
Citation: Wang, Y.; Dai, P.; Zhao, J.;

Zhang, Q. Fast CU Partition Decision

Algorithm for VVC Intra Coding

Using an MET-CNN. Electronics 2022,

11, 3090. https://doi.org/10.3390/

electronics11193090

Academic Editor: Stefanos Kollias

Received: 17 August 2022

Accepted: 23 September 2022

Published: 27 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Fast CU Partition Decision Algorithm for VVC Intra Coding
Using an MET-CNN
Yanjun Wang, Pu Dai * , Jinchao Zhao and Qiuwen Zhang

College of Computer and Communication Engineering, Zhengzhou University of Light Industry,
Zhengzhou 450002, China
* Correspondence: 332007010490@zzuli.edu.cn; Tel.: +86-15036888921

Abstract: The newest video coding standard, the versatile video coding standard (VVC/H.266), came
into effect in November 2020. Different from the previous generation standard—high-efficiency video
coding (HEVC/H.265)—VVC adopts a more flexible block division structure, the quad-tree with
nested multi-type tree (QTMT) structure, which improves its coding performance by 24%. However, it
also causes a substantial increase in computational complexity. Therefore, this paper first proposes the
concept of a stage grid map, which divides the overall division of a 32× 32 coding unit (CU) into four
stages and represents it as a structured output. Second, a multi-stage early termination convolutional
neural network (MET-CNN) model is devised to predict the full partition information of a CU with
a size of 32 × 32. Finally, a fast CU partition decision algorithm for VVC intra coding based on an
MET-CNN is proposed. The algorithm can predict all partition information of a CU with a size of
32 × 32 and its sub-CUs in one run, completely replacing the complex rate-distortion optimization
(RDO) process. It also has an early exit mechanism, thereby greatly reducing the encoding time. The
experimental results illustrate that the scheme proposed in this paper reduces the encoding time by
49.24% on average, while the Bjøntegaard Delta Bit Rate (BDBR) only increases by 0.97%.

Keywords: VVC; QTMT; stage grid map; MET-CNN; fast CU partition algorithm

1. Introduction

Recently, there has been an emergence of video formats such as ultra-high definition
(UHD), 4K, and virtual reality (VR) [1]. Because of their high resolution, they are widely
used in video calls and major application software, bringing people a better visual experi-
ence. However, the popularity of high-resolution video has put forward higher require-
ments for video compression and transmission technology. High-efficiency video coding
(HEVC/H.265), as the previous generation video coding standard, is no longer enough to
meet the growing demand [2]. Therefore, researchers have begun to explore a new genera-
tion of video coding standards—the versatile video coding standard (VVC/H.266) [3].

VVC was proposed by the Joint Video Experts Team (JVET) on 10 April 2018. The
standardization work was completed in June 2020, and it came into effect in November
2020. Different from the previous generation video coding standard HEVC, VVC intro-
duces many new technologies on its basis, such as quad-tree with nested multi-type tree
(QTMT) structure, cross-component linear model prediction (CCLM), matrix weighted
intra prediction (MIP), multiple transform selection (MTS), adaptive loop filtering (ALF),
and so on [4]. Due to the introduction of new technology, VVC has obtained higher coding
performance and wider application prospects. Compared to the HEVC encoder HM16.0,
the latest VVC encoder VTM10.0 improves the encoding performance by 24%, but also
causes unacceptable encoding complexity. In the test configuration of the all intra (AI), the
coding complexity of VVC is 19 times that of HEVC [5]. The main reason for the increase in
complexity is the difference between the two block division techniques, that is, VVC adopts
a new block division technique—the QTMT division technique. As shown in Figure 1,

Electronics 2022, 11, 3090. https://doi.org/10.3390/electronics11193090 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11193090
https://doi.org/10.3390/electronics11193090
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6312-3599
https://orcid.org/0000-0001-5617-3953
https://doi.org/10.3390/electronics11193090
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11193090?type=check_update&version=2


Electronics 2022, 11, 3090 2 of 15

QTMT provides a variety of division types for block division technology, namely quad-tree
(QT), horizontal binary tree (HBT), vertical binary tree (VBT), horizontal trinomial tree
(HTT), and vertical trinomial tree (VTT) division. The flexible division method enables the
VVC encoder to make more detailed divisions according to the different texture complexity
of the coding unit (CU) so that the reconstructed image quality during decoding is closer to
the original image, thereby greatly improving the encoding performance [6].

Electronics 2022, 11, 3090 2 of 16 
 

 

increase in complexity is the difference between the two block division techniques, that is, 

VVC adopts a new block division technique—the QTMT division technique. As shown in 

Figure 1, QTMT provides a variety of division types for block division technology, namely 

quad-tree (QT), horizontal binary tree (HBT), vertical binary tree (VBT), horizontal trino-

mial tree (HTT), and vertical trinomial tree (VTT) division. The flexible division method 

enables the VVC encoder to make more detailed divisions according to the different tex-

ture complexity of the coding unit (CU) so that the reconstructed image quality during 

decoding is closer to the original image, thereby greatly improving the encoding perfor-

mance [6]. 

 

No Split Split QT

Split HTTSplit VTT

Split VBT Split HBT

 

(a) (b) 

Figure 1. CU partitioning in VVC: (a) 64 × 64 CU as an example; (b) VVC split types. 

In detail, in HEVC, a coding tree unit (CTU) is split into many sub-CUs by the QT 

structure, and each sub-CU can be further split into one, two, or four prediction units 

(PUs) depending on the PU’s division type. After the PU is predicted and residual infor-

mation is obtained, the sub-CU can be further split into several transform units (TU), and 

the division method is still QT division. In VVC, the PU and TU are canceled, and the 

concept of CU is used uniformly. Multiple division types can be used to divide CUs to 

obtain CUs of different sizes, which is also the biggest difference between VVC and HEVC 

in block division technology [7]. 

Similar to HEVC, the selection of the CTU partition type in VVC is also based on rate-

distortion optimization (RDO). The specific process is as follows: the encoder traverses all 

possible division types, calculates its rate-distortion (RD) cost in turn, and selects the di-

vision type with the smallest RD cost as the best division method for the CU. The formula 

for calculating RD cost is as follows: 

CosRD t D R= +  , (1) 

L C CD SSE W SSE= +  , (2) 

where LSSE  represents the square sum of luminance of the original picture and the re-

constructed picture, CSSE  denotes the square sum of chrominance;   and CW  indi-

cate the Lagrange multipliers and chroma distortion weights, respectively; R  repre-

sents the number of encoded bits. 

RDO can select the best division mode of CU and enhance the coding performance. 

However, with the increase in VVC division types, the encoder needs to traverse all pos-

sible CU division combinations and calculate the RD cost of all division types, which 

Figure 1. CU partitioning in VVC: (a) 64 × 64 CU as an example; (b) VVC split types.

In detail, in HEVC, a coding tree unit (CTU) is split into many sub-CUs by the QT
structure, and each sub-CU can be further split into one, two, or four prediction units (PUs)
depending on the PU’s division type. After the PU is predicted and residual information
is obtained, the sub-CU can be further split into several transform units (TU), and the
division method is still QT division. In VVC, the PU and TU are canceled, and the concept
of CU is used uniformly. Multiple division types can be used to divide CUs to obtain CUs
of different sizes, which is also the biggest difference between VVC and HEVC in block
division technology [7].

