
TYPE Review

PUBLISHED 18 October 2022

DOI 10.3389/fpubh.2022.1033432

OPEN ACCESS

EDITED BY

Wellington Pinheiro dos Santos,

Federal University of

Pernambuco, Brazil

REVIEWED BY

Sartra Wongthanavasu,

Khon Kaen University, Thailand

Franco Bagnoli,

University of Florence, Italy

Pietro Di Lena,

University of Bologna, Italy

*CORRESPONDENCE

Xinqi Zheng

zhengxq@cugb.edu.cn

Haiyan Liu

liuhy@cugb.edu.cn

SPECIALTY SECTION

This article was submitted to

Digital Public Health,

a section of the journal

Frontiers in Public Health

RECEIVED 31 August 2022

ACCEPTED 27 September 2022

PUBLISHED 18 October 2022

CITATION

Wang P, Zheng X and Liu H (2022)

Simulation and forecasting models of

COVID-19 taking into account

spatio-temporal dynamic

characteristics: A review.

Front. Public Health 10:1033432.

doi: 10.3389/fpubh.2022.1033432

COPYRIGHT

© 2022 Wang, Zheng and Liu. This is

an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Simulation and forecasting
models of COVID-19 taking into
account spatio-temporal
dynamic characteristics: A
review

Peipei Wang1, Xinqi Zheng1,2* and Haiyan Liu3*

1School of Information Engineering, China University of Geosciences, Beijing, China, 2Technology

Innovation Center for Territory Spatial Big-Data, MNR of China, Beijing, China, 3School of Economic

and Management, China University of Geosciences, Beijing, China

The COVID-19 epidemic has caused more than 6.4 million deaths to date

and has become a hot topic of interest in di�erent disciplines. According

to bibliometric analysis, more than 340,000 articles have been published on

the COVID-19 epidemic from the beginning of the epidemic until recently.

Modeling infectious diseases can provide critical planning and analytical tools

for outbreak control and public health research, especially from a spatio-

temporal perspective. However, there has not been a comprehensive review

of the developing process of spatio-temporal dynamic models. Therefore,

the aim of this study is to provide a comprehensive review of these spatio-

temporal dynamicmodels for dealingwithCOVID-19, focusing on the di�erent

model scales. We first summarized several data used in the spatio-temporal

modeling of the COVID-19, and then, through literature review and summary,

we found that the existing COVID-19 spatio-temporal models can be divided

into two categories: macro-dynamic models and micro-dynamic models.

Typical representatives of these two types of models are compartmental and

metapopulation models, cellular automata (CA), and agent-based models

(ABM). Our results show that the modeling results are not accurate enough

due to the unavailability of the fine-grained dataset of COVID-19. Furthermore,

although many models have been developed, many of them focus on short-

term prediction of disease outbreaks and lack medium- and long-term

predictions. Therefore, future research needs to integrate macroscopic and

microscopic models to build adaptive spatio-temporal dynamic simulation

models for the medium and long term (from months to years) and to make

sound inferences and recommendations about epidemic development in

the context of medical discoveries, which will be the next phase of new

challenges and trends to be addressed. In addition, there is still a gap in

research on collecting fine-grained spatial-temporal big data based on cloud

platforms and crowdsourcing technologies to establishing world model to

battle the epidemic.
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Introduction

The prevention and control of infectious diseases is a major

topic in the field of public health all over the world. Research

on the mechanism and development of infectious diseases in

space is an important task for infectious diseases researchers (1).

Human beings live in an increasingly interconnected world, and

thanks to the convenient flights, both humans and pathogens

can be brought to any city in any country (2, 3). During

the spread of infectious diseases, the spatial movement of

individuals will cause changes in the number of infections in

different regions, which will lead to the spread of infectious

diseases in large area (4, 5). To describing the spreading laws

and process trends of infectious diseases in space, it is necessary

to use the theory of spatial dynamics modeling to reflect

the spatio-temporal characteristics and internal information of

infectious diseases, and to provide theoretical guidance and

policy evaluation for the prevention and control of infectious

diseases (6).

The dynamics of infectious diseases is an important method

to theoretically and quantitatively study the epidemic law of

infectious diseases (7, 8). It is based on the characteristics

of population growth, the law of disease occurrence and

transmission through the population and other relevant

factors to establish a mathematical model that can reflect the

dynamic characteristics of infectious diseases. The dynamics

characteristic model based on qualitative and quantitative

analysis and numerical simulation can reveal its epidemic law,

predicting its changing trend, and analyze its epidemic reasons

and key factors. Ultimately, dynamic models could seek the

optimal prevention and control strategy, and provide theoretical

and quantitative basis for people tomake prevention and control

decisions (9). Compared with traditional biostatistics methods,

the dynamic methods can better reflect the epidemic law in

terms of the transmission mechanism of the disease, so that

people can understand some global states in the epidemic

process (10, 11). The combination and complementation of

infectious disease dynamics, biostatistics, computer simulation

and other methods have enabled people to have a more in-

depth and comprehensive understanding of the laws of epidemic

disease, making the established theories and prevention

strategies more reliable and practical (12, 13).

Neither traditional Ordinary Differential Equations (ODEs),

time-lag ODEs or statistical methods nor clinical case studies

consider the spatial diffusion of individuals (14). In the face

of highly contagious and highly pathogenic infectious diseases

such as COVID-19, from the Delta variant to the Omicron

variant, each mutation of COVID-19 will trigger a new round

of prevention and control tensions (15). Behind the vigorous

prevention and control, it has caused immeasurable losses to the

normal life of the people and social and economic development

(16, 17). For COVID-19, the spatial movement of individual

groups is a key factor leading to the rapid spread of infectious

diseases (4, 18). Therefore, the study of spatial diffusion models

can better reflect the spread dynamics of COVID-19 in time

and space. It is worth mentioning that the impact of medical

indicators on the modeling of the spatio-temporal dynamics of

COVID-19 spread varies at different stages of its development.

In the early stage of the epidemic, the speed and scale of the

spread of the epidemic are largely depended on the ability of

testing and reporting and hospital treatment capacity (19). In

the mid-term, medical parameters (including incubation period

(20), reproductive number (21), mortality rate (22), etc.) can

be promoted with the help of the abundant epidemic statistical

data of the public health departments to provide a basis for

parameter selection and optimization of the spatio-temporal

dynamics evolution of infectious diseases. Late-stage data is

abundant, combined with medical interventions (vaccination,

virus detection, etc.), which can provide the possibility for

precise prediction of spatio-temporal dynamics modeling (23).

As COVID-19 continues to evolve, the number of models

studying its spatio-temporal changes has exploded. A study

on geospatial technologies (24) looked at COVID-19 from an

interdisciplinary perspective and reviewed relevant academic

results published up to the end of May 2020, while a research

review (25) reviewed the literature published up to the end

of September 2020, points to geospatial analysis in COVID-

19 research and highlights current trends and research gaps.

In a paper published in 2020, we extend the previous forecast

period and accuracy with the help of Logistic and Artificial

Intelligence (AI) (26). The publication of this paper attracted

the attention of many peers and became a hot and highly

cited paper on the Web of Science (WOS). At the same time,

many deep learning methods have been used for COVID-19

prediction and spatio-temporal feature processing. Researchers

investigated the performance of the Random Forest (RF)

machine learning algorithm in estimating the near future

case numbers for 190 countries in the world (27). Jin et al.

(28) study the spatial-temporal characteristics of the epidemic

development at the provincial-level in mainland China and

the civic-level in Hubei Province. And Karadayi et al. (29)

proposed a hybrid deep learning framework to solve the

unsupervised anomaly detection problem inmultivariate spatio-

temporal data. However, based on our research and tracking of

international research progress, we found that in the summary of

the COVID-19 evolution prediction model, the spatio-temporal

dynamic model with large development space and application

prospects has not been well summarized. For humanity to better

respond to COVID-19, it is necessary to review the progress

that has been made and recommend further research to enable

more people to work together in public relations to help deliver a

targeted response to COVID-19 as quickly as possible measures.

