sciatic nerve injury in rats, and after 18 weeks, the growth rate of

regenerated axons in PCL nerve catheter was comparable to that

of autologous nerves (Reid et al., 2013). However, PCL conduit

has high rigidity, which is inconvenient for clinical use. However,

the degradation products of synthetic polymers such as PGA,

PLA, and PGLA are acidic, and may stimulate inflammatory

responses to surrounding tissues and hinder peripheral nerve

repair and regeneration.

Other natural materials, including native fibrin (Du et al.,

2017; Wang et al., 2018; Razavi et al., 2021), collagen (Saeki et al.,

2018; Yao et al., 2018; He et al., 2021; Wang et al., 2021; Zheng

et al., 2021), keratin (Apel et al., 2008; Lin et al., 2012; Pace et al.,

2014), alginate (Lin et al., 2017; Rahmati et al., 2021; Abdelbasset

et al., 2022), chitin (Bak et al., 2017; Lu C. F. et al., 2021; Yang

et al., 2022b), chitosan (Li et al., 2018; Vishnoi et al., 2019), and

silk fibroin (Carvalho et al., 2021; Kim et al., 2021; Zhao et al.,

2020), as well as extracellular matrix (ECM) (Li T. et al., 2021;

Kong et al., 2021; Kong et al., 2022), have shown great potential in

treating long gap nerve defects. For instance, Wang et al.

prepared a nerve catheter using chitosan/chitin to achieve

excellent angiogenesis in nerve regeneration process for

successfully repairing the 10 mm sciatic nerve defect in rats

(Wang et al., 2016). These natural biomaterials such as

chitosan and collagen have good biocompatibility, but the in

vivo degradation time is too long to match the process of

peripheral nerve regeneration. In addition, ECM has good

biodegradability and biomimetic structure, but its application

is mainly limited to the standardization of the decellular method

and sterilization methods. To meet the various requirements for

nerve regeneration, combination of different raw materials into

one graft is reasonable to prepare nerve grafts with excellent

chemical and physical performance.

3.2 Bionic structures

It is well known that the peripheral nerve is morphologically

composed of many root nerve fibers. The fibers form the root

nerve bundles which then constitute the nerve stems (Tezcan,

2017). Neural fibers are aligned in parallel. Once the peripheral

nerve is impaired, the distal nerve axon and myelin undergo

fragmentation and collapse, leading to the invasion of a large

number of phagocytes to clear axon myelin debris and more

importantly, to stimulate the resting Schwann cells to divide

and proliferate. After that, the stimulated cells keep growing

along each nerve fiber intima and basement membrane into a

line, named Buengner cell zone (Mirsky and Jessen, 1999).

Eventually, the regenerated axons growing from the proximal

end extend along the pipeline to the target organ, thereby

restore its function. Therefore, the morphology of

biomaterials should be beneficial to induce Schwan cells to

arrange into lines and provide a pipeline for the extension of

regenerated nerves (Figure 1). Bionic structures can provide a

suitable microenvironment for the migration, proliferation and

functionalization of nerve cells, and provides contact guidance

for the directional growth of axons to improve the accuracy of

nerve alignment. However, due to the complexity of natural

neural structures, it still remains great challenges to prepare

artificial nerve grafts with nerve-like structures in micro-nano

scales. Current studies mainly focus on isotropic hydrogel fillers

to provide intraluminal support for nerve regeneration (Huang

et al., 2018), fibrotic intraluminal topographic guidance for

neurites (Zou et al., 2016), and patterned cavity stand to provide

three-dimensional (3D) structural support for nerve growth

(Qu et al., 2011). For example, Du et al. prepared a 3D

hierarchically arranged fibrin nanofiber hydrogel (AFG) to

resemble the structure and biological function of natural

fibrin cables. The AFG served as filler for tissue-engineered

chitosan tubes, bridging a 10-mm-long sciatic nerve defect in

rats. The results showed that AFG provided a suitable

microenvironment that supported Schwann cell cable

formation and axon regeneration within 2 weeks. (Du et al.,

2017).
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FIGURE 1
Strategies for constructing bionic structures of grafts.

TABLE 1 Summary of commercially available peripheral nerve repair grafts.