Similar to HEVC, the selection of the CTU partition type in VVC is also based on
rate-distortion optimization (RDO). The specific process is as follows: the encoder traverses
all possible division types, calculates its rate-distortion (RD) cost in turn, and selects the
division type with the smallest RD cost as the best division method for the CU. The formula
for calculating RD cost is as follows:

RDCost = D + λ · R, (1)

D = SSEL + WC · SSEC, (2)

where SSEL represents the square sum of luminance of the original picture and the recon-
structed picture, SSEC denotes the square sum of chrominance; λ and WC indicate the
Lagrange multipliers and chroma distortion weights, respectively; R represents the number
of encoded bits.

RDO can select the best division mode of CU and enhance the coding performance.
However, with the increase in VVC division types, the encoder needs to traverse all possible
CU division combinations and calculate the RD cost of all division types, which requires
an unimaginable amount of computation. As shown in Table 1, under the configuration
of the quantization parameter (QP) of 22, we selected a frame for different categories of
video sequences to encode and counted all possible division combinations that need to be
traversed by a CU with a size of 32× 32. It can be seen in the table that the more complicated
the video sequence that needs to be traversed, the more CU division combinations it needs
to traverse, and correspondingly, more coding time will be consumed. In addition, a larger



Electronics 2022, 11, 3090 3 of 15

CU size (64× 64) needs to traverse more possible combinations, but the first division of most
of the CUs is QT division. After obtaining a 32 × 32 CU, the remaining division operations
are performed. The smaller CU size (32 × 16, 16 × 16, 16 × 8) needs to traverse fewer
possible combinations. If a fast partition decision algorithm is designed for a 64 × 64-sized
CU and a smaller-sized CU, resources will be relatively wasted. Therefore, finding a fast
algorithm for CUs with a size of 32 × 32 to replace the tedious RDO process to speed up
the CU partitioning process is crucial for decreasing the VVC coding complexity. In this
paper, we first put forward a stage grid map that can divide the overall partitioning of a
32 × 32 CU into four stages and represent it as a structured output. Second, a multi-stage
early termination convolutional neural network (MET-CNN) is proposed to predict the full
partition information of a 32 × 32 CU. Finally, a fast CU partition decision algorithm for
VVC intra coding based on an MET-CNN is proposed, which can predict all the partition
information of a CU with a size of 32 × 32 and its sub-CUs by running a convolutional
neural network (CNN) only once, completely replacing the complex RDO process. The
algorithm has an early exit mechanism, which greatly reduces the computational complexity
and achieves a better balance between coding time-saving and RD performance.

Table 1. Number of all possible combinations of CU partitions in a frame for different sequences.

Class Sequence CU (32 × 32) Number of All Possible
Combinations of CU Partitions

A1 Campfire 8160 2156
A1 CatRobot 8160 5948
B BQTerrace 2040 1710
C PartyScene 390 390
D BQSquare 110 106
E FourPeople 920 641

The remaining chapters of this paper are organized as follows: Section 2 introduces
the preparation of the study, including listing the existing fast CU partitioning algorithms
proposed for previous standards and VVC. Section 3 introduces the algorithm proposed
in this article, including the proposal of the stage grid map, the construction and training
process of the MET-CNN, and the overall process of the proposed algorithm. The analysis
and comparison of the experimental results are presented in Section 4. Finally, Section 5
provides the conclusion of this paper.

2. Related Works

At present, the research on fast CU partitioning algorithms for VVC is split into
approximately two categories, namely heuristic methods and data-driven methods. Among
them, higher CU partitioning accuracy can be obtained using data-driven methods [8].
In the data-driven method, with the in-depth study of machine learning algorithms [9],
the use of machine learning-related methods to accelerate the CU partitioning process has
gradually become a research hotspot.

2.1. Fast Algorithms for Previous Standards

Before VVC was formulated, the previous generation video coding standard HEVC
became the main research object. Many fast algorithms for HEVC based on machine learn-
ing have been proposed to speed up CU partitioning and reduce computational complexity.
Zhang et al. [10] suggested a CNN-based HEVC coding unit partitioning algorithm. This
algorithm uses CNN to predict the CU division process, inputs a 64 × 64 CU, outputs the
division flag, and determines whether to divide the current CU according to the division
flag. Liu et al. [11] designed a fast partition decision method for CU based on texture
features. The current CU is divided into several sub-blocks, the difference between the
pixel average value of the sub-block and the current CU as the texture feature of the current
CU is calculated, and then the calculation result with the set threshold to determine whether



Electronics 2022, 11, 3090 4 of 15

the CU division process needs to be terminated in advance is contrasted. Guo et al. [12] de-
signed a lightweight CNN model that can skip the tedious RDO process in HEVC, thereby
greatly reducing the encoding time, and introduced the concept of depth-wise separable
convolution to further improve the encoding performance. In [13], a reinforcement learning-
based CU partition decision method was suggested, which transforms the CU partition
decision into a sequential decision problem and uses a batch-mode reinforcement learning
model to find the optimal coding strategy for CU partition. In [14], a neural network
architecture was designed and a dataset was constructed to make decisions on CU depth.
Furthermore, the prediction accuracy of the network was enhanced by employing picture
data and vector data containing PU decision information. In [15], a support vector machine
(SVM)-based CU partition decision method was proposed, and different SVM classifiers
were designed for each depth to enhance the prediction accuracy. Simultaneously, the
original RDO process is only enabled if the output result is indeterminate. Zhang et al. [16]
transformed the CU deep decision issue into a three-layer hierarchical decision issue and
designed a three-output classifier to enhance the prediction accuracy. The above-mentioned
fast CU partitioning algorithms for HEVC achieved very good results in the actual encoding
tests, dropping the computational complexity to a certain extent.

However, due to the differences in block division technology between VVC and HEVC,
these efficient algorithms cannot be directly applied to VVC. We used the VVC and HEVC
encoders to encode the sequence BQTerrace respectively under the same configuration
environment and randomly selected a frame, as shown in Figure 2. It can be seen that there
is a big difference between the two, so the above-mentioned algorithm for HEVC cannot
be applied, and further exploration and research on the VVC fast CU partition algorithm
is required.

Electronics 2022, 11, 3090 4 of 16 
 

 

2.1. Fast Algorithms for Previous Standards 

Before VVC was formulated, the previous generation video coding standard HEVC 

became the main research object. Many fast algorithms for HEVC based on machine learn-

ing have been proposed to speed up CU partitioning and reduce computational complex-

ity. Zhang et al. [10] suggested a CNN-based HEVC coding unit partitioning algorithm. 

This algorithm uses CNN to predict the CU division process, inputs a 64 × 64 CU, outputs 

the division flag, and determines whether to divide the current CU according to the divi-

sion flag. Liu et al. [11] designed a fast partition decision method for CU based on texture 

features. The current CU is divided into several sub-blocks, the difference between the 

pixel average value of the sub-block and the current CU as the texture feature of the cur-

rent CU is calculated, and then the calculation result with the set threshold to determine 

whether the CU division process needs to be terminated in advance is contrasted. Guo et 

al. [12] designed a lightweight CNN model that can skip the tedious RDO process in 

HEVC, thereby greatly reducing the encoding time, and introduced the concept of depth-

wise separable convolution to further improve the encoding performance. In [13], a rein-

forcement learning-based CU partition decision method was suggested, which transforms 

the CU partition decision into a sequential decision problem and uses a batch-mode rein-

forcement learning model to find the optimal coding strategy for CU partition. In [14], a 

neural network architecture was designed and a dataset was constructed to make deci-

sions on CU depth. Furthermore, the prediction accuracy of the network was enhanced 

by employing picture data and vector data containing PU decision information. In [15], a 

support vector machine (SVM)-based CU partition decision method was proposed, and 

different SVM classifiers were designed for each depth to enhance the prediction accuracy. 