This study will further integrate the spatial model of

COVID-19 based on previous research, focusing on the

analysis of the spatio-temporal model related to COVID-19,

so as to facilitate readers to sort out. This paper classifies
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and summarizes the COVID-19 spatio-temporal dynamics

model. According to the modeling basis and modeling

principles, macro-dynamic models and micro-dynamic models

(Table 1) are summarized. Macro-dynamic models usually

include compartmental models and metapopulation models.

The population is divided into several compartments, which

represent different diseases states of the population, and

mathematical methods are used to establish its dynamic

equations to simulate and study the process of transmission

dynamics. The latter are mainly based on Cellular Automaton

(CA) and Agent Based Modeling (ABM). An individual is

thought of in a population as a cellular unit or agent consisting

of a limited set of rules of state and behavior. By defining

the corresponding behavior of the individual to the etiology,

the mobile behavior of individual in the space and the

interaction between the individual behavior rules, the behavior

of complex systems such as infectious diseases that evolve

from the cause, host, and environment can be simulated. In

addition, the collection and organization of spatio-temporal

big data is the basis for establishing spatio-temporal dynamics

models of infectious diseases, and is also the cornerstones of

studying spatio-temporal dynamics models. Here, we review

different efforts to model the spread of COVID-19, which

should stimulate new thinking and facilitate the integration

of geographic information and computer technology into

infectious diseases modeling and control. Our main research

objectives will to be:

(1) To review the application of spatio-temporal big data in

spatial modeling of COVID-19.

(2) Classify the infectious disease transmissionmodel into macro

and micro models, analyze the advantages and disadvantages

of various modeling methods, and highlight current spatio-

temporal modeling methods.

(3) Analyze the role of spatio-temporal modeling in COVID-

19 research by comparing the results of model modeling at

different scales.

(4) Highlight current research trends and gaps of COVID-19

spatio-temporal modeling.

Our research contributions are as follows:

(1) Due to previous experience, more studies are carried out

with the help of existing models, but less new models are

developed. Because people’s judgment of the epidemic is that

“short and smooth” approach is needed, the development

of new models is blocked. At present, all relevant models

proposed by researchers can be concluded as macro-

dynamics model and micro-dynamics model.

(2) Future research direction of spatio-temporal dynamics model

of infectious diseases should be to introduce multi-level and

multi-scale integrated epidemic spatio-temporal dynamics

model with big data and intelligent computing. Moreover,

these models are adaptive, that is, they can quickly simulate

and predict adaptability according to the situation of different

countries and provide quick reference for management and

control decisions.

(3) The integration of macro and micro models and adaptive

medium and long term (from months to year) spatio-

temporal dynamic simulation decision support model

combined with medical conclusions will be new challenges

and trends to be addressed in the next stage.

These contributions may have been mentioned by some

researchers, but have not been explicitly proposed or formally

published. Through literature analysis, we systematize and

display them, so that more people can further study them during

or after the epidemic, and provide scientific and technological

support for the next major infectious disease epidemic that may

be encountered by mankind.

In the subsequent sections, this article will list the spatio-

temporal big data sets collected by various researchers since

the outbreak of COVID-19 firstly, and explain the data basis

of spatio-temporal dynamic model modeling. From the above-

mentioned model classification and induction ideas, the spatio-

temporal dynamics models of COVID-19 are summarized, and

finally research directions for future infectious disease dynamics

modeling are proposed.

Methodology

Data sources

Since the outbreak of the COVID-19 at the end of 2019,

large number of studies on the spread of COVID-19 based on

infectious disease dynamic models have been carried out around

the world. To review the scope of this paper, we use the following

steps to identify relevant literature for this review. First, we

searched on the WOS and Google Scholar databases with the

subject items (COVID- 19 OR SARSCOV-2) AND (spatial OR

temporal OR spatial analysis OR space-time OR Geospatial)

AND (model OR simulate OR simulation OR evaluate OR

dynamic) and (transmission or propagation or spread). The

literature data retrieval and setting conditions are shown in

Table 2. Further, we conducted a reference search, if any, outside

the scope of the database. Considering the origin of the outbreak

at the end of 2019, we limited the literature search to between

2019 and 2022. The search was first conducted on April 5,

2022 and updated on August 24, 2022. We include published or

peer-reviewed journal articles based on modeling of COVID-19

spatio-temporal dynamics.

The progress of research selection is shown in Figure 1.

According to our retrieval strategy, 1,712 papers were retrieved

and categorized according to research data, scale and modeling

methods, namely spatio-temporal big data, macro-dynamic

modeling and micro-dynamic modeling. These studies are used

for practical prevention of different stages in different countries
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TABLE 1 References to macro- and micro-dynamic simulation models of COVID-19 are grouped according to research focus, main research findings, models, method description, data, and

geographic scope.

References Study focus Main findings Models Method description Data Geographic

extent

Macro-dynamic model

He et al. (30) Epidemic prediction of

COVID-19

The parameters of the proposed SEIR

model are different for different

scenarios.

SEIR; PSO A SEIR epidemic model was built

according to some general control

strategies. And the PSO algorithm is

applied to estimate the parameters of the

system.

COVID-19 epidemiological

data

Hubei, China

Team (31) Assessing scenarios of social

distancing mandates and

levels of mask use

Achieving universal mask use (95%

mask use in public) could be sufficient

to ameliorate the worst effects of

epidemic resurgences in many states.

SEIR model Modeling deaths and cases across three

boundary scenarios of social distancing

mandates in US states using an SEIR

framework.

COVID-19 case and mortality

data from 1 February 2020 to

21 September 2020

in the

United States at

the state level

Cui et al. (32) Epidemic prediction of

COVID-19

The quarantine magnitudes in the

susceptible individuals play larger roles

on the disease control than the impacts

of the quarantines of the exposed

individuals and infectious individuals.

The early quarantine strategy is

significantly important for the disease

controlling.

SEIRQ model The whole population at time t was

divided into seven compartments which

include the susceptible S (t), exposed

E (t), infectious I (t), removed R(t),

quarantined susceptible Sq(t),

quarantined exposed Eq(t) and

quarantined infectious individuals Iq(t).

COVID-19 epidemiological

data

Wuhan and

mainland China

Liu et al. (33) Epidemic prediction of

COVID-19

China’s national policies had effectively

slowed down the spread of the epidemic.

SEIRD model,

LSTM and GWR

After proposing the improved model of

SEIRD by adding a decay factor to the

infection rate β, LSTM and GWR

models are directly applied in this paper.

COVID-19 epidemiological

data; The daily number of

outbound fromWuhan city

and relevant migration

indices from January to

March; The demographic data

and medical resources data

China

Godio et al. (34) The application of a stochastic

approach in fitting the model

parameters using a Particle

Swarm Optimization (PSO)

Discussed the effectiveness of policies

taken by different regions and countries.

SEIR model; PSO

algorithm

A generalized SEIR model was adopted

and the parameters were fitted in a

least-square sense with a deterministic

approach, and then with a stochastic

approach, using a PSO algorithm.

COVID-19 epidemiological

data

Italy and its

Lombardy,

Piedmont, and

Veneto regions
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TABLE 1 (Continued)

References Study focus Main findings Models Method description Data Geographic

extent

Yang et al. (35) Predicting the COVID-19

epidemic peaks and sizes

The epidemic of China should peak by

late February, showing gradual decline

by end of April in 2020.

SEIR model;

LSTM

Population migration data and most

updated COVID-19 epidemiological

data are integrated into the SEIR model

to derive the epidemic curve. And LSTM

model is trained on the 2003 SARS data,

to predict the epidemic of COVID-19.

COVID-19 epidemiological

data; Migration index; 2003

SARS epidemic data

China

Wang et al. (36) Super-spreading events Super-spreading events played an

important role in the early stage of the

COVID-19 break.

Phylogenetic

analysis with

Bayesian

inference; SEIR

model

Analyzing 208 publicly available

SARS-CoV-2 genome sequences

collected during the early outbreak

phase. Then, combining phylogenetic

analysis with Bayesian inference under

an SEIR model to trace

person-to-person transmission.