Name Producer Main ingredients Year of
registration
(NMPA
registration
certificate
No.)

Application

Decellular allograft nerve
repair material
(Shenqiao)

Guangzhou Zhongda
Medical Equipment
Co., Ltd.

Collagen fibers ECM 2012 (20163461598) 1–5 cm traumatic sensory nerve defects

Acellular Matrix
Peripheral Nerve Repair
Membrane

Shandong Junxiu
Biotechnology Co., Ltd.

ECM of peripheral nerve
(derived from porcine)

2019 (20193130355) Peripheral nerve injury without parenchymal defects or
transanastomosis

Artificial nerve sheath
tube

Beijing Tianxinfu Medical
Equipment Co., Ltd.

Collagen type I (from
bovine Achilles tendon)

2016 (20163462399) Peripheral nerve defect (≤ 2 cm)

Peripheral Nerve guide Beijing Huifukang Medical
Technology Co., Ltd.

Chitosan 2021 (20213130298) Non-pathological upper limb median nerve, ulnar
nerve and radial nerve disconnection injury used for
non-pathological nerve injury (≤ 2 cm)

Peripheral nerve repair
graft

Jiangsu Yitong
Biotechnology Co., Ltd.

Chitosan、Chitin、
Gelatin、PGLA

2020 (20203130898) Sensory nerve function repair of finger nerve,
superficial radial nerve branch and median forearm
nerve defects within 3 cm

Neurolac Peripheral
Nerve guide

Polyganics
Innovations B.V.

DL-lactide-co-ε-
caprolactone

2016 (20163130201) Peripheral nerve defect (≤ 2 cm)

GEM Neurotube Synovis Micro Companies
Alliance, Inc

PGA 2017 (20173463001) 0.8–1 cm nerve defects to restore sensory function

Frontiers in Bioengineering and Biotechnology frontiersin.org04

Jiang et al. 10.3389/fbioe.2022.1039777

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.1039777


3.3 Improvement of regenerative
microenvironment

Nerve injury regeneration is a very complex

pathophysiological process and the local microenvironment

has strong temporal and spatial characteristics, covering

different levels such as molecules, cells, and organisms, and

involving many fields such as physiology, pathology,

biochemistry, biophysics, and bioinformatics (Rajaram et al.,

2012; Chen et al., 2015; Radhakrishnan et al., 2015; Li G.

et al., 2021). It was found that the use of artificial nerve grafts

alone can only repair peripheral nerve defects in short distance. It

is difficult to support the regeneration of large gap defects, which

may be due to the lack of local support of cells and neurotrophic

factors (Li T. et al., 2021; Chen et al., 2022). Nerve regrowth

largely depends on the biological function exerted by the

neurotrophins secreted by the nerve cells for regulating cell

viability, migration, and differentiation in the peripheral and

central nervous systems. Therefore, nerve conduits with

neurotrophic factors or related components are essential tools

for nerve repair (Gordon, 2009). For peripheral nerve defects

with large gaps, insufficient fibrin formation between proximal

and distal nerves restricts Schwann cell motility and Büngner

band formation. Hence, the nutrient support of nerve conduits

for cells is indispensable. Similar to skin tissue repair materials by

encapsulation, graft copolymerization and so on, adding

probiotics (Zhu et al., 2021), growth factors (Hao et al., 2022),

etc., to improve the regenerative microenvironment, the

functionalization of nerve repair materials can be achieved by

similar means. Nerve conduits loaded with factors such as

vascular endothelial growth factor (VEGF) (Rao et al., 2020),

nerve growth factor (NGF) (Fine et al., 2002), insulin-like growth

factor-I (IGF-I) (Zhang J. et al., 2022), fibroblast growth factor

(FGF) (Ma et al., 2017), and glial growth factor (GGF) (Alsmadi

et al., 2018), have been proven to have a positive role in

peripheral nerve regrowth. (Kemp et al., 2008; Catrina et al.,

2013). Yao et al. used longitudinally oriented collagen

conduitloaded with NGF to repair 35-mm-long sciatic nerve

defects in Beagle. After 9 months, the graft effectively achieved

the sciatic nerve axonal regeneration and recovery of motor

function than LOCC alone (Yao et al., 2018).