Simultaneously, the original RDO process is only enabled if the output result is indeter-

minate. Zhang et al. [16] transformed the CU deep decision issue into a three-layer hier-

archical decision issue and designed a three-output classifier to enhance the prediction 

accuracy. The above-mentioned fast CU partitioning algorithms for HEVC achieved very 

good results in the actual encoding tests, dropping the computational complexity to a cer-

tain extent. 

However, due to the differences in block division technology between VVC and 

HEVC, these efficient algorithms cannot be directly applied to VVC. We used the VVC 

and HEVC encoders to encode the sequence BQTerrace respectively under the same con-

figuration environment and randomly selected a frame, as shown in Figure 2. It can be 

seen that there is a big difference between the two, so the above-mentioned algorithm for 

HEVC cannot be applied, and further exploration and research on the VVC fast CU parti-

tion algorithm is required. 

  

(a) (b) 

Figure 2. Comparison diagram of CU division of different coding standards. (a) In VVC; (b) in 

HEVC. 

  

Figure 2. Comparison diagram of CU division of different coding standards. (a) In VVC; (b) in HEVC.

2.2. Fast Algorithms for VVC

With the gradual improvement of VVC, its coding performance is outstanding, but it
also brings huge computational complexity. Therefore, people have begun to explore the
VVC rapid CU partition method, aiming to greatly reduce the encoding time. Javaid et al. [17]
used a multi-level exit CNN (MLE-CNN) to make decisions on CU partitions and built
an adaptive loss function and variable threshold decision system to attain a trade-off
between the complexity reduction performance and the RD performance. In [18], an early
termination hierarchical CNN (ETH-CNN) and decision flow were proposed to predict
CU partitions, thereby reducing the complexity. In [19], a rapid CU partition decision
algorithm based on just noticeable distortion (JND) and SVM was proposed. The method
uses the JND model to classify CUs into three categories: smooth, normal, and complex. If
the CU is judged to be a smooth CU, no division is performed; if it is a complex CU, the
SVM is used to decide the division mode; if it is a normal CU, the VVC original program
is used for operation. Li et al. [20] designed a CNN model with an early exit mechanism
to make decisions on CU partitions and proposed a multi-threshold decision process to



Electronics 2022, 11, 3090 5 of 15

better balance complexity and RD performance. Fu et al. [21] proposed a two-stage rapid
CU partitioning method. The first stage uses multi-branch CNN to extract features to
predict QT depth and whether to use TT; the second stage prunes the possible division
combinations of CU based on the prediction information, thereby reducing the coding
complexity. At the same time, the MobilenetV2 network structure is adopted to decrease
the number of training parameters of CNN. In [22], an intra-frame adaptive CU partition
decision algorithm based on a variable pooling layer CNN was proposed, which can make
partition decisions for CUs of different sizes by using adaptive pooling layers. In both [23]
and [24], a CU with a size of 64 × 64 was fed into the proposed neural network, which
outputted a vector consisting of 480 probability values. Each probability value represented
a boundary division situation with a length of 4 pixels in the CU, and then the CU division
type was determined according to the comparison between the probability value and the
threshold. In [25], a rapid CU partition decision algorithm based on a CNN and a random
forest classifier (RFC) was proposed. The algorithm combines CNN and RFC to forecast
the depth and partition type of a 32 × 32 CU, thus skipping the RDO process and reducing
the encoding time. Although the above fast algorithms can show a certain effect in saving
VVC encoding time, they all have their limitations, and the algorithm performance is not
outstanding. Therefore, in this study, we designed a fast CU partition decision method
for VVC intra coding based on MET-CNN that can predict all the partition information
of a CU with a size of 32 × 32 and its sub-CUs in only one run, completely replacing the
complex RDO process. It also has an early exit mechanism, which saves a lot of coding
time and achieves a better balance between the encoding complexity decrease and the
RD performance.

3. Proposed Algorithm
3.1. Stage Grid Map

Since VVC introduces QTMT technology, which leads to diversity in the CU sizes,
it is inefficient and time-consuming to directly predict the partitioning process of each
CU [26]. Therefore, we propose the concept of a stage grid map, which can directly
represent the overall division of CUs with a size of 32 × 32 as the standard output form of
the subsequently proposed MET-CNN to realize the overall prediction of the CU division.

Due to the division characteristics of QTMT, in a CU with a size of 32 × 32, there
will be division boundaries of different lengths, the shortest being 4 pixels and the longest
being 32 pixels. Therefore, according to the length of the division boundary, we divided the
division of a 32 × 32 CU into four stages and determined all possible division boundaries
at each stage, as shown in Figure 3. Specifically, at Stage 1, due to the length between the
two parallel boundaries of at least 4 pixels, there are seven probable division boundaries
with a length of 32 pixels in the horizontal and vertical directions respectively, for a total
of 14 division boundaries. By analogy, the length of the division boundary at Stage 2 is
16 pixels, and there are 14 horizontal and 14 vertical division boundaries, for a total of
28 division boundaries. At Stage 3, the length of the division boundary is 8 pixels, and
there are 28 horizontal and 28 vertical division boundaries, totaling 56. At Stage 4, the
length of the division boundary is 4 pixels, and there are 56 division boundaries in the
horizontal and vertical directions, totaling 112. Next, we tried to express the division of
each stage. A binary label was used to mark the division status of each division boundary.
If it was divided, it was marked as “1”, and if it was not divided, it was marked as “0”. The
labels of all division boundaries at each stage were formed into a vector, which represents
the division information of this stage. Taking the fourth stage as an example, according
to the marking principle of vertical first and then horizontal, the first value of the vector
represents the first vertical boundary in the first column from the upper left, and the second
value represents the second vertical boundary in the first column, and so on. The ninth
value represents the first vertical boundary in the second column, the 57th value represents
the first horizontal boundary in the first row from the upper left, and the 112th value
represents the last horizontal boundary in the seventh row.



Electronics 2022, 11, 3090 6 of 15

Electronics 2022, 11, 3090 6 of 16 
 

 

total of 14 division boundaries. By analogy, the length of the division boundary at Stage 2 

is 16 pixels, and there are 14 horizontal and 14 vertical division boundaries, for a total of 

28 division boundaries. At Stage 3, the length of the division boundary is 8 pixels, and 

there are 28 horizontal and 28 vertical division boundaries, totaling 56. At Stage 4, the 

length of the division boundary is 4 pixels, and there are 56 division boundaries in the 

horizontal and vertical directions, totaling 112. Next, we tried to express the division of 

each stage. A binary label was used to mark the division status of each division boundary. 

If it was divided, it was marked as “1”, and if it was not divided, it was marked as “0”. 

The labels of all division boundaries at each stage were formed into a vector, which rep-

resents the division information of this stage. Taking the fourth stage as an example, ac-

cording to the marking principle of vertical first and then horizontal, the first value of the 

vector represents the first vertical boundary in the first column from the upper left, and 

the second value represents the second vertical boundary in the first column, and so on. 

The ninth value represents the first vertical boundary in the second column, the 57th value 

represents the first horizontal boundary in the first row from the upper left, and the 112th 

value represents the last horizontal boundary in the seventh row. 

  

(a) (b) 

  

(c) (d) 

Figure 3. Stage grid map. N is the number of boundaries in the current stage; L is the boundary 

length in the current stage; Blue and orange represent horizontal and vertical division boundaries, 

respectively. (a) Stage 1, N = 14, L = 32; (b) Stage 2, N = 28, L = 16; (c) Stage 3, N = 56, L = 8; (d) Stage 

4, N = 112, L = 4. 