208 publicly available

SARS-CoV-2 genome

sequences

Wuhan, China

Chen et al. (37) Simulating the phase-based

transmissibility of covid-19

The transmissibility of SARS-CoV-2 was

higher than the Middle East respiratory

syndrome in the Middle East countries,

similar to severe acute respiratory

syndrome, but lower than MERS in the

Republic of Korea.

Bats-Hosts-

Reservoir-People

transmission

network model

Simplified the

Bats-Hosts-Reservoir-People model as

Reservoir-People (RP) transmission

network model. The next generation

matrix approach was adopted to

calculate the basic reproduction number

(R0) from the RP model to assess the

transmissibility of the SARS-CoV-2.

COVID-19 epidemiological

data

China

Micro-dynamic model

Balcan et al. (38) Simulate the spread of

epidemics at the worldwide

scale

Build discrete stochastic epidemic

model.

GLEaM GLEaM integrates three different data

layers: population layer, transportation

mobility layer and disease model. Based

on a metapopulation approach in which

the world is divided into geographical

regions defining a subpopulation

network where connections among

subpopulations represent the individual

fluxes due to the transportation and

mobility infrastructure.

Epidemiological data;

sociodemographic and

population mobility data

Worldwide scale
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TABLE 1 (Continued)

References Study focus Main findings Models Method description Data Geographic

extent

Chinazzi et al.

(39)

Project the impact of travel

limitations on the national

and international spread of

the epidemic

The travel quarantine of Wuhan delayed

the overall epidemic progression by only

3 to 5 days in mainland China but had a

more marked effect on the international

scale, where case importations were

reduced by nearly 80% until

mid-February.

GLEaM By introducing GLEaM, the world is

defined in geographical census areas

connected in a network of interactions

by human travel fluxes corresponding to

transportation infrastructures and

mobility patterns.

Airline data, epidemiological

data and sociodemographic

Worldwide scale

Ghosh and

Bhattacharya (40)

Identify the major factors of

this infection spreading

dynamics

A probabilistic cellular automata based

method was proposed to model the

infection dynamics for a significant

number of different countries.

CA; GA; SEIR The parameters of CA model of cellular

automata were optimized by sequential

evolutionary genetic algorithm, and the

epidemic development curve was

simulated.

COVID-19 epidemiological

data and population data

Worldwide scale

Monteiro et al.

(41)

The actual role of immune

individuals in infection spread

Immune individuals affect the spread of

contagious diseases.

CA; GA By using a genetic algorithm, the values

of three parameters of CA model are

determined from data of prevalence of

varicella in Belgium and Italy, in a

pre-vaccination period.

Data of varicella prevalence Belgium and Italy

Monteiro et al.

(42)

Dynamic modeling of

COVID-19

Evaluate the impact of distinct

quarantine regimes on the SARS-CoV-2

pandemic.

PCA; ODE model From its mean-field approximation

written in terms of ODE, analytical

expressions for the basic reproduction

number and the ratio between

symptomatic and symptomatic

individuals were derived. Then, those

expressions be used to characterize the

dynamical behavior observed in

computer simulations with the PCA

model.

N/A Virtual scene

Medrek and

Pastuszak (43)

Infectious disease dynamics

modeling

The earlier reduction of personal

contacts the faster reduction of

infections number.

CA; SEIR A simulated model of COVID-19 was

developed using an improved influenza

transmission model and incorporating

factors related to the actual

demographic and geographic profile of

the simulated population.

COVID-19 epidemiological

data; population density and

age structures

Poland, France

and Spain
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TABLE 1 (Continued)

References Study focus Main findings Models Method description Data Geographic

extent

Ghosh and

Bhattacharya (44)

Understand the effects of

these measures on the control

of the epidemic in a

data-driven manner

Gives us both spatial and temporal

variations of the infection spread with

the insight about the contributions of

different infection parameters.

PCA; A spatially explicit epidemiological

model through PCA on a square lattice

with SEIQR structure is defined. Instead

of having three subpopulations,

COVID-19 has partitioned the society

in five different subpopulations.

N/A Virtual scene

Jizhe et al. (45) Modeling epidemic dynamics The high intensity of population

movement in the Greater Bay Area

(GBA) brings a high risk of virus

transmission. All kinds of control

measures taken by the epidemic

prevention department have a strong

restraining effect on the spread of the

virus in the GBA.

SEIR model By fusing multi-source space-time

dynamic city big data, build the new

improvement of epidemic risk

assessment model, and implement a

large bay area of guangdong nine cities

of multi-scale risk assessment is the

spread of the virus.

COVID-19 epidemiological

data; Census data; Cellular

signaling data; Point of

Interests (POI)

GBA

Ferretti et al. (46) Epidemic control based on

contact tracing

Explored the feasibility of protecting the

population (that is, achieving

transmission below the basic

reproduction number) using isolation

coupled with classical contact tracing by

questionnaires vs. algorithmic

instantaneous contact tracing assisted

by a mobile phone application.

Mathematical

formalism

Using key parameters of epidemic

spread to estimate the contribution of

different transmission routes with a

renewal equation formulation, and

analytically determined the speed and

scale for effective identification and

contact tracing required to stop the

epidemic.

N/A N/A

Keskinocak et al.

(47)

Project the number of

COVID19 infections

Shelter-in-place followed by voluntary

quarantine substantially could reduce

COVID19 infections, healthcare

resource needs, and severe outcomes.

ABM ABM captures the natural history of the

disease at the individual level, by age

group, as well as the infection spread via

a contact network consisting of

interactions in households, peer groups

(workplaces, schools), and communities,

with different rates of transmission.

COVID-19-specific

parameters and data from

Georgia on population

interactions and

demographics

USA

(Continued)
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TABLE 1 (Continued)

References Study focus Main findings Models Method description Data Geographic

extent

Hinch et al. (48) Predict the spread of infection

and assess the impact of

public health measures

Present OpenABM-Covid19: an

agent-based simulation of the epidemic

including detailed age-stratification and

realistic social networks.

ABM Workplaces, schools, and social

environments are modeled as Watts

Strogatz small-world networks, and

homes are modeled as independent fully

connected networks. The network was

parameterized such that the average

number of interactions matched the

age-stratified data. In these interactive

networks, contact between synths has

the potential to spread the virus that

causes COVID-19, which can then be

recalled for contact tracing and possible

isolation.

COVID-19 epidemiological

data; demographics data;

observed hospitalization data;

seroprevalence data

UK

Kerr et al. (49) Project epidemic trends,

explore intervention

scenarios, and estimate

resource needs

Covasim was developed to help

policymakers make decisions based on

the best available data.

ABM Covasim calculates the probability that a

given agent will change from one state

to another at a given time step, such as

from susceptible to infection, or from

critically ill to dead. Once these

probabilities are calculated, a

pseudorandom number generator with

user-specified seeds is used to determine

whether a transition actually occurred

during a given model run.

Data on country age

distributions and household

sizes as reported by the UN

Population Division 2019

Africa,

Asia-Pacific,

Europe, and

North America

Silva et al. (50) Simulate the pandemic

dynamics

In the impossibility of implementing

scenarios with lockdown, which present

the lowest number of deaths and highest

impact on the economy, scenarios

combining the use of face masks and

partial isolation can be the more realistic

for implementation in terms of social

cooperation.

ABM; SEIR By emulating a closed society living on a

shared finite environment, composed of

humans, which are organized in

families, business and government,

which interact with each other.

COVID-ABS try to cover the main

elements of the society.

Social, demographic and

economical parameters

Brazil

(Continued)
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TABLE 1 (Continued)

References Study focus Main findings Models Method description Data Geographic

extent

Wei et al. (51) Simulate the spatial spread of

an epidemic

Constructed a city-based epidemic and

mobility model (CEMM) to stimulate

the spatio-temporal of COVID-19.

ABM The adapted CEMM takes the city as the

basic unit of analysis, assumes each city

as the agent node, takes the total

population of the city, the number of

infected cases and other parameters as

node attributes, and takes the

population flow between cities as the

connection between nodes to build a

multi-agent network, also known as the

urban network.