In addition, many types of physical or chemical stimulation,

such as pH, optical signal, and electric current, can also promote

nerve repair by activating the release of bioactive factors in neural

cells (Tang et al., 2021a; Tang et al., 2021b; Chen et al., 2022; Tang

et al., 2022). A growing amount of studies have found that electric

stimulation can regulate Schwann cell proliferation (Gu et al.,

2015b), neuronal differentiation (Meng et al., 2020), axon

regrowth (Gordon, 2016), and the neurotrophic factors

production (English et al., 2007). Some studies suggest that

extracellular electrical signals can control gene expression,

growth factor release, cell polarization and remodeling, etc.

(Xue et al., 2018).

3.4 Seed cells

Seed cells are an essential component for tissue engineering,

which can proliferate and differentiate to form target tissues to

repair defects (Liu et al., 2022). Functional seed cells combined

within nerve scaffolds can secrete growth factors, provide a

favorable microenvironment for nerve regeneration, and

further accelerate the nerve regeneration process. Ideal tissue-

engineered neural seed cells require a wide range of sources, good

safety, high efficacy without ethics and immune rejection

(Lategan et al., 2022; Tang et al., 2022). Peripheral nerve

tissue has a particular structure, and its regeneration includes

regeneration of non-dead and functional neurons and myelin

sheath. Highly differentiated neurons cannot be used as seed cells

due to their inability of proliferation and division. On the other

hand, glial cells and Schwann cells in peripheral nerve tissue

playing important roles in regeneration process can proliferate

and differentiate into mature cells to promote peripheral nerve

regeneration combing with grafts (Ghane et al., 2021).

Neural stem cells can also differentiate into neurons and glia,

the two major cell types of the peripheral and central nervous

systems. As seed cells, they can promote the maturation of the

nervous system. It has been shown that neural stem cells can

promote the recovery of motor function by differentiation into

locomotor neurons that innervate muscles. Neural stem cells also

secrete a series of neurotrophic factors that promote the repair of

nerve function. A novel stem cell-based pulsed electrical

stimulation therapy was developed Du et al. for repairing

15 mm sciatic nerve injury of athymic nude mice. The results

showed a significant improvement in locomotor function

recovery and differentiation of Schwann cell using stem cells

therapy, which was comparable to autograft in treatment of long

gapped defects (Du et al., 2018). In addition, neural stem cells

would promote angiogenesis and immune regulation (Wang

et al., 2017). Moreover, BMSCs, olfactory sheath cells, etc.,

have also been used as seed cells for tissue-engineered nerves

(Cooney et al., 2016; Sayad Fathi and Zaminy, 2017; Miah et al.,

2021).

4 Prospects and challenges

Given the inherent drawbacks of autologous transplantation,

the development of artificial nerve grafts is considered as a

promising strategy in the field of peripheral nerve.

Researchers in tissue engineering have focused on the

development of biomaterials and tissue processing techniques

to create various types of equipment and substrates to support

peripheral nerve regeneration. In the past few decades,

breakthroughs have been made in materials science and tissue

engineering techniques to mimic or protect the neural tissue

microenvironment for promoting nerve regrowth. Allogeneic

nerve grafts and artificial catheters have been increasingly
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applied in clinical practice. At present, artificial and non-artificial

nerve grafts have been achieved good clinical outcomes in

treating short-distance peripheral nerve defects. However,

there is still no commercial product that can be comparable

to autologous transplantation in treating long gaps defects in

large nerve. Effective control of growth factors release in the

process of nerve regeneration in real-time still remains a

challenge in this field. Notably, numerous studies are devoted

to promote the directional growth of cells and remyelination by

altering the morphology and structure within the grafts, or

involving seed cells/growth factors to create better

microenvironments for improving locomotor function

recovery after nerve injury. However, most of the established

neural stem cell lines come from mice, but there are obvious

species differences between mice and humans. Therefore, the

source, isolation, culture and identification of neural stem cells

should be optimized, and the mechanism of neural stem cell

differentiation needs to be further studied. In summary, These

ongoing studies have laid a solid foundation for the development

of future tissue engineering products for peripheral nerve repair.
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