The stage grid map vividly embodies the encoding procedure from a larger-size CU 

to a smaller-size CU in VVC. This map can divide the CU partitioning process into four 

stages and represent it as a structured output to be used with MET-CNN to achieve a fast 

CU partitioning process. Furthermore, since the stage grid map contains the full partition 

information of each 32 × 32 block and its sub-CUs, it can be highly parallelized and is more 

efficient than previous methods. 

A similar idea was also proposed in [23] to predict the division of each 4 × 4 boundary 

in the CU, which can be viewed as one of the cases of the stage grid map. In contrast, our 

proposed stage grid map has greater advantages. If the texture complexity of the CU is 

low, the 14 boundary values in the first stage can be used to represent all its division in-

formation, and with MET-CNN, the CU division process can be exited in advance, which 

Figure 3. Stage grid map. N is the number of boundaries in the current stage; L is the boundary
length in the current stage; Blue and orange represent horizontal and vertical division boundaries,
respectively. (a) Stage 1, N = 14, L = 32; (b) Stage 2, N = 28, L = 16; (c) Stage 3, N = 56, L = 8; (d) Stage 4,
N = 112, L = 4.

The stage grid map vividly embodies the encoding procedure from a larger-size CU
to a smaller-size CU in VVC. This map can divide the CU partitioning process into four
stages and represent it as a structured output to be used with MET-CNN to achieve a fast
CU partitioning process. Furthermore, since the stage grid map contains the full partition
information of each 32 × 32 block and its sub-CUs, it can be highly parallelized and is more
efficient than previous methods.

A similar idea was also proposed in [23] to predict the division of each 4 × 4 boundary
in the CU, which can be viewed as one of the cases of the stage grid map. In contrast, our
proposed stage grid map has greater advantages. If the texture complexity of the CU is low,
the 14 boundary values in the first stage can be used to represent all its division information,
and with MET-CNN, the CU division process can be exited in advance, which greatly saves
the coding time. There is no need to predict 480 values for all CUs to represent their partition
information as in [23]. At the same time, the inconsistency between the small boundaries
also brings great difficulty to the division decision-making process. Stage 4 of the grid
map is only enabled when dealing with higher-complexity CUs. Therefore, compared to
previous algorithms, the stage grid map can more flexibly handle CUs with different texture
complexities and show higher prediction efficiency and better inference performance.

3.2. Multi-Stage Early Termination CNN

Afterward, we designed a MET-CNN to learn a stage grid map for fast decisions on
CU partitions. Figure 4 shows the structure of the MET-CNN, which was inspired by the
small ResNet [27]. We sampled the 32 × 32 luminance block on the left and above to obtain
a 33 × 33 × 1 luminance CU as the input of the MET-CNN. Similar to the stage grid map,
the MET-CNN is also divided into four stages, each stage is performed in a series, and
each stage provides an output result. The output result is a vector composed of multiple
values, and each value represents the probability of whether the corresponding boundary
is divided, which is used to cooperate with the stage grid map to make decisions on the
division type of the CU at the current stage.



Electronics 2022, 11, 3090 7 of 15

Electronics 2022, 11, 3090 7 of 16 
 

 

greatly saves the coding time. There is no need to predict 480 values for all CUs to repre-

sent their partition information as in [23]. At the same time, the inconsistency between the 

small boundaries also brings great difficulty to the division decision-making process. 

Stage 4 of the grid map is only enabled when dealing with higher-complexity CUs. There-

fore, compared to previous algorithms, the stage grid map can more flexibly handle CUs 

with different texture complexities and show higher prediction efficiency and better in-

ference performance. 

3.2. Multi-Stage Early Termination CNN 

Afterward, we designed a MET-CNN to learn a stage grid map for fast decisions on 

CU partitions. Figure 4 shows the structure of the MET-CNN, which was inspired by the 

small ResNet [27]. We sampled the 32 × 32 luminance block on the left and above to obtain 

a 33 × 33 × 1 luminance CU as the input of the MET-CNN. Similar to the stage grid map, 

the MET-CNN is also divided into four stages, each stage is performed in a series, and 

each stage provides an output result. The output result is a vector composed of multiple 

values, and each value represents the probability of whether the corresponding boundary 

is divided, which is used to cooperate with the stage grid map to make decisions on the 

division type of the CU at the current stage. 
C

o
n

v
 3

×
3

×
1

6

S
et

 (
k

=
3

2
)

S
et

 (
k

=
3

2
)

P
o

o
li

n
g

S
et

 (
k

=
6

4
)

S
et

 (
k

=
6

4
)

P
o

o
li

n
g

S
et

 (
k

=
1

2
8
)

S
et

 (
k

=
1

2
8
)

P
o

o
li

n
g

S
et

 (
k

=
2

5
6
)

S
et

 (
k

=
2

5
6
)

P
o

o
li

n
g

Conv 3×3×32

FC (i=14)

Global Average 

Pooling

Conv 3×3×64

FC (i=28)

Global Average 

Pooling

Conv 3×3×128

FC (i=56)

Global Average 

Pooling

Conv 3×3×256

FC (i=112)

Global Average 

Pooling

Stage 1 Stage 2 Stage 3 Stage 4

In
p

u
t 

b
lo

ck

16×16×32 8×8×64 4×4×128 2×2×256

C
o

n
v

 3
×

3
×

k

C
o

n
v

 3
×

3
×

k

S
h

o
rt

cu
t

C
o

n
v

 1
×

1
×

k

Set (k)

C
o

n
v

 

P
o

o
li

n
g

F
C

 (
i)

In
p

u
t 

b
lo

ck

C
o
n
v
o
lu

ti
o
n
 b

lo
ck

 +
 

R
eL

u
  
  
  
  
  
  
  
  
  
 

(s
tr

id
e=

1
)

A
v
er

ag
e 

p
o
o
l 

  
  
 

(2
x
2
, 
st

ri
d
e=

2
)

F
u
ll

y
 c

o
n
n
ec

te
d
  
  
  

(i
=

1
4
, 
2
8
, 
5
6
, 
1
1
2
)

L
u
m

a 
C

U
  
 

(3
3
×

3
3
×

1
)

S
h

o
rt

cu
t

S
k
ip

 c
o
n
n
ec

ti
o
n
 +

 

R
eL

u

 

Figure 4. Structure diagram of the proposed MET-CNN model. 

The MET-CNN structure includes the following: 

• The backbone of the CNN consists of four stages, each with an output; 

• Each stage consists of two set blocks, an average pooling layer with a size of 2 × 2 and 

a stride of 2, a convolutional layer with a 3 × 3 convolution kernel, a global average 

pooling layer, and a fully connected layer. The first stage additionally contains a con-

volutional layer with a 3 × 3 × 16 convolution kernel; 

Figure 4. Structure diagram of the proposed MET-CNN model.

The MET-CNN structure includes the following:

• The backbone of the CNN consists of four stages, each with an output;
• Each stage consists of two set blocks, an average pooling layer with a size of 2 × 2 and

a stride of 2, a convolutional layer with a 3 × 3 convolution kernel, a global average
pooling layer, and a fully connected layer. The first stage additionally contains a
convolutional layer with a 3 × 3 × 16 convolution kernel;

• Each set block contains two convolutional layers with a 3 × 3 × k convolution kernel,
a convolutional layer with a 1 × 1 × k convolution kernel, and a shortcut layer. The
value of k varies at each stage.

It is important to note that each convolutional layer has a stride of 1 and is activated
with a rectified linear unit (ReLU) after each convolutional layer. Batch normalization (BN)
was used to speed up convergence during training. The number of fully connected layer
nodes at each stage corresponds to the number of boundaries at each stage in the stage grid
map. For example, the first stage outputs a vector composed of 14 probability values, the
second stage outputs a vector composed of 28 probability values, and so on. The shortcut
layer represents the skip connection, which refers to the summation of the characteristic
values of the corresponding channels, and does not change the number of channels.