Tencent migration data;

COVID-19 epidemiological

data

China

Castro and Ford

(52)

Simulating COVID-19

transmission in University

Students

Presented a new geospatial agent-based

simulation model to explore the

transmission of COVID-19 between

students living in Newcastle University

accommodation and the efficiency of

simulated restrictions

ABM By using the GAMA platform, a 3D

ABM of buildings, footpaths, students,

other dynamic and static agents is

developed. Their interactions, based on

daily routines, and the implementation

of a mathematical epidemiological SEIR

model, allowed the simulation of generic

outbreaks in the area of study.

OS Mastermap building data;

OS OpenMap—Local

footpath data; student data

Newcastle

University

Hoertel et al. (53) Evaluate the potential impact

of intervention strategies

against COVID-19

Proposed a stochastic agent-based

microsimulation model of the

COVID-19 epidemic in New York City

ABM The model included 148 parameters.

Parameters on individual and disease

characteristics (n= 117) were mainly

based on available data from prior

studies and model calibration.

Parameters related to social contacts

were based on either prior studies (n=

9) or assumptions when no data were

available (n= 22).

COVID-19 epidemiological

data; population data.

New York City
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FIGURE 1

Study selection progress (Articles retrieved on August 24, 2022).

Data retrieval was conducted firstly to select relative papers

from 2019–2022. Then we filtered the retrieval data and

reviewed the studies related to our research topic.

TABLE 2 Literature data retrieval condition settings such as document

database, retrieval mode, retrieval terms, time span, genre and

language in this study.

Literature retrieval

item

Literature retrieval settings

Document database Web of Science core collection, Google

Scholar

Retrieval mode Topic search

Retrieval terms (COVID-19 OR SARSCOV-2) AND (spatial

OR temporal OR spatial analysis OR space

time) AND (model OR simulate OR

simulation OR evaluate OR dynamic)

Time span January 1, 2020 to August 24, 2022

Genre All documented types

Language English

and regions, and provide scientific weapons for human beings to

resist the spread of disease.

Eligibility criteria

Articles were considered eligible for inclusion if they

extensively described techniques or reviews related to the

modeling of spatio-temporal dynamics during the spread of

COVID-19. We included articles in English published during

the COVID-19 outbreak from 2019 to 2022, considering both

qualitative and quantitative research types of manuscript. In

addition, it is worth noting that papers that study some

of the pathogenic mechanism of viruses, specific drugs and

vaccines from a medical and biological perspectives have been

removed from our study selection. Articles that were not

peer-reviewed (e.g., letters, editorials, and comments) were

considered ineligible for inclusion.

Results

We mainly identified records that related to spatio-

temporal big data and dynamic models of COVID-19

and made typical models of macro-dynamic and micro-

dynamic models of COVID-19. Macro models usually

include compartmental models and metapopulation models.

Compartmental model treats the population as homogeneous

mixing, while metapopulation model divides the population

into several subgroups. A typical representation of micro

models is an individual-based model, which treats individuals

in a population as cells or agents consisting of a finite set of

states and behavior rules. Primary related datasets and model

summary can be analyzed below.

Primary related datasets

The spatio-temporal dynamics modeling of infectious

disease transmission mainly relies on spatio-temporal big data,

which provide the data basis for the modeling, monitoring,

forecasting and early warning of infectious disease transmission,

and provide strong decision support for epidemic prevention

and control and the resumption of work and production in

more provinces and cities. Therefore, before reviewing and

summarizing the modeling of spatio-temporal dynamics of

infectious diseases, we first summarized and classified the spatio-

temporal data of COVID-19 commonly used in these articles.

According to the characteristics and uses of the data, this

paper divides the existing spatio-temporal big data of COVID-

19 into three categories, epidemic statistical data, location-

based data, and Non-pharmaceutical Interventions (NPIs)

data. Epidemic statistical data is mainly used to support the

calculation of basic indicators of the epidemic, and can be

used to support the spatial and temporal statistical analysis

of the epidemic and the visual analysis based on Geographic

Information System (GIS), etc. The spatio-temporal location big

data mainly includes Origin-to-Destination (OD) data, cellular

network signaling data, and traffic network data provided by

major operators such public data sets are mainly used to

analyze the changes and migration of the epidemic in the

spatial dimension. NPIs data mainly includes case identification,

contact tracing and related measures, environmental protection
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TABLE 3 Grouping of COVID-19 spatio-temporal dataset sources into epidemic statistical data, spatio-temporal location data and NIPs data.

Type Data source Data level Items URL

Epidemic statistical data Johns Hopkins University Center for Systems

Science and Engineering (CSSE) (54)

Country Daily confirmed, deaths and recovered cases https://github.com/CSSEGISandData/COVID-19

World Health Organization (WHO) (55) Country Cases, deaths and vaccination https://www.who.int/emergencies/diseases/novel-

coronavirus-2019

European Center for Disease Prevention and

Control (ECDC) (55, 56)

Country Cases and deaths https://www.ecdc.europa.eu/en/geographical-

distribution-2019-ncov-cases

Worldometer (40) Country Daily confirmed, deaths, recovered and tests cases https://www.worldometers.info/coronavirus/

US Center for Disease Prevention and Control

(US CDC) (31)

County Cases, deaths, and testing and vaccination https://www.cdc.gov/coronavirus/2019-ncov/index.

html

COVID Tracking Project (57) State Cases and deaths, testing and hospitalization Data https://covidtracking.com/data

National Health Commission of the People’s

Republic of China (23, 35)

City Confirmed, deaths and recovered cases http://www.nhc.gov.cn/xcs/yqfkdt/gzbd_index.

shtml

Spatio-temporal location data Baidu (4, 35, 39) City Migration scale index http://qianxi.baidu.com/

SafeGraph (58) County The anonymous and aggregated place visit data https://safegraph.com

Descartes Labs (18, 58) County Mobility statistics (representing the distance a typical

member of a given population moves in a day) at the

US admin1 (state) and admin2 (county) level

https://github.com/descarteslabs/DL-COVID-19

Google mobility reports (18, 59) County Movement trends over time by geography, across

different categories of places such as retail and

recreation, groceries and pharmacies, parks, transit

stations, workplaces, and residential.

https://www.google.com/covid19/mobility?hl=en

Apple mobility reports (18, 60) County Mobility trends based on location data of Apple’s maps

services.

https://www.apple.com/covid19/mobility

Twitter API (18, 61) County The geographic location of the tweet https://developer.twitter.com/en/docs/twitter-api/

v1/tweets/sample-realtime/overview/decahose

NPIs data Our World in Data (62) Country More than 200 countries with data on vaccinations,

hospitalizations, risk of death, policy responses, etc.

https://ourworldindata.org/covid-cases

OxCGRT (63) Country School closing, workplace closing, restriction on

gatherings, stay-at-home requirements, vaccines, etc.

https://github.com/OxCGRT/covid-policy-tracker/

tree/master/data

WHO (64) Country Masks, schools, businesses, gatherings, domestic

movements, international travel.

https://covid19.who.int/measures

Complexity Science Hub COVID-19 Control

Strategies List (CCCSL) (65)

Country Contact tracing, environmental measures, healthcare

and public health capacity, social distancing and travel

restriction, etc.

https://covid19-interventions.com/
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measures, health care and public health capabilities, social

distance, travel restrictions, etc., which can be used to measure

the confrontation between society and government and the

effectiveness and spatial effect of a series of NPIs for the rapid

spread of COVID-19. Table 3 lists common data sources for

these three types of data, as well as the corresponding indicators

they provided.

Epidemic statistical data

COVID-19 epidemic statistical data have been successfully

applied to various epidemic prediction models in the early

stage of the epidemic, and most of the early epidemic

prediction models were data-driven (66, 67). Commonly used

epidemiological statistics are global and country-wide, including

indicators such as the number of confirmed cases, the number of

death cases, the number of recovered cases, the number of tests,

and the number of vaccinations, etc. By counting the number of

confirmed epidemics in various regions, statistical models and

mathematical models are used to predict the development trends

of future epidemic (68, 69). For example, Yang et al. (35) derived

the epidemic curve by integrating the latest epidemiological data

and the population migration data and founded a 5-day delay

would triple the size of the outbreak in mainland China. Wang

et al. (54) applied the coupled mathematical model Logistic

and machine learning Prephet prediction method to predict

the development trend of COVID-19 in countries such as the

world, Brazil, Russia, India, Peru, and Indonesia based on the

statistical data collected by Johns Hopkins University. Analysis

of the forecast curve shows that the response measures taken

by countries in early March 2020 controlled the spread of the

epidemic to a certain extent (26).

Location-based data

The proliferation of mobile devices has made it easier

to access location-based data of COVID-19. Researchers can

construct COVID-19 spatio-temporal data sets based on cellular

signaling data provided by major operators, thereby mining

OD data and using it to analyze the spatio-temporal spread

of the epidemic (70). For example, Gao et al. (58) derived

data from SafeGraph and modeled the relationship between

changes in population mobility and the diagnosis rate of

COVID-19. Hou et al. (5) combined human mobility and

social media big data to model the spread of COVID-19 and

the spread of risk. Public epidemic prevention and control

services based on spatio-temporal location big data make

cities more intelligent. GIS and big data technology play an

important role in the rapid aggregation of multi-source big data,

rapid visualization of epidemic information, spatial tracking

of confirmed cases, regional transmission prediction, epidemic

risk, and spatial division of prevention and control levels. It

can balance the supply and demand management of material

resources, eliminate social emotional panic, and provide

solid spatial information support for epidemic prevention

and control decision-making, measure formulation and effect

evaluation (71).

In the current era of globalization, the flow of people,

vehicles and logistics has shown explosive growth, making

public epidemic prevention and control a global challenge.

These data are typical spatio-temporal data, so the whole society

urgently needs to develop public epidemic prevention and

control services based on spatio-temporal location big data.

NPIs data

In the early stages of a pandemic, in the absence of

vaccines or effective treatments, NPIs are essential. However,

some of these measures have caused significant damage to

social development and the national economy. NPIs such as

isolation, school closures, social distancing, and wearing masks

do reduce the spread of the outbreak, but the potential degree

of mitigation is unclear, especially the relationship proportions

of these interventions. Minimizing the impact of the epidemic

and its impact on people’s lives is a scientific issue that needs

to be explored. Scholars and related public health institutions

have collected and established a series of data sets of NPIs

measures, including case identification, contact tracing and

related measures, environmental measures, health care and

public health capacity, resource allocation, normal life, risk

communication, social distance and travel restrictions, etc.

Model summary

Through the review of the spatiotemporal dynamic

propagation model in the previous section, we conclude that

macro models usually include compartmental models and

metapopulation models. Compartmental model treats the

population as homogeneous mixing, while metapopulation

model divides the population into several subgroups, as is

illustrated in Figure 2. A typical representation of micro models

is an individual-based model, which treats individuals in a

population as cells or agents consisting of a finite set of states

and behavior rules.

Macro-dynamic model

Compartmental model. In the historical development of

epidemic dynamics modeling, Ross’s study on malaria and

Kermack and Mckendrick’s study on epidemic transmission

models are two important milestones (72, 73). The SIR

compartmental model and its variants, such as SEIR and SIRS,

are traditional compartmental models widely used to estimate

the effective reproduction number and predict epidemic peak

duration or inflection points, which constitute the mainstream
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FIGURE 2

Evolution of the typical macro-dynamic models. Each circle represents an individual, and di�erent color of the circle signifies di�erent type of

people. Compartmental model treats the population as homogeneous mixing, while metapopulation model divides the population into several

subgroups. People can come and go between populations, and the compartmental model can be used to simulate the internal transmission

process of infectious diseases within populations.

of epidemic dynamics research (74–76). In the compartment

model, different compartments are established to represent

people in different disease states, and differential equations

are established to study the transmission dynamics of the

disease. For example, S, I and R in the SIR model represent

three groups of people: susceptible, infected and recovered

people, respectively.

In response to COVID-19, He et al. (30) established the SEIR

model of COVID-19 based on general control strategies such

as hospitals, isolation and external input, and used the model

to simulate and predict the evolution of the epidemic in Hubei

Province, China. Institute for Health Metrics and Evaluation

(IHME), a COVID-19 modeling team at the University of

Washington, constructed a SEIR model to predict the number

of COVID-19 deaths in the United States from September 22,

2020 to February 28, 2021 based on data from February 1

to September 21 (31). In order to classify the disease status

of the population and analyze the transmission dynamics of

infection more accurately, many variants of SEIR model have

been proposed by researchers, such as SEIRQ (32), SEIRQD (33),

which Q and D represents quarantine and deaths, respectively.

However, the virus infection rate and other parameters in

those models are usually constant. It is difficult to model the

spread of COVID-19 and predict the epidemic trend accurately,

with 0.9448 R2 and 0.1 MAPE of the cumulative confirmed

cases respectively. In order to solve this problem, scholars have

proposed a series of methods to dynamically update and correct

the parameters. Using the Particle Swarm Optimization (PSO)

algorithm to solve the parameters of the SEIRmodel, Godio et al.

(34) analyzed different scenarios of the evolution of COVID-

19 in Italy, and the results showed that each region of Italy

will reach the peak of the epidemic by mid-May 2020. In this

method, provided models that fitted the observed data with

good accuracy, although the stochastic approach has, in general,

a slightly lower error. A hybrid model of SEIRD and ARIMA

was also established to predict the development curve of the

epidemic. The use of ARIMA model eliminates the residual of

the dynamic model, improves the accuracy of the prediction of

infectious diseases by the compartmental model, and prolongs

the prediction period (13, 77). In addition, some scholars

have combined several prevention and control measures with

the SEIR model to derive epidemiological curves and evaluate

the impact of various prevention and control measures on

the development of the epidemic. Yang et al. integrated the

migration data of Wuhan, Hubei province around January 23,

2020 into the SEIR model, and found that the epidemic in China

should peak at the end of February and gradually decline at the

end of April, 2020. A delay of 5 days in shutting down Wuhan

could triple the size of the outbreak in mainland China (35).

After reading and summarizing the warehouse model

and its variants proposed by existing researchers, the author

made a graphical summary of all possible variants, roughly

shown in Figure 3. A major flaw in these models, however,

is their homogeneity mixing assumption, which assumes that

individuals in the same compartment are in complete contact

with each other and that they are equally likely to be infected

by any one of the infected. It may be possible for a single

small group, while if the population is larger, the internal spatial

and social relationship structure tend to be more complex, and

interpersonal interactions have a distinct individual orientation,

such as family, friends and colleagues, or contact frequency

between doctors and patients is significantly higher than the
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FIGURE 3

Illustration of compartmental model. S, E, I, R, D and V represent

susceptible, exposed, infected, recovered, death and

vaccination people, respectively.

others, then this assumption would not work anymore. During

the spread of COVID-19, it is found that a considerable number

of infections have occurred in community or work unit, and

a single infected person can infect a large number of people,

which is the so-called “super spreader” phenomenon, which

is significantly different from the transmission process of free

environment (36).

Metapopulation model. The metapopulation model was

originally derived from the field of bioecology and was

mainly used to simulate the migration behavior of individuals

between populations (78, 79), and were an extension of the

compartmental model which is introduced into modeling the

spread of infectious diseases (80–84). The main idea of the

metapopulation model is to divide the population into several

subgroups, namely the metapopulation, between which people

can be allowed to travel, and within the metapopulation, the

compartmental model can be used to simulate the transmission

process of infectious diseases within the metapopulation. For

example, the population of a country or region can be divided

into cities, and the city can be further divided into communities.

Based on the Bats-Hosts-Reservoir-People transmission

network, Chen et al. (37) constructed a transmission dynamics

model of COVID-19 with metapopulations and multiple

pathways, and calculated the transmission capacity of COVID-

19 by stages in each province basically, thus realizing the phased

transmission capacity assessment of COVID-19. Chinazzi et al.