Taking the first stage as an example, the luminance CU of 33 × 33 × 1 was the input,
and the feature map of 33× 33× 16 was obtained after the convolutional layer of 3 × 3 × 16.
Then after two set blocks, the feature map size became 33 × 33 × 32. Then, a feature map
of size 16 × 16 × 32 was obtained through the average pooling layer. After going through
a convolutional layer with a kernel of 3 × 3 × 32 and a global average pooling layer,
a 1 × 1 × 32 feature map was obtained. Finally, through the fully connected layer of
14 nodes, a vector composed of 14 probabilities was obtained, which then cooperated with
the decision-making process to complete the division decision of the first stage of CU.



Electronics 2022, 11, 3090 8 of 15

In addition, compared to traditional neural networks, the MET-CNN comes with an
early exit mechanism, which indicates that the prediction results from lower stages are likely
to exit the neural network and CU partitioning process early. For example, if it is determined
that the division result of a 32 × 32 CU is “not divided” according to the predicted value of
Stage 1, the calculation processes of Stages 2 to 4 are not performed, and the current CU
division process is directly exited, thereby greatly reducing the encoding time.

3.3. Model Training

The datasets used to train the MET-CNN were derived from pictures from the DIV2K
dataset [28] and some other databases containing 20M patches. We used VVC’s latest
official test software VTM10.0 to encode the dataset with QPs of 22, 27, 32, 37, and AI
configuration, respectively, and counted the division information of 32 × 32 CUs. Then it
was marked in the form of the stage grid map mentioned in the previous section to form the
final dataset used. The MET-CNN architecture was built and trained in Python 4.0 based on
the PyTorch learning library. In detail, we used the Adam optimizer for optimization with
an initial learning rate of 10-3 for 300 epochs. The learning rate was updated at a rate of
every 50 epochs divided by a factor of 10, and the batch size of the trained model was 128.

The loss function plays an extremely critical role in the training process of a CNN,
which may directly affect the performance of the CNN. Therefore, we adopted the cross-
entropy function as the loss function when training the MET-CNN. For a single 32 × 32 CU
sample m in a batch, the loss function Lm is:

Lm = −
4

∑
i=1

ni

∑
j=1

pi,j · log(qi,j) + (1− pi,j) · log(1− qi,j), (3)

where ni represents the total number of boundaries in the i-th stage; pi,j represents the
actual value of the j-th boundary at the i-th stage; similarly, qi,j is the predicted value of the
corresponding boundary.

For a batch, the total loss function Loss is the average of all sample loss functions in
the batch, and the formula is:

Loss =
1
N
·

N

∑
m=1

Lm, (4)

where N indicates the number of samples in a batch.

3.4. CU Partition Decision Process

After designing the stage grid map and MET-CNN, we proposed a fast CU partition
decision method to make the overall partition decision for CUs with a size of 32 × 32.

As shown in Figure 5, the algorithm flow is for a block with a size of 32 × 32, and with
the characteristics of the stage grid map and the MET-CNN, the entire flow is also divided
into four stages in a series. For the i-th stage, the detailed algorithm flow is as follows:

1. Step 1: Input a luma block of size 32 × 32;
2. Step 2: The luminance block is fed into the MET-CNN as input, and it runs to its i-th

stage to get the output vector of this stage;
3. Step 3: According to the output vector, the probabilities of the five possible division

types at this stage are calculated, and the formula is shown in Equations (5)–(9);
4. Step 4: The calculated probabilities of the five division types are compared with the

set threshold Th in the order of PQT , PHBT , PVBT , PHTT , and PVTT . The threshold
formula is shown in Equation (10). If the probability value of the division type is
greater than Th, the current stage CU performs the division type corresponding to the
probability value and moves to the next stage. If the probability values of all division
types are not greater than Th, the division process of the CU at the current stage is
terminated in advance. Note that if the division result of the first stage is TT division,



Electronics 2022, 11, 3090 9 of 15

the decision-making process of the second stage needs to be judged according to the
output vector of the third stage.

Electronics 2022, 11, 3090 9 of 16 
 

 

where N indicates the number of samples in a batch. 

3.4. CU Partition Decision Process 

After designing the stage grid map and MET-CNN, we proposed a fast CU partition 

decision method to make the overall partition decision for CUs with a size of 32 × 32. 

As shown in Figure 5, the algorithm flow is for a block with a size of 32 × 32, and with 

the characteristics of the stage grid map and the MET-CNN, the entire flow is also divided 

into four stages in a series. For the i-th stage, the detailed algorithm flow is as follows: 

1. Step 1: Input a luma block of size 32 × 32; 

2. Step 2: The luminance block is fed into the MET-CNN as input, and it runs to its i-th 

stage to get the output vector of this stage; 

3. Step 3: According to the output vector, the probabilities of the five possible division 

types at this stage are calculated, and the formula is shown in Equations (5)–(9); 

4. Step 4: The calculated probabilities of the five division types are compared with the 

set threshold Th  in the order of QTP , HBTP , VBTP , HTTP , and VTTP . The threshold 

formula is shown in Equation (10). If the probability value of the division type is 

greater than Th , the current stage CU performs the division type corresponding to 

the probability value and moves to the next stage. If the probability values of all di-

vision types are not greater than Th , the division process of the CU at the current 

stage is terminated in advance. Note that if the division result of the first stage is TT 

division, the decision-making process of the second stage needs to be judged accord-

ing to the output vector of the third stage. 

Start a CU

Stage 1

Stage 2

Stage 3

Stage 4

End

 

Calculate the probability based 

on the output of the current stage

MET-CNN (i-th 

stage)

PQT > Th

PVBT > Th

PHTT > Th

PVTT > Th

QT

HBT

HTT

Next stage

Early 

termination

PHBT > Th

N

N

N

N

N

Y

Y

YVBT

VTT

Y

Y

 

(a) (b) 

Figure 5. Flowchart of CU partition decision based on MET-CNN. (a) Overall flow chart; (b) detailed
flowchart of the i-th stage.

The division probability formula of VBT is:

a = 2S−1

n =
x
4
+

w
8
− 1

i = a · y
32

+ n · a

PVBT =
32

a · h ·
a·h/32

∑
j=1

pi+j

, (5)

The division probability formula of HBT is:

a = 2S−1

n =
y
4
+

h
8
− 1

i = a · x
32

+ n · a + 7a

PHBT =
32

a · w ·
a·w/32

∑
j=1

pi+j

, (6)



Electronics 2022, 11, 3090 10 of 15

The division probability formula of VTT is:

a = 2S−1

n1 =
x
4
+

w
16
− 1

n2 =
x
4
+

3
16
· w− 1

i1 = a · y
32

+ n1 · a

i2 = a · y
32

+ n2 · a

P1 =
32

a · h ·
a·h/32

∑
j=1

pi1+j

P2 =
32

a · h ·
a·h/32

∑
j=1

pi2+j

PVTT = Max(P1, P2)

, (7)

The division probability formula of HTT is:

a = 2S−1

n1 =
y
4
+

h
16
− 1

n2 =
y
4
+

3
16
· h− 1

i1 = a · x
32

+ n1 · a + 7a

i2 = a · x
32

+ n2 · a + 7a

P1 =
32

a · w ·
a·w/32

∑
j=1

pi1+j

P2 =
32

a · w ·
a·w/32

∑
j=1

pi2+j

PHTT = Max(P1, P2)

, (8)

The division probability formula of QT is:

PQT =
1
2
(PVBT + PHBT), (9)

where S denotes the number of stages in the current MET-CNN run; x and y indicate the
coordinates of the upper left corner of the current stage CU in a 32 × 32 size block; h and
w denote the height and width of the current stage CU, respectively; pi+j represents the
probability value that the sequence number in the output vector is the i + jth.