(38) applied the Global Epidemic andMobility project (GLEaM)

to analyze global subpopulations centered on transportation

hubs, such as airports based on migration data from airports

around the world. The subgroups are connected through

population movement and individual travel (39). The SEIR

model was constructed within each subpopulation to simulate

the international spread of COVID-19, covering more than

3,200 subpopulations in about 200 countries and territories.

They calculated the outbreak of unconstrained travel and

compared the impact of travel restrictions on the epidemic

with actual travel restrictions, and the epidemiological modeling

results showed that for 90% of China, travel restrictions had

an impact on the epidemiological trajectory unless transmission

was reduced by more than 50% simultaneously within the

community. It considers different transportation and interaction

layers and distinguishes the mobility modeling from the

dynamical process mediated by the human dynamics. This

allows the integration of different processes of social contagion

that are not necessarily of biological origin but occurs taking

advantage of the individuals mobility such as information

spreading, social behavior, etc. GLEaM has proved to be very

flexible and we are working to make the GLEaM platform

available to the scientific community at large.

The metapopulation model overcomes the shortcomings of

the completely mixed hypothesis of compartmental model to a

certain extent, but it is still a kind of macroscopic and relatively

rough model that cannot describe the complex individual

behavior patterns of infectious disease transmission, such as

the movement rule of individuals in space and the behavior of

responding to disease.

Micro-dynamic model

The individual-based model is a microscopic simulation

model, which mainly includes CA and ABM based models.

This modeling idea treats individuals in a population as cells

or agents composed of a set of finite states and behavior rules.

In general, the evolution behavior of such a complex infectious

disease system consisting of virus, host and environment is

simulated by defining rules such as individual response behavior

to virus, individual movement behavior in space, and interaction

behavior between individuals.

CA model. A typical CA model is defined on a grid. The

grid of each point represents a cell in space and a finite state.

Evolution rules apply to each cell and proceed simultaneously.

The simple evolution of the cell unit simulates the complex

dynamic evolution of the entire system. Traditional CA can be

expressed by the following formula: Ct+1
k

= f (Ct
k
,Nt

k
), where

Ct+1
k

represents the cellular state of cell k at time t + 1, Ct
k

represents the cellular state of cell k at time t, Nt
k
represents the

neighborhood cellular state of cell k at time t, and f represents

the transformation function of cell from the state at time t to the

state at time t+1. Themain framework of CAmodel is illustrated

in Figure 4.

Frontiers in PublicHealth 14 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1033432
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wang et al. 10.3389/fpubh.2022.1033432

FIGURE 4

CA model to simulate the epidemic transmission based on

virtual geographic grids. Ct+1
k

represents the cellular state of cell

k at time t+ 1, Ct

k
represents the cellular state of cell k at time t,

N
t

k
represents the neighborhood cellular state of cell k at time t,

and f represents the transformation function of cell from the

state at time t to the state at time t+ 1.

CA has been used in many studies to model different

aspects of epidemics. It has been widely used to model the

disease spread of influenza and various vector-borne diseases,

such as dengue (85–88). A neighborhood condition is an

important aspect in the CA. The most used neighborhood

conditions are (i) Neumann’s neighborhood condition, (ii)

Moore’s neighborhood condition, (iii) Extended neighborhood

condition, and (iv) Random interactions. Coupled with these

neighborhood conditions, various models such as SEIR, SEIRS,

SEIRD, and SEIRQD have been studied with the help of CA

to model the spatial growth of epidemics (89, 90). Currently,

CA has gained a lot of momentum in the studies of COVID-19

(40, 91, 92). Various advanced studies with Genetic algorithms

and network models have been done for COVID-19 data (93–

95). For example, Indian scholars used sequence evolutionary

genetic algorithms to optimize the parameters of the CA model

and simulate the development curve of COVID-19 (40, 41),

this methodology can predict the varicella prevalence (with

average relative error of 2–4%) in Belgium and Italy. The

impact of different isolation systems on disease transmission

was studied using Probabilistic Cellular Automaton (PCA) to

simulate the spread of COVID-19 (42, 43), and the values of

the basic reproduction number and the ratio and obtained

in these simulations are similar to those found in real-world

observations. However, these methods have two limitations.

First, existing model do not take into account the effects of time

correlation, and the prediction effects of the existing forms of

continuous time series data are not ideal. None of the above

models take into account the complex behavior of cells in

the process of disease transmission, nor do they discuss the

impact of various factors such as population movement on

disease transmission, and fail to achieve the purpose of effective

prediction. On the other hand, most of the existing CA-based

infectious disease simulations are based on virtual geographic

grids (simulation data), as is shown in Figure 4. Each small box

or cell in the grid can be occupied by one person (44) rather

than a real house or residential area. Although they can simulate

the impact of policy changes on the spread of epidemics, they

cannot, much less predict the spread of epidemics in actual areas.

Based on the data of confirmed COVID-19 cases, combined

with cellular signaling data and spatial environmental data,

spatial clustering analysis, factor analysis, and regression

analysis were used to explore the spatio-temporal clustering

characteristics of COVID-19 street scale in Chongqing, and

analyze its influencing factors (96). Xia et al. combined with

the spatio-temporal big data and epidemic dynamics models of

multi-source cities in the Greater Bay Area (GBA), calculated

the infection parameters (R0) of different communities in

the city, corrected the SEIR model, constructed a suitable

GBA and improved the regional model. Finally, the spread

of COVID-19 in the GBA and the effectiveness of various

epidemic prevention and control measures were evaluated

and simulated (45). Xu et al. (97) collected and collated

epidemiological data at the individual level, and identified

them by geocoding to better monitor and predict the spread

of infections at the spatial level. Ponce-de-Leon et al. (98)

have developed a cross-referencing GIS that provides integrated

datasets for managing, retrieving, visualizing and analyzing

time series data from Spain’s regularly updated population

movement network and daily reports of COVID-19 cases.

These models are based on CA or its variants to study

the spread of infectious diseases at the spatial level. Current

approaches for CA model transformation rule mining are

micro-based and consider only the interactions between local

meta-cellular units. However, in the real world, macroscopic

factors, such as people wearing masks, keeping social distance,

quarantine policies adopted by the government, vaccination

and other measures, and medical resources in hospitals

during an outbreak, will have a non-negligible impact on the

transformation of microscopic meta-cellular units during the

spread of an epidemic.

ABM model. Compared with the CA model, the ABM

model is an abstraction of real society, considering the

movement of individuals in space and the social relationships

between individuals. The ABM model is flexible, with

individuals in the model autonomously changing their

behaviors based on the environment and becoming more

sensitive to government control. Moreover, the model is

highly scalable and suitable for modeling and analyzing

the spread of infectious diseases in different scenarios.

Like we described in Figure 5, many researchers have used

social contact networks to constrain the social activities and

spatial distribution of individuals when modeling, and have

achieved good performance (46, 47), the model estimated
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FIGURE 5

Agent based model to simulate epidemic transmission in real

network. The broken line indicates interactions between agents

in various places (home, workplace, school, public place).

R0 = 2.0 in the early stages of the epidemic in China.

The contributions to R0 included 46% from pre-symptomatic

individuals (before showing symptoms), 38% from symptomatic

individuals, 6% from asymptomatic individuals (who never

show symptoms), and 10% from environmentally mediated

transmission via contamination. Based on this method,

the Los Alamos National Laboratory in the United States

developed an EpiSimS simulation tool, which is suitable for

simulating the spread of diseases in cities with a population

of 1 million (99). EpiSimS generates virtual cities based on

real demographic data to simulate the spread of diseases

in cities. Eubank et al. (100) used EpiSimS to study the

spread of the epidemic after terrorists used smallpox to

attack Portland.

To response to COVID-19, better respond to ongoing

epidemics and use computational models to predict the spread

of infections and evaluate the impact of public health measures.