In terms of the selection of the threshold, considering that the size of the CU at
different stages is different, if the threshold remains unchanged, it will affect the final
decision-making result. Therefore, we adopted a dynamic threshold. A smaller threshold
was used for high-stage CUs, and a larger threshold was used for low-stage CUs, which
can achieve better decision-making effects. The threshold formula is as follows:

Th = a− b · S, (10)

where S indicates the number of stages in the current MET-CNN run; a, b are fixed con-
stants, which can be {(a, b)|(0.9, 0.1),(0.9, 0.2),(0.9, 0.3),(0.8, 0.1),(0.8, 0.2),(0.8, 0.3),(0.7,
0.1),(0.7, 0.2),(0.7, 0.3)}. In order to select the most suitable threshold, we used the overall
algorithm with different threshold formulas to perform coding tests on the VVC standard
test sequence ParkRunning3 under the coding environments of QP = 22, 27, 32, and 37. The
algorithm performance is listed under different thresholds in Table 2. The performance of



Electronics 2022, 11, 3090 11 of 15

the algorithm was measured using ∆T and the Bjøntegaard Delta Bit Rate (BDBR). ∆T rep-
resents the coding time-saving rate of the proposed algorithm compared with the original
VTM10.0 algorithm, which was used to measure the performance of reducing complexity.
BDBR was used to measure the RD performance.

∆T =
1
4
· ∑

i∈QP

Tbase(QPi)− Tprop(QPi)

Tbase(QPi)
· 100%, (11)

where Tbase(QPi) and Tprop(QPi) indicate the encoding time spent by the original algorithm
and the algorithm proposed in this paper under QP = 22, 27, 32, and 37, respectively.

Table 2. Algorithm performance at different thresholds.

(a, b) BDBR (%) ∆T (%)

(0.9, 0.1) 0.73 39.29
(0.9, 0.2) 0.99 49.36
(0.9, 0.3) 1.32 55.64
(0.8, 0.1) 0.95 54.58
(0.8, 0.2) 0.98 50.69
(0.8, 0.3) 1.09 53.23
(0.7, 0.1) 0.96 49.69
(0.7, 0.2) 1.10 54.12
(0.7, 0.3) 1.14 56.31

According to the results shown in Table 2, we finally set (a, b) to be (0.8, 0.1), so that
the proposed algorithm can achieve the best performance. The final threshold formula is:

Th = 0.8− 0.1 · S, (12)

where S indicates the number of stages in the current MET-CNN run.
A fast CU partition decision algorithm for VVC intra coding based on an MET-CNN

is proposed in this article. The algorithm can achieve the division decision of a 32 × 32
CU and all its sub-CUs by using the CNN model only once, and completely skipping the
tedious RDO, thus greatly reducing the computational complexity. In addition, each stage
in the algorithm is performed in series, and each stage outputs a prediction result, which is
used to make a decision on the CU of the current stage. Furthermore, the algorithm has an
early termination mechanism. For a complex CU, only the prediction of the lower stage
can be performed to obtain the division result, skip the prediction process of the higher
stage, and terminate the division decision process in advance, thereby further reducing the
coding time.

4. Experimental Results
4.1. Experimental Environment

All experiments were performed under the AI configuration environment in VVC’s
latest encoder version VTM10.0. The MET-CNN architecture was built and tested in Python
4.0 based on the PyTorch learning library, and each encoding and MET-CNN prediction
was run on an Intel Core i5-8500 CPU@3.00GHz processor in the Windows 10 operating
system. We selected 18 CTC standard test sequences with different resolutions, video
content, and texture complexity, which were divided into five categories: A1(4K), A1 (4K),
B (1920 × 1080), C (832× 480), D (416× 240), and E (1280× 720). The above test sequences
formed a test set to test the performance of the suggested algorithm. In the experiment,
we tested the test set with the fast algorithm suggested in this article under the coding
environments of QP = 22, 27, 32, and 37, and averaged the experimental data to obtain
the experimental results. It should be emphasized that the construction and training of
the MET-CNN were both offline processes, so the time spent was not included in the
encoding time.



Electronics 2022, 11, 3090 12 of 15

We chose two criteria to measure the performance of the proposed method, ∆T and
BDBR. ∆T represents the coding time-saving rate of the proposed algorithm compared with
the original VTM10.0 algorithm, which was used to measure the performance of reducing
complexity. BDBR was used to measure the RD performance.

4.2. Analysis of Experimental Results

To prove the effectiveness of the method proposed in this article, we utilized the
method proposed in this article and the current more advanced fast CNN-based algorithm
([21,26]) to perform coding experiments under the same sequence, same configuration (AI),
and the same parameters. Then, we compared it to the original algorithm of VTM10.0, and
the experimental results are shown in Table 3.

Table 3. Performance of the proposed algorithm.

Test Sequence [26] [21] Proposed
BDBR (%) ∆T (%) BDBR (%) ∆T (%) BDBR (%) ∆T (%)

Class A1
4K

FoodMarket4 3.35 27.09 0.22 29.94 0.57 40.62
Campfire 2.81 25.71 0.81 45.62 0.82 55.78

Class A2
4K

Catrobot1 2.50 28.34 0.80 44.50 1.35 53.63
DaylightRoad2 2.59 32.96 0.72 45.95 0.75 50.21
ParkRunning3 1.96 21.93 0.47 43.84 0.95 54.58

Class B
1920 × 1080

Cactus 3.99 22.78 0.72 46.77 1.31 56.87
BasketballDrive 6.79 20.67 0.67 48.98 0.83 54.23

BQTerrace 4.80 25.91 0.60 41.75 0.91 50.67

Class C
832 × 480

BasketballDrill 2.95 28.37 1.40 37.63 1.17 44.39
BQMall 5.70 21.69 0.89 41.72 1.12 49.47

PartyScene 2.80 20.89 0.28 38.73 0.98 47.02
RaceHorsesC 3.70 21.43 0.61 43.39 0.67 48.15

Class D
416 × 240

BasketballPass 5.46 22.29 0.62 38.06 1.01 49.11
BQsquare 2.36 26.62 0.44 32.56 0.87 40.61

BlowingBubbles 2.69 27.78 0.32 36.97 1.16 48.91
RaceHorses 3.32 25.71 0.45 36.86 0.68 44.28

Class E
1280 × 720

FourPeople 6.73 21.82 1.08 42.57 0.88 46.82
KristenAndSara 8.82 23.68 1.00 45.53 1.53 50.94

Average 4.07 24.76 0.67 41.18 0.97 49.24

The experimental results demonstrate that, compared to the original VTM10.0 algo-
rithm, our proposed algorithm reduced the coding complexity by 49.24% on average, and
led to only a 0.97% increase in BDBR (negligible). Among them, for different categories, the
algorithm proposed in this article had the best performance in reducing complexity in Class
A2 and Class B, reducing the coding times by 52.81% and 53.92% on average. This shows
that the suggested algorithm can have better performance when targeting higher-resolution
sequences. For a single sequence, the proposed algorithm decreased the encoding time by
a maximum of 56.87% (Cactus) and by a minimum of 40.61% (BQsquare). This demonstrates
that the proposed algorithm is universal and effective at reducing coding complexity and
can perform well for all sequences. Since the proposed algorithm can completely replace
the complex RDO process and complete the CU partition decision, and the result of the
partition prediction is basically similar to that of the original algorithm, the algorithm
proposed in this paper can greatly reduce the encoding time on the premise of maintaining
the encoding quality.