Covid-tracing applications and research could track the risk

of COVID-19 cases. For example, one study (101) aims

to introduces a data-driven method to dynamically model

infection risk of international ports of imported COVID-19

cases. The results show that the proposed method can track

the risk of the imported COVID-19 of the main cruise ports

worldwide. Hinch et al. (48) established OpenABM, an agent-

based epidemic simulation model that can evaluate NPIs,

including manual and digital contact tracing and vaccination

procedures. It can simulate a population of 1 million in seconds

per day, allowing parameter sweeping and inference based on

formal statistical models, by performing a two-dimensional grid

search across the prevalence at which a national lockdown

was implemented (calibrated to 1.55%) and the reduction in

daily contacts under lockdown (calibrated to 0.33 of pre-

lockdown levels, it showed similar results to values reported

from the first wave in the UK. Kerr et al. (49) build a Covasim

model to predict pandemic trends, intervention options, and

Estimated resource requirements. While the model correctly

predicted the trend in cases, it underestimated the number of

deaths, although the observations were still within the 80%

forecast interval.

To make the predictions more accurate, Silva et al. (50)

proposed a new SEIR (susceptible exposure-infection-recovery)

agent-based COVID-ABS model, which aims to simulate

pandemic dynamics using agent societies that simulate people,

businesses, and governments, and seven simulation scenarios

were conducted and it was concluded that a scenario with

the fewest fatalities and the greatest economic impact could

not be achieved in a lockdown scenario, and a combination

of masks and partial isolation may be more realistic in terms

of social cooperation. The results showed that COVID-ABS

approach was capable to effectively simulate social intervention

scenarios in line with the results presented in the literature.

Another study (102) proposed an agent-based model and

an implementation strategy for a technology-based contact

tracing smart application, and explored the interaction between

different adoption rates of contact tracing applications, different

levels of detection capabilities, and behavioral factors role to

assess the impact on the epidemic. This model can study specific

factors between virus, host and environment at the micro level,

and it is convenient to study specific factors researchers focus

on. Its main disadvantage is low computational efficiency (38).

To solve this problem, Wang et al. (51) supposed that each city

is an agent with attributes such as urban population, number of

infections, inter-city migration as links between nodes, thereby

establishing a multi-agent urban network to simulate the inter-

city communication process of COVID-19 among Chinese

cities. The overall adapted city-based epidemic and mobility

model (CEMM) they proposed has higherR2 and lower standard

errors than CEMM, especially for cities outside Hubei Province,

and the highest fitting accuracy (R2) reached 0.854 for all

cities in China. Cuevas developed an agent based model to

simulate the transmission risks in facilities, and proposed an

agent-based model to simulate the spread of SARS-CoV-2 on

a city scale. Researchers also proposed some new geospatial

agent-based simulation model to explore the relation between

the transmission of COVID-19 and intervention strategies (52,

53), the variation of each model parameter value by 20% had

limited impact on outcome estimates (i.e., <4,000 per 100,000

for incidence and 11 per 100,000 for mortality), suggesting the

robustness of the results. And the developed ABM could help

university managers to respond to current and future epidemics

and plan effective responses to keep safe as many students

as possible.
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Prospective research directions

Due to the important role of spatio-temporal dynamics

modeling in depicting the spread of infectious diseases and

deepening the understanding of the characteristics of epidemic

diseases, as well as the generation and support of spatio-

temporal big data of infectious diseases, large number of

COVID-19 dynamics models have been proposed, effectively

guiding the actual work of epidemic prevention and control

all over the world. It can be seen from the above research

progress that the researchers used the compartmental model,

metapopulation model and individual-based model to predict

the epidemic trend, evaluate the NIPs and analyze the

influencing factors of the epidemic. These studies have provided

decision-making support for scientific response to the epidemic,

but also raised some new challenges. We summarize the

prospective future research direction below and illustrated in

Figure 6.

(1) Establish a fine-grained spatio-temporal data set.

Data quality is a major limitation in modeling the spatio-

temporal dynamics of infectious diseases and largely determines

the effectiveness of modeling. Among the articles we analyzed,

there were certain differences in the sources, acquisition and

collation methods of COVID-19 data. Some researchers have

pointed out that existing spatio-temporal big data of COVID-

19 has some shortcomings, including statistical bias by test

criteria, test methods and detection rates (103) and the omission

of location-based case data (104). However, people tend to

have more detailed expectations for dynamic modeling, such

as the hope of simulating the development of the epidemic

at the micro-scale and proposing precise intervention policies

and suggestions, which makes the establishment of fine-

grained spatial data integration an important prerequisite for

accurate modeling of infectious diseases, especially location-

based patient data. Therefore, for the public health sector,

more fine-grained spatio-temporal data sets play a crucial and

decisive role in dynamicmodeling and are an important basis for

dynamic modeling. With the development of cloud computing

and crowdsourced data technology, it is possible to collect

timely, trusted, and fine-grained large-scale epidemic datasets

intelligently (105, 106).

(2) Extract the spatio-temporal trajectory of the patient.

The three elements of the spread of infectious diseases

are the source of infection, the route of transmission and

the susceptible population. Since the outbreak of COVID-

19, some countries such as China have entered a stage

of normalized epidemic prevention and control (107).

Conventional epidemic prevention and control needs

to quickly track the epidemic space, find the source of

infection, cut off the transmission route, and control the

epidemic with the least human and material resources.

Therefore, how to build a spatio-temporal dynamics

model, extract the spatio-temporal trajectory of patients in

reverse, and analyze the potential spatio-temporal exposure

network is another major challenge for infectious diseases

dynamics modeling.

(3) Build a macro-micro fusion model based on individual

big data.

As we summarized in this paper, macroscopic models

are more suitable for simulating and describing the overall

spread of the epidemic on a large scale, providing an effective

reference for macroscopic decision-making, while ignoring

individual behavioral responses to the disease. The micro model

introduces the participation of individual behaviors to simulate

the evolution of the on a small scale, but the calculation cost

is high and the calculation parameters are complex. In the

future, with the improvement of big data infrastructure and

establishment of fine-grained individual big data (such as spatio-

temporal location big data) (71, 108), the fact that some maps,

like Amap, could be publicly published required taking special

care with certain privacy concerns by reaching the optimal

trade-off between public entitlement to being informed and the

right to personal privacy. Therefore, it is possible to realize

the integrated research of macro and micro models, and to

study the effective interaction, mutual influence and restriction.

Furthermore, based on visualization tools, this integrated model

can be used to explicitly control the large-scale transmission of

the virus.

(4) Establish a global-oriented spatio-temporal

dynamics model.

This study reviews the application of a variety of dynamic

models in infectious disease modeling of COVID-19, and argues

that dynamic models in different disciplines have their own

advantages and disadvantages, and are suitable for different

modeling scales. The spatio-temporal dynamics model not only

needs to consider the propagation characteristics of space,

but also need to explore its spatio-temporal development law.

In the current era of big data, the spatio-temporal changes

in information collection methods and fine-grained data, as

well as the development of machine learning and data driven,

make it possible to build a spatio-temporal infectious disease

dynamics model that is interdisciplinary and oriented to a global

perspective (109). Future research on the dynamics model of

infectious diseases should consider the complexity requirements

of the transmission and prevention and control processes. On

the basis of strengthening the rapid recognition and prevention

and control of infectious diseases, promoting the real-time

sharing of epidemic information and exploring the combined

application of multiple models, it is necessary to make full

use of the development achievements of GIS (24), computer

science and intelligent frontier technologies (27, 110). Thus, to

provide theoretical support and data support for public health

decision-making and policy makers. As can be seen from the

COVID-19 pandemic, infectious diseases in today’s world are

a serious challenge. Studying the COVID-19 pandemic as a

global issue, developing a system dynamic model to study global
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FIGURE 6

Prospects for future research on COVID-19 spatio-temporal dynamics models. The challenges and trends of building global-level models,

making regional customized forecasts, providing multi-time-scale decision support, and developing model reproducibility based on

spatiotemporal big data are prospected.

issues, and conducting causal analysis will help countries control

the epidemic.

(5) Realize “customized” simulation prediction and

precise strategy.

Epidemic prediction is one of the most important methods

of epidemic prevention and control. Affected by the national

conditions of various countries and the actual epidemic

prevention policies of different regions, the spread of the

epidemic in different regions and cities is also different.

The spatio-temporal dynamic integrated model is based on

historical epidemic data, inverts a specific area, and obtains the

“customization” epidemic transmission parameters in the area,

in order to simulate and predict the epidemic situation after

fighting against secondary or other types of infectious diseases

in the area. This requires that compared with current machine

learning methods that focus on short-term epidemic scale for

accurate prediction, deep learning methods based on spatio-

temporal characterization should focus more on extrapolating

the medium- and long-term trends of disease development,

simulating and evaluating the effects of different interventions,

and revealing some hidden features of the disease transmission

process, that is, not to accurately predict the future scale of

infection as a single modeling purpose, but more so as a key

planning method that can be used for intervention strategy

deployment and regulation decisions in epidemics. The future

research direction of epidemic spatio-temporal dynamics model

should be to introduce a multi-layer and multi-scale integrated

model of epidemic spatio-temporal dynamics with big data and

intelligent computing, and to realize “customized” simulation

prediction and precise strategy by strengthening the research

and development of meso-dynamic model (27).

(6) Provide adaptive mid- and long-term spatio-temporal

dynamics simulation decision support.

Furthermore, in the face of so many infectious disease

models, there is urgent need to develop widely applicable and

public modeling tools and platforms, especially spatially explicit

modeling tools based on GIS (71). This tool can not only provide

for researchers with a verifiable scientific research platform, but

also provide a convenient scientific model for public health

departments and policy makers, become an auxiliary means

of daily decision-making, and promote the process of public

health scientific decision-making. Therefore, an adaptive mid-

and long-term (frommonths to year) spatio-temporal dynamics

simulation decision support model combined with medical

conclusions will be a technical problem to be tackled in the

next stage.

(7) Improve the reusability of spatio-temporal

propagation model.

Although some studies have published source code, the

exact specification of the methods and parameters required

to reproduce these results is opaque and thus the results

are not reproducible (23, 111). Studying the spatio-temporal

transmission model of COVID-19 infectious diseases is not

only to provide suggestions for the modeling of the spread

of COVID-19, but more importantly, to provide scientific and

technological support and model reference for other major

public health emergencies, and to help the simulation and

prediction after the outbreak of other types of infectious
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diseases. Therefore, it is necessary to improve the reusability of

the spatio-temporal propagation model.

Discussion and conclusion

This study aims to reveal the modeling methods and

trends of COVID-19 spatio-temporal transmission from the

perspective of literature induction, and divide the spatio-

temporal dynamic modeling models of COVID-19 into macro

modeling and micro modeling at the research scale. On the

basis of previous reviews, our current research further expand

on the previous review and further integrate spatial models of

COVID-19, focusing on analyzing spatio-temporal modeling

models related to COVID-19. Our innovation is to fill in the

gaps in the spatio-temporal dynamic modeling of COVID-

19 review studies, review the development of this field, and

recommend further research to enable more people to work

together in public health prevention and control, and help to

provide targeted responses to COVID-19 as soon as possible.

Geographical Information Science (GIScience) must be

considered in promoting spatio-temporal dynamic modeling,

whether it is macro model or micro model. GIScience provides

a new tool to promote public health, helps us to understand

the world around us by capturing, quantifying and deploying

the wealth of geographical information available. Traditional

geographic methods have many limitations in this regard, as

people move a lot in their daily lives and interact with dynamic

environments in complex ways. With advanced geospatial

technologies such as mobile tracking and sensing and the

GIScience method, we can know when people are affected

by what environment, and accurately measure the degree of

environmental impact on people’s health and the spread of

disease. GIScience has been used to do a lot of research

on COVID-19-related research, such as studying the impact

of human movement on the spread of COVID-19 (112),

identifying the spatio-temporal patterns of COVID-19 risk and

its association with different built environment characteristics

(113–115), spatial analysis of the impact of urban geometry

and sociodemographic characteristics on COVID-19 (116).

Some study (115) explores the spatial patterns of COVID-

19 transmission and its key determinants could provide a

deeper understanding of the evolution of the COVID-19

pandemic, another research (117) successfully developed a

vector field approach to evaluate the environmental exposure at

the population level. However, with its focus on crunching vast

amounts of data, it can sometimes lose track of the human factor:

how people interact with their environment at an individual

level, and what that means for them. This is what GIScience

should focus on when it is combined with public health in

the future. In the reflection of this review, we believe that in

order to respond to the COVID-19 global pandemic, positive

measures should be taken from an interdisciplinary perspective,

through international solidarity and cooperation, and from a

global perspective (118, 119). However, it turns out that although

this starting point is good, it will cause certain contradictions at

the political level (120).

Our research also has some limitations. First, we mostly

focus on modeling the spread of the epidemic at present,

and post-epidemic spatio-temporal modeling is also a very

important aspect (121). Second, with the development of

information technology, geospatial data is growing by at least

20% per year (122) and accessibility is increasing year by year. In

the face of these data, how to establish a GIS online application

that is convenient for public tasks is also an important way to

show the results of the dynamic modeling of spatio-temporal

propagation, due to the difficulty of data acquisition, we have

not made a unified induction here. Also, in our spatio-temporal

dynamic modeling study of COVID-19, we only used Google

Scholar and the WOS database. Our search period was 32

months (January 2020–August 2022) and articles published

thereafter are not included in this review. In addition, we

only consider articles published in English. Therefore, there is

an article that, while it satisfies other eligibility criteria, has

had to be excluded due to language reasons. According to the

performance of major infectious disease in the past, the spread

of epidemics in time and space has obvious differences due to

different environmental factors (123–125), medical conditions

(23), government decisions (126, 127), social systems (128, 129),

etc. The impact analysis of the model is also an important

aspect. In the macro- and micro-models reviewed in this paper,

although they are covered to a certain extent, they are not

comprehensive enough.

To the best of our knowledge, this is one of the first

systematic reviews of the spatio-temporal modeling of COVID-

19 related research. Our work does not only provide an

overview of how macro-dynamic and micro-dynamic models

was used so far but also provides pointers on how those

method and GIScience could be more efficiently used in

COVID-19-related works and other public health issues in

the coming days. Our study also sheds light on analyzing the

progressive relationship between the models and their strengths

and weaknesses. The inductive study of these models and results

analysis have important implications for our understanding of

the transmission dynamics of the COVID-19 pandemic and

for developing prevention and control strategies to contain

the spread and progression of the disease. In the early stage

of the COVID-19 outbreak, most dynamics modeling studies

were based on public health data and global flight data

to simulate the spread and change of the epidemic on a

global and national scale from a macro-modeling perspective.

Although this simulation can give a rough prediction of

epidemic development in a short time, it cannot achieve accurate

simulation on a small scale. Therefore, a model based on

population division was proposed to achieve more accurate

macromodeling.With the development of computer technology
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and the disclosure of mobile phone signaling data by major

operators, researchers have carried out some micro studies

based on these fine-grained data. Individual-based modeling

provides the possibility to evaluate the dynamic modeling of

social contact and social relationship structure on the spread of

infectious diseases.

The dynamic modeling method can better reflect the

epidemic law from the transmission mechanism of the disease

and can consider the global status in the epidemic process.

The methods of infectious disease dynamics, biostatistics and

computer simulation are combined to deepen the understanding

of the epidemic law of infectious diseases, and make the

established model and prevention strategy more consistent with

the reality. Meanwhile, we have noticed that each model has

its own advantages and disadvantages. Without the premise

of practical application, we cannot say that the more complex

the model will perform better. Because simple models often

contain fewer parameters, and complex models often contain

more parameters, the uncertainty of the model is increased from

the determination of parameters. In addition, micro-models

are not necessarily better than macro-models, because micro-

models often require large computing resources, which is also

a non-negligible challenge for modeling. The mechanism and

parameter selection of micro and macro models need to be

further studied in our next research.
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