Compared to the current more advanced fast algorithms based on a CNN, the algo-
rithm proposed in this article also shows obvious advantages. Among them, compared
to [26], the proposed algorithm had better performance both in terms of decreasing the
coding complexity and the RD performance. On average, the encoding time was reduced



Electronics 2022, 11, 3090 13 of 15

by 24.48% compared to the algorithm in [26], and the BDBR was also reduced by an average
of 3.1%. Especially in the sequence Cactus, this result is more obvious, showing that the
complexity was reduced by as much as 34.09% compared to [26]. We can conclude that
when the proposed algorithm was encoded for different sequences and different categories,
its complexity reduction performance and RD performance improvements were huge
compared to [26].

Compared to [21], the proposed method reduced the encoding time by 8.06% on
average, and the BDBD only increased by 0.3%. Especially in the sequence BlowingBubbles,
this result is more obvious, showing that the complexity was reduced by as much as
11.94% compared to [21]. Specifically, the algorithm proposed in this paper shows better
performance both in higher resolution categories such as Class A1 and Class A2 and
in lower resolution categories, such as Class C and Class D (in Class A1, the encoding
time decreased by an average of 10.42% compared to [21]; in Class D, the encoding time
decreased by an average of 9.62% compared to [21]).

In addition, to better see the RD performance of the proposed algorithm, we selected
the video sequences BasketballPass and RaceHorsesC from different categories. Then we
used the original VTM10.0 algorithm and the method suggested in this article to conduct
coding experiments and compared the RD performance of the two, as shown in Figure 6.
From Figure 6, we can draw the conclusion that the RD curve of the suggested algorithm
basically coincides with the RD curve of the original algorithm of VTM10.0. This shows that
the proposed algorithm can substantially achieve the same encoding quality as the original
algorithm, while greatly saving encoding time and achieving a better balance between
encoding complexity reduction and RD performance.

Electronics 2022, 11, 3090 14 of 16 
 

 

this result is more obvious, showing that the complexity was reduced by as much as 

11.94% compared to [21]. Specifically, the algorithm proposed in this paper shows better 

performance both in higher resolution categories such as Class A1 and Class A2 and in 

lower resolution categories, such as Class C and Class D (in Class A1, the encoding time 

decreased by an average of 10.42% compared to [21]; in Class D, the encoding time de-

creased by an average of 9.62% compared to [21]). 

In addition, to better see the RD performance of the proposed algorithm, we selected 

the video sequences BasketballPass and RaceHorsesC from different categories. Then we 

used the original VTM10.0 algorithm and the method suggested in this article to conduct 

coding experiments and compared the RD performance of the two, as shown in Figure 6. 

From Figure 6, we can draw the conclusion that the RD curve of the suggested algorithm 

basically coincides with the RD curve of the original algorithm of VTM10.0. This shows 

that the proposed algorithm can substantially achieve the same encoding quality as the 

original algorithm, while greatly saving encoding time and achieving a better balance be-

tween encoding complexity reduction and RD performance. 

  

(a) (b) 

Figure 6. RD performance comparison chart of the proposed algorithm. (a) RD of the BasketballPass; 

(b) RD of the RaceHorsesC. 

To sum up, the fast CU partition decision algorithm for VVC intra coding based on 

the MET-CNN suggested in this article, whether compared to the original VTM10.0 algo-

rithm or other advanced excellent algorithms at present, shows more promising perfor-

mance in terms of coding complexity reduction. Meanwhile, the loss of coding quality is 

small and almost negligible, effectively realizing the balance between coding complexity 

reduction and RD performance. 

5. Conclusions 

In this article, we first propose a stage grid map that divides the overall partitioning 

of a 32 × 32 CU into four stages and represents it as a structured output. Second, a MET-

CNN model was designed to predict the full partition information of a CU of size 32 × 32. 

Finally, a fast CU partition decision-making process is proposed, which can predict all the 

partition information of a CU with a size of 32 × 32 and its sub-CUs by running the algo-

rithm only once, completely replacing the complex RDO process. It also has an early exit 

mechanism, thus greatly reducing computational complexity and saving coding time. The 

experimental results demonstrate that the algorithm proposed in this article reduces the 

encoding time by 49.24% on average, and the BDBR only raises by 0.97% (negligible). The 

results prove that the proposed algorithm can greatly reduce the coding complexity of 

Figure 6. RD performance comparison chart of the proposed algorithm. (a) RD of the BasketballPass;
(b) RD of the RaceHorsesC.

To sum up, the fast CU partition decision algorithm for VVC intra coding based on the
MET-CNN suggested in this article, whether compared to the original VTM10.0 algorithm
or other advanced excellent algorithms at present, shows more promising performance in
terms of coding complexity reduction. Meanwhile, the loss of coding quality is small and
almost negligible, effectively realizing the balance between coding complexity reduction
and RD performance.

5. Conclusions

In this article, we first propose a stage grid map that divides the overall partitioning
of a 32 × 32 CU into four stages and represents it as a structured output. Second, a MET-
CNN model was designed to predict the full partition information of a CU of size 32 × 32.
Finally, a fast CU partition decision-making process is proposed, which can predict all



Electronics 2022, 11, 3090 14 of 15

the partition information of a CU with a size of 32 × 32 and its sub-CUs by running the
algorithm only once, completely replacing the complex RDO process. It also has an early
exit mechanism, thus greatly reducing computational complexity and saving coding time.
The experimental results demonstrate that the algorithm proposed in this article reduces
the encoding time by 49.24% on average, and the BDBR only raises by 0.97% (negligible).
The results prove that the proposed algorithm can greatly reduce the coding complexity
of VVC, save coding time, and achieve an effective balance between coding complexity
reduction and RD performance.

Author Contributions: Conceptualization, Y.W. and P.D.; methodology, J.Z.; software, P.D.; valida-
tion, Y.W., J.Z., Q.Z. and P.D.; formal analysis, P.D.; investigation, J.Z.; resources, Q.Z.; data curation,
Q.Z.; writing—original draft preparation, P.D.; writing—review and editing, Y.W.; visualization, Y.W.;
supervision, Y.W.; project administration, Q.Z.; funding acquisition, Y.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No. 61771432,
61302118, and 61702464), the Basic Research Projects of Education Department of Henan (Nos. 21zx003
and 20A880004), the Key Research and Development Program of Henan (No. 222102210027), and
the Postgraduate Education Reform and Quality Improvement Project of Henan Province (Nos.
YJS2021KC12 and YJS2022AL034).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Qian, X.; Zeng, Y.; Wang, W.; Zhang, Q. Co-saliency Detection Guided by Group Weakly Supervised Learning. IEEE Trans.

Multimed. 2022, 1, 1. [CrossRef]
2. Oh, K.; So, J.; Kim, J. Low complexity implementation of slim—HEVC encoder design. In Proceedings of the 2016 International

Conference on Systems, Signals and Image Processing (IWSSIP), Bratislava, Slovakia, 23–25 May 2016; pp. 1–4.
3. Filippov, A.; Rufitskiy, V.; Chen, J.; Alshina, E. Intra Prediction in the Emerging VVC Video Coding Standard. In Proceedings of

the 2020 Data Compression Conference (DCC), Snowbird, UT, USA, 24–27 March 2020; p. 367.
4. Versatile Video Coding, Recommendation ITU-T H.266 and ISO/IEC 23090-3 (VVC), ITU-T and ISO/IEC JTC. 1 July 2020. Available

online: http://phenix.it-sudparis.eu/jvet/doc_end_user/current_document.php?id=10399 (accessed on 6 August 2022).
5. Ye, Y.; Boyce, J.M.; Hanhart, P. Omnidirectional 360◦ Video Coding Technology in Responses to the Joint Call for Proposals on

Video Compression with Capability Beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 1241–1252. [CrossRef]
6. Huang, Y.-W. Block Partitioning Structure in the VVC Standard. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 3818–3833.

[CrossRef]
7. Bouaafia, S.; Khemiri, R.; Sayadi, F.E. Rate-Distortion Performance Comparison: VVC vs. HEVC. In Proceedings of the 2021 18th

International Multi-Conference on Systems, Signals & Devices (SSD), Monastir, Tunisia, 22–25 March 2021; pp. 440–444.
8. Chen, Z.; Shi, J.; Li, W. Learned Fast HEVC Intra Coding. IEEE Trans. Image Processing 2020, 29, 5431–5446. [CrossRef] [PubMed]
9. Lilhore, U.K.; Imoize, A.L.; Lee, C.C.; Simaiya, S.; Pani, S.K.; Goyal, N.; Kumar, A.; Li, C.T. Enhanced convolutional neural

network model for cassava leaf disease identification and classification. Mathematics 2022, 10, 580. [CrossRef]
10. Zhang, G.; Xiong, L.; Lian, X.; Zhou, W. A CNN-based Coding Unit Partition in HEVC for Video Processing. In Proceedings

of the 2019 IEEE International Conference on Real-Time Computing and Robotics (RCAR), Irkutsk, Russia, 4–9 August 2019;
pp. 273–276.

11. Liu, Y.; Wei, A. A CU Fast Division Decision Algorithm with Low Complexity for HEVC. In Proceedings of the 2020 IEEE 4th
Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 12–14 June
2020; pp. 1028–1032.

12. Guo, X.; Wang, Q.; Jiang, J. A Lightweight CNN for Low-Complexity HEVC Intra Encoder. In Proceedings of the 2020 IEEE 15th
International Conference on Solid-State & Integrated Circuit Technology (ICSICT), Kunming, China, 3–6 November 2020; pp. 1–3.

13. Jamali, M.; Coulombe, S.; Sadreazami, H. CU Size Decision for Low Complexity HEVC Intra Coding based on Deep Reinforcement
Learning. In Proceedings of the 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS),
Springfield, MA, USA, 9–12 August 2020; pp. 586–591.

14. Kim, K.; Ro, W.W. Fast CU Depth Decision for HEVC Using Neural Networks. IEEE Trans. Circuits Syst. Video Technol. 2019, 29,
1462–1473. [CrossRef]

http://doi.org/10.1109/TMM.2022.3167805
http://phenix.it-sudparis.eu/jvet/doc_end_user/current_document.php?id=10399
http://doi.org/10.1109/TCSVT.2019.2953827
http://doi.org/10.1109/TCSVT.2021.3088134
http://doi.org/10.1109/TIP.2020.2982832
http://www.ncbi.nlm.nih.gov/pubmed/32224461
http://doi.org/10.3390/math10040580
http://doi.org/10.1109/TCSVT.2018.2839113


Electronics 2022, 11, 3090 15 of 15

15. Heindel, A.; Haubner, T.; Kaup, A. Fast CU split decisions for HEVC inter coding using support vector machines. In Proceedings
of the 2016 Picture Coding Symposium (PCS), Nuremberg, Germany, 4–7 December 2016; pp. 1–5.

16. Zhang, Y.; Kwong, S.; Wang, X.; Yuan, H.; Pan, Z.; Xu, L. Machine Learning-Based Coding Unit Depth Decisions for Flexible
Complexity Allocation in High Efficiency Video Coding. IEEE Trans. Image Processing 2015, 24, 2225–2238. [CrossRef] [PubMed]

17. Javaid, S.; Rizvi, S.; Ubaid, M.T.; Tariq, A. VVC/H.266 Intra Mode QTMT Based CU Partition Using CNN. IEEE Access 2022, 10,
37246–37256. [CrossRef]

18. HoangVan, X.; NguyenQuang, S.; DinhBao, M.; DoNgoc, M.; Trieu Duong, D. Fast QTMT for H.266/VVC Intra Prediction using
Early-Terminated Hierarchical CNN model. In Proceedings of the 2021 International Conference on Advanced Technologies for
Communications (ATC), Ho Chi Minh City, Vietnam, 14–16 October 2021; pp. 195–200.

19. Zhao, J.C.; Wang, Y.H.; Zhang, Q.W. Fast CU Size Decision Method Based on Just Noticeable Distortion and Deep Learning. Sci.
Program. 2021, 2021, 3813116. [CrossRef]

20. Li, T.; Xu, M.; Tang, R.; Chen, Y.; Xing, Q. DeepQTMT: A Deep Learning Approach for Fast QTMT-Based CU Partition of
Intra-Mode VVC. IEEE Trans. Image Processing 2021, 30, 5377–5390. [CrossRef] [PubMed]

21. Fu, P.-C.; Yen, C.-C.; Yang, N.-C.; Wang, J.-S. Two-phase Scheme for Trimming QTMT CU Partition using Multi-branch Convolu-
tional Neural Networks. In Proceedings of the 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and
Systems (AICAS), Washington, DC, USA, 6–9 June 2021; pp. 1–6.

22. Tang, G.; Jing, M.; Zeng, X.; Fan, Y. Adaptive CU Split Decision with Pooling-variable CNN for VVC Intra Encoding. In
Proceedings of the 2019 IEEE Visual Communications and Image Processing (VCIP), Sydney, NSW, Australia, 1–4 December 2019;
pp. 1–4.

23. Tissier, A.; Hamidouche, W.; Vanne, J.; Galpin, F.; Menard, D. CNN Oriented Complexity Reduction Of VVC Intra Encoder. In
Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28
October 2020; pp. 3139–3143.

24. Zhang, Q.; Guo, R.; Jiang, B.; Su, R. Fast CU Decision-Making Algorithm Based on DenseNet Network for VVC. IEEE Access 2021,
9, 119289–119297. [CrossRef]

25. Huang, Y.-H.; Chen, J.-J.; Tsai, Y.-H. Speed Up H.266/QTMT Intra-Coding Based on Predictions of ResNet and Random Forest
Classifier. In Proceedings of the 2021 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 10–12
January 2021; pp. 1–6.

26. Abdallah, B.; Belghith, F.; Ben Ayed, M.A.; Masmoudi, N. Low-complexity QTMT partition based on deep neural network for
Versatile Video Coding. Signal Image Video Processing 2021, 15, 1153–1160. [CrossRef]

27. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

28. Agustsson, E.; Timofte, R. NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017;
pp. 1122–1131.

http://doi.org/10.1109/TIP.2015.2417498
http://www.ncbi.nlm.nih.gov/pubmed/25826804
http://doi.org/10.1109/ACCESS.2022.3164421
http://doi.org/10.1155/2021/3813116
http://doi.org/10.1109/TIP.2021.3083447
http://www.ncbi.nlm.nih.gov/pubmed/34057892
http://doi.org/10.1109/ACCESS.2021.3108238
http://doi.org/10.1007/s11760-020-01843-9

	Introduction 
	Related Works 
	Fast Algorithms for Previous Standards 
	Fast Algorithms for VVC 

	Proposed Algorithm 
	Stage Grid Map 
	Multi-Stage Early Termination CNN 
	Model Training 
	CU Partition Decision Process 

	Experimental Results 
	Experimental Environment 
	Analysis of Experimental Results 

	Conclusions 
	